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a b s t r a c t 

Closed-form expressions for the Cauchy stress, microstress, moment-stress, and the torque-twist rela- 

tionship in a twisted hollow circular tube are derived for a rigid-plastic strain-gradient plasticity. This is 

accomplished for any of the gradient-enhanced effective plastic strain measures from a considered broad 

class of these measures. Numerical results are given and discussed for the two most frequently utilized 

measures and for the three adopted stress-strain relationships modeling the uniaxial tension test. Solid 

circular rods and thin-walled tubes are both considered. The existence of the line forces is also discussed 

from the standpoint of the basic equilibrium considerations and the principle of virtual work. 
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. Introduction 

In the wake of Fleck and Hutchinson (1993) and Fleck et al.

1994) analyzes of the effects of strain-gradient on plastic response

f materials at micron scale, there has been a great amount of re-

earch devoted to the development of what is now known as the

train-gradient plasticity. The representative references include, in-

er alia, the contributions by Fleck and Hutchinson (1997, 2001) ;

ix and Gao (1998) ; Gao et al. (1999) ; Huang et al. (20 0 0, 20 04) ;

utchinson (20 0 0, 2012) ; Gurtin (20 02, 20 03, 20 04) ; Gudmundson

2004) ; Anand et al. (2005a) ; Gurtin and Anand (2005a, 2005b,

0 09) ; Bardella (20 06, 20 07) ; Fleck and Willis (20 09a, 20 09b) ;

olizzotto (2009) ; Voyiadjis et al. (2010) ; Dahlberg et al. (2013) ;

ielsen and Niordson (2014) ; Fleck et al. (2014, 2015) ; Bardella and

anteghini (2015) ; Anand et al. (2015b) . In most of these works the

aterial length parameter is introduced in the theory through the

efinition of the gradient-enhanced effective plastic strain, which

ombines the contributions from the effective plastic strain and the

ffective plastic strain-gradient. Physically, the size-dependence in

on-uniform deformation problems at micron scale has been at-

ributed to the existence of large gradients of plastic strain and the

ssociated network of the so-called geometrically necessary dislo-

ations. The increase of the plastic collapse limit load with the de-

reasing specimen size was pointed out and elaborated upon by

olizzotto (2010, 2011) . 

The objective of the present paper is to derive the complete

tress field (microstress, moment-stress, and the Cauchy stress)
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nd the torque-twist relationship for a twisted hollow circular tube

ade of a rigid-plastic material by using any of the gradient-

nhanced effective plastic strain measures from a wide class of

hese measures frequently adopted in the literature. Special atten-

ion is given to measures defined by the linear and harmonic sum

f the effective plastic strain and its gradient, scaled by the ma-

erial length. The torsion testing of thin wires was a benchmark

roblem demonstrating the size effect at micron scale ( Fleck et al.,

994 ), which was further studied, using different constitutive mod-

ls, by many investigators, including ( Fleck and Hutchinson, 1997;

leck et al., 2014; Huang et al., 20 0 0; Gudmundson, 20 04; Voyiad-

is and Abu Al-Rub, 2005; Idiart et al., 2009; Polizzotto, 2011; Liu

t al., 2013; Lubarda, 2016a ). The general results derived in this pa-

er hold for an arbitrary expression representing the stress-plastic

train response in simple tension, although numerical evaluations

re performed by adopting three specific expressions. 

. Gradient-enhanced effective plastic strain 

In a simple formulation of the deformation theory of strain-

radient plasticity ( Hutchinson, 2012 ), the specific plastic work

per unit volume) is expressed in terms of the gradient-enhanced

ffective plastic strain E p by 

 p (E p ) = 

∫ E p 

0 

σ0 (εp ) d εp , (1)

here σ0 = σ0 (εp ) represents the stress-strain curve from the uni-

xial tension test. The expression (1) implies that the plastic work

eeded to deform the material element in the presence of strain-

radients is equal to that at the same strain in the absence of

radients. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.07.029&domain=pdf
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A wide class of the gradient-enhanced effective plastic strain

measures, each involving one material length parameter l , is ( Evans

and Hutchinson, 2009; Fleck and Hutchinson, 1997 ) 

E p = 

(
e s p + l s g s p 

)1 /s 
, (s ≥ 1) , (2)

where e p is the effective plastic strain and g p the effective plastic

strain-gradient, defined by 

e p = 

(
2 

3 

εp 
i j 
εp 

i j 

)1 / 2 

, g p = 

(
2 

3 

εp 

i j,k 
εp 

i j,k 

)1 / 2 

. (3)

The two most frequently used measures are associated with the

choices s = 1 and s = 2 , which specify E p as either a linear or har-

monic sum of e p and lg p , 

E p = e p + lg p , E p = 

(
e 2 p + l 2 g 2 p 

)1 / 2 
. (4)

In general, when fitting experimental data, a different value of l

may be needed for each choice of s . The choice s = 2 is particu-

lary appealing from the mathematical point of view and was used

in most studies of the strain-gradient plasticity, although in some

studies the choice s = 1 was found to be more attractive ( Evans

and Hutchinson, 2009 ). 

The plastic strain is taken to be 

εp 
i j 

= e p m i j , m i j = 

3 

2 

σ ′ 
i j 

σeq 
, (5)

where the equivalent stress is 

σeq = 

(
3 

2 

σ ′ 
i j σ

′ 
i j 

)1 / 2 

, (6)

with the prime designating a deviatoric part. The total infinitesimal

strain is 

εi j = εe 
i j + εp 

i j 
, (7)

with the elastic component related to the Cauchy stress by the

isotropic generalized Hooke’s law 

εe 
i j = 

1 

2 μ
σ ′ 

i j + 

1 

9 κ
σkk δi j , σ ′ 

i j = σi j −
1 

3 

σkk δi j . (8)

The shear and bulk moduli are μ and κ . 

3. Work-conjugates to plastic strain and its gradient 

It is assumed that plastic strain-gradients εp 

i j,k 
contribute to the

work per unit volume. The work conjugate to εp 

i j,k 
is the moment-

stress τi jk = τ jik . The work-conjugate to εp 
i j 

is the microstress q i j =
q ji , such that ( Gudmundson, 2004 ) 

˙ w p = q i j ˙ ε
p 
i j 

+ τi jk ˙ ε
p 

i j,k 
. (9)

To identify q ij and τ ijk , we reconcile (9) with the rate of plastic

work expression 

˙ w p = σ0 (E p ) ̇ E p , (10)

following from (1) . Since, by the differentiation of (2) and (3) , 

˙ E p = E 1 −s 
p 

(
e s −1 

p ˙ e p + l s g s −1 
p ˙ g p 

)
, (11)

and 

˙ e p = 

2 

3 e p 
εp 

i j 
˙ εp 
i j 

, ˙ g p = 

2 

3 g p 
εp 

i j,k 
˙ εp 

i j,k 
, (12)

we obtain 

˙ E p = 

2 

3 

E 1 −s 
p 

(
e s −2 

p εp 
i j 

˙ εp 
i j 

+ l s g s −2 
p εp 

i j,k 
˙ εp 

i j,k 

)
. (13)

The substitution of (13) into (10) and the comparison with (9) es-

tablishes, up to their workless terms, the work-conjugates 

q i j = 

2 

3 

σ0 (E p ) 

E s −1 
p 

e s −2 
p εp 

i j 
, τi jk = 

2 

3 

l s 
σ0 (E p ) 

E s −1 
p 

g s −2 
p εp 

i j,k 
. (14)
learly, q ii = 0 and τiik = 0 , because εp 
ii 

= 0 . Expressions (14) can

lso be deduced directly from q i j = ∂ w p /∂ ε
p 
i j 

= σ0 ∂ E p /∂ ε
p 
i j 

and

i jk = ∂ w p /∂ ε
p 

i j,k 
= σ0 ∂ E p /∂ ε

p 

i j,k 
, as done by Liu et al. (2013) . 

In particular, for s = 1 , the microstress and the moment-stress

re 

 i j = 

2 

3 

σ0 (E p ) 

e p 
εp 

i j 
, τi jk = 

2 

3 

l 
σ0 (E p ) 

g p 
εp 

i j,k 
, (15)

hile for s = 2 , 

 i j = 

2 

3 

σ0 (E p ) 

E p 
εp 

i j 
, τi jk = 

2 

3 

l 
σ0 (E p ) 

E p 
εp 

i j,k 
. (16)

. Principle of virtual work 

The principle of virtual work of strain-gradient plasticity reads

 Gudmundson, 20 04; Gurtin and Anand, 20 05a, 20 05b; Fleck et al.,

014 ) 
 

V 

(σi j δε
e 
i j + q i j δε

p 
i j 

+ τi jk δε
p 

i j,k 
)d V = 

∫ 
S 

(T i δu i + t i j δε
p 
i j 
)d S , (17)

rovided that the equations of equilibrium hold 

i j, j = 0 , τi jk,k + σ ′ 
i j − q i j = 0 , (18)

nd the traction-stress relations 

 i = σi j n j , t i j = τi jk n k (19)

etween the traction vector T i and the Cauchy stress tensor σ ij ,

nd between the (deviatoric) moment-traction tensor t ij are the

oment-stress tensor τ ijk . The components of the outward unit

ector, orthogonal to the considered surface element, are denoted

y n i . The displacement components are u i . 

In the case of a rigid-plastic material, the principle of virtual

ork reads 
 

V 

(
q ′ i j δε

p 
i j 

+ τ ′ 
i jk δε

p 

i j,k 
+ 

1 

3 

σii δε
p 
j j 

)
d V = 

∫ 
S 

[
ˆ T i δu i + 

ˆ R i D (δu i ) 
]
d S . 

(20)

he three independent traction components ˆ T i are 

ˆ 
 i = T̄ i − n i n j R j (D k n k ) − D i (n j R j ) , (21)

ith 

 ̄i = T i + R i (D j n j ) − D j t i j , T i = σi j n j , (22)

hile the two independent higher-order traction components ˆ R i ,

angential to S , are 

ˆ 
 i = R i − n i n j R j , R i = t i j n j , (23)

ith t i j = τ ′ 
i jk 

n j n k . The utilized surface gradient operator is defined

y D i = (∂ /∂ x i ) − n i D, where D is the projection of the gradient

perator to the surface normal, D = n j (∂ /∂ x j ) . The spherical com-

onent of Cauchy stress σ ii /3 was used in (20) as the Lagrange

ultiplier, associated with the incompressibility constraint εp 
j j 

= 0

 Fleck and Willis, 2009b ). 

If the surface S has edges, an additional term appears on the

ight-hand side of (20) , given by 

 

n 

∮ 
C n 

p i δu i d C n , (24)

here p i are the line forces along the edges C n of the smooth parts

 n of a piece-wise smooth surface S . For example, the line force

long an edge formed by the intersection of two smooth surface

egments S (1) and S (2) is 

p i = 

[
τ ′ 

i jk k 
(1) 
j 

n 

(1) 
k 

− k (1) 
i 

τ ′ 
jkl n 

(1) 
j 

n 

(1) 
k 

n 

(1) 
l 

]
+ 

[
τ ′ 

i jk k 
(2) 
j 

n 

(2) 
k 

− k (2) 
i 

τ ′ 
jkl n 

(2) 
j 

n 

(2) 
k 

n 

(2) 
l 

]
, (25)
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Fig. 1. A hollow circular tube of length L under applied torque T . The angle of ro- 

tation of the end z = L relative to the fixed end is φ. The outer radius of the tube is 

a , and the inner radius is ψa (0 ≤ ψ < 1). The utilized cylindrical coordinates are 

( r , ϕ, z ). 
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here n 

( i ) is the unit outward normal to surface S ( i ) (i = 1 , 2) , and

 

(i ) = c (i ) × n 

(i ) . The vector c ( i ) is the unit tangent vector along the

ntersecting edge of the two surfaces with S ( i ) to the left. The first

ubscript in τ ijk specifies the normal to the surface over which the

ijk component acts, the second index specifies the orientation of

he forces, and the third index specifies the orientation of the lever

rm between the two forces of the doublet. Details of the deriva-

ion are given in the appendix of the paper. 

. Torsion of a hollow circular tube 

The effects of strain-gradients on plastic response have been

tudied for various problems at micron scale, including bending

nd torsion of thin beams and wires, plastic void growth, and in-

entation hardness testing ( Fleck et al., 1994; Fleck and Hutchin-

on, 1997, 2001; Stölken and Evans, 1998; Gao et al., 1999; Nix and

ao, 1998; Huang et al., 20 0 0; Gudmundson, 20 04; Voyiadjis and

bu Al-Rub, 2005; Idiart et al., 2009; Liu et al., 2013 ). We consider

n this section a torsion of a hollow circular tube made of a rigid-

lastic material. This is appealing because the problem allows the

erivation of the closed-form analytical expressions for the stress

nd moment-stress fields for any choice of s in the definition of

he gradient-enhanced effective plastic strain (2) , and for any as-

umed stress-strain relation in uniaxial tension test σ0 = σ0 (εp ) . It

lso allows a deduction of the solutions for a solid rod and a thin-

alled tube as special cases. 

The outer radius of the tube is denoted by a and the inner ra-

ius by ψa , where 0 ≤ ψ < 1. The applied torque is denoted by T

nd the corresponding angle of rotation (relative to the fixed end)

y φ( L ), where L is the length of the tube ( Fig. 1 ). If the applied

orque T > T Y , the non-vanishing strain components are 

zϕ = εϕz = 

rθ
, (θ = d φ/ d z) , (26)
2 

a

ig. 2. The variation of the gradient-enhanced effective plastic strain E p (normalized by γ

ccording to (30) , for three different values of s . In part (a) the material length l = a/ 4 , a
here θ is the angle of twist (per unit length of the tube), and ( r ,

, z ) are the cylindrical coordinates with z along the central axis

f the tube. The corresponding strain tensor is 

= εzϕ (i z � i ϕ + i ϕ � i z ) , (27)

here ( i r , i ϕ , i z ) are the unit vectors of the cylindrical coordi-

ate system, and � designates the tensor product. Recalling that

he gradient operator in cylindrical coordinates is ∇ = i r (∂ /∂ r) +
 ϕ r 

−1 (∂ /∂ ϕ) + i z (∂ /∂ z) , and that ∂ i r /∂ ϕ = i ϕ and ∂ i ϕ /∂ ϕ = −i r ,

he strain-gradient tensor is found to be 

 = ε∇ = 

∂εzϕ 

∂r 
(i z � i ϕ + i ϕ � i z ) � i r − εzϕ 

r 
(i z � i r + i r � i z ) � i ϕ , 

(28) 

ith the nonvanishing physical components 

 zϕr = � ϕzr = 

∂εzϕ 

∂r 
= 

θ

2 

, � zrϕ = � rzϕ = −εzϕ 

r 
= −θ

2 

. (29)

Since elastic component of strain is absent in the case of a

igid-plastic model, there is no deformation for T ≤ T Y , while for

 > T Y the entire deformation is plastic. The expression for T Y will

e derived in the sequel. Assuming proportional straining and the

ramework of the deformation theory of strain-gradient plasticity

rom Sections 2 –4 , we find from (3) 

 p = 

(
2 

3 

εi j εi j 

)1 / 2 

= 

rθ√ 

3 

, g p = 

(
2 

3 

� i jk � i jk 

)1 / 2 

= 

√ 

2 

3 

θ . (30)

Upon the substitution of (30) into (2) , the gradient-enhanced

ffective plastic strain and its gradient are found to be 

 p = 

θ√ 

3 

[
r s + ( 

√ 

2 l) s 
]1 /s 

, E p ,r = E p 
r s −1 

r s + ( 
√ 

2 l) s 
. (31)

his type of expression for E p was also derived in the analysis of

ire torsion by Liu et al. (2013) ; see their equation (43). The plots

f E p vs. r along the radius of a twisted solid rod for three selected

alues of s and two values of the material length l are shown in

ig. 2 . For any θ , the entire contribution to E p at the center of a

olid rod is from the strain-gradient. As r increases the strain con-

ribution increases, while the strain-gradient contribution remains

onstant. If l � a , the strain contribution in the outer portion of

he rod (near r = a ) is a dominant contribution to E p . 

The microstress and the moment-stress components can be de-

ermined by introducing (31) into (14) , with the results 

 zϕ = 

σ0 (E p ) √ 

3 

r s −1 

[ r s + ( 
√ 

2 l) s ] 1 −1 /s 
, (32) 
b

/ 
√ 

3 , where γ = aθ is the surface shear strain), along the radius of a twisted rod, 

nd in part (b) l = a/ 2 . 
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Fig. 3. Physical interpretation of the relationship between the Cauchy stress σ z ϕ , 

the microstress q z ϕ , and the moment-stress τ z ϕr . The microstress q z ϕ and the gradi- 

ent of the moment-stress τ z ϕr, r combine to give the Cauchy stress σzϕ = q zϕ − τzϕr,r . 
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a  

γ  

(  

s  
τzϕr = 

1 

2 

( 
√ 

2 l) s 

r s −1 
q zϕ = 

1 

2 

σ0 (E p ) √ 

3 

( 
√ 

2 l) s 

[ r s + ( 
√ 

2 l) s ] 1 −1 /s 
, 

τzrϕ = −τzϕr . (33)

The Cauchy stress follows from the second of the equilibrium con-

ditions in (17) as 

σzϕ = q zϕ − τzϕr,r . (34)

Upon evaluating τ z ϕr, r from (33) and using (32) , Eq. (34) gives 

σzϕ = 

[
1 − 1 

2 

( 
√ 

2 l) s 

r s + ( 
√ 

2 l) s 

(
1 − s + 

E p 

σ0 

d σ0 

d E p 

)]
q zϕ , (35)

i.e., 

σzϕ = 

σ0 (E p ) √ 

3 

r s −1 

[ r s + ( 
√ 

2 l) s ] 2 −1 /s 

[
r s + 

1 

2 

( 
√ 

2 l) s 
(

1 + s − E p 

σ0 

d σ0 

d E p 

)]
. 

(36)

In addition, from (25) , the circumferential line force along the

outer radius r = a of the cross-section of the tube is p ϕ = τzϕr (a ) ,

while p ϕ = −τzϕr (ψa ) along the inner radius r = ψa . Physically,

these line forces are the consequence of the fact that within the

cross-section of the tube the adjacent moment-stress components

( τ z ϕr and τzϕr + τzϕr,r d r) combine at each point along the radius r

with the microstress q z ϕ to give the Cauchy stress σzϕ = q zϕ − τzϕr,r 

( Fig. 3 ), except at the end points of the cross-section r = a and

r = ψa, where τ z ϕr is left unpaired. This gives rise to concentrated

line forces p ϕ along the edges r = a and r = ψa . Thus, within each
a

Fig. 4. The variations of σ z ϕ (black curves) and q z ϕ (red curves) with r / a at three levels o

by the first expression in (52) , with m = 46 . 66 and n = 0 . 225 . The material length param
ross-section of the tube, the Cauchy stress/line force system ( σ z ϕ ,

 ϕ ) is equipollent to the microstress/moment-stress system ( q z ϕ ,

z ϕr , τ zr ϕ ), both systems being statically equivalent to the applied

orque T . If the actual application of the torque at the end z = L is

ifferent from that predicted by the solution, the Saint–Venant’s

rinciple can be invoked and the derived solution applies suffi-

iently away from the end. 

The existence of the concentrated line forces is a peculiar fea-

ure of the adopted rigid-plastic strain-gradient material model.

f the elastic-plastic model was adopted instead, the line forces

ould not appear, as elaborated in great detail by Engelen et al.

2006) in their analysis of beam bending. They showed that the

lastoplastic solution reproduces the rigid-plastic solution in the

imit when the modulus of elasticity E → ∞ . The rapidly increas-

ng elastoplastic stress in the boundary layer near the edges gives

ise to line forces in the rigid-plastic limit. 

.1. Results for s = 1 and s = 2 

For s = 1 , the derived expressions simplify to 

 zϕ = 

σ0 (E p ) √ 

3 

, E p = 

θ√ 

3 

(r + 

√ 

2 l) , (37)

zϕr = 

lq zϕ √ 

2 

= 

lσ0 (E p ) √ 

6 

= −τzrϕ , (38)

zϕ = 

σ0 (E p ) √ 

3 

(
1 − 1 √ 

6 

lθ

σ0 

d σ0 

d E p 

)
. (39)

For s = 2 , the results are 

 zϕ = 

σ0 (E p ) √ 

3 

r 

(r 2 + 2 l 2 ) 1 / 2 
, E p = 

θ√ 

3 

(r 2 + 2 l 2 ) 1 / 2 , (40)

zϕr = 

l 2 q zϕ 

r 
= 

σ0 (E p ) √ 

3 

l 2 

(r 2 + 2 l 2 ) 1 / 2 
= −τzrϕ , (41)

zϕ = 

σ0 (E p ) √ 

3 

r 

(r 2 + 2 l 2 ) 3 / 2 

(
r 2 + 3 l 2 − l 2 

E p 

σ0 

d σ0 

d E p 

)
. (42)

Fig. 4 shows the variation of the shear stress σ z ϕ (black curves)

nd microstress q z ϕ (red curves) with r / a at three levels of strain

= aθ for a solid rod of radius a . Part (a) is for s = 1 , and part

b) for s = 2 . The utilized stress-strain relationship σ0 = σ0 (E p ) is

pecified by the first expression in (52) , with m = 46 . 66 and n =
b

f strain γ = aθ for a solid rod of radius a . The relationship σ0 = σ0 (E p ) is specified 

eter is l = a/ 4 . Part (a) is for s = 1 , and part (b) for s = 2 . 
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a b

Fig. 5. The variation of τ z ϕr with r / a at three levels of strain γ = aθ for a solid rod of radius a and the same data as used in Fig. 4 . Part (a) is for s = 1 , and part (b) for 

s = 2 . 

Fig. 6. Two alternative calculations of the torque T from two equipollent systems: 

(a) ( σ z ϕ , p ϕ ) and (b) ( q z ϕ , τ z ϕr , τ zr ϕ ). 
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 . 225 (these values are discussed in Section 7 ). The material length

arameter is chosen to be l = a/ 4 for all curves. The corresponding

lots of the moment-stress τ z ϕr are shown in Fig. 5 . For s = 1 , the

oment-stress τ z ϕr increases with r (for γ > 0), while for s = 2

he moment-stress τ z ϕr is a decreasing function of r , with the van-

shing slope at r = 0 . As a consequence, the stress σ z ϕ is smaller

han the microstress q z ϕ in the case s = 1 , and greater than q z ϕ 
n the case s = 2 . Furthermore, the shear stress in the case s = 2

s zero at the center of the rod, see (42) , while in the case s = 1

xpression (39) predicts a non-zero value at r = 0 . For s = 1 and

= 0 + (limit to zero from above) the stress is constant and equal

o σ 0 
Y 

/ 
√ 

3 , resembling the ultimate (limit) state in the case of clas-

ical ideal plasticity. Similar plots can be obtained for other two

elations σ0 = σ0 (E p ) from (52) . 

. Torque-twist relationship 

The torque required to produce a given twist θ can be obtained

rom the overall moment-equilibrium condition. If the Cauchy

tress σ z ϕ and the line forces p ϕ are used, the expression is

 Lubarda, 2016a ) 

 (θ ) = 2 π

∫ a 

ψa 

r 2 σzϕ d r + 2 π [ a 2 p ϕ (a ) + (ψ a ) 2 p ϕ (ψ a )] . (43)

f the microstress q z ϕ and the moment-stresses τ z ϕr and τ zr ϕ are

sed instead ( Fig. 6 ), the expression is 

 (θ ) = 2 π

∫ a 

ψa 

[
r 2 q zϕ + r(τzϕr − τzrϕ ) 

]
d r . (44)

he equivalency of (43) and (44) is easily demonstrated by substi-

uting q zϕ = σzϕ + τzϕr,r from (34) into (44) , and by applying the
ntegration by parts to evaluate the integral 
 a 

ψa 

r 2 τzϕr,r d r = 

(
r 2 τzϕr 

)a 

ψa 
− 2 

∫ a 

ψa 

rτzϕr d r . (45)

ince p ϕ (a ) = τzϕr (a ) , p ϕ (ψa ) = −τzϕr (ψa ) , and τzrϕ = −τzϕr , the

orque expression (44) reduces to (43) . 

The expression (44) was established directly by the considera-

ion of the moment equilibrium. It can also be derived by equating

he rate of the external work (per unit length of the tube) with the

ate of the internal work, i.e., 

 

˙ θ = 2 π

∫ a 

ψa 

(
q i j ˙ εi j + τi jk ̇ � i jk 

)
r d r 

= 2 π

∫ a 

ψa 

(rq zϕ + τzϕr − τzrϕ ) ˙ θr d r , (46) 

hich reproduces (44) . The expressions analogous to (26) and

29) were used for the rate-of-strain tensor and its gradient. 

We proceed with the evaluation of the torque by using (44) .

ince, by (33) , 

zϕr = 

1 

2 

( 
√ 

2 l) s 

r s −1 
q zϕ , (47) 

44) becomes 

 (θ ) = 2 π

∫ a 

ψa 

r s + ( 
√ 

2 l) s 

r s −2 
q zϕ d r . (48)

pon the substitution of (32) for q z ϕ , the following general expres-

ion is obtained 

 (θ ) = 

2 π√ 

3 

∫ a 

ψa 

σ0 (E p ) 
[
r s + ( 

√ 

2 l) s 
]1 /s 

r d r . (49)

his can be interpreted as the torque required to twist the solid

od of radius a , minus the torque required to twist by the same

mount ( θ ) the solid rod of radius ψa . The torque’s rate of change

ith the twist θ is 

d T 

d θ
= 

2 π

3 

∫ a 

ψa 

d σ0 

d E p 

[
r s + ( 

√ 

2 l) s 
]2 /s 

r d r . (50)

he right-hand sides of (49) and (50) can be evaluated numeri-

ally for any s and for any assumed relationship σ0 = σ0 (E p ) . The

esults for s = 1 and s = 2 can be obtained in closed form. For the

hree adopted relationships σ0 = σ0 (E p ) , this is presented in the

ext section. 

For a thin-walled tube of the mid-radius a ∗ and the wall-

hickness δ � a ∗, there is a closed-form approximate expression
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a b

Fig. 7. (a) The comparison of the three stress-strain curves modeling the uniaxial tension test according to (52) . The material parameters are ( m = 46 . 66 , n = 0 . 225 ), ( k = 

3 . 16 , N = 0 . 5 ), and ( c = 3 . 169 σ 0 
Y , M = 0 . 2 ). (b) The comparison of the corresponding hardening moduli h p = d σ0 / d εp . 
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for the torque for any choice of s . This is 

T (θ )= 

2 π√ 

3 

a ∗δσ0 (E ∗p ) 
[
a s ∗ + ( 

√ 

2 l) s 
]1 /s 

, E ∗p = 

θ√ 

3 

[
a s ∗ + ( 

√ 

2 l) s 
]1 /s 

, 

(51)

where E ∗p is the gradient-enhanced effective plastic strain evaluated

at the mid-radius of the tube a ∗ = a − δ/ 2 = (1 + ψ) a/ 2 . 

7. Closed form expressions for the torque-twist relationship 

In this section we derive the torque-twist expression T = T (θ )

for s = 1 and s = 2 , assuming that the stress-strain relationship

from uniaxial tension test is modeled by either of the following

three expressions 

σ0 (E p ) = σ 0 
Y 

(
1+ 

m 

n 

E p 

)n 

, σ0 (E p ) = σ 0 
Y 

(
1 + kE N p 

)
, σ0 (E p ) = cE M 

p . 

(52)

They are referred to as the relations A, B, and C. The initial yield

stress for the first two relations is σ 0 
Y 

, and ( m, n ), ( k, N ), and ( c,

M ) are the material constants. The first two relations are model-

ing a rigid-plastic response; the first of them predicts the initial

hardening rate h p = mσ 0 
Y 

, while the initial hardening rate accord-

ing to the second relation is infinitely large. The third relation is

not a rigid-plastic type relationship, but a nonlinear elastic type

relation, which for the appropriately small values of the exponent

M gives a stress-strain curve resembling an elastoplastic response

during loading, having a steep response near the zero stress. The

comparison of the three stress-strain curves from (52) is shown

in Fig. 7 a. The material parameters are adjusted so that all three

curves give σ0 (0 . 1) = 2 σ 0 
Y 

, which is approximately an increase of

stress due to hardening in polycrystalline copper after 10% strain,

see experimental data reported in Fleck et al. (1994) and Liu et al.

(2013) . Fig. 7 b shows the comparison of the corresponding harden-

ing moduli h p = d σ0 / d εp . 

7.1. Uniaxial stress-strain relation A 

The first considered stress-strain relation from the uniaxial ten-

sion test is 

σ0 (E p ) = σ 0 
Y 

(
1 + 

m 

n 

E p 

)n 

, (n ≤ 1) . (53)

The parameter m = h 0 /σ
0 

Y 
, where h 0 is the initial hardening rate.

By substituting (53) into (49) , the torque-twist expression in the
ase s = 1 is found to be 

 (θ ) = 

2 π

α3 

σ 0 
Y √ 

3 

[
ρn +3 

n + 3 

− (2 + 

√ 

2 lα) 
ρn +2 

n + 2 

+ (1 + 

√ 

2 lα) 
ρn +1 

n + 1 

]r= a 

r= ψa 

, (θ � = 0) , (54)

here 

= 1 + α(r + 

√ 

2 l) , α = 

mθ

n 

√ 

3 

. (55)

or θ = 0 , the yield threshold torque is 

 Y = T (0) = T 0 Y 

(
1 + 

3 

2 

1 − ψ 

2 

1 − ψ 

3 

√ 

2 l 

a 

)
, T 0 Y = 

2 π

3 

σ 0 
Y √ 

3 

(1 −ψ 

3 ) a 3 . 

(56)

Similarly, in the case s = 2 the torque-twist expression is 

 (θ ) = 

2 π

α3 

σ 0 
Y √ 

3 

[
ρn +3 

n + 3 

− 2 

ρn +2 

n + 2 

+ 

ρn +1 

n + 1 

]r= a 

r= ψa 

, ( θ � = 0) , (57)

here 

= 1 + α(r 2 + 2 l 2 ) 1 / 2 , α = 

mθ

n 

√ 

3 

. (58)

or θ = 0 , the yield torque is 

 Y = T ( 0 ) = 

T 0 Y 

1 − ψ 

3 

[ (
1 + 

2 l 2 

a 2 

)3 / 2 

−
(

ψ 

2 + 

2 l 2 

a 2 

)3 / 2 
] 

, 

T 0 Y = 

2 π

3 

σ 0 
Y √ 

3 

(
1 − ψ 

3 
)
a 3 . (59)

.2. Uniaxial stress-strain relation B 

If the uniaxial stress-strain curve is 

0 (E p ) = σ 0 
Y 

(
1 + kE N p 

)
, (N ≤ 1) , (60)

he torque-twist relationship in the case s = 1 becomes 

 (θ ) = 

2 πσ 0 
Y 

θ3 

[ 

3 k 
E N+3 

p 

N + 3 

−
√ 

6 lkθ
E N+2 

p 

N + 2 

+ E 3 p −
√ 

3 

2 

lθ E 2 p 

] r= a 

r= ψa 

, 

E p = 

θ√ 

3 

(r + 

√ 

2 l) . (61)
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a b

Fig. 8. The variation of the normalized torque T /T 0 Y with γ for a solid rod with three indicated values of l . The black curves correspond to ( m, n ) stress-strain curve from 

Fig. 4 a, the red curves to ( k, N ) curve, and the blue curves for ( c, M ) curve. (a) Case s = 1 ; (b) Case s = 2 . 
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he yield torque is obtained by specifying θ = 0 in (61) , which re-

roduces (56) . 

In the case s = 2 , the torque-twist relationship is 

 (θ ) = 

2 πσ 0 
Y 

θ3 

[
3 k 

E N+3 
p 

N + 3 

+ E 3 p 

]r= a 

r= ψa 

, E p = 

θ√ 

3 

(r 2 + 2 l 2 ) 1 / 2 . 

(62) 

he yield torque is obtained by specifying θ = 0 in (62) , which re-

roduces (59) . 

.3. Uniaxial stress-strain relation C 

In the strain-gradient analysis of Fleck and Hutchinson (1997) ,

 power-law dependence of the strain energy density on the

radient-enhanced effective strain was assumed, which gives rise

o a power-law nonlinear elastic-type relation 

0 (E p ) = cE M 

p , (M ≤ 1) . (63) 

y substituting (63) into (49) , the torque expression is found to

e 

 (θ ) = 

2 πc √ 

3 

(
θ√ 

3 

)M ∫ a 

ψa 

[
r s + ( 

√ 

2 l) s 
](M+1) /s 

r d r . (64) 

his can be integrated in the case s = 1 to give 

 (θ ) = 

T l=0 (θ ) 

1 − ψ 

M+3 

[ (
1 + 

√ 

2 l 

a 

)M+3 

− M + 3 

M + 2 

(√ 

2 l 

a 

)

×
(

1 + 

√ 

2 l 

a 

)M+2 

+ 

(
1 

M + 2 

√ 

2 l 

a 
−ψ 

)(
ψ + 

√ 

2 l 

a 

)M+2 
] 

. 

(65) 

he torque required to produce a twist θ in the absence of strain-

radient effect is 

 

l=0 (θ ) = 

2 πca 3 √ 

3 (M + 3) 

(
aθ√ 

3 

)M (
1 − ψ 

M+3 
)
. (66) 

hus, for each ψ , the ratio T (θ ) /T l=0 (θ ) is independent of θ , being

ependent only on l / a and M . 

For a solid rod ( ψ = 0 ), the above two expressions reduce to 
 (θ ) = T l=0 (θ ) 

[ (
1 + 

√ 

2 l 

a 

)M+3 

− M + 3 

M + 2 

(√ 

2 l 

a 

)

×
(

1 + 

√ 

2 l 

a 

)M+2 

+ 

1 

M + 2 

(√ 

2 l 

a 

)M+3 
] 

, (67) 

nd 

 

l=0 (θ ) = 

2 πca 3 √ 

3 (M + 3) 

(
aθ√ 

3 

)M 

. (68) 

he last two expressions are in agreement with the Fleck and

utchinson (1997) expression (2.28), apart from the different def-

nition of the gradient-enhanced effective strain and the corre-

ponding material length l . They derived their expression by ex-

loring the assumed homogeneity of the strain energy function

nd the corresponding torque-twist relationship. 

The torque expression in the case s = 2 , upon integration of

64) , is 

 (θ ) = 

T l=0 (θ ) 

1 − ψ 

M+3 

⎧ ⎨ 

⎩ 

[ 

1 + 

(√ 

2 l 

a 

)2 
] (M+3) / 2 

−
[ 

ψ 

2 + 

(√ 

2 l 

a 

)2 
] (M+3) / 2 

⎫ ⎬ 

⎭ 

, (69) 

ith the same expression for T l=0 (θ ) as in (66) . For a solid rod

 ψ = 0 ), (69) reduces to 

 (θ ) = T l=0 (θ ) 

⎧ ⎨ 

⎩ 

[ 

1 + 

(√ 

2 l 

a 

)2 
] (M+3) / 2 

−
(√ 

2 l 

a 

)M+3 

⎫ ⎬ 

⎭ 

, (70) 

here T l=0 (θ ) is given by (68) . Expression (70) is equivalent to

xpression (49) of Liu et al. (2013) , and reproduces the Fleck and

utchinson (1997) expression (2.29), with the adjustment to their

efinition of the material length l . These authors used experimen-

al data for torsional response of thin copper wires to estimate the

alue of l that fits the data best. See also the torque-twist integral

xpression (35) from Huang et al. (20 0 0) , obtained by using the

echanism-based strain-gradient plasticity approach of Nix and

ao (1998) and Gao et al. (1999) . In the elastoplastic constitutive

odel used by Gudmundson (2004) , the torque-twist relationship

as determined numerically from his expressions (56) and (57) . 
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a b

Fig. 9. The variation of the normalized torque T /T 0 Y with γ for a thin-walled tube of wall-thickness δ = a/ 10 with three indicated values of l . The black curves correspond 

to ( m, n ) stress-strain curve, the red curves to ( k, N ) curve, and the blue curves for ( c, M ) curve. (a) Case s = 1 ; (b) Case s = 2 . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The variation of the normalized threshold torque T Y /T 0 Y with l / a ∗ for a thin- 

walled tube of the mid-radius a ∗ and the wall-thickness δ = a ∗/ 10 , according to 

(71) . 
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7.4. Numerical results 

Fig. 8 a shows the variation of the normalized torque T /T 0 
Y 

with

γ = aθ for a solid rod with three indicated values of l in the case

s = 1 . The black curves correspond to ( m, n ) stress-strain curve

from Fig. 7 a, the red curves to ( k, N ) curve, and the blue curves for

( c, M ) curve. The predicted torque above the strain of about 2% is

almost the same, with the differences pronounced below that level

of strain. Fig. 8 b shows the same in the case s = 2 . The extent of

strain with the notable torque differences is about 3 to 4%. Further-

more, by comparing parts (a) and (b) of Fig. 8 it is observed that

the increase of the material length l increases the torque signifi-

cantly more in the case s = 1 than in the case s = 2 . Fig. 9 shows

the results for a thin-walled tube of thickness δ = a/ 10 . The same

ratios l / a are used as in Fig. 8 , although smaller values may be

more appropriate for a thin-walled tube, since δ is the smallest ge-

ometric dimension in that case. It may be noted from Figs. 8 and

9 that there is a strong effect of l on the initial yield strength, but

relatively small effect on the strengthening rate at sufficiently large

values of γ . This is qualitatively in accord with experimental obser-

vations by Fleck et al. (1994) , who observed the strong influence of

the diameter of twisted wires on the yield strength, but relatively

small effect on the strain hardening; see also a related discussion

by Evans and Hutchinson (2009) . 

In the case of a thin-walled tube, the analytical results from

earlier sections can be simplified by the approximation δ/ a � 1.

For a thin-walled tube, the yield threshold torques in (56) and (59) ,

corresponding to s = 1 and s = 2 , can be also determined from the

approximate expression 

T Y = T 0 Y 

[ 

1 + 

(√ 

2 l 

a ∗

)s 
] 1 /s 

, T 0 Y = 2 π
σ 0 

Y √ 

3 

a 2 ∗δ , (71)

which follows from (51) . The mid-radius of the tube is a ∗ and

the wall-thickness is δ � a ∗. The plots of (71) corresponding to

δ = a ∗/ 10 are shown in Fig. 10 . There is a much more pronounced

effect of the increase of l / a ∗ on the increase od T Y in the case s = 1

than s = 2 . The strain-gradient effects for a thin-walled tube are

less pronounced than for a solid rod, because near the center of a

solid rod the strain-gradient effects are dominant, the strain itself

being there relatively small (or zero at the center). On the other

hand, in a thin-walled tube, the strain is nearly constant across the

small thickness of the tube and thus dominantly contributes to E ∗p 
in (51) for l � a ∗. As already pointed out, in fitting experimen-

tal data, different values of l may be needed for s = 1 and s = 2 .
he same observations were made in the analysis of twisted solid

ods by Fleck and Hutchinson (1997) within their model of strain-

radient plasticity. See also the experimental and theoretical study

f size effects in torsion of thin metal wires by Liu et al. (2013) . 

. Conclusion 

The objective of the present paper was to derive the stress

elds and the torque-twist relationship for a hollow circular tube

ade of a rigid-plastic material with any of the adopted gradient-

nhanced effective plastic strain measures from a wide class of

hese measures defined by (2) . The microstress q z ϕ is specified by

32) , the moment-stress τ z ϕr by (33) , and the Cauchy stress σ z ϕ 

y (36) . The line forces are also evaluated and discussed from the

tandpoint of the basic equilibrium considerations and the princi-

le of virtual work, derived in the appendix of the paper. For the

wo most commonly used measures, defined as a linear and har-

onic sum of the effective plastic strain and its gradient ( s = 1 and

 = 2 ), the stress fields are given by (37) –(39) and (40) –(42) . The

esults are plotted in Figs. 4 and 5 for the selected material prop-

rties and the chosen material length parameter. In Section 6 we

erive a general expression for the torque-twist relationship, given

y (49) . This is used in Section 7 to obtain the closed-form ex-

ressions corresponding to two aforementioned measures of the

radient-enhanced effective plastic strain ( s = 1 and s = 2 ). Three

ppealing expressions are adopted to model the stress-strain re-

ponse in uniaxial tension, listed in (52) . The results for selected
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alues of the material length parameter are shown in Fig. 8 for a

olid rod, and in Fig. 9 for a thin-walled tube. The torque required

o produce a given amount of twist is significantly more increased

y the increase of the material length parameter in the case s = 1

han in the case s = 2 . An approximate expression for the torque is

erived for a thin-walled tube, given by (51) , which applies for any

 ≥ 1. The corresponding yield threshold value is specified by (71) .

he results are compared with the related results from the litera-

ure. They can be potentially useful for the further studies of the

ize effect in torsion and the relationship between analytical pre-

ictions and experimental observations. The extension of the pre-

ented analysis to bending of thin beams is presented in a separate

aper ( Lubarda, 2016b ). 
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ppendix A. Principle of virtual work for rigid-plastic 

train-gradient plasticity 

For the rigid-plastic material model the virtual plastic strain

omponents are related to the virtual displacement components

y 

εp 
i j 

= 

1 

2 

(δu i, j + δu j,i ) , (72) 

ince elastic strains are absent. The corresponding principle of vir-

ual work for the strain-gradient plasticity can be cast in the form

 Fleck and Willis, 2009b ) 
 

V 

(
q ′ i j δε

p 
i j 

+ τ ′ 
i jk δε

p 

i j,k 
+ 

1 

3 

σii δε
p 
j j 

)
d V = 

∫ 
S 

(
T i δu i + t i j δε

p 
i j 

)
d S , 

(73) 

rovided that the equations of equilibrium hold 

i j, j = 0 , τi jk,k + σi j − q i j = 0 , (74) 

ogether with the relations 

 i = σi j n j , t i j = τ ′ 
i jk n k (75) 

etween the traction vector T i and the Cauchy stress tensor σ ij ,

nd between the (deviatoric) moment-traction tensor t ij are the

eviatoric part of the moment-stress tensor τ ′ 
i jk 

. The components

f the outward unit vector, orthogonal to the considered surface

lement, are denoted by n i . The deviatoric parts of the microstress

 ij and the moment-stress τ ijk are defined by 

 

′ 
i j = q i j −

1 

3 

q kk δi j , τ ′ 
i jk = τi jk −

1 

3 

τl l k δi j . (76) 

he spherical part of Cauchy stress tensor is usually specified from

he equilibrium conditions in conjunction with the traction bound-

ry conditions. The workless spherical parts of the microstress and

he moment-stress tensor are included in the analysis for the con-

enience, and are related to the spherical part of Cauchy stress

y τ j j k,k + σ j j − q j j = 0 . The spherical components of q ij and τ ijk 

ere used in the analysis of pure bending of rigid-plastic beams

y Lubarda (2016b ). 

In view of (72) , the second integral on the right-hand side of

73) can be written as 

 

S 

t i j δε
p 
i j 

d S = 

∫ 
S 

t i j δ

(
∂u i 

∂x j 

)
d S = 

∫ 
S 

t i j 

∂(δu i ) 

∂x j 
d S . (77) 

he variation of the displacement gradient δ( u i, j ) over S is not

ndependent of the displacement variation δu , because if δu is
i i C
nown on S , so is the surface gradient of δu i ( Toupin, 1962;

indlin, 1964, 1965; Fleck and Hutchinson, 1997 ). To identify the

ndependent boundary conditions, we then decompose the gradi-

nt of the virtual displacement into its surface gradient D j ( δu i ) and

 normal gradient n j D ( δu i ), such that 

∂(δu i ) 

∂x j 
= D j (δu i ) + n j D (δu i ) , (78) 

here 

 j = (δ jk − n j n k ) 
∂ 

∂x k 
, D = n k 

∂ 

∂x k 
. (79) 

hus, (77) becomes 

 

S 

t i j δε
p 
i j 

d S = 

∫ 
S 

t i j D j (δu i ) d S + 

∫ 
S 

R i D (δu i ) d S , R i = t i j n j . (80) 

The first integral on the right-hand side of (80) can be rewritten

s 
 

S 

t i j D j (δu i ) d S = 

∫ 
S 

D j (t i j δu i ) d S −
∫ 

S 

D j t i j δu i d S . (81) 

ssuming that S is a smooth surface, the application of the surface

ivergence theorem ( Brand, 1947; Toupin, 1962; Mindlin, 1964,

965 ) to the first integral on the right-hand side of (81) gives 

 

S 

D j (t ji δu i ) d S = 

∫ 
S 

(D k n k ) n j t ji δu i d S , t ji = t i j , (82) 

o that (80) becomes 

 

S 

t i j δε
p 
i j 

d S = 

∫ 
S 

[ R i (D k n k ) − D j t i j ] δu i d S + 

∫ 
S 

R i D (δu i ) d S . (83) 

onsequently, the right-hand side of (73) is 

 

S 

(
T i δu i + t i j δε

p 
i j 

)
d S = 

∫ 
S 

[ ̄T i δu i + R i D (δu i )] d S , 

T̄ i = T i + R i (D k n k ) − D j t i j . (84) 

The number of independent higher-order boundary conditions

an be reduced from three to two by incorporating the kinematic

estriction on the normal component of D ( δu i ) on S , imposed by

he incompressibility constraint 

∂(δu i ) 

∂u i 

= D i (δu i ) + n i D (δu i ) = 0 ⇒ n i D (δu i ) = −D i (δu i ) . 

(85) 

o incorporate (85) into (84) , we first decompose R i into its com-

onent ˆ R i = R i − n i n j R j , tangential to S , and the component n i n j R j 
ormal to S . This gives 

 

S 

R i D (δu i ) d S = 

∫ 
S 

ˆ R i D (δu i ) d S + 

∫ 
S 

(R j n j ) n i D (δu i ) d S 

= 

∫ 
S 

ˆ R i D (δu i ) d S −
∫ 

S 

(R j n j ) D i (δu i ) d S . (86) 

he second integral on the right-hand side can be recast as 

 

S 

(R j n j ) D i (δu i ) d S = 

∫ 
S 

D i (R j n j δu i ) d S −
∫ 

S 

D i (R j n j ) δu i d S . (87) 

he application of the surface divergence theorem to the first inte-

ral on the right-hand side of (87) gives 

 

S 

D i (R j n j δu i ) d S = 

∫ 
S 

(D k n k ) n i n j R j δu i d S . (88) 

onsequently, (86) becomes 
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∫ 
S 

R i D (δu i ) d S = 

∫ 
S 

ˆ R i D (δu i ) d S 

−
∫ 

S 

[(D k n k ) n i n j R j − D i (R j n j )] δu i d S . (89)

The final form of the virtual work principle is, therefore, ∫ 
V 

(
q ′ i j δε

p 
i j 

+ τ ′ 
i jk δε

p 

i j,k 
+ 

1 

3 

σii δε
p 
j j 

)
d V = 

∫ 
S 

[
ˆ T i δu i + 

ˆ R i D (δu i ) 
]
d S , 

(90)

where the three independent traction components ˆ T i are 

ˆ T i = T̄ i − n i n j R j (D k n k ) − D i (n j R j ) , (91)

and the two independent higher-order traction components ˆ R i ,

tangential to S , are 

ˆ R i = R i − n i n j R j , R i = t i j n j . (92)

As in the analysis of Toupin (1962) ; Mindlin (1964) ; 1965 ), and

Fleck and Hutchinson (1997) , if the surface S has edges, then for

each smooth segment S n of S , bounded by the curve C n , the sur-

face divergence theorem ( Brand, 1947 , eq. (3) on page 222) can be

written as ∫ 
S n 

D j f j d S n = 

∫ 
S n 

(D k n k ) n j f j d S + 

∮ 
C n 

k j f j d C n , f j = t ji δu i , (93)

where k = c × n is the unit outward normal to C n , tangent to S n .

The unit vector along C n is denoted by c . This gives rise to line

force contribution p̄ i along C n , and their virtual work 

∑ 

n 

∮ 
C n 

p̄ i δu i d C n (94)

has to be added to the right-hand side of (84) . For example, the

line force along an edge formed by the intersection of two smooth

surface segments S (1) and S (2) is 

p̄ i = τ ′ 
i jk k 

(1) 
j 

n 

(1) 
k 

+ τ ′ 
i jk k 

(2) 
j 

n 

(2) 
k 

, (95)

where n 

( i ) is the unit outward normal to surface S ( i ) (i = 1 , 2) , and

k 

(i ) = c (i ) × n 

(i ) . The vector c ( i ) is the unit tangent vector along the

intersecting edge of the two surfaces with S ( i ) to the left. 

Similarly, the surface divergence theorem in (88) is modified,

which gives rise to an additional contribution to line forces. Along

an edge formed by the intersection of two smooth surface seg-

ments S (1) and S (2) , this contribution is 

−
[
k (1) 

i 
τ ′ 

jkl n 

(1) 
j 

n 

(1) 
k 

n 

(1) 
l 

+ k (2) 
i 

τ ′ 
jkl n 

(2) 
j 

n 

(2) 
k 

n 

(2) 
l 

]
. (96)

Thus, the total line force p i along an edge formed by the intersec-

tion of two smooth surface segments S (1) and S (2) is the sum of

(95) and (96) , i.e., 

p i = 

[
τ ′ 

i jk k 
(1) 
j 

n 

(1) 
k 

− k (1) 
i 

τ ′ 
jkl n 

(1) 
j 

n 

(1) 
k 

n 

(1) 
l 

]
+ 

[
τ ′ 

i jk k 
(2) 
j 

n 

(2) 
k 

− k (2) 
i 

τ ′ 
jkl n 

(2) 
j 

n 

(2) 
k 

n 

(2) 
l 

]
. (97)

In conclusion, for a body bounded by a peace-wise smooth sur-

face S , the principle of virtual work (90) is expanded to read ∫ 
V 

(
q ′ i j δε

p 
i j 

+ τ ′ 
i jk δε

p 

i j,k 
+ 

1 

3 

σii δε
p 
j j 

)
d V = 

∫ 
S 

[
ˆ T i δu i + 

ˆ R i D (δu i ) 
]
d S 

+ 

∑ 

n 

∮ 
C n 

p i δu i d C n . (98)

In the torsion problem considered in the body of the paper, the

only nonvanishing traction component is ˆ T ϕ = σzϕ at the ends of

the tube, while the line forces are p ϕ (a ) = τzϕr (a ) and p ϕ (ψa ) =
−τzϕr (ψa ) . 
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