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a b s t r a c t

The image force exerted by the free surface of a cylindrical circular void on a nearby straight dislocation
depends on whether the dislocation has arrived at its location by the emission from the surface of the
void, or by the glide from infinity. In the context of elasticity theory, in the first case, the dislocation
has been created by imposing the displacement discontinuity along the cut from the free surface of
the void to the center of the dislocation, and, in the second case, from the center of the dislocation to
infinity. The explicit expressions for the two corresponding image forces are derived and compared. It
is shown that the attraction from the free surface of the void is stronger in the first case, particularly
for smaller voids. Furthermore, in the case of dislocation emitted from the surface of the void, the inter-
action energy depends on the cut used to impose the displacement discontinuity, but not in the case of a
dislocation approaching the void from infinity. The relevance of the obtained results for the materials sci-
ence problems is discussed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to derive the expression for the
image force on a straight dislocation emitted from the free surface
of a nearby cylindrical void, and evaluate the difference between
this force and the image force acting on a dislocation that has ar-
rived near the void from infinity. The two forces are different, be-
cause these two dislocations are physically different dislocations,
causing different distortions of the material. Speaking in the con-
text of mathematical theory of elasticity, in the case of a disloca-
tion emitted from the surface of the void, the displacement
discontinuity is imposed along the cut from the surface of the void
to the center of the dislocation, whereas in the second case, the dis-
placement discontinuity is imposed along the cut from infinity to
the center of the dislocation. In the context of crystalline elasticity,
if the dislocation motion was a glide motion, in the first case the
slip took place along the slip plane from the surface of the void
to the center of dislocation, and in the second case, from infinity
to the center of dislocation. Accordingly, not only the displace-
ment, but the stress and strain fields, and thus the image forces
on the dislocation, are different in these two problems. Although
such distinction is physically clear and anticipated, as pointed
out in the context of the non-uniqueness of solution for a screw

dislocation in multiply connected regions by Lubarda (1999),1

and elaborated upon by Lubarda and Markenscoff (2003), it is desir-
able to revisit the topic in the context of a general (mixed type)
straight dislocation. This particularly so because in recent studies
of void growth by emission of dislocations from its free surface
(Lubarda et al., 2004; Song et al., 2006; Traiviratana et al., 2008;
Meyers et al., 2009), the image force on dislocation was calculated
from the interaction energy expression derived by Dundurs and
Mura (1964), overlooking the fact that, in their analysis, the displace-
ment discontinuity was imposed from infinity to the center of the
dislocation, which means that the dislocation arrived near the void
from infinity, rather than being emitted from the surface of the void.
Lubarda (2011) subsequently modified this analysis by using the
expression for the image force on a dislocation emitted from the sur-
face of the void, but the derivation of this expression, and its com-
parison with the image force on a dislocation that has arrived from
infinity, have not been presented or discussed in that paper. This
analysis is presented here. It is shown that the attraction from the
void is stronger in the case of a dislocation emitted from the surface
of the void than in the case of a dislocation that has approached the
void from far away, particularly for smaller voids. This means that in
the study of the void growth, the externally applied stress required
to emit a dislocation from the surface of the void is greater than
earlier reported values, based on a dislocation model with the slip
imposed from the dislocation to infinity. On the other hand, the lat-
ter model can be used to study a stress driven expansion of a
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pre-existing remote dislocation loop, which consists of a positive and
negative dislocation on the same slip plane, during which one dislo-
cation is driven away from the loop and the other toward the loop.2

In this case, the expanding loop can be considered to be a superpo-
sition of two distant dislocations created by opposite slips from their
centers to either infinity, or to the surface of the void.

If a dislocation is in a close proximity of a very large void, the
image forces are nearly the same, regardless of whether dislocation
was emitted from the surface of the void, or it has arrived there from
infinity. This is because the dislocation is then not able to recognize a
large radius of the void, and behaves as if it were near a straight
boundary of a semi-infinite (simply-connected) domain (Head,
1953). Furthermore, we show that the interaction energy of a dislo-
cation emitted from the surface of the void depends on the cut used
to impose the displacement discontinuity, which is not so in the case
of a dislocation that has approached the void from infinity. The per-
formed energy analysis required a careful incorporation of the dislo-
cation core energy, which depends on the selected cut along which
the displacement discontinuity is imposed (Gavazza and Barnett,
1976). This is reminiscent to the incorporation of the core energy
in the mechanics of strain relaxation of thin films, when different
cuts are used to impose the displacement discontinuity from the
dislocation at the interface of the substrate and a thin film to the free
surface of the film (Lubarda, 1997, 1998).

We note that the analysis presented in this paper is based on
the Volterra dislocation model and linear elasticity. For this to rea-
sonably apply, we assume that the radius of the void is at least 10
times greater than the magnitude of the Burgers vector of the dis-
location. Otherwise, the ledge left on the surface of the void by the
emission of dislocation would appreciably distort the circular
geometry of the void, which is assumed to hold in the considered
boundary value problem of linear elasticity. In addition, a disloca-
tion is assumed to be fully formed and therefore sufficiently away
from the surface of the void, perhaps by at least two lengths of its
Burgers vector. An incomplete or incipient dislocation, dominated
by its heavily distorted core, would otherwise reside near the sur-
face of the void, requiring the other type of analysis, such as that
based on the Peierls semi-discrete model of lattice dislocation, or
the atomistic calculations.3

2. Stress functions for the straight dislocation near a cylindrical
void

2.1. Dislocation approaching the void from infinity

Consider a straight dislocation with the Burgers vector b = {bx,
by,bz} near a cylindrical circular void of radius a, at the distance
OA ¼ aa (a > 1) from the center of the void (Fig. 1).4 If the dislocation
has arrived near the void from infinity, i.e., if it is (from the standpoint
of elasticity theory) created by imposing the displacement disconti-
nuity along a cut from A to infinity, for example along the x-axis,
Dundurs and Mura (1964) have shown that the stress functions for
the edge dislocation components bx and by are, respectively:

Ubx ¼ � Gbx

2pð1� mÞ r1 ln r1 sin h1 � r2 ln r2 sin h2 þ r ln r sin h½

þ a2

2r
sin hþ a2 � 1

2a3 a sin 2h2 �
a2 � 1

a
a
r2

sin h2

� ��
; ð1Þ

Uby ¼ Gby

2pð1�mÞ r1 ln r1 cosh1� r2 lnr2 cosh2þ r ln r cosh½

þ a2

2r
cosh�a2�1

2a3 a cos2h2�
a2�1

a
a
r2

cosh2þ2a2 ln
r
r2

� ��
:

ð2Þ

The shear modulus and Poisson’s ratio of the material are G and m.
The complete Airy stress function is U ¼ Ubx þUby , and

rx ¼
o2U
oy2 ; ry ¼

o2U
ox2 ; rxy ¼ �

o2U
oxoy

: ð3Þ

The explicit stress and displacement components are the sums of
the corresponding expressions listed in the Appendices A and B.
For the displacement expressions, the angle range to be applied is
0 6 (h,h1,h2) 6 2p, so that the displacement discontinuity is im-
posed from the center of the dislocation to infinity along the posi-
tive x-axis. The Burgers circuit around the dislocation gives the
Burgers vector b, regardless of whether the circuit encompasses
the void or not.

The stress function associated with the out-of-plane stresses is

u ¼ �Gbz

2p
ln

rr1

ar2
; ð4Þ

such that:

rzx ¼
ou
oy

; rzy ¼ �
ou
ox

: ð5Þ

The explicit out-of-plane stresses and the displacement expressions
are also the sums of the corresponding expressions listed in the
Appendices A and B.

2.2. Dislocation exited at the surface of the void

If the dislocation, arriving from infinity, has exited the material
at the free surface of the void (Fig. 2), leaving behind a uniform step
discontinuity (bx,by,bz) from the surface of the void to infinity, the
Airy stress functions are obtained from (1) and (2) by taking h1 = h2,
which gives:

Fig. 1. The radii r, r1, r2 and the angles h, h1, h2 appearing in the expressions for the
stress and displacement components at the point B due to straight dislocation at the
point A. The radius of the void is a, and the lengths OA ¼ aa and OC ¼ a=a. The
dislocation is created by the displacement discontinuity along the x-axis from A to
infinity.

2 If the dislocation nearer to the void exits at the surface of the void, the slip step is
there created. When many dislocations are considered, on parallel and intersecting
slip planes in a high dislocation density region around a micron or larger size void, the
net effect can be the void growth under tensile, or void collapse under compressive
loading. A study of such process within the framework of discrete dislocation
dynamics has been recently conducted by Segurado and Llorca (2009), who also give
the reference to earlier related work.

3 The first molecular dynamics studies of the dislocation emission from the surface
of voids were reported by Belak (1998), Rudd and Belak (2002), and Moriarty et al.
(2002). The reference to subsequent work can be found in Rudd (2009), Bulatov et al.
(2010), and Bringa et al. (2010).

4 The elastic field of a prismatic-dislocation loop near a spherical void, and the
attraction of the loop by the surface of the void, have been studied by Willis and
Bullough (1971), Wolfer and Drugan (1988), and Ahn et al. (2006).
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Ubx ¼ � Gbx

2pð1� mÞ r ln r þ a2

2r

� �
sin h; ð6Þ

Uby ¼ Gby

2pð1� mÞ r ln r þ a2

2r

� �
cos h: ð7Þ

The stress function for the out-of-plane stresses is

u ¼ �Gbz

2p
ln

r
a
; ð8Þ

as if the screw dislocation was placed at O in an infinite medium.
The corresponding stress and displacement components are listed
in Appendix A.

2.3. Dislocation emitted from the surface of the void

If the dislocation has been emitted from the surface of the void,
so that the displacement discontinuity is created along the cut
from the void surface to the center of the dislocation (Fig. 3), the

Airy stress functions for the two edge dislocation components
are obtained by subtracting the Airy stress functions corresponding
to dislocations in Figs. 1 and 2. This superposition, sketched in
Fig. 4, gives:

Ubx ¼ � Gbx

2pð1� mÞ r1 ln r1 sin h1 � r2 ln r2 sin h2½

þ a2 � 1
2a3 a sin 2h2 �

a2 � 1
a

a
r2

sin h2

� ��
; ð9Þ

Uby ¼ Gby

2pð1� mÞ r1 ln r1 cos h1 � r2 ln r2 cos h2½

� a2 � 1
2a3 a cos 2h2 �

a2 � 1
a

a
r2

cos h2 þ 2a2 ln
r
r2

� ��
: ð10Þ

The stress function associated with the out-of-plane stresses is

u ¼ �Gbz

2p
ln

r1

r2
: ð11Þ

The explicit stress and displacement components are listed in
Appendix B. They are constructed by using a helpful table from
Dundurs and Mura (1964), also listed in Asaro and Lubarda
(2006), which relates the biharmonic contributions to the Airy
stress function with the corresponding stress and displacement
components. In the displacement expressions, the angle range to
be applied is �p 6 (h1,h2) 6 p, so that the displacement discontinu-
ity is imposed from the surface of the void to the center of disloca-
tion along the x-axis. The Burgers circuit around the dislocation
gives the Burgers vector b, if the circuit does not encompass the
void.

3. Image force on a dislocation

The free surface of the void exerts an attractive force on a near-
by dislocation. This can be calculated either directly from the
Peach–Koehler expression for the dislocation force, or from the
gradient of the interaction energy (as done in Section 4). The
Peach–Koehler force on a straight dislocation is (Hirth and Lothe,
1982):

F ¼ ðr � bÞ � ez; ð12Þ

where r is the stress tensor at the center of the dislocation due to a
nonsingular image field induced on a dislocation by the free surface
of the void, and ez is the unit vector along the dislocation line. The
z-component of the image force vanishes (Fz = 0), while the x and
y-components are

Fx ¼ ryxbx þ ryby þ ryzbz; Fy ¼ � rxbx þ rxyby þ rxzbz
� �

: ð13Þ

The glide and climb force components are

Fq ¼ rnqbq þ rnzbz; Fn ¼ � rqbq þ rqzbz
� �

; ð14Þ

where bq ¼ ðb2
x þ b2

yÞ
1=2 is the edge component of the dislocation

along the slip direction q, and n designates the direction orthogonal
to the slip plane.

Fig. 2. If the dislocation from Fig. 1 exits at the surface of the void, a uniform step
discontinuity (bx,by,bz) is left behind it along the x-axis from the surface of the void
to infinity.

Fig. 3. The dislocation at the point A created by imposing the displacement
discontinuity along the cut from the surface of the void to the center of the
dislocation. When B is on the boundary of the void, r1sinh1 = r2sinh2 = asinh,
r1 = ar2, and h2 = h + (p � h1).

Fig. 4. Superposition principle used to construct the solution for a dislocation emitted from the surface of the void.
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3.1. Image force on a dislocation created by cut 1

If the dislocation is created by cut 1, as shown in Fig. 1, the im-
age stress components at the center of the dislocation are

rx ¼
Gby

2pð1� mÞ
a2

xðx2 � a2Þ ;

ry ¼ �
Gby

2pð1� mÞ
a2

xðx2 � a2Þ ;

rxy ¼ �
Gbx

2pð1� mÞ
a2ð2x2 � a2Þ
x3ðx2 � a2Þ ;

ryz ¼ �
Gbz

2p
a2

xðx2 � a2Þ ; rxz ¼ 0:

ð15Þ

Upon the substitution of (15) into (13), there follows:

Fx ¼ �
G

2pð1� mÞ
a2

xðx2 � a2Þ 2� a2

x2

� �
b2

x þ b2
y þ ð1� mÞb2

z

� �
; ð16Þ

Fy ¼
Gbxby

2pð1� mÞ
a2

x3 : ð17Þ

The glide and climb force components, along the edge compo-
nent of the Burgers vector bq = {bx,by}, and orthogonal to it, can
be calculated from:

Fq ¼ Fx cos#o þ Fy sin#0; Fn ¼ Fy cos#0 � Fx sin#0; ð18Þ

where tan#0 = by/bx. The substitution of (16) and (17) into (18)
gives:

Fq ¼ �
G

2pð1� mÞ
a2 cos#0

xðx2�a2Þ 2�a2

x2 �2 1�a2

x2

� �
sin2

#0

� �
ðb2

x þb2
yÞ

�

þð1� mÞb2
z

)
; ð19Þ

Fn ¼
G

2pð1� mÞ
a2 sin#0

xðx2 � a2Þ 1þ 2 1� a2

x2

� �
cos2 #0

� �
ðb2

x þ b2
yÞ

�

þð1� mÞb2
z

)
: ð20Þ

3.2. Image force on a dislocation created by cut 2

If the dislocation is created by cut 2 (Fig. 3), the image stress
components at the center of the dislocation are

rx ¼
Gby

2pð1� mÞ
x

x2 � a2

a2

x2 � 1� a2

x2

� �2
" #

;

ry ¼ �
Gby

2pð1� mÞ
x

x2 � a2 1þ a2

x2 �
a4

x4

� �
;

rxy ¼ �
Gbx

2pð1� mÞ
x

x2 � a2 ;

ryz ¼ �
Gbz

2p
x

x2 � a2 ; rxz ¼ 0:

ð21Þ

Upon the substitution of (21) into (13), the horizontal and vertical
components of the image force are found to be:

Fx ¼ �
G

2pð1� mÞ
x

x2 � a2 b2
x þ 1þ a2

x2 �
a4

x4

� �
b2

y þ ð1� mÞb2
z

� �
;

ð22Þ

Fy ¼
Gbxby

2pð1� mÞ
1
x

2� a2

x2

� �
: ð23Þ

The corresponding glide and climb forces are

Fq ¼ �
G

2pð1� mÞ
x cos#0

x2 � a2 1� 2 1� a2

x2

� �2

sin2
#0

" #
ðb2

x þ b2
yÞ

(

þð1� mÞb2
z

)
; ð24Þ

Fn¼
G

2pð1�mÞ
xsin#0

x2�a2 1þa2

x2�
a4

x4þ2 1�a2

x2

� �2

cos2#0

" #
ðb2

x þb2
yÞ

(

þð1�mÞb2
z

)
: ð25Þ

3.3. Comparison of image forces

If a dislocation is pure edge with the Burgers vector parallel to
the x or y-axis, the differences in the dislocation image forces cor-
responding to two cuts are, respectively:

Fð1Þx � Fð2Þx ¼ rA
xyðx;0Þbx ¼

Gb2
x

2pð1� mÞ
1
x

1� a2

x2

� �
; ð26Þ

Fð1Þx � Fð2Þx ¼ rA
yðx;0Þby ¼

Gb2
y

2pð1� mÞ
1
x

1þ a2

x2

� �
; ð27Þ

where rA
xyðx;0Þ and rA

y ðx;0Þ are the in-plane shear and normal stres-
ses along the x-axis of the auxiliary problem considered in Appen-
dix A (Fig. 5). In the case of pure screw, the difference in the
image forces is

Fð1Þx � Fð2Þx ¼ rA
zyðx;0Þbz ¼

Gb2
z

2p
1
x
; ð28Þ

where rA
zyðx; 0Þ is the out-of-plane shear stress along the x-axis of

the auxiliary problem from Appendix A.

3.4. Relationship to dislocation inside a circular cylinder

There are similarities in the solution for the dislocation emitted
from the surface of a cylindrical void and for the dislocation inside
a solid circular cylinder. For example, if the edge dislocation with
the Burgers vector bx is inside a circular cylinder, on the x-axis at
x = ba (0 < b < 1), it is pulled toward the free surface by the force
(Dundurs and Sendeckyj, 1965):

Fig. 5. The shear and normal stresses along the x-axis of the auxiliary problem from
Appendix A. The normalizing stress factors are r�xy ¼ G�ðbx=aÞ (solid curve),
r�y ¼ G�ðby=aÞ (dashed curve) and r�zy ¼ G�ðbz=aÞ, where G* = G/[2p(1 � m)] (dotted
curve).
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Fcyl
x ¼

Gb2
x=a

2pð1� mÞ
b

1� b2 : ð29Þ

On the other hand, if the edge dislocation with the Burgers vector bx

is outside a cylindrical void, on the x-axis at x = aa (a > 1), it is under
the force:

Fvoid
x ¼ � Gb2

x=a
2pð1� mÞ

a
a2 � 1

: ð30Þ

The transition between the above two expressions is made by the
substitution a = 1/b.

No such simple correspondence exists for the edge dislocation
with the Burgers vector by, since then:

Fcyl
x ¼

Gb2
y=a

2pð1� mÞ
b3

1� b2 ;

Fvoid
x ¼ �

Gb2
y=a

2pð1� mÞ
a

a2 � 1
1þ 1

a2 �
1
a4

� �
:

As a matter of fact, a closer inspection of the Airy stress functions,
for the dislocation in a solid cylinder and in an infinite matrix near
the void, reveals that the structures of Ubx are equivalent, but not of
Uby ; cf. (7) of Dundurs and Sendeckyj (1965) with (10) here. Of
course, the solutions for the pure screw dislocation are equivalent,
because both are obtained by the superposition of the fields from
two opposite screw dislocations placed at two points conjugate to
each other with respect to the boundary r = a.

4. Interaction energy

The elastic strain energy per unit dislocation length within a
large cylinder of radius R� aa around the void, excluding the dis-
location core energy,5 can be expressed by the Gauss divergence
theorem as

E ¼ U þ ER þ Ec; ð31Þ

where ER is the work done by tractions acting over the remote
boundary on the corresponding displacements, and Ec is the work
done by tractions acting over the core surface of small radius c, i.e.,

Ec ¼ �
1
2

I
rrur þ rrhuhð Þc dh;

ER ¼
1
2

I
rrur þ rrhuhð ÞR dh: ð32Þ

For a sufficiently small core radius c, the stress field associated with
a dislocation in an infinite medium (self dislocation field) domi-
nates over the image stress contributions, and the work Ec can be
conveniently calculated from the stress and displacement fields of
an isolated dislocation in an infinite medium.6 In the case of the hor-
izontal cut (along the x-axis) this is (e.g., Lubarda, 1997):

Ec ¼ �
G

8pð1� mÞ b2
x � b2

y �
1

2ð1� mÞ ðb
2
x þ b2

yÞ
� �

: ð33Þ

In the case of cut 1, the energy contribution ER can be conveniently
calculated by using the stress and displacement fields from Appen-
dix A, because the small distance (a � 1)a� R is not observed at a

far remote contour R. In fact, at a far remote contour (R� a), the ra-
dius of the void is not observed either, so that ER can be calculated
from the stress and displacement fields of a dislocation in an infinite
medium, which gives ER = �Ec. In the case of cut 2, the displacement
discontinuity from the surface of the void to nearby dislocation is
not observed at a far remote contour R at all, so that in this case
ER = 0.7

The energy contribution U, referred to as the interaction energy,
is equal to the work done by tractions on the displacement discon-
tinuity along the cut used to create a dislocation. This will be eval-
uated for utilized cuts in the sequel. Since an infinitesimal
variation of the dislocation position (dx) does not affect Ec and ER,
the x-component of the image force can be calculated as

Fx ¼ �
oU
ox
: ð34Þ

4.1. Interaction energy for a dislocation created by cut 1

The interaction energy for a dislocation created by a cut from
the dislocation to R ?1, along the positive x-axis, is

U ¼ 1
2

bx

Z R

aaþc
rxyðx;0Þdxþ 1

2
by

Z R

aaþc
ryðx;0Þdx

þ 1
2

bz

Z R

aaþc
ryzðx;0Þdx: ð35Þ

By substituting the stress expressions and integrating, the a-depen-
dent part8 of the interaction energy (relevant for the image force cal-
culation) is

U ¼ G
4pð1� mÞ b2

x þ b2
y þ ð1� mÞb2

z

h i
ln

a2 � 1
a2 � b2

x
1
a2

� 	
; ð36Þ

or, in terms of x = aa:

U ¼ G
4pð1� mÞ b2

x þ b2
y þ ð1� mÞb2

z

h i
ln 1� a2

x2

� �
� b2

x
a2

x2

� 	
: ð37Þ

By substituting (37) into (34), the horizontal component of the dis-
location force is found to be as given by (16).

Alternatively, to circumvent the integration, the interaction en-
ergy can be calculated from (35) by substituting the stress expres-
sions in terms of the derivatives of the stress functions U and u
(Dundurs, 1969; Eshelby, 1979). It readily follows that:

U ¼ 1
2

bx
oU
oy
ðaaþ c;0Þ � oU

oy
ðR;0Þ

� �

� 1
2

by
oU
ox
ðaaþ c;0Þ � oU

ox
ðR;0Þ

� �

þ 1
2

bz uðaaþ c;0Þ �uðR;0Þ½ �;

which reproduces (37).

4.2. Interaction energy for a dislocation created by cut 2

The interaction energy for a dislocation created by a cut from
the free surface to the dislocation, along the x-axis, is

5 The severe distortion of material within the core region associated with the
constant displacement discontinuity from the center of the core gives rise to singular
stress and strain fields within the core. This divergence can be eliminated by using
either non-linear or non-local elasticity models, or semi-discrete and atomistic
models (Tadmor et al., 1996; Rudd, 2009).

6 If a dislocation is very close to the surface of the void, the Peierls dislocation
model should be used, although there is no closed form analytical solution for such
dislocation near a cylindrical void. An analytical study of the dislocation nucleation
from a crack tip with the Peierls type model was given by Rice (1992).

7 The effects of couple stresses on dislocation strain energy are considered by
Lubarda (2003).

8 In an infinite medium, the interaction energy is formally infinite, but the
divergent term

G
4pð1� mÞ b2

x þ b2
y þ ð1� mÞb2

z

h i
ln

R
c
;

omitted in (36) and (37), does not depend on the dislocation position and does not
contribute to the dislocation image force.
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U ¼ � 1
2

bx

Z aa�c

a
rxyðx;0Þdx� 1

2
by

Z aa�c

a
ryðx;0Þdx

� 1
2

bz

Z aa�c

a
ryzðx;0Þdx: ð38Þ

By substituting the stress expressions from Appendix B and inte-
grating, the relevant portion9 of the interaction energy is found to
be:

U ¼ G
4p 1� mð Þ b2

x þ b2
y þ 1� mð Þb2

z

h i
ln a2 � 1
� �

� b2
y

1
a2

�

� 1
2

b2
x � b2

y


 �	
; ð39Þ

or, in terms of x = aa:

U ¼ G
4p 1� mð Þ b2

x þ b2
y þ 1� mð Þb2

z

h i
ln

x2

a2 � 1
� ��

� b2
y

a2

x2 �
1
2

b2
x � b2

y


 �	
: ð40Þ

The constant term proportional to ðb2
x � b2

yÞ is retained in (39) and
(40), because it plays an important role in the energy analysis pre-
sented in Section 5, which addresses the dislocation glide along an
inclined slip plane, with the displacement discontinuity imposed
along that direction.

Alternatively, (40) can be deduced from:

U ¼ 1
2

bx
oU
oy

aa� c;0ð Þ � oU
oy

a;0ð Þ
� �

� 1
2

by
oU
ox

aa� c;0ð Þ � oU
ox

a;0ð Þ
� �

þ 1
2

bz u aa� c;0ð Þ �u a;0ð Þ½ �:

The substitution of this expression into Fx = �oU/ox reproduces (22).

5. Dislocation on an inclined slip plane

In the study of void growth by dislocation emission from the sur-
face of the void (Lubarda, 2011), the dislocation is emitted from a
particular point on the surface of the void, and at an angle relative
to the loading direction, which make the emission of dislocation
most favorable. For this study, it is necessary to consider a disloca-
tion in the configuration shown in Fig. 6, where the horizontal and
vertical directions (x0,y0) correspond to the external (biaxial) load-
ing directions, and n is the slip direction. The slip direction intersects
the surface of the void at the point specified by the angle w0, while
the slip plane orientation is specified by the angle x0. At the position
shown in Fig. 6, the dislocation is at a distance q, measured along the
n-direction from the surface of the void. The corresponding distance
r from the center of the void, and the angle #, are

r2 ¼ a2 þ q2 þ 2aq cos x0; sin# ¼ a
r

sinx0: ð41Þ

For later purposes, we also note that dr/dq = cos# and d#/
dq = �(sin#)/r.

5.1. Image forces corresponding to cut 1

Consider first the case when the dislocation arrived at the posi-
tion shown in Fig. 6 by glide from infinity (under externally applied

stress). The components of the image force exerted by the surface
of the void in this case can be written down directly from the
expressions (19) and (20), by replacing x with r, and #0 with #.
Since bx = bqcos# and by = bqsin#, there follows10:

Fq ¼ �
G

2pð1� mÞ
a2 cos#

rðr2 � a2Þ 2� a2

r2 � 2
a2

r2 1� a2

r2

� �
sin2 x0

� �
b2

q

�

þð1� mÞb2
z

	
; ð42Þ

Fn ¼
G

2pð1� mÞ
a3 sinx0

r2ðr2 � a2Þ 3� 2
a2

r2 � 2
a2

r2 1� a2

r2

� �
sin2 x0

� �
b2

q

�

þð1� mÞb2
z

	
; ð43Þ

where cos# = [1 � (a2/r2) sin2x0]1/2.
The corresponding interaction energy can be deduced from (37)

as

U¼ G
4pð1�mÞ b2

qþð1�mÞb2
z

h i
ln 1�a2

r2

� �
�b2

q
a2

r2 1�a2

r2 sin2x0

� �� 	
:

ð44Þ

This reproduces the glide force by Fq = �oU/oq, because the strain
energy is equal to the interaction energy (Ec + ER = 0 and E = U).

If the dislocation is pure edge with the Burgers vector of magni-
tude b, (44) reduces to:

U ¼ Gb2

4pð1� mÞ ln 1� a2

r2

� �
� a2

r2 1� a2

r2 sin2 x0

� �� �
; ð45Þ

in agreement with the expression (7.7) from Dundurs (1969), while
(42) and (43) become:

Fq ¼ �
Gb2

2pð1� mÞ
a2 cos#

rðr2 � a2Þ 2� a2

r2 � 2
a2

r2 1� a2

r2

� �
sin2 x0

� �
;

ð46Þ

Fn ¼
Gb2

2pð1� mÞ
a3 sin x0

r2ðr2 � a2Þ 3� 2
a2

r2 � 2
a2

r2 1� a2

r2

� �
sin2 x0

� �
:

ð47Þ

Fig. 6. A dislocation with its edge component along the slip direction n, whose
orientation is specified by the angle x0. The slip direction intersects the surface of
the void at the point defined by the angle w0. As the dislocation glides away from
the void and the distance q increases, the angle # decreases from x0 to 0.

9 The c-dependent term, not contributing to the dislocation force,

G
4pð1� mÞ b2

x þ b2
y þ ð1� mÞb2

z

h i
ln

a
c
;

is omitted in (39) and (40).

10 To use the results from Section 4 directly, we consider that at each new position
of dislocation along its slip plane, the new x-direction is passed through O and the
center of the dislocation, along which the displacement discontinuity is imposed from
the dislocation to infinity.
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5.2. Image forces corresponding to cut 2

If the dislocation in Fig. 6 has been emitted from the surface of
the void (under externally applied stress), the components of the
image force are recognized, from (24) and (25), to be:

Fq¼�
G

2pð1�mÞ
rcos#
r2�a2 1�2

a2

r2 1�a2

r2

� �2

sin2x0

" #
b2

qþð1�mÞb2
z

( )
;

ð48Þ

Fn ¼
G

2pð1� mÞ
a sin x0

r2 � a2 3 1� a2

r2

� �
þ a4

r4

��

� 2
a2

r2 1� a2

r2

� �2

sin2 x0

#
b2

q þ ð1� mÞb2
z

)
: ð49Þ

The corresponding interaction energy follows from (40):

U ¼ G
4pð1� mÞ b2

q þ ð1� mÞb2
z

h i
ln

r2

a2 � 1
� ��

þ b2
q

a2

r2 1� a2

r2

� �
sin2 x0 �

1
2

� �	
: ð50Þ

The dislocation core energy is obtained from (33) by substitut-
ing bx = bqcos# and by = bqsin#, which gives (e.g., Lubarda, 2006):

Ec ¼ �
Gb2

q

8pð1� mÞ cos 2#� 1
2ð1� mÞ

� �
; ð51Þ

or, in terms of r:

Ec ¼
Gb2

q

4pð1� mÞ
a2

r2 sin2 x0 �
1� 2m

4ð1� mÞ

� �
: ð52Þ

As the dislocation glides along the slip plane, the angle # changes,
and so does the core energy (Fig. 7(a)). Consequently, in this case
the glide force on the dislocation is determined from the gradient
of the strain energy:

Fq ¼ �
oE
oq

; ð53Þ

where

E ¼ U þ Ec ¼
G

4pð1� mÞ b2
q þ ð1� mÞb2

z

h i
ln

r2

a2 � 1
� ��

þ b2
q

a2

r2 2� a2

r2

� �
sin2 x0 �

3� 4m
4ð1� mÞ

� �	
: ð54Þ

The variations of E and U with q are shown in Fig. 7(b). The negative
of the slope of E, not U, is the glide force Fq. It can be easily verified
that (53) with (54) reproduces (48).

If the dislocation is a pure edge, (50) reduces to:

U ¼ Gb2

4pð1� mÞ ln
r2

a2 � 1
� �

þ a2

r2 1� a2

r2

� �
sin2 x0 �

1
2

� �
; ð55Þ

while (54) becomes:

E ¼ Gb2

4pð1� mÞ ln
r2

a2 � 1
� �

þ a2

r2 2� a2

r2

� �
sin2 x0 �

3� 4m
4ð1� mÞ

� �
:

ð56Þ

The Eqs. (48) and (49) for the glide and climb forces in this case are

Fq ¼ �
Gb2

2pð1� mÞ
r cos#
r2 � a2 1� 2

a2

r2 1� a2

r2

� �2

sin2 x0

" #
; ð57Þ

Fn ¼
Gb2

2pð1� mÞ
asinx0

r2� a2 3 1� a2

r2

� �
þ a4

r4 �2
a2

r2 1�a2

r2

� �2

sin2 x0

" #
:

ð58Þ

5.3. Interaction and core energies for a cut along the glide plane

In the preceding analysis the strain energy within a large cylin-
der around the void, excluding the dislocation core, was calculated
from the Gauss divergence theorem by using the cut from the sur-
face of the void to the dislocation along the x-axis (Fig. 8(a)), be-
cause the elastic stress and strain fields (and thus the elastic
strain energy) are the same for any displacement discontinuity
cut from the surface of the void to the dislocation. We used the
cut along the x-axis, because we had available simple expressions
for the stress components along the x-axis, and thus were able to
readily calculate the interaction energy U associated with that
cut. The natural question is what is the interaction energy corre-
sponding to the cut along the glide plane, where the slip is actually
taking place11 (Fig. 8(b)). To circumvent a tedious calculation of the
stress components along that cut, and integration to calculate their
work on the displacement discontinuity, we use the following

(a) (b)

Fig. 7. (a) The variation of the core energy (52) with the distance q. The normalizing factor is E�c ¼ Ec , given by Eq. (60), which is also the limiting value of Ec as q ?1. (b) The
variation of the interaction energy U (dashed curve) from (50), and the strain energy E (solid curve) from (54). The normalizing energy factor is E* = Gb2/[4p(1 � m)].

11 The stress and strain fields for any two cuts from the surface of the void to
dislocation are the same; only the displacement fields in the region between the two
cuts differ by a rigid body translation that transmits the displacement discontinuity
from one cut to another.
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appealing procedure. Since the total strain energy is independent of
the cut, we may write:

E ¼ U þ Ec ¼ Uþ Ec; ð59Þ

where, from (33):

Ec ¼ �
Gb2

qð1� 2mÞ
16pð1� mÞ2

ð60Þ

is the core energy associated with the cut along the glide plane, and
U is the interaction energy along that cut:

U ¼ �1
2

bq

Z q�c

0
rnnðn;0Þ dn� 1

2
bz

Z q�c

0
rnzðn;0Þ dn: ð61Þ

The involved resolved shear stresses are

rnn ¼ �
1
2
ðrx � ryÞ sin 2#þ rxy cos 2#;

rnz ¼ ryz cos#� rxz sin#: ð62Þ

Instead of performing lengthy calculations based on (61) and (62),
we calculate U indirectly, from (59), as

U ¼ E� Ec ¼ U þ Ec � Ec: ð63Þ

Since, from (52) and (60):

Ec � Ec ¼
Gb2

q

4pð1� mÞ
a2

r2 sin2 x0; ð64Þ

upon substitution of (50) and (64), or (54) and (60), into (63), there
follows:

U ¼ G
4pð1� mÞ b2

q þ ð1� mÞb2
z

h i
ln

r2

a2 � 1
� ��

þ b2
q

a2

r2 2� a2

r2

� �
sin2 x0 �

1
2

� �	
: ð65Þ

Fig. 9 shows the q-variation of U from (50), and U from (65). Since
Ec is independent of q, the glide force is the negative gradient of the
interaction energy (65) with respect to the dislocation position
along the glide plane, i.e.,

Fq ¼ �
oU

oq
; ð66Þ

which reproduces (48). We recall that in the case of the cut from the
dislocation to infinity (cuts type 1 from Section 5.1), the interaction
energy along any such cut (along the x-axis or not) is the same, be-
cause Ec + ER = 0 for each cut, so that E = U and Fq = �oU/oq. For cuts
of type 2, however, Fq ¼ �oE=oq ¼ �oU=oq–� oU=oq.

5.4. Comparison of different glide and climb forces

To quantify the difference between the glide and climb forces
associated with two types of dislocations near a cylindrical void,

one emitted from the surface of the void, and the other approach-
ing from infinity, we consider a straight dislocation in an FCC
crystal, parallel to crystallographic direction ½1�10�, with the Bur-
gers vector along [011] direction on a slip plane ð1�11Þ; Fig. 10.
By aligning the coordinate system (x0,y0,z), such that x0½110�;
y0½001�; z½1�10�, the Burgers vector is b ¼ f1;

ffiffiffi
2
p

;�1gb=2, with the
magnitude b ¼ al=

ffiffiffi
2
p

, where al is the crystalline lattice parameter.
The magnitude of the edge component of the Burgers vector, which
is in the [112] direction, making an angle #0 = 54.7� (tan#0 ¼

ffiffiffi
2
p

)
with the [110] direction, is bq ¼

ffiffiffi
3
p

b=2.
Fig. 11a shows the variation of the glide force Fq with q (on the

logarithmic scale), according to (42) and (48), with m = 1/3. The
attraction exerted on the dislocation by the void is stronger in
the case of a dislocation emitted from the surface of the void.
Fig. 12(b) shows the variation of the climb force Fn, according to
(43) and (49), with m = 1/3. Fig. 12 illustrates the differences be-
tween the glide and climb forces corresponding to two types of dis-
locations along the distance q/b, for two sizes of the void: a = 10b
and a = 20b. The difference between the two sets of forces is negli-
gible far from the void, but pronounced near the void. For example,
a void of radius a = 10b attracts the dislocation arriving from infin-
ity by the glide force of magnitude 0.1031 Gb, when the dislocation
is at the distance q = 2b, while the attraction of magnitude
0.1166 Gb is exerted on a dislocation emitted from the surface of
the void. This means that the external loading must provide an
effective shear stress on the glide plane at the center of the
dislocation of the amount seff = 0.1031G in the first case, and
seff = 0.1166G in the second case. Thus, in the analysis of disloca-
tion emission from the surface of a cylindrical void, higher applied

(a) (b)

Fig. 8. A straight dislocation near a cylindrical void with the displacement discontinuity imposed from the surface of the void to the dislocation along: (a) the x-axis, and (b)
the n-axis in the glide plane.

Fig. 9. The variation of the interaction energies U (dashed curve) and U ¼ U (solid
curve) with q, according to (50) and (65). The normalizing interaction energy is
U* = Gb2/[4p(1 � m)]. The negative of the slope of U, not U, is the glide force Fq.
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(a) (b)

Fig. 10. (a) Four {111} slip planes in an FCC crystal, with atoms shown schematically on two of the planes only. The Burgers vector b of the dislocation line ½1�10� is along
[011] direction, with the edge component in the [112] direction. (b) The cylindrical void with the axis in the ½1�10� direction. The edge component of the dislocation is along
[112] direction, with tan#0 ¼

ffiffiffi
2
p

.

(a) (b)

Fig. 11. The variations of the (a) glide and (b) climb forces along the slip plane corresponding to two types of dislocations located near the void. The solid curves are for the
dislocation emitted from the surface of the void, and the dashed curves for the dislocation approaching the void from infinity. The scaling factor is F* = (Gb2/a)/[2p(1 � m)].

(a) (b)

Fig. 12. The variations of the difference in the (a) glide forces DFq ¼ Fð2Þq � Fð1Þq , and (b) climb forces DFn ¼ Fð2Þn � Fð1Þn along the slip plane corresponding to two types of
dislocations. The solid curves are for the void size a = 10b, and the dashed curves for a = 20b.

656 V.A. Lubarda / International Journal of Solids and Structures 48 (2011) 648–660



Author's personal copy

stress is required to emit a straight dislocation than what was ear-
lier predicted by using a dislocation model with the slip imposed
from the dislocation to infinity (Lubarda et al., 2004; Lubarda,
2010). The effective shear stress is defined from the Peach–Koehler
expression for the dislocation glide force:

Fext
q ¼ seff b; seff ¼ ðbq=bÞrnq þ ðbz=bÞrnz; ð67Þ

where rnq and rnz are the shear stress components from external
loading at the center of dislocation in the glide (q) and z directions,
over the slip plane with the normal n.

In the above analysis, we considered only a single dislocation
with the Burgers vector al[011]/2 on the slip plane ð1�11Þ. The
extension of the analysis to address the stress field and dislocation
forces on an extended dislocation, in which the leading partial dis-
location al[121]/6 is emitted first, leaving a faulted plane behind it,
and then the trailing partial dislocation al½�112�=6 is emitted to
complete the al[011]/2 dislocation, is a worthwhile extension of
the present analysis, particularly for FCC metals with a law stack-
ing fault energy (such as Cu). In this case an additional length scale
to consider in the analysis is a splitting distance between the par-
tial dislocations. In BCC metals such as Mo dislocations do not split
into partials and a perfect dislocation al[111]/2 can be considered
only.

5.5. Ledge effect on a dislocation force

If the dislocation is emitted from the surface of the void, the
ledge left at the surface of the void behind the dislocation can have
an appreciable effect on the total force on the dislocation, increas-
ing its attraction to the surface of the void. Adopting the Peierls
model of the dislocation, the ledge force on the dislocation is Lu-
barda (2011):

Fl
q ¼ �

2c
p

f

f2 þ ðq=bqÞ2
; f ¼ e3=2w=ð4bqÞ; ð68Þ

where e is the Neperian logarithm base, w = d/(1 � m) is the width of
the dislocation, d ¼ al=

ffiffiffi
3
p

is the interplanar separation across the
slip plane, and c is the corresponding surface energy. For example,
for a monocrystalline copper, a reasonable estimate of c at room
temperature is c = 1.775 J/m2, while the magnitude of the Burgers
vector of {111} h110i dislocation is b = 0.255 nm. By taking
G = 40 GPa and m = 1/3, the surface energy can be conveniently ex-

pressed as c = gGbq, with g = 0.2. Fig. 13 shows the variation of
the normalized glide force (Fq/Gb) on a dislocation emitted from
the surface of the void vs. the normalized distance (q/b) along the
glide plane, according to Eq. (48), i.e., without the ledge effect (solid
curve), and with the added contribution (68) from the ledge. Parts
(a) and (b) of the figure correspond to the void size a = 10b and
a = 20b, respectively. Evidently, while the ledge contribution to
the total dislocation force is negligible at the distance q greater than
about 10–15b, the ledge exerts a significant attraction on the dislo-
cation in a close proximity to the void, the attraction being stronger
for smaller voids. The comparison at very small q is, however, of lit-
tle physical significance, because very near the void only an incipi-
ent dislocation resides near the void, characterized by a strongly
non-linear slip discontinuity across the glide plane, and the disloca-
tion force calculated from the Volterra dislocation model is an inad-
equate measure of the actual attraction exerted on the dislocation
by the surface of the void.

6. Conclusion

We have derived in this paper the expressions for the glide and
climb components of the image force exerted by the free surface of
a cylindrical void on a nearby straight dislocation of mixed (edge-
screw) type. Two different sets of these forces exist, depending on
whether the dislocation has approached the void from the remote
distance, or it has been emitted from the surface of the void. The
expressions for the latter set of glide and climb forces have not
been previously reported in the literature. They play an important
role in the study of void growth in ductile materials by emission of
dislocations, and in related problems of materials science. It is
shown that the image forces are stronger on a dislocation emitted
from the surface of the void than on a dislocation that has arrived
near the void from far away, particularly for smaller voids. This im-
plies that in the analysis of dislocation emission from the surface of
a cylindrical void, higher applied stress is required to emit a
straight dislocation than what was earlier predicted by using a dis-
location model with the slip imposed from the dislocation to infin-
ity. We have also shown that for a dislocation emitted from the
surface of the void, the interaction energy depends on the cut used
to impose the displacement discontinuity, which is not the case for
the dislocation arriving near the void from infinity. The general
expressions for the glide and climb forces on an arbitrarily inclined
glide plane are also derived.

(a) (b)

Fig. 13. The variation of the glide force with the distance from the void with the included ledge effect (dashed curve) and without it (solid curve). Part (a) is for the void size
a = 10b and part (b) for a = 20b.
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We conclude this section by summarizing the derived expres-
sions for the relevant (non-constant and non-divergent) portions
of the elastic strain energy, and the glide and climb forces for the
two types of dislocations, associated with cuts 1 and 2 (Fig. 14).
For clarity, the expressions are listed separately for pure edge
(bq) and pure screw (bz) dislocation components. Since there are
no interaction-cross terms between the edge and screw dislocation
components, their sums give the results for the general (mixed-
type) straight dislocation.

Edge dislocation (Cut 1):
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Edge dislocation (Cut 2):
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Screw dislocation (Cut 1): Screw dislocation (Cut 2):
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Appendix A. Stress and displacement fields of the auxiliary
problem

If the uniform displacement discontinuity b = {bx,by,bz} is im-
posed from the surface of a cylindrical void to infinity (Fig. 2),
the in-plane and out-of-plane stress and displacement components
are as follows.

A.1. In-plane stress components

The stress components due to bx and by are:

rbx
x ¼ �

Gbxy
2p 1� mð Þ

1
r2 1þ 2

x2

r2 þ
a2

r2 1� 4
x2

r2

� �� �
;

rbx
y ¼ �

Gbxy
2p 1� mð Þ

1
r2 1� 2

x2

r2 �
a2

r2 1� 4
x2

r2

� �� �
;

rbx
xy ¼ �

Gbxx
2p 1� mð Þ

1
r2 1� 2

x2

r2 �
a2

r2 3� 4
x2

r2

� �� �
;

and

rby
x ¼ �

Gbyx
2p 1� mð Þ

1
r2 1� 2

x2

r2 �
a2

r2 3� 4
x2

r2

� �� �
;

rby
y ¼

Gbyx
2p 1� mð Þ

1
r2 3� 2

x2

r2 �
a2

r2 3� 4
x2

r2

� �� �
;

rby
xy ¼ �

Gbyy
2p 1� mð Þ

1
r2 1� 2

x2

r2 �
a2

r2 1� 4
x2

r2

� �� �
:

When the stress field is recast in polar coordinates, it follows
that rr and rrh, due to each bx and by, are proportional to either
r�1(1 � a2/r2) sinh or r�1(1 � a2/r2) cosh, so that the surface of
the void is traction free and the stresses vanish at infinity. The
hoop stress at the surface of the void is

rhða; hÞ ¼ �
G

pð1� mÞ
1
a
ðbx sin h� by cos hÞ;

which has the maximum magnitude:

rmax
h ¼ G

pð1� mÞ
bq

a
; bq ¼ ðb2

x þ b2
yÞ

1=2
;

at the angle h defined at tanh = �bx/by. The corresponding hoop
strain at those points is of magnitude �h = (bq/a)/2p. Thus, in order
that strains are reasonably small (say, less than 2% or so), as as-
sumed in the linear elasticity analysis, the radius of the void should
be greater than about 10bq. If the slip discontinuity is bx only, the
maximum hoop stress is at h = p/2 (compression) and h = �p/2 (ten-
sion); if it is by only, the maximum hoop stress is at h = 0 (compres-
sion) and h = p (tension).

(b)(a)

Fig. 14. A straight dislocation on its glide plane near a cylindrical void with the displacement discontinuity imposed along: (a) cut 1 and (b) cut 2.
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A.2. In-plane displacement components

The displacement components due to bx and by are:

ubx
x ¼

bx

4p 1� mð Þ 2 1� mð Þhþ xy
r2 1� a2

r2

� �� �
;

ubx
y ¼ �

bx

4p 1� mð Þ 1� 2mð Þ ln r
a
þ x2

r2 þ
a2

2r2 1� 2
x2

r2

� �� �
;

and

uby
x ¼

by

4p 1� mð Þ 1� 2mð Þ ln r
a
� x2

r2 þ
a2

2r2 1þ 2
x2

r2

� �� �
;

uby
y ¼

by

4p 1� mð Þ 2 1� mð Þh� xy
r2 1� a2

r2

� �� �
;

where 0 6 h 6 2p.

A.3. Out-of-plane stress and displacement components

The out-of-plane stresses and displacement are:

rzx ¼ �
Gbz

2p
y
r2 ; rzy ¼

Gbz

2p
x
r2 ;

uz ¼
bz

2p h; 0 6 h 6 2p:

Appendix B. Stress and displacement fields for a dislocation
emitted from the surface of the void

If a straight dislocation is emitted from the surface of the void
and it is in the position shown in Fig. 3, the in-plane and out-of-
plane stress and displacement components are as follows.

B.1. In-plane stress components

The stress components due to bx and by are:

rbx
x ¼ �

Gbxy
2p 1� mð Þ

1
r2

1

1þ 2
x2

1

r2
1

� �
� 1

r2
2

1þ 2
x2

2

r2
2

� ��

þ 2
a2 � 1

a3

ax2

r4
2

1� 4
x2

2

r2
2

� �
�

a2 � 1
� �2

a4

a2

r4
2

1� 4
x2

2

r2
2

� �#
;

rbx
y ¼ �

Gbxy
2p 1� mð Þ

1
r2

1

1� 2
x2

1

r2
1

� �
� 1

r2
2

1� 2
x2

2

r2
2

� ��

� 2
a2 � 1

a3

ax2

r4
2

3� 4
x2

2

r2
2

� �
þ

a2 � 1
� �2

a4

a2

r4
2

1� 4
x2

2

r2
2

� �#
;

rbx
xy ¼ �

Gbx

2p 1� mð Þ
x1

r2
1

1� 2
x2

1

r2
1

� �
� x2

r2
2

1� 2
x2

2

r2
2

� ��

þ a2 � 1
a3

a
r2

2

1� 8
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2

r2
2

þ 8
x4

2

r4
2

� �
þ

a2 � 1
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a4

a2x2

r4
2

3� 4
x2

2

r2
2

� �#
;

and

rby
x ¼ �

Gby

2p 1� mð Þ
x1

r2
1

1� 2
x2

1

r2
1

� �
� x2

r2
2

1� 2
x2

2

r2
2

� ��

þ a2 � 1
a

a
r2

2

1� 2
x2

2

r2
2

� �
� a

r2 1� 2
x2
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2
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2
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�
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2
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2
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2

� �)
;

rby
y ¼

Gby

2p 1�mð Þ
x1

r2
1

3�2
x2

1

r2
1

� �
� x2

r2
2

3�2
x2

2

r2
2

� ��
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a

a
r2

2
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x2

2

r2
2

� �
� a
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2
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2
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2
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2
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�
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a4
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2

3�4
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2
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2
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;

rby
xy ¼ �

Gbyy
2p 1� mð Þ

1
r2

1

1� 2
x2

1

r2
1

� �
� 1

r2
2

1� 2
x2

2

r2
2

� ��

� 2
a2 � 1

a
a

x2
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2

� x
r4

� �
þ 4
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� �

�
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2

1� 4
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2
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2
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:

The utilized auxiliary coordinates are x1 = r1cosh1 = x � aa,
x2 = r2cosh2 = x � a/a, and y1 = y2 = y.

B.2. In-plane displacement components

The displacement components due to bx and by are:

ubx
x ¼ �

bx

4p 1� mð Þ 2 1� mð Þ h2 � h1ð Þ þ x2y2

r2
2

� x1y1

r2
1

�

þ a2 � 1
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ay2
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2
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2

r2
2
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a

ax2

r2
2

� ��
;

ubx
y ¼ �

bx
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r2
þ x2

1

r2
1

� x2
2

r2
2

�
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ax2

r2
2
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2

r2
2
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a
2x2
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2
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;

and

uby
x ¼

by

4p 1� mð Þ 1� 2mð Þ ln r1

r2
þ x2

2

r2
2

� x2
1

r2
1

þ a2 � 1
a

a
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2
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2
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a
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;

uby
y ¼

by

4p 1�mð Þ 2 1�mð Þ h1�h2ð Þþx2y2

r2
2

�x1y1

r2
1

�
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a
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y
r2�
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2
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:

The angle range is �p 6 (h1,h2) 6 p, so that the displacement
discontinuity is imposed from the surface of the void to the center
of dislocation along the x-axis. The rigid body displacement
u0

x ¼ c1 þ c3y and u0
y ¼ c2 � c3x can be added as needed, where the

constants c1 and c2 correspond to translation and c3 to rotation.

B.3. Out-of-plane stress and displacement components

The out-of-plane stresses associated with the screw dislocation
component are:

rzx ¼ �
Gbz

2p
y

1
r2

1

� 1
r2

2

� �
; rzy ¼

Gbz

2p
x1

r2
1

� x2

r2
2

� �
:

The out-of-plane displacement is

uz ¼
bz

2p
h1 � h2ð Þ:

These are the same stress and displacement fields as if the opposite
screw dislocation was in a solid circular cylinder at the conjugate
point x = a/a, and the displacement discontinuity was imposed from
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the dislocation to the free surface of the cylinder at x = a (Eshelby,
1979).
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