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Abstract

The Gibbs conditions of stable thermodynamic equilibrium are formulated for nonlinear thermoelastic materials, based
on the constrained minimization of four fundamental thermodynamic potentials. Sufficient conditions for incremental sta-
bility are stated in each case. The previously unexplored connections between the second-order variations of thermody-
namic potentials are used to establish the convexity or concavity properties of all thermodynamic potentials in relation
to each other, and to derive the relationships between the specific heats at constant stress and deformation, and between
the isentropic and isothermal elastic moduli and compliances. The comparison with the derivation based on the classical
thermodynamic approach is also given.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical conditions for stability of equilibrium of various thermodynamic states, with a particular
emphasis to chemical equilibrium, were formulated by Gibbs (1875–1878). The system is in thermodynamic
equilibrium if its state variables do not spontaneously change with time. The equilibrium state of an isolated
system at constant volume and internal energy is the state with the maximum value of the total entropy. Con-
sider a uniform body of volume V and mass density q = m/V, which is in a stable thermodynamic equilibrium
at temperature T and pressure p. Let # = 1/q be the specific volume, and let u = U/m and s = S/m be the uni-
form specific internal energy and entropy, respectively. Any (spatially nonuniform) virtual variation (du,d#)
from a stable equilibrium state, prescribed under the constraints of constant total internal energy U and con-
stant total volume V, gives rise to a decrease of the total entropy S. Thus,
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DS ¼
Z

V
qDsðu; #ÞdV < 0; S ¼

Z
V

qsðu; #ÞdV ;

subjected to the constraints

DU ¼
Z

V
qdudV ¼ 0; DV ¼

Z
V

qd#dV ¼ 0:

Equivalently, among all neighboring states with the same volume and total entropy, the equilibrium state is
one with the lowest total internal energy, i.e.,

DU ¼
Z

V
qDuðs; #ÞdV > 0;

under the constraints

DS ¼
Z

V
qdsdV ¼ 0; DV ¼

Z
V

qd#dV ¼ 0:

Based on the Gibbs analysis, it furthermore follows that: (a) among all neighboring states with the same vol-
ume and temperature, the equilibrium state is one with the lowest Helmholtz free energy; (b) among all neigh-
boring states with the same pressure and entropy, the equilibrium state is one with the lowest enthalpy; and (c)
among all neighboring states at the same temperature and pressure, the equilibrium state is one with the lowest
Gibbs energy. Detailed analysis of these assertions, with their consequences, can be found in standard texts on
thermodynamics, such as Callen (1960); Kestin (1979), and Müller (1985).

The Gibbs conditions of equilibrium are most often formulated and applied to thermodynamic systems
under pure hydrostatic pressure. The mathematical formulation of the Gibbs conditions for solids under arbi-
trary states of stress and deformation, such as arise in nonlinear finite strain elasticity, has received less atten-
tion. Coleman and Noll (1959) stated the conditions for thermomechanical stability of equilibrium states

Nomenclature

List of symbols

p, V pressure, volume
q mass density
# specific volume
T temperature
s, S entropy (specific and total)
u, U internal energy
f ;F Helmholtz free energy F
h, H enthalpy
g, G Gibbs energy
P potential energy
P* complementary energy
XJ, xi referential and spatial coordinates
FiJ deformation gradient
PJi nominal stress
bi body force
ti traction
KJiLk instantaneous elastic moduli
MiJkL instantaneous elastic compliances
lF

Ji; l
P
iJ latent heats at constant F and P

cF, cP specific heats at constant F and P

aiJ coefficients of thermal expansion
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under constant temperature (isothermal stability) and constant total entropy of the body (adiabatic stability),
using the Helmholtz free energy in the first case, and the internal energy in the second case. They extended the
Gibbs analysis by specifying the boundary conditions to be either the prescribed surface displacements or the
prescribed surface tractions, so that the virtual variations from the equilibrium state are at constant overall
geometry in the first case, and constant loading in the second case. Various aspects of the thermodynamics
of elastic stability were further studied by Truesdell and Noll (1965), Ericksen (1966, 1991); Gurtin (1973);
Koiter (1969, 1982), Šilhavý (1997), among others. There has also been a significant amount of research
devoted to the stability of internally constrained thermoelastic materials, which are subject to either the defor-
mation-temperature or the deformation-entropy constraints. Representative recent work in this area includes
Chadwick and Scott (1992), Casey and Krishnaswamy (1998); Scott (2001), and Rooney and Bechtel (2004).
The stability and the convexity properties of thermodynamic potentials for compressible viscous fluids have
been recently examined by Bechtel et al. (2003, 2005); see also Woods (1986).

In the present paper we formulate the conditions of thermodynamic equilibrium under the constraint of zero net
work of external tractions on small geometrically admissible virtual displacements from the equilibrium state, in
addition to the usual constraints on the total entropy or the temperature. The mixed traction/displacement bound-
ary conditions are also considered. The conditions are first formulated in terms of the constrained minimization of
the internal energy (or the constrained maximization of the entropy), and then in terms of the constrained minimi-
zation of other thermodynamic potentials (Helmholtz free energy, enthalpy, and Gibbs energy). Sufficient condi-
tions for the incremental stability of thermodynamic equilibrium, with respect to disturbances in a near
neighborhood of the considered equilibrium state, are stated in each case. The relationships between the second-
order variations of the thermodynamic potentials are derived, which reveal the convexity or concavity properties
of all thermodynamic potentials, based on the convexity property of the internal energy function. These relation-
ships, previously unexplored in the literature, are then used to construct the new derivation of the fundamental ther-
modynamic connections between the specific heats at constant stress and deformation, and between the isentropic
and isothermal elastic moduli and compliances. The comparison with the classical derivation, based on the formal
change of independent variables and the corresponding chain-rule partial differentiation, is also given.

2. Internal energy

Consider an elastic body under a self-equilibrated traction field ti applied over the portion At of the bound-
ing surface A of the body of current volume V at uniform temperature T. The Gibbs condition of stable equi-
librium for such body can be stated as:

The internal energy of a stable equilibrium state is at minimum with respect to any small geometrically admis-

sible virtual displacement field giving no net virtual work from external tractions, and any virtual local entropy

variation subjected to the constraint of constant total entropy.

Phrased differently, the internal energy is at minimum in a stable equilibrium state with respect to any small
virtual variation of the equilibrium state which is associated with zero net work from external loading and zero
heat exchanged with the surroundings of the body.1 To elaborate and examine the consequences of this con-
dition, let s and u be the specific entropy and internal energy (per unit initial volume V0). The total internal
energy in the body is then

U ¼
Z

V 0

uðs; F iJ ÞdV 0; ð1Þ

where u = u(s,FiJ) is the so-called caloric equation of state of the material, and FiJ = oxi/oXJ are the rectangular
components of the deformation gradient, which maps a material element dXJ from its initial to its current position
dxi = FiJdXJ. The upper case index is used to indicate the referential and the lower case the spatial coordinates. For
example, a two-point tensor of the deformation gradient is F ¼ F iJ ei � e0

J , where ei and e0
J are the orthonormal base

vectors in the deformed and undeformed configurations, respectively, and � stands for the dyadic product. The
function u is assumed to be objective, i.e., properly invariant under a change of the reference frame – thus, dependent

1 An alternative to the constrained internal energy minimization is the constrained entropy maximization, presented in the Appendix of
this paper.
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only on the stretch part UIJ from the polar decomposition of the deformation gradient FiJ = RiKUKJ. If the internal
energy has a local minimum in the considered equilibrium configuration, then

DU ¼
Z

V 0

Duðs; F iJ ÞdV 0 > 0; ð2Þ

for any small variations ds and dFiJ, subjected to the constraints2Z
A0

t

t0
i dxi dA0 ¼ 0;

Z
V 0

dsdV 0 ¼ 0; ð3Þ

where t0
i is the nominal traction, per unit undeformed area ðt0

i dA0 ¼ ti dAÞ.
The change of the specific internal energy due to variations d s and dFiJ is

Du ¼
X1
k¼1

1

k!
dku; dku ¼ ds

o

os
þ dF iJ

o

oF iJ

� �k

u: ð4Þ

The first-order variation of u is

du ¼ Tdsþ P JidF iJ ; ð5Þ
where T = ou/os is the temperature and PJi = ou/oFiJ are the components of the nominal stress (work conju-
gate to FiJ). A local state (s,FiJ) is an equilibrium state under the temperature/stress pair (T,PJi).

3 Eq. (5) is a
generalized Gibbs relation (the energy equation of reversible nonlinear thermoelasticity; e.g.; Holzapfel, 2000).
The second-order variation of u is

d2u ¼ o2u
os2
ðdsÞ2 þ 2

o2u
osoF iJ

dsdF iJ þ
o2u

oF iJoF kL
dF iJdF kL: ð6Þ

By the constraint conditions (3), we first haveZ
V 0

TdsdV 0 ¼ T
Z

V 0

dsdV 0 ¼ 0: ð7Þ

Since t0
i ¼ n0

J P Ji and PJi,J = 0 (by equilibrium equations in the absence of body forces), we can writeZ
V 0

P JidF iJ dV 0 ¼
Z

A0

t0
i dxi dA0 ¼

Z
A0

t

t0
i dxi dA0 ¼ 0; ð8Þ

where dxi = 0 over A0
x ¼ A0 � A0

t . From (2) it then follows that

DU ¼
X1
k¼2

1

k!

Z
V 0

dku dV 0 ¼ 1

2

Z
V 0

d2udV 0 þ higher order terms > 0: ð9Þ

An obviously sufficient condition for (9) is that at each point of the body u = u(s,FiJ) is a locally convex function of its
arguments. A sufficient condition for this convexity is that the Hessian matrix of u is positive-definite, i.e.,

o2u
os2
ðdsÞ2 þ 2

o2u
osoF iJ

dsdF iJ þ
o2u

oF iJoF kL
dF iJdF kL > 0: ð10Þ

In summary, if d2u > 0 at all points of the body, the considered equilibrium state is locally stable, relative to
configurations in its near neighborhood, under the loading and entropy constraints (3).4

2 For example, the zero external net work is assured by taking dxi = 0 over the portion of St where the prescribed tractions do not
vanish. Furthermore, if A0

t ¼ 0, so that the displacement boundary conditions are prescribed over entire A0, the first of the conditions (3) is
satisfied automatically (cf. Coleman and Noll, 1959).

3 The moment equilibrium requires that the Kirchhoff stress sij = FiKPKj is symmetric, which places the restriction on u given by FiK(ou/
oFjK) = (ou/oFiK)FjK.

4 The constraint of zero net work of external traction on virtual displacement from the equilibrium state is too restrictive for buckling
analysis (e.g., Bažant and Cedolin, 1991, for which the constraint of constant load is more physically appealing to calculate, in conjunction
with an appropriate potential energy function, the critical buckling load. This type of constraint is discussed in the context of Gibbs energy
in Section 5.
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3. Helmholtz free energy

The Helmholtz free energy of a stable equilibrium state is at minimum with respect to any small geometrically

admissible virtual displacement field giving no net virtual work from external tractions, and any virtual local
entropy variation applied at constant temperature.

This means that the Helmholtz free energy is at minimum in a stable equilibrium state with respect to any
isothermal small virtual variation of equilibrium state that is associated with zero net work from external load-
ing. The total Helmholtz free energy of the body is

F ¼
Z

V 0

uðs; F iJ ÞdV 0 � T
Z

V 0

sdV 0: ð11Þ

The change of F is

DF ¼
Z

V 0

Duðs; F iJ ÞdV 0 � T
Z

V 0

dsdV 0; ð12Þ

for any small variations ds and dFiJ, subjected to the constraints
R

A0
t

t0
i dxi dA0 ¼ 0 and dT = 0. In view of (4)

and the energy Eq. (5), there follows

DF ¼
X1
k¼2

1

k!

Z
V 0

dkudV 0 ¼ 1

2

Z
V 0

d2udV 0 þ higher order terms: ð13Þ

Thus, if d2u > 0 at all points of the equilibrium state, it follows that DF > 0 in (13).
The specific Helmholtz free energy is a thermodynamic potential with T and FiJ as its natural independent

variables, so that

F ¼
Z

V 0

f ðT ; F iJ ÞdV 0; DF ¼
Z

V 0

Df ðT ; F iJ ÞdV 0: ð14Þ

Under isothermal variation of deformation, the change of the free energy density is

Df ¼ of
oF iJ

dF iJ þ
1

2

o
2f

oF iJoF kL
dF iJdF kL þ � � � : ð15Þ

Since PJi = of/oFiJ, and in view of the constraint
R

A0
t

t0
i dxi dA0 ¼ 0, there follows

DF ¼ 1

2

Z
V 0

o2f
oF iJoF kL

dF iJdF kL dV 0 þ � � � : ð16Þ

This must be positive for any isothermal small virtual variations dFiJ, consistent with the specified boundary
constraints. A sufficient condition for DF > 0 in (16) is that f = f(T,FiJ) is locally convex function of FiJ at all
points of the body in the considered equilibrium state. In particular, this is assured if the Hessian matrix of the
elastic strain energy density (free energy density under isothermal conditions) is positive-definite at all points
of the body in the considered equilibrium state,5

o2f
oF iJoF kL

dF iJdF kL > 0: ð17Þ

3.1. Relationships between the second-order variations of f and u

The internal and free energy densities are related by the Legendre transform

5 In finite strain elasticity, incremental uniqueness and stability are closely related. Hill (1957) was the first to show that strict convexity
of the strain-energy function with respect to deformation gradient everywhere in the deformation gradient space implies uniqueness. Such
convexity would be too restrictive, because global uniqueness of equilibrium in nonlinear elasticity is physically not expected. Thus, small
variations from the equilibrium state are considered, which amounts to conditions for incremental (infinitesimal) uniqueness and stability,
in a near neighborhood of the considered equilibrium state (Knops and Wilkes, 1973; Gurtin, 1982; Ogden, 1997).
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f ðT ; F iJ Þ ¼ uðs; F iJ Þ � Ts: ð18Þ

Consider a virtual variation of state (ds,dFiJ), which obeys the energy equation, and denote by dT the corre-
sponding temperature variation. Then,

f ðTþ dT ; F iJ þ dF iJ Þ ¼ uðsþ ds; F iJ þ dF iJ Þ � ðTþ dT Þðsþ dsÞ: ð19Þ

Upon the expansion in the Taylor series and the collection of the same-order terms, there follows

df ¼ du� T ds� sdT ¼ P JidF iJ � sdT ;

d2f ¼ d2u� 2dT ds; ð20Þ
dkf ¼ dku; k P 3:

Since

T ¼ ou
os

) dT ¼ o2u
os2

dsþ o2u
osoF iJ

dF iJ ; ð21Þ

s ¼ � of
oT

) ds ¼ � o2f

oT 2
dT� o2f

oToF iJ
dF iJ ; ð22Þ

the substitution into (20) yields the desired relationships between the second-order variations of f and u. These
are

o2f

oT 2
ðdT Þ2 þ 2

o2f
oToF iJ

dTdF iJ þ
o2f

oF iJoF kL
dF iJdF kL ¼ �

o2u
os2
ðdsÞ2 þ o2u

oF iJoF kL
dF iJdF kL; ð23Þ

o2u
os2
ðdsÞ2 þ 2

o2u
osoF iJ

dsdF iJ þ
o2u

oF iJoF kL
dF iJdF kL ¼ �

o2f

oT 2
ðdT Þ2 þ o2f

oF iJoF kL
dF iJdF kL: ð24Þ

Both of these imply that, for dFiJ = 0,

o2f

oT 2
ðdT Þ2 ¼ � o2u

os2
ðdsÞ2:

Thus, at the state where u is a convex function of entropy, f is a concave function of temperature, i.e.,6

o2u
os2

> 0 ) o2f

oT 2
< 0: ð25Þ

Furthermore, by considering isothermal variations of deformation, (24) confirms (17), whenever d2u, given by
the left-hand side of (24), is a positive-definite quadratic form. It is also noted that (23) implies that d2f itself is
a positive-definite quadratic form for any isentropic variation of deformation gradient and temperature, when-
ever the Hessian matrix of u with respect to the deformation gradient is positive definite.7

4. The enthalpy function

The enthalpy of a stable equilibrium configuration, under prescribed traction boundary conditions, is at min-

imum with respect to any small geometrically admissible virtual displacement field, applied at constant external
loading, and any virtual local entropy variation, subjected to the constraint of constant total entropy.

The total enthalpy of the body is

H ¼ U�
Z

V 0

P JiF iJ dV 0 ¼
Z

V 0

uðs; F iJ ÞdV 0 �
Z

V 0

b0
i xi dV 0 �

Z
A0

t0
i xi dA0; ð26Þ

6 It is commonly assumed that that entropy is a monotonically increasing function of temperature (e.g.; Callen, 1960), so that
os/oT = � o2f/oT2 > 0, in accord with (25).

7 The explicit representations of all four thermodynamic potentials of linear thermoelasticity, in terms of their natural independent
variables, are listed in Lubarda (2004) and Asaro and Lubarda (2006).
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because FiJ = xi,J and P Ji;J þ b0
i ¼ 0 by equilibrium equations in the presence of body forces b0

i (per unit initial
volume). In view of the loading constraints dt0

i ¼ 0 over A0 and db0
i ¼ 0 in V0 (dead loading), the change of

enthalpy is

DH ¼
Z

V 0

Duðs; F iJ ÞdV 0 �
Z

V 0

b0
i dxi dV 0 �

Z
A0

t0
i dxi dA0: ð27Þ

Since t0
i ¼ n0

J P Ji, and in view of equilibrium equations and the Gauss divergence theorem, the above reduces to

DH ¼
Z

V 0

½Duðs; F iJ Þ � P JidF iJ �dV 0: ð28Þ

By using (4), the energy Eq. (5), and the constraint
R

V 0 TdsdV 0 ¼ 0, with T = const., DH becomes

DH ¼
X1
k¼2

1

k!

Z
V 0

dkudV 0 ¼ 1

2

Z
V 0

d2udV 0 þ higher order terms: ð29Þ

Again, d2u > 0 at all points of the body implies that DH > 0 in (29).
The specific enthalpy is a thermodynamic potential with s and PJi as its natural independent variables, so

that

H ¼
Z

V 0

hðs; P JiÞdV 0; DH ¼
Z

V 0

Dhðs; P JiÞdV 0: ð30Þ

The change of the specific enthalpy under constant stress is

Dh ¼ oh
os

dsþ 1

2

o2h
os2
ðdsÞ2 þ � � � : ð31Þ

Since T = oh/os, and using the constraint of constant total entropy, there follows

DH ¼ 1

2

Z
V 0

o2h
os2
ðdsÞ2dV 0 þ � � � : ð32Þ

This must be positive for any variation ds at constant stress, which is assured if h is a convex function of
entropy at at each point of the body in the considered equilibrium state. A sufficient condition for this is
that

o
2h

os2
> 0: ð33Þ

4.1. Relationships between the second-order variations of h and u

The internal energy and enthalpy are related by the Legendre transform

hðs; P JiÞ ¼ uðs; F iJ Þ � P JiF iJ : ð34Þ

Consider an arbitrary virtual variation of state (ds,dFiJ), which obeys the energy equation, and denote by dPJi

the corresponding stress variation. Then,

hðsþ ds; F iJ þ dF iJ Þ ¼ uðsþ ds; F iJ þ dF iJ Þ � ðP Ji þ dP JiÞðF iJ þ dF iJ Þ: ð35Þ

Upon the Taylor expansion and the collection of the same-order terms, there follows

dh ¼ du� P JidF iJ � F iJdP Ji ¼ Tds� F iJdP Ji;

d2h ¼ d2u� 2dP JidF iJ ; ð36Þ
dkh ¼ dku; k P 3:
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Since

P Ji ¼
ou

oF iJ
) dP Ji ¼

o2u
oF iJos

dsþ o2u
oF iJoF kL

dF kL; ð37Þ

F iJ ¼ �
oh
oP Ji

) dF iJ ¼ �
o2h

oP Jios
ds� o2h

oP JioP Lk
dP Lk; ð38Þ

the substitution into (36) yields

o
2h

os2
ðdsÞ2 þ 2

o
2h

osoP Ji
dsdP Ji þ

o
2h

oP JioP Lk
dP JidP Lk ¼

o
2u

os2
ðdsÞ2 � o

2u
oF iJoF kL

dF iJdF kL; ð39Þ

o
2u

os2
ðdsÞ2 þ 2

o
2u

osoF iJ
dsdF iJ þ

o
2u

oF iJoF kL
dF iJdF kL ¼

o
2h

os2
ðdsÞ2 � o

2h
oP JioP Lk

dP JidP Lk: ð40Þ

Both of these imply that, for ds = 0,

o2h
oP JioP Lk

dP JidP Lk ¼ �
o2u

oF iJoF kL
dF iJdF kL:

Thus, at the states where the internal energy u is a convex function of the deformation gradient, the enthalpy h
is a concave function of the nominal stress, i.e.,

o
2u

oF iJoF kL
dF iJdF kL > 0 ) o

2h
oP JioP Lk

dP JidP Lk < 0: ð41Þ

4.2. Relationships between the second-order variations of h and f

The free energy and enthalpy are related by the Legendre transform

hðs; P JiÞ ¼ f ðT ; F iJ Þ þ Ts� P JiF iJ : ð42Þ
Consider an arbitrary virtual variation of state (ds,d FiJ), which obeys the energy equation. Denote by dT and
dPJi the corresponding temperature and stress variations. Then,

hðsþ ds; P Ji þ dP JiÞ ¼ f ðTþ dT ; F iJ þ dF iJ Þ þ ðTþ dT Þðsþ dsÞ � ðP Ji þ dP JiÞðF iJ þ dF iJ Þ; ð43Þ
and

dh ¼ dfþ T dsþ sdT� P JidF iJ � F iJdP Ji ¼ Tds� F iJdP Ji;

d2h ¼ d2fþ 2dT ds� 2dP JidF iJ ; ð44Þ
dkh ¼ dkf ; k P 3:

Having in mind that

P Ji ¼
of

oF iJ
) dP Ji ¼

o
2f

oF iJoT
dTþ o

2f
oF iJoF kL

dF kL; ð45Þ

T ¼ oh
os

) dT ¼ o2h
os2

dsþ o2h
osoP Ji

dP Ji; ð46Þ

and by using (22) and (38), the substitution into (44) yields a simple relationship between the second-order
variations of the enthalpy and the Helmholtz free energy,

d2h ¼ �d2f : ð47Þ
In the expanded form, this is

o
2h

os2
ðdsÞ2 þ 2

o
2h

osoP Ji
dsdP Ji þ

o
2h

oP JioP Lk
dP JidP Lk ¼ �

o
2f

oT 2
ðdTÞ2 þ 2

o
2f

oToF iJ
dTdF iJ þ

o
2f

oF iJoF kL
dF iJdF kL

� �

ð48Þ
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Both of these are indefinite quadratic forms; at the states where h is a convex function of entropy and concave
function of stress, f is a concave function of temperature and convex function of deformation gradient.

5. Gibbs energy

The Gibbs energy of a stable equilibrium configuration is at minimum with respect to any small geometrically

admissible virtual displacement and entropy fields, applied at constant external loading and constant temperature.

The total Gibbs energy of the deformed body is

G ¼
Z

V 0

uðs; F iJ ÞdV 0 �
Z

V 0

TsdV 0 �
Z

V 0

b0
i xi dV 0 �

Z
A0

t0
i xi dA0: ð49Þ

Upon applying the variations dxi and ds, at constant external load and constant temperature (dt0
i ¼ 0 over A0,

db0
i ¼ 0 in V0, and dT = 0), there follows

DG ¼
Z

V 0

½Duðs; F iJ Þ � Tds� P JidF iJ �dV 0: ð50Þ

In view of (4), and the energy Eq. (5), DG becomes

DG ¼ 1

2

Z
V 0

d2udV 0 þ higher order terms: ð51Þ

An obviously sufficient condition for this to be positive is that d2u > 0 at every point of the body at the con-
sidered equilibrium state.

Alternatively, the total Gibbs energy of the deformed body is

G ¼
Z

V 0

f ðT ; F iJ ÞdV 0 �
Z

V 0

b0
i xi dV 0 �

Z
A0

t0
i xi dA0; ð52Þ

with its change, at constant loading and temperature,

DG ¼
Z

V 0

Df ðT ; F iJ ÞdV 0 �
Z

V 0

b0
i dxi dV 0 �

Z
A0

t0
i dxi dA0; ð53Þ

i.e.,

DG ¼
Z

V 0

½Df ðT ; F iJ Þ � P JidF iJ �dV 0: ð54Þ

Since df = PJidFiJ under isothermal condition, and by using (15), DG becomes

DG ¼ 1

2

Z
V 0

o2f
oF iJoF kL

dF iJdF kL dV 0 þ higher order terms: ð55Þ

A sufficient condition for this to be positive is that the Hessian matrix of the elastic strain energy is positive
definite at all points of the body at the considered equilibrium state.

5.1. Potential energy and complementary energy

For the boundary value problems with mixed traction/displacement boundary conditions, the potential
energy of the body at a given temperature is defined by

P ¼
Z

V 0

f ðT ; F iJ ÞdV 0 �
Z

V 0

b0
i xi dV 0 �

Z
A0

t

t0
i xi dA0; ð56Þ

where A0
t is the portion of A0 where the tractions are prescribed. The potential energy P is at local min-

imum in a considered stable equilibrium configuration, i.e, DP > 0 for any small variation dFiJ at constant
T. If DP = 0 for at least one variation, while DP > 0 for other variations, the equilibrium state may not be
unique (it is not if the geometrically admissible variation of state is also statically admissible; in this case
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the equilibrium state is a state of neutral incremental stability). If DP < 0 for at least one variation, while
DP > 0 for all other geometrically admissible variations, the equilibrium state is unique but unstable (Hill,
1957; Ogden, 1997).

The change of potential energy, at constant temperature, associated with small geometrically admissible
variations dxi, is

DP ¼
Z

V 0

Df ðT ; F iJ ÞdV 0 �
Z

V 0

b0
i dxi dV 0 �

Z
A0

t0
i dxi dA0; ð57Þ

because dxi = 0 on A0
x ¼ A0 � A0

t . Thus, in view of the Gauss divergence theorem and the equilibrium equa-
tions, there follows

DP ¼ 1

2

Z
V 0

o2f
oF iJoF kL

dF iJdF kLdV 0 þ � � � : ð58Þ

Again, an obviously sufficient condition for DP > 0 is that the Hessian matrix of f with respect to the defor-
mation gradient is positive definite at every point of the stressed body.

The complementary energy is defined as

P� ¼ �
Z

V 0

gðT ; P JiÞdV 0 �
Z

A0
x

t0
i xi dA0; ð59Þ

where A0
x is the portion of A0 where the displacements are prescribed. Evidently, P + P* = 0.8 The change of

the complementary energy, associated with small statically admissible variations dt0
i ¼ n0

JdP Ji over A0
x , at con-

stant temperature, is

DP� ¼ �
Z

V 0

DgðT ; P JiÞdV 0 �
Z

A0

dt0
i xi dA0; ð60Þ

because dt0
i ¼ 0 on A0

t . Thus, since db0
i ¼ 0 in V0 for the prescribed dead body forces, we have d PJi,J = 0, and

since FiJ = � og/oPJi, there follows

DP� ¼ � 1

2

Z
V 0

o
2g

oP JioP Lk
dP JidP LkdV 0 þ � � � : ð61Þ

A sufficient condition for DP* > 0 is that the Hessian matrix of g with respect to the nominal stress is negative
definite at every point of the stressed body in the considered equilibrium configuration.

5.2. Relationships between the second-order variations of g and u

The Gibbs energy and internal energy densities are related by the Legendre transform

gðT ; P JiÞ ¼ uðs; F iJ Þ � Ts� P JiF iJ : ð62Þ

Consider an arbitrary virtual variation of state (ds,dFiJ), in compliance with the energy equation, and denote
by dT and dPJi the corresponding temperature and stress variations. Then,

gðTþ dT ; P Ji þ dP JiÞ ¼ uðsþ ds; F iJ þ dF iJ Þ � ðTþ dT Þðsþ dsÞ � ðP Ji þ dP JiÞðF iJ þ dF iJ Þ; ð63Þ

and

dg ¼ du� Tds� sdT� P JidF iJ � F iJdP Ji ¼ �sdT� F iJdP Ji;

d2g ¼ d2u� 2dTds� 2dP JidF iJ ; ð64Þ
dkg ¼ dku; k P 3:

8 If A0
x ¼ 0 (pure traction boundary conditions), then P = G and P* = � G.
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Recalling that

F iJ ¼ �
og
oP Ji

) dF iJ ¼ �
o

2g
oP JioT

dT� o
2g

oP JioP Lk
dP Lk; ð65Þ

s ¼ � og
oT

) ds ¼ � o2g

oT 2
dT� o2g

oToP Ji
dP Ji; ð66Þ

the substitution into (64) yields

d2g ¼ �d2u; ð67Þ
which, in the expanded form, reads

o2g

oT 2
ðdTÞ2 þ 2

o2g
oToP Ji

dT dP Ji þ
o2g

oP JioP Lk
dP JidP Lk ¼ �

o2u
os2
ðdsÞ2 þ 2

o2u
osoF iJ

dsdF iJ þ
o2u

oF iJoF kL
dF iJdF kL

� �

ð68Þ
Thus, if d2u is a positive-definite quadratic form in ds and dFiJ, d2g is a negative-definite quadratic form in dT

and dPJi. At the states where the internal energy u is a convex function of the entropy and deformation gra-
dient, the Gibbs energy g is a concave function of the temperature and nominal stress.

5.3. Relationships between the second-order variations of g and f

The Gibbs energy and the Helmholtz free energy are related by the Legendre transform

gðT ; P JiÞ ¼ f ðT ; F iJ Þ � P JiF iJ : ð69Þ
Consider an arbitrary virtual variation of state (dT,d FiJ), and denote bydPJi the corresponding stress variation. Then,

gðTþ dT ; P Ji þ dP JiÞ ¼ f ðTþ dT ; F iJ þ dF iJ Þ � ðP Ji þ dP JiÞðF iJ þ dF iJ Þ; ð70Þ
and

dg ¼ df� P JidF iJ � F iJdP Ji ¼ �sdT� F iJdP Ji;

d2g ¼ d2f� 2dP JidF iJ ; ð71Þ
dkg ¼ dkf ; k P 3:

The substitution of (45) and (65) into (71) yields

o
2g

oT 2
ðdT Þ2 þ 2

o
2g

oT oP Ji
dTdP Ji þ

o
2g

oP JioP Lk
dP JidP Lk ¼

o
2f

oT 2
ðdT Þ2 � o

2f
oF iJoF kL

dF iJdF kL ð72Þ

o
2f

oT 2
ðdT Þ2 þ 2

o
2f

oT oF iJ
dTdF iJ þ

o
2f

oF iJoF kL
dF iJdF kL ¼

o
2g

oT 2
ðdT Þ2 � o

2g
oP JioP Lk

dP JidP Lk ð73Þ

Both of these imply that, for dT = 0,

o2g
oP JioP Lk

dP JidP Lk ¼ �
o2f

oF iJoF kL
dF iJdF kL:

Thus, if f is a convex function of the deformation gradient, g is a concave function of the nominal stress, and
vice versa, i.e.,

o2f
oF iJoF kL

dF iJdF kL > 0 () o2g
oP JioP Lk

dP JidP Lk < 0: ð74Þ

5.4. Relationships between the second-order variations of g and h

The Gibbs energy and enthalpy are related by the Legendre transform

gðT ; P JiÞ ¼ hðs; P JiÞ � Ts: ð75Þ
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Consider a virtual variation of state (dT,dPJi), and denote by ds be the corresponding entropy variation. Then,

gðTþ dT ; P Ji þ dP JiÞ ¼ hðsþ ds; P Ji þ dP JiÞ � ðTþ dT Þðsþ dsÞ; ð76Þ

and

dg ¼ dh� Tds� sdT ¼ �F iJdP Ji � sdT ;

d2g ¼ d2h� 2dTds; ð77Þ
dkg ¼ dkh; k P 3:

In view of (46) and (66), (77) gives

o2g

oT 2
ðdT Þ2 þ 2

o2g
oToP Ji

dTdP Ji þ
o2g

oP JioP Lk
dP JidP Lk ¼ �

o2h
os2
ðdsÞ2 þ o2h

oP JioP Lk
dP JidP Lk ð78Þ

o
2h

os2
ðdsÞ2 þ 2

o
2h

osoP Ji
dsdP Ji þ

o
2h

oP JioP Lk
dP JidP Lk ¼ �

o
2g

oT 2
ðdT Þ2 þ o

2g
oP JioP Lk

dP JidP Lk ð79Þ

Both of these imply that, for dPJi = 0,

o
2g

oT 2
ðdT Þ2 ¼ � o

2h
os2
ðdsÞ2:

Thus, the concavity of g with respect to the temperature implies the convexity of h with respect to the entropy,
and vice versa, i.e.,

o2g

oT 2
< 0 () o2h

os2
> 0: ð80Þ

6. Applications

The established relationships between the second-order variations of thermodynamic potentials are applied
in this section to derive the connections between the specific heats at constant deformation and stress, and
between the isentropic and isothermal elastic moduli and compliances. The derivation is then compared with
the classical thermodynamic derivation, based on the formal change of independent variables and the corre-
sponding chain-rule partial differentiation.

The instantaneous elastic moduli under isothermal and isentropic conditions are defined by

KT
JiLk ¼

oP Ji

oF kL

� �
T

¼ o2f
oF iJoF kL

� �
T

; ð81Þ

KS
JiLk ¼

oP Ji

oF kL

� �
s

¼ o
2u

oF iJoF kL

� �
s

: ð82Þ

Their inverse tensors are the instantaneous elastic compliances,

MT
iJkL ¼

oF iJ

oP Lk

� �
T

¼ � o2g
oP JioP Lk

� �
T

; ð83Þ

MS
iJkL ¼

oF iJ

oP Lk

� �
s

¼ � o2h
oP JioP Lk

� �
s

: ð84Þ

The second-order tensors of latent heats are defined by

lF
Ji ¼ T

os
oF iJ

� �
T

¼ �T
oP Ji

oT

� �
F

¼ �T
o

2f
oF iJoT

; ð85Þ

lP
iJ ¼ T

os
oP Ji

� �
T

¼ T
oF iJ

oT

� �
P

¼ �T
o

2g
oP JioT

; ð86Þ
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with the connections

lF
Ji ¼ KT

JiLklP
kL; lP

iJ ¼ MT
iJkLlF

Lk: ð87Þ

The two scalar specific heats, at constant deformation and stress, are

cF ¼ T
os
oT

� �
F

¼ �T
o

2f

oT 2

� �
F

; ð88Þ

cP ¼ T
os
oT

� �
P

¼ �T
o2g

oT 2

� �
P

: ð89Þ

They are defined such that (e.g.; Fung, 1965; Lubarda, 2002)

T ds ¼ lF
Ji dF iJ þ cF dT ¼ lP

iJ dP Ji þ cP dT ; ð90Þ

and

dP Ji ¼ KT
JiLk dF kL �

1

T
lF

Ji dT ¼ KS
JiLk dF kL �

1

cF
lF

Ji ds; ð91Þ

dF iJ ¼ MT
iJkL dP Lk þ

1

T
lP

iJ dT ¼ MS
iJkL dP Lk þ

1

cP
lP

iJ ds: ð92Þ

Finally, the second-order tensor of the coefficients of thermal expansion is

aiJ ¼
oF iJ

oT

� �
P

; lP
iJ ¼ TaiJ : ð93Þ

With these preliminaries, the concavity of the Helmholtz free energy f and the Gibbs energy g with respect to
the temperature implies that the specific heats at constant deformation and stress are both positive, i.e.,

o
2f

oT 2

� �
F

< 0 ) cF > 0; ð94Þ

o
2g

oT 2

� �
P

< 0 ) cP > 0: ð95Þ

Furthermore, by dividing (72) with (dT)2, keeping FiJ = const., gives

o2g

oT 2

� �
P

þ 2
o2g

oToP Ji

oP Ji

oT

� �
F

þ o2g
oP JioP Lk

oP Ji

oT

� �
F

oP Lk

oT

� �
F

¼ o2f

oT 2

� �
F

: ð96Þ

Upon the substitution of (85)–(89), this yields the relationship between the specific heats,

cP � cF ¼
1

T
MT

iJkLlF
Jil

F
Lk ¼

1

T
lP

iJ lF
Ji ¼ aiJ lF

Ji: ð97Þ

Next, by dividing (23) with dPNmdPQp, keeping T = const., we obtain

o2f
oF iJoF kL

� �
T

oF iJ

oP Nm

� �
T

oF kL

oP Qp

� �
T

¼ o2u
oF iJoF kL

� �
s

oF iJ

oP Nm

� �
T

oF kL

oP Qp

� �
T

� o2u
os2

� �
F

os
oP Nm

� �
T

os
oP Qp

� �
T

: ð98Þ

Recalling that

T ¼ ou
os

� �
F

) o2u
os2

� �
F

¼ oT
os

� �
F

¼ T
cF
; ð99Þ

and in view of (81)–(83) and (86), Eq. (98) delivers the relationship between the isentropic and isothermal elas-
tic moduli,

KS
JiLk ¼ KT

JiLk þ
1

TcF
lF

Jil
F
Lk: ð100Þ
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Similarly, by dividing (78) with dFmNdFpQ, keeping T = const., gives

o
2g

oP JioP Lk

� �
T

oP Ji

oF mN

� �
T

oP Lk

oF pQ

� �
T

¼ o
2h

oP JioP Lk

� �
s

oP Ji

oF mN

� �
T

oP Lk

oF pQ

� �
T

� o
2h

os2

� �
F

os
oF mN

� �
T

os
oF pQ

� �
T

: ð101Þ

Since

T ¼ oh
os

� �
P

) o
2h

os2

� �
P

¼ oT
os

� �
P

¼ T
cP
; ð102Þ

and in view of (81)–(85), Eq. (101) yields

MS
iJkL ¼ MT

iJkL �
1

TcP
lP

iJ lP
kL; ð103Þ

which is a desired relationship between the isentropic and isothermal elastic compliances. Having regard to
(97), we finally note that the multiplication of (100) by cF lP

kL, and (103) by cP lF
Ji gives

cF KS
JiLklP

kL ¼ cP lF
Ji; cP MS

iJkLlF
Lk ¼ cF lP

iJ : ð104Þ

Thus, in view of the connections (87), lF is an eigenmatrix of KS Æ Æ MT, and lP is an eigenmatrix of MT Æ Æ KS,
both corresponding to the eigenvalue cP/cF (Hill, 1981). The trace product Æ Æ is defined such that the (JikL)
component of the fourth-order tensor KS Æ Æ MT is KS

JiNmMT
mNkL.

6.1. The classical derivation

The relationship between the specific heats (97) can be deduced independently of (96), by direct transition
from

s ¼ s½F iJ ðP Lk; T Þ; T � ) os
oT

� �
P

¼ os
oT

� �
F

þ os
oF iJ

� �
T

oF iJ

oT

� �
P

; ð105Þ

and the definition of the specific and latent heats, and the coefficients of thermal expansion (e.g.; Lubarda,
2002).

The relationships (100) and (103) can also be derived directly. For example, from PJi = PJi(FkL,T), there
follows

oP Ji

oF kL

� �
s

¼ oP Ji

oF kL

� �
T

þ oP Ji

oT

� �
F

oT
oF kL

� �
s

: ð106Þ

Since

oT
oF kL

� �
s

¼ �
os

oF kL

� �
T

os
oT

� 	
F

¼ � lF
Lk

cF
; ð107Þ

and in view of (81) and (82), Eq. (106) reproduces (100).
Similarly, from FiJ = FiJ(PLk,T), there follows

oF iJ

oP Lk

� �
s

¼ oF iJ

oP Lk

� �
T

þ oF iJ

oT

� �
P

oT
oP Lk

� �
s

: ð108Þ

Since

oT
oP Lk

� �
s

¼ �
os

oP Lk

� �
T

os
oT

� 	
P

¼ � lP
kL

cP
; ð109Þ

and in view of (83) and (84), Eq. (108) reproduces (103).
Yet another derivation of the relationships between isentropic and isothermal elastic moduli and compli-

ances is possible by noting that an isentropic increment of temperature, from (90), is
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ds ¼ 0 ) dT ¼ � lF
Ji

cF
dF iJ ¼ �

lP
iJ

cP
dP Ji: ð110Þ

When this is substituted into (91) and (92), there follows

dP Ji ¼ KT
JiLk þ

1

cF T
lF

Jil
F
Lk

� �
dF kL; dF iJ ¼ MT

iJkL �
1

cP T
lP

iJ lP
kL

� �
dP Lk; ð111Þ

which establishes KS
JiLk and MS

iJkL as in (100) and (103). Further discussion of the relationships between the isen-
tropic and isothermal elastic moduli and compliances can be found in McLellan (1980); Hill (1981); Holzapfel
(2000), and Scott (2001).
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Appendix. Entropy maximization

A well-known alternative to the constrained internal energy minimization, explored in Section 2, is the con-
strained entropy maximization. In the context of nonlinear finite strain elasticity, we state:

The total entropy of a stable thermodynamically equilibrated state is at maximum with respect to any geomet-

rically admissible virtual displacement field giving no net virtual work from external traction, and any virtual local
internal energy variation subjected to the constraint of constant total internal energy in the body.

If S is at maximum in the considered equilibrium configuration, then9

DS ¼
Z

V 0

Dsðu; F iJ ÞdV 0 < 0; S ¼
Z

V 0

sðu; F iJ ÞdV 0; ðA:1Þ

for any small variations du and dFiJ, subjected to the constraintsZ
A0

t0
i dxi dA0 ¼ 0;

Z
V 0

dudV 0 ¼ 0: ðA:2Þ

The change of the specific entropy due to variations du and dFiJ is

Ds ¼
X1
k¼1

1

k!
dks; dks ¼ du

o

ou
þ dF iJ

o

oF iJ

� �k

s: ðA:3Þ

The first-order variation of s is

ds ¼ 1

T
du� 1

T
P JidF iJ ; ðA:4Þ

where 1/T = os/ou, and PJi = � Tos/o FiJ. The second-order variation of s is

d2s ¼ o2s
ou2
ðduÞ2 þ 2

o2s
ouoF iJ

dudF iJ þ
o2s

oF iJoF kL
dF iJ dF kL: ðA:5Þ

SinceZ
V 0

1

T
dudV 0 ¼ 1

T

Z
V 0

dudV 0 ¼ 0; ðA:6Þ

and

9 We assumed that internal energy u is a strictly increasing function of entropy s; thus, the caloric equation of state u = u(s,FiJ) can be
inverted uniquely for s = s(u,FiJ), and s is a strictly increasing function of u for any fixed FiJ.
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Z
V 0

1

T
P JidF iJ dV 0 ¼ 1

T

Z
V 0

P Jidxi;J dV 0 ¼ 1

T

Z
A0

t0
i dxi dA0 ¼ 0; ðA:7Þ

by the constraint conditions (A.2), from (A.1) it follows that

DS ¼
X1
k¼2

1

k!

Z
V 0

dksdV 0 ¼ 1

2

Z
V 0

d2sdV 0 þ higher order terms < 0: ðA:8Þ

This must hold for any admissible virtual variations du and dFiJ, as defined above, which is assured by the
requirement that s = s(u,FiJ) is a concave function of its arguments at all points of the body at the considered
equilibrium configuration. A sufficient condition for this is that the Hessian matrix of s is negative-definite at
those states of (u,FiJ), i.e.,

o2s
ou2
ðduÞ2 þ 2

o2s
ouoF iJ

dudF iJ þ
o2s

oF iJoF kL
dF iJdF kL < 0: ðA:9Þ
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