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Abstract

Simple derivation of the dual conservation integrals in small strain elasticity is presented, without the aid of Noether’s
theorem on invariant variational principles. The derived integrals are related to the release rates of the potential and com-
plementary potential energy associated with the defect motion. The analysis corrects the errors in earlier derivation of the
relationship between the dual integrals and the release rates of the complementary potential energy. Selected examples in
plane and anti-plane strain illustrate the calculation of dual integrals and their application. It is shown that the evaluation
of dual integrals is of similar complexity to that of classical integrals, so that either can be used to determine the stress
intensity factors or the forces between defects, without solving the corresponding boundary value problems. An advantage
of combining the two calculations is discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the wake of Eshelby’s (1951, 1956) work on the energy momentum tensor and configurational forces on
moving defects, a significant amount of research has been devoted to the analysis of conservation integrals in
infinitesimal and finite strain elasticity. The derived conservation integrals are expressed in terms of spatial
gradients of displacements, and are related to the release rates of the potential energy associated with defect
motion (Knowles and Sternberg, 1972; Budiansky and Rice, 1973). The dual or complementary conservation
integrals are related to the release rates of the complementary potential energy, and are expressed in terms of
spatial gradients of stresses. Bui (1973, 1974) introduced a dual Ĵ integral, and compared it with the original
Rice’s (1968) J integral of fracture mechanics. Shortly after Bui, and in the context of elastodynamics, Carls-
son (1974) also studied the structure and physical significance of dual conservation integrals. Sun (1985) and
Li (1988) derived the expressions for the dual Ĵ k; L̂k and M̂ integrals, but they related them to the release rates
of the complementary potential energy in an incorrect way. The reason for this was that the original analysis
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of Budiansky and Rice (1973), based on the potential energy, required a more careful extension in the case of
the complementary energy considerations, with the appropriate incorporation of the rates of stress and the
change of the surface orientation. This is discussed in Section 5 of this paper. In Sections 2–4 we construct
the dual conservation integrals (in the absence of body forces) by exploring the divergence free property of
the stress and energy momentum tensors, without the aid of Noether’s theorem on invariant variational prin-
ciples. The plain strain and the anti-plane strain versions of the dual conservation integrals are given in
Appendix A. Selected examples illustrate the calculation of the dual integrals and their applications. In many
cases the evaluation of dual integrals is of similar complexity to that of classical integrals, and thus either can
be used in specific problems to, for example, determine the stress intensity factors or the forces between
defects, without solving the corresponding boundary value problems. An advantage of combining the two cal-
culations is discussed.

A brief outline of the basic concepts of infinitesimal elasticity used in the body of this paper is a follows.
Small deformations of elastic material are geometrically described by the displacement vector whose rectan-
gular components are ui. The surface forces are in equilibrium with the symmetric Cauchy stress rij, such that
Ti = njrji, where nj are the components of the unit vector orthogonal to the surface element under consider-
ation. In the absence of body forces, the integral conditions of equilibrium areZ

S
T i dS ¼ 0;

Z
S

eijkxjT k dS ¼ 0; ð1Þ

where eijk are the components of the permutation tensor. The corresponding differential equations of equilib-
rium are

rji;j ¼ 0; rij ¼ rji: ð2Þ

The elastic strain energy is W = W(�ij), with the complementary strain energy

UðrijÞ ¼ rij�ij � W ð�ijÞ; ð3Þ

where the small strain tensor �ij is the symmetric part of the displacement gradient

�ij ¼ 1
2
ðui;j þ uj;iÞ: ð4Þ

The stress–strain relations are

rij ¼
oW
o�ij

; �ij ¼
oU
orij

: ð5Þ

2. Dual J integrals

A simple derivation of the dual J integrals for small strain nonlinear elasticity is as follows. A spatial gra-
dient of the strain energy W = W(�ij) is

W ;k ¼
oW
o�ij

�ij;k ¼ rij�ij;k: ð6Þ

By using (4), this can be rewritten as

W ;jdjk � rjiui;jk ¼ 0; ð7Þ

which, in view of equilibrium conditions (2), reduces to

ðW djk � rjiui;kÞ;j ¼ 0: ð8Þ

This defines a divergence-free energy momentum tensor, or Eshelby stress,

P jk ¼ W djk � rjiui;k; P jk;j ¼ 0: ð9Þ

Thus the conservation law
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J k ¼
Z

S
P jknj dS ¼

Z
S
ðWnk � T juj;kÞdS ¼ 0 ð10Þ

for any closed surface S which does not enclose a singularity or a defect. This result is originally due to Eshel-
by (1951, 1956).

In a dual analysis, we consider a spatial gradient of the complementary strain energy U = U(rij), which is

U;k ¼
oU
orij

rij;k ¼ �ijrij;k: ð11Þ

In view of the symmetry of �ij, this becomes

U;jdjk � ui;jrji;k ¼ 0: ð12Þ

Having in mind the equilibrium conditions, (11) can be recast as

ðUdjk � uirji;kÞ;j ¼ 0; ð13Þ

which defines a divergence-free dual energy momentum tensor

P̂ jk ¼ Udjk � uirji;k; P̂ jk;j ¼ 0; ð14Þ

and a dual conservation law

Ĵ k ¼
Z

S
P̂ jknj dS ¼

Z
S
ðUnk � ujrij;kniÞdS ¼ 0 ð15Þ

for any closed surface S that does not embrace a singularity or a defect.
While Jk in (10) is expressed in terms of spatial gradients of displacement, Ĵk in (15) is expressed in terms of

the stress gradients. A dual Ĵk conservation integral is originally due to Bui (1973, 1974) (for planar elasticity)
and Carlsson (1974) (for three-dimensional elasticity). It is noted that

P jk þ P̂ jk ¼ ðW þ UÞdjk � ðrjiuiÞ;k;
P kk ¼ W ; P̂ kk ¼ 3U;

ð16Þ

the first of these being also noted by Li and Gupta (2006).
If the strain energy W is a homogeneous function of degree r in strain components (1 < r 6 2), the comple-

mentary strain energy U is a homogeneous function of degree s = r/(r � 1) in stress components (s P 2), and
U = rW/s. In this case it readily follows that

rJ k � sĴ k ¼
Z

S
ðsujrij;k � rrijuj;kÞni dS: ð17Þ

As shown in Section 5, if S encloses a defect then Ĵk = �Jk 5 0 and

J k ¼
Z

S

1

r
ujrij;k �

1

s
rijuj;k

� �
ni dS: ð18Þ

For linear elasticity r = s = 2, this reduces to Bui’s (1994) reciprocal relation. The application of this represen-
tation for Jk is discussed in Appendix A.

3. Dual M integrals

Let the strain energy W = W(�ij) be a homogeneous function of degree r in strain components, so that

W ¼ 1

r
rjk�jk: ð19Þ

The energy momentum tensor (9), being a divergence-free tensor, satisfies the equation

ðP jkxkÞ;j � P kk ¼ 0: ð20Þ

V.A. Lubarda, X. Markenscoff / International Journal of Solids and Structures 44 (2007) 4079–4091 4081
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In view of (19), we have

P kk ¼
3� r

r
rjkuk;j; ð21Þ

and the substitution into (20) gives

P jkxk �
3� r

r
rjkuk

� �
;j

¼ 0: ð22Þ

Upon the application of the Gauss divergence theorem, this yields the M conservation law

M ¼
Z

S
P jkxk �

3� r
r

rjkuk

� �
nj dS ¼ 0 ð23Þ

for any closed surface that does not embrace a singularity or a defect.
A dual energy momentum tensor (14) is also divergence-free tensor and thus it satisfies the equation

ðP̂ jkxkÞ;j � P̂ kk ¼ 0: ð24Þ

The complementary strain energy, corresponding to (19), is

U ¼ 1

s
rjk�jk; s ¼ r

r � 1
; ð25Þ

so that

P̂ kk ¼
3

s
ukrjk

� �
;j
: ð26Þ

The substitution into (24) gives

P̂ jkxk �
3

s
ukrjk

� �
;j

¼ 0: ð27Þ

Consequently, there is a dual M̂ conservation law

M̂ ¼
Z

S
P̂ jkxk �

3

s
ukrjk

� �
nj dS ¼ 0 ð28Þ

for any closed surface that does not embrace a singularity or a defect. The duality is such that M is expressed
in terms of spatial gradients of displacements, while M̂ is in terms of the stress gradients. By using a different
approach, M̂ integral was derived in this form by Sun (1985), and for linear elasticity (s = 2) by Carlsson
(1974).

4. Dual L integrals

For isotropic elasticity the principal directions of stress and strain coincide, so that rÆ� is a commutative
product and thus a symmetric tensor. Consequently,

ck ¼ 2ekijril�lj ¼ ekijðrilul;j þ rliuj;lÞ ¼ 0: ð29Þ

In view of (9), ck can be rewritten as

ck ¼ ekijðP ji þ rliuj;lÞ: ð30Þ

In the absence of body forces, the energy momentum and stress tensors are both divergence-free (Pli,l = 0,
rli,l = 0), and thus

ck ¼ dkl;l; dkl ¼ ekijðP lixj þ rliujÞ: ð31Þ

This establishes a conservation law
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Lk ¼ ekij

Z
S
ðP lixj þ rliujÞnl dS ¼ 0 ð32Þ

for any closed surface S that does not embrace a singularity or a defect. A derivation of (32), as well as (10)
and (23), based on Noether’s theorem on invariant variational principles was first given by Günther (1962),
and Knowles and Sternberg (1972). To derive a dual L̂ integral, introduce the components of a dual vector
ĉk, defined by ĉk + ck = 0, so that, from (29),

ĉk ¼ ekijðul;irjl þ ui;lrljÞ: ð33Þ

Incorporating a dual energy momentum tensor (14), ĉk can be rewritten as

ĉk ¼ ekijðP̂ ji þ ui;lrlj þ ul;irjl þ ulrjl;iÞ: ð34Þ

Since a dual energy momentum tensor and the stress tensor are divergence-free (P̂ li;l ¼ 0, rlj,l = 0), (34)
becomes

ĉk ¼ d̂kl;l; d̂kl ¼ ekijðP̂ lixj þ uirlj þ dilurrjrÞ: ð35Þ

Thus, there is a dual conservation law

L̂k ¼ ekij

Z
S
ðP̂ lixj þ uirlj þ dilurrjrÞnl dS ¼ 0 ð36Þ

for any closed surface that does not embrace a singularity or a defect. An equivalent form of this integral was
first obtained by Sun (1985).

5. Dual integrals and energy release rates

The physical interpretation of the dual conservation integrals follows from the consideration of the release
rates of the complementary potential energy, by extending the analysis of Budiansky and Rice (1973) on the
relationship between the conservation integrals and the release rates of the potential energy. The Budiansky
and Rice analysis is summarized is Section 5.1, while the release rates of the complementary potential energy
are considered in Section 5.2.

5.1. Release rates of potential energy

Consider a body of volume V loaded by surface tractions T i ¼ �T i over the portion ST of its external surface
S. The displacements ui ¼ �ui are prescribed over the remaining part Su. Suppose that within a body there is an
unloaded cavity (or crack) of the bounding surface S0. The potential energy of such body is

P ¼
Z

V
W dV �

Z
ST

�T iui dS: ð37Þ

Without changing the boundary conditions on S, the rate of change of the potential energy associated with
the spatial variation of the surface S0, described by its velocity field _u0

i , is

_P ¼
Z

V

_W dV �
Z

S0

W _u0
i ni dS �

Z
ST

�T i _ui dS; ð38Þ

where _ui is the associated velocity field within V(t) due to imposed velocity _u0
i . The second integral on the right-

hand side follows from the Reynolds transport theorem, where ni is the unit normal to S0 directed out of the
cavity (i.e., into the material). This choice for the positive direction of the unit normal to S0 is selected for the
later convenience; if the opposite choice is made only the sign in front of the second integral on the right-hand
side of (38) is changed. The positive direction of the unit normal to the external surface S is as usual, in the
direction of the outward normal to S. Assuming that _ui is a kinematically admissible field within V(t), we have

_W ¼ rij _�ij ¼ ðrij _ujÞ;i: ð39Þ

V.A. Lubarda, X. Markenscoff / International Journal of Solids and Structures 44 (2007) 4079–4091 4083
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Since S0 is unloaded and _uj ¼ 0 on Su, the application of the Gauss divergence theorem givesZ
V

_W dV ¼
Z

ST

�T j _uj dS; ð40Þ

and the substitution into (38) yields

_P ¼ �
Z

S0

W _u0
i ni dS: ð41Þ

The rate of energy release due to spatial variation of S0, specified by a prescribed velocity field _u0
i , is

f ¼ � _P. This represents the energetic or configurational force on the cavity (defect). Since Wni = Pjinj over
the unloaded S0, the rate of the strain energy is

f ¼ � _P ¼
Z

S0

P ji _u0
i nj dS: ð42Þ

If the cavity merely translates with a unit velocity in the k-direction, then _u0
i can be replaced by dik, and (42)

gives the rate of energy release per unit cavity translation in the k-direction,

fk ¼
Z

S0

P jknj dS ¼ J kðS0Þ: ð43Þ

Since the cavity is unloaded, this is equal to Jk evaluated over S0. By the conservation law Jk = 0 applied to the
surface S0 + S bounding a region between S0 and any closed surface S surrounding the cavity, the configura-
tional force is also equal to Jk evaluated over S, i.e., fk = Jk(S0) = Jk(S).

If the cavity expands uniformly such that _u0
i ¼ xi, then1

f ¼
Z

S0

P jixinj dS ¼ MðS0Þ: ð44Þ

By the conservation law M = 0 applied over S0 + S, the configurational force is also equal to M evaluated
over S, i.e., f = M(S0) = M(S).

If the cavity is given a unit angular velocity around the k-axis, then _u0
i in (42) can be replaced by �ekilxl, and

fk ¼ �ekil

Z
S0

P jixlnj dS ¼ �LkðS0Þ: ð45Þ

By the conservation law Lk = 0 applied over S0 + S, the configurational force is also equal to �Lk evaluated
over S, i.e., fk = �Lk(S0) = �Lk(S).

5.2. Release rates of complementary potential energy

The complementary potential energy is defined by

X ¼
Z

V
UdV �

Z
Su

�uiT i dS ð46Þ

such that P + X = 0. Indeed, since S0 is unloaded,

Pþ X ¼
Z

V
ðW þ UÞdV �

Z
S

T iui dS ¼ 0; ð47Þ

1 A transformation _u0
i ¼ xi in general includes a self-similar expansion around the centroid of the cavity and a translation, unless the

coordinate origin is placed at the centroid of the cavity’s interior, in which case it gives rise to a uniform expansion around the centroid
only. The dependence of the M integral on the coordinate origin has been effectively used in fracture mechanics to determine various stress
intensity factors, e.g., Eshelby (1975), Freund (1978), Rice (1985).

4084 V.A. Lubarda, X. Markenscoff / International Journal of Solids and Structures 44 (2007) 4079–4091
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which follows from W + U = rij�ij with the help of equilibrium conditions (2), geometric relationship (4), and
the Gauss divergence theorem. The rate of the complementary potential energy associated with spatial vari-
ation of the cavity surface due to its velocity field _u0

i is

_X ¼
Z

V

_UdV �
Z

S0

U _u0
i ni dS �

Z
Su

�ui
_T i dS; ð48Þ

where _T i is the induced loading rate on Su due to infinitesimal motion of S0. In a geometrically linear theory,
the change of S due to _u0

i is ignored. Assuming the stress rate field within V(t) is statically admissible ( _rji;j ¼ 0),
the rate of the complementary strain energy is

_U ¼ �ij _rij ¼ ðuj _rijÞ;i: ð49Þ

The stress rate _rij is the stress rate at fixed points in space, i.e., a local (nonconvected) stress rate. Thus,Z
V

_UdV ¼
Z

S
uj _rijni dS �

Z
S0

uj _rijni dS: ð50Þ

Since for a geometrically linear theory, _rijni ¼ _T j on S ( _T j being equal to zero on ST), (50) is rewritten asZ
V

_UdV ¼
Z

Su

�uj
_T j dS �

Z
S0

uj _rijni dS; ð51Þ

and the substitution into (48) gives

_X ¼ �
Z

S0

ðU _u0
i þ uj _rijÞni dS: ð52Þ

The surface of the cavity is unloaded, so that its traction Tj = nirij remains zero throughout the motion.
Thus,

dT j

dt
¼ dni

dt
rij þ ni

drij

dt
¼ 0; ð53Þ

where d/dt designates the material time derivative, following the material particle. Expressing the material
derivative of stress as the sum of its local ( _rij) and convected (rij;l _u0

l ) part, (53) gives

ni _rij ¼ �
dni

dt
rij � nirij;l _u0

l : ð54Þ

If the cavity translates or expands in a self-similar manner, then dni/dt = 0 and

ni _rij ¼ �nirij;l _u0
l : ð55Þ

This type of expression is well-known from fracture mechanics and the analysis of crack advance (Moran and
Shih, 1987). When (55) is introduced in (52), there follows

_X ¼
Z

S0

ð�Udil þ ujrij;lÞni _u0
l dS ¼ �

Z
S0

P̂ ilni _u0
l dS; ð56Þ

which is the correct expression for the rate of the complementary potential energy. The analysis based on the
rate of the complementary potential energy presented in Section 4 of Sun (1985) is incorrect, because rij,lni is
not equal to zero over S0, as there tacitly assumed; see his equation (4.3). A similar remark applies to the anal-
ysis in Section 6 of Li (1988).

Recalling from (47) that P + X = 0, the release rate of the complementary potential energy due to spatial
variation of S0 is

f ¼ � _P ¼ _X ¼ �
Z

S0

P̂ ilni _u0
l dS: ð57Þ

This is a dual expression to (42), in the case of translation or self-similar expansion of the cavity.

V.A. Lubarda, X. Markenscoff / International Journal of Solids and Structures 44 (2007) 4079–4091 4085
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If the cavity translates with a unit velocity in the k-direction, then _u0
l is replaced by dkl, and (57) gives the

release rate of the complementary potential energy per unit cavity translation in the k-direction,

fk ¼ �
Z

S0

P̂ ikni dS ¼ �Ĵ kðS0Þ: ð58Þ

By the conservation law Ĵk = 0 applied over S0 + S, the configurational force is also equal to �Ĵk evaluated
over S, i.e., fk = �Ĵk(S0) = Ĵk(S). Furthermore, by comparing with (43), we conclude that Ĵk = �Jk over S0, or
any other closed surface surrounding the cavity.

If the cavity expands uniformly such that _u0
l ¼ xl, the energy release rate is

f ¼ �
Z

S0

P̂ ilnixl dS ¼ �M̂ðS0Þ: ð59Þ

By the conservation law M̂ ¼ 0 applied over S0 + S, the configurational force is also equal to �M̂ evaluated
over S, i.e., f ¼ �M̂ðS0Þ ¼ M̂ðSÞ. Furthermore, by comparing with (44), we conclude that M̂ ¼ �M over any
closed surface surrounding the cavity.

If the cavity rotates within the material, then

dni

dt
¼ �njQji; ð60Þ

where Qji are the components of antisymmetric spin matrix, and _u0
i ¼ Qijxj. When this is introduced into (54),

there follows2

ni _rij ¼ ðdikrlj � rij;kxlÞniQkl; ð61Þ

and (52) gives

f ¼ _X ¼ �
Z

S0

ðP̂ ikxl þ dikujrljÞniQkl dS: ð62Þ

If the spin is of unit magnitude and about the k-axis, then Qij = �eijk and from (62) the corresponding con-
figurational force is

fk ¼ eijk

Z
S0

ðP̂ lixj þ dliurrjrÞnl dS: ð63Þ

When this is compared with L̂kðS0Þ from (36), it follows that

fk ¼ L̂k; ð64Þ

where L̂k is evaluated over S0 or any other closed surface surrounding the cavity. By comparing with (45), we
identify the relationship L̂k ¼ �Lk, for any closed surface surrounding the traction-free cavity or crack.

6. Conclusion

We have presented in this paper a simple derivation of dual conservation integrals in small strain elasticity,
without using Noether’s theorem on invariant variational integrals. The dual integrals Ĵk, L̂k, and M̂ are relat-
ed to the release rates of complementary potential energy by extending the Budiansky and Rice derivation of
the relationship between the integrals Jk, Lk, and M and the release rates of potential energy. This required an
adequate incorporation of the rates of stress and the change of the surface orientation, which was not properly
done in earlier published work. Plane strain and anti-plane strain versions of dual integrals are also derived
and used to solve selected examples. They illustrate that the evaluation of dual integrals is of similar complex-

2 The expression for the rate of stress used to derive the L̂k integral by Carlsson (1974) does not include the first term between the
brackets of (61). Consequently, his expression (8) differs from our expressions (36) or (62). In fact, Carlsson’s integral (8) is not a
conservation integral.
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ity to that of classical integrals, and thus either can be used to determine the stress intensity factors or the
forces between defects, without solving the corresponding boundary value problems. An advantage of com-
bining the two calculations is also discussed.
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Appendix A. Dual conservation integrals in 2D elasticity

A.1. Dual conservation integrals for plane strain

In the case of plane strain, the energy momentum tensor and its dual are

P ab ¼ W dab � racuc;b; P 33 ¼ W ;

P̂ ab ¼ Udab � ucrac;b; P̂ 33 ¼ U;

where the Greek subscripts range from 1 to 2. The dual J integrals are

Jb ¼
Z

C
P abna dC; Ĵb ¼

Z
C

P̂ abna dC:

If a closed contour C does not surround a defect, the above integrals vanish. The dual M integrals are

M ¼
Z

C
P abxb �

2� r
r

rabub

� �
na dC;

M̂ ¼
Z

C
P̂ abxb �

2

s
ubrab

� �
na dC;

while the dual L integrals take the form

L3 ¼ eab3

Z
C
ðP caxb þ rcaubÞnc dC;

L̂3 ¼ eab3

Z
C
ðP̂ caxb þ uarcb þ dacudrbdÞnc dC:

Example 1. Dual M integrals around an edge dislocation

Consider an edge dislocation with the Burgers vector bx in an infinite linearly elastic and isotropic material.
For a circular contour surrounding the dislocation, it readily follows that

M ¼ r2

Z 2p

0

W � rrr
our

or
� rrh

ouh

or

� �
dh ¼ r2

Z 2p

0

W dh;

M̂ ¼ r2

Z 2p

0

U� ur
orrr

or
þ 1

r
rrr

� �
� uh

orrh

or
þ 1

r
rrh

� �� �
dh ¼ r2

Z 2p

0

Udh:

The simple expressions on the right-hand sides follow from the structure of the dislocation stress and displace-
ment fields (e.g., Hirth and Lothe, 1982), which gives3

3 Thus, in this case the calculation of M̂ involves less integration than the calculation of M integral.
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Z 2p

0

rrr
our

or
þ rrh

ouh

or

� �
dh ¼ 0;

and

orrr

or
þ 1

r
rrr ¼ 0;

orrh

or
þ 1

r
rrh ¼ 0:

Since for an edge dislocation in a linearly elastic isotropic material,

W ¼ U ¼ 1

2l
ð1� 2mÞr2

rr þ r2
rh

� 	
¼ lb2

x

8p2ð1� mÞ2
1

r2
ð1� 2m sin2 hÞ;

it readily follows that

M ¼ M̂ ¼ lb2
x

4pð1� mÞ :

The so-calculated value of M or M̂ can, for example, be conveniently used to determine the force on the dis-
location exerted by the nearby crack faces (e.g., Asaro and Lubarda, 2006). The dual J and L integrals around
the dislocation all vanish.

Example 2. Dual M integrals around the crack tip under remote loading

Along a circular path around the crack tip, we have

oub

oxa
xa ¼

1

2
ub;

because from the asymptotic crack fields it is known that ub are homogeneous functions of degree 1/2 in xa.
Since xana = r, we obtain

M ¼
Z

C
Wnaxa � T b

oub

oxa
xa

� �
dC ¼

Z 2p

0

Wr � 1

2
T bub

� �
r dh:

Recalling that Tb � r�1/2, ub � r1/2, W � r�1, and by taking the limit as r! 0, we obtain M = 0. Because
along the traction free crack faces naxa = 0 and Tb = 0, it follows that M = 0 around the crack tip regardless
of the value of r. Similarly, when evaluating a dual M̂ integral, we have

orac

oxb
xb ¼ �

1

2
rac;

because the stress components are homogeneous functions of degree �1/2 in xb. Thus,

M̂ ¼
Z

C
Uxa � ucrac;bxb � ubrab

� �
na dC ¼

Z 2p

0

Ur � 1

2
ubT b

� �
r dh ¼ 0:

Evaluation of dual M integrals for other geometries and loading configurations, such as those considered
by Freund (1978), and their implications for the calculation of the stress intensity factors or the forces between
defects can be done similarly. In this analysis, it may be useful to note that under the translation of the coor-
dinate system, the dual M integrals transform according to the following rule:

If the values of M and M̂ integrals, defined with the coordinate origin placed at the point O, are M0 and M̂0,
then the values of the M and M̂ integrals, defined with the coordinate origin at the point A, with coordinates xA

i

with respect to O, are

MA ¼ M0 � xA
i J i; M̂A ¼ M̂0 � xA

i Ĵ i:

Regarding the calculation of the dual Jx integrals around the crack tip, it readily follows that

J x ¼ �Ĵ x ¼
1� m2

E
ðK2

I þ K2
IIÞ;
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pywhere KI and KII are the mode I and II stress intensity factors. Since Jx and Ĵx vanish along the horizontal
segments bd and ac of the unloaded crack faces (Fig. 1), Jx and Ĵx are both path-independent around the crack
tip, i.e.,

J ab
x ¼ J cd

x ; Ĵ ab
x ¼ Ĵ cd

x :

In evaluating these integrals, the unit normal n is directed relative to the integration contours as shown in the
figure. The details of the calculation of the dual Jx integrals around the crack tip are given for the mode III
loading below.

A.2. Dual conservation integrals for anti-plane strain

In the case of anti-plane strain, the dual energy momentum tensors are

P ab ¼ W dab � ra3u3;b; P̂ ab ¼ Udab � u3ra3;b:

The corresponding dual integrals are given by

Jb ¼
Z

C
P abna dC; Ĵb ¼

Z
C

P̂ abna dC;

M ¼
Z

C
P abxb �

2� r
r

ra3u3

� �
na dC;

M̂ ¼
Z

C
P̂ abxb �

2

s
u3ra3

� �
na dC;

L3 ¼ eab3

Z
C

P caxbnc dC;

L̂3 ¼ eab3

Z
C
ðP̂ caxb þ dacu3rb3Þnc dC:

Example 3. Dual J integrals around the crack tip under mode III loading

The Jx integral around the circle with the center at the coordinate origin is

J x ¼
Z p

�p
Wnx � ðrzxnx þ rzynyÞuz;x

� 	
r dh:

By using the well-known asymptotic stress and displacement fields near the crack tip of a semi-infinite crack
under remote mode III loading,

rzx ¼ �
KIIIffiffiffiffiffiffiffi
2pr
p sin

h
2
; rzy ¼

KIIIffiffiffiffiffiffiffi
2pr
p cos

h
2
; uz ¼

2KIII

l

ffiffiffiffiffiffi
r

2p

r
sin

h
2
;

we obtain

Fig. 1. The dual Jx and Ĵx integrals are both path-independent around the crack tip, i.e, J ab
x ¼ Jcd

x and Ĵ ab
x ¼ Ĵ cd

x .
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W ¼ 1

2l
r2

zx þ r2
zy

� �
¼ K2

III

4plr
;

so that

J x ¼
K2

III

2l
:

A dual Ĵx integral is

Ĵ x ¼
Z p

�p
Unx � ðrzx;xnx þ rzy;xnyÞuz

� 	
r dh:

For linear elasticity U = W, and

Ĵ x ¼ �
K2

III

2l
:

Since the remote traction is assumed to be applied, the energies are P = �X = �total strain energy. Thus,
Jx = �oP /ol > 0, and Ĵx = �oX/ol < 0 (l being the crack length), because the total strain energy increases
with the crack extension at constant load.

Example 4. Dual J integrals around the crack tip of a rectangular strip

The upper side of the rectangular strip in Fig. 2 is given a uniform out-of-plane displacement w, while the
lower side is fixed. The Jx integral for the closed path abc. . .ha vanishes. Since both Jx and Ĵx vanish along the
unloaded horizontal crack faces ha and cb, we have the path-independent properties

J ab
x ¼ J hgfedc

x ; Ĵ ab
x ¼ Ĵ hgfedc

x :

The stresses along hg and dc and (infinitely remote from the crack tip) are zero, whereas ryz = lw/H along
infinitely remote fe. Since uz,x = 0 along the horizontal parts of the integration contours, we obtain

J ab
x ¼ J fe

x ¼
Z e

f
W dy; ðA:1Þ

Ĵ ab
x ¼ Ĵ fe

x þ Ĵ ed
x ¼

Z e

f
Udy �

Z d

e
wryz;xð�dxÞ: ðA:2Þ

Since W ¼ U ¼ r2
yz=2l ¼ lw2=2H 2 along the segment fe, while the line integral over ed is equal to

wryz(e) = lw2/H, the above gives

J ab
x ¼ �Ĵ ab

x ¼
lw2

2H
:

The non-vanishing displacements are prescribed in this problem, so that the energies are P = �X = Total
Strain Energy. Thus, J ab

x ¼ �oP=ol > 0, and Ĵ ab
x ¼ �oX=ol < 0, because the total strain energy decreases

as the crack extends at constant prescribed displacement.
The evaluation of the integral of the strain energy along the segment ef can be circumvented in the calcu-

lation of dual J integrals by using the following combination of two calculations. When (A.2) is subtracted
from (A.1), there follows

Fig. 2. An infinitely long strip of thickness H with a semi-infinite crack. The lower side of the strip is fixed and the upper is given a uniform
out-of-plane displacement w.
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J ab
x � Ĵ ab

x ¼ �w
Z d

e
ryz;x dx ¼ wryzðeÞ ¼

lw2

H
:

Since Ĵx = �Jx, the above gives J ab
x ¼ lw2=2H . This result can also be obtained directly from the reciprocal

relation (18), with r = s = 2. Indeed,

J x ¼
1

2

Z
C
½ðuzrxz;x � rxzuz;xÞnx þ ðuzryz;x � ryzuz;xÞny �dC:

The only nonvanishing contribution to this integral along the path hgfedcb is from the segment ed, so that

J x ¼
1

2

Z d

e
wryz;xð�dxÞ ¼ 1

2
wryzðeÞ ¼

lw2

2H
:
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