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a b s t r a c t

Among all directions available for dislocation emission from the surface of a cylindrical cir-
cular void, the direction of the most likely emission is determined. It is shown that this
direction is different from the direction of the maximum shear stress at the surface of
the void due to the applied loading. The critical stress and the direction of the dislocation
emission are determined for circular nanovoids under remote uniaxial, pure shear, and
arbitrary biaxial loading. The analysis includes effects of the loading orientation relative
to the discrete slip plane orientation. It is shown that dislocations are emitted more readily
from larger nanovoids and that wider dislocations are emitted under lower applied stress
than narrow dislocations. Different mechanisms, under much lower stress, operate for
growth of the micron-size voids.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The void growth in ductile materials and the material failure preceded by the void coalescence have been studied over a
long period of time by using both analytical and computational means. The survey of the work based on continuum plasticity
can be found in Tvergaard (1990). The analysis of void growth and coalescence in single crystals by crystal plasticity models
was performed by Quinn et al. (1995), Ohashi (2005), Potirniche et al. (2006a), Liu et al. (2007), and others. The strain gra-
dient theories of polycrystalline and single crystal plasticity were also used to evaluate the effect of the void size on its
growth (e.g., Huang et al., 2004; Tvergaard and Niordson, 2004; Liu et al., 2005; Wen et al., 2005; Li and Steinmann,
2006; Borg et al., 2008). Another recently employed approach to the study of void growth in ductile materials is based on
discrete dislocation dynamics (Huang et al., 2007; Hussein et al., 2008; Segurado and Llorca, 2009, 2010). In these two-
dimensional simulations, it is assumed that the dislocation loops (the pairs of opposite-signed edge dislocations) are nucle-
ated at random sites along the slip planes when the magnitude of the local resolved shear stress exceeds a critical value over
a nucleation period of time. Once generated, dislocations glide along their slip planes, interact, possibly annihilate, pileup,
and exit at the free surface of the void causing the expansion of the void. One important result of this study is that the rate
of growth is smaller for smaller voids (‘‘smaller is slower”). There has also been a significant amount of work devoted to the
study of nanovoid growth in single crystals by molecular dynamics simulations (Farrissey et al., 2000; Rudd and Belak, 2002;
Seppälä et al., 2004; Marian et al., 2005; Song et al., 2006; Rudd et al., 2007; Zhu et al., 2007; Potirniche et al., 2006b; Trai-
viratana et al., 2008; Meyers et al., 2009; Rudd, 2009). One outcome of these studies is that the stress required for void
growth by dislocation emission is significantly larger for nanovoids than for larger voids (‘‘smaller is stronger”).

In this paper, we use a two-dimensional model of the emission of edge dislocations from a cylindrical void, introduced by
Lubarda et al. (2004), to perform an analytical study of the process based on a closed form solution for the Volterra
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dislocation near a circular void under plane strain conditions. Although simplified, this model is able to deliver good esti-
mates of the critical stress required for the onset of dislocation emission. The model also provides a simple geometric
description of the mechanism of material transport from the surface of the void, which gives rise to its growth. This takes
place by the emission of multiple dislocation dipoles, each of which consisting of a positive and negative edge dislocation,
residing one above another on two parallel slip planes. The material associated with the creation of such dipole is supplied by
the expansion of the void and the corresponding outward transport of the material from its surface. There is no analytical
solution for the stress field around a dislocation semi-loop or a loop segment,1 being emitted from the surface of a spherical
or rounded void, but this three-dimensional dislocation emission process has been extensively studied by the MD or hybrid
MD/FEM techniques. Upon initial emission of loop segments on different slip planes, the curved segments expand and inter-
act with each other. After cross slip at the slip plane intersections and annihilation of the touching dislocation screw seg-
ments, the closed prismatic loops form, which consist of loop segments on different slip planes. These prismatic loops
glide away, carrying the material away from the void causing it to grow. For example, if the area within a plane dislocation
loop is A0, the volume A0b of the material has been transported from the surface of the void, where b is the component of the
Burgers vector of the dislocation orthogonal to the plane of the loop. This has been recently discussed in great detail for both
fcc and bcc metals by Rudd et al. (2007) and Rudd (2009). They have shown that main differences in the process of void
growth and shape change in these metals come from the fact that fcc metals have lower lattice friction stress (once a dis-
location is punched out, there is a little lattice resistance to its further glide), and lower stacking fault energy, so that dislo-
cations tend to split into their partials with the ribbons of stacking faults in-between them.

There are three main objectives of this paper. The first is to improve the analysis of Lubarda et al. (2004), which was based
on the assumption that the dislocation is emitted from the surface of the void along the direction of the maximum shear
stress. In Section 2, we show that the dislocation is more readily emitted along other directions, which may be quite different
from the 45� direction corresponding to the maximum shear stress at the surface of the void. The critical stress for the dis-
location emission along these directions is found to be higher than earlier reported values. We also point out a subtle point
about the expression for the image force on the dislocation exerted by the surface of the void, which is associated with a non-
uniqueness of the solution for the stress field around the Volterra dislocation in multiply connected regions. The second
objective of the paper is to extend the previous analysis to encompass other than isotropic loading conditions, i.e., to address
the dislocation emission from the surface of a void under uniaxial, pure shear, and arbitrary biaxial loadings. The critical
stress required for dislocation emission and the direction of this emission are determined in Section 3 for each type of
the considered loading. As expected from the consideration of the stress concentration factor, the remote shear loading emits
the dislocation most readily. The third objective of the present work is to incorporate in the analysis the effects of the loading
orientation relative to the discrete lattice (slip plane) orientation. In Section 4, we determine the most favorable slip plane for
dislocation emission and calculate the corresponding critical stress for this emission. It is shown that dislocations are emit-
ted more readily from larger nanovoids and that wider dislocations are emitted under lower applied stress than narrow dis-
locations. A different mechanism operates for the growth of the micron-size voids, which dominantly takes place by sinking
of the pre-existing or newly created dislocations or their segments at the surface of the void, under a far lower level of the
applied stress (Segurado and Llorca, 2009). Concluding remarks are given in Section 5.

2. Dislocation emission under equal biaxial stress

Fig. 1 shows a cylindrical void of radius a in an infinitely extended isotropic homogeneous material, subjected to remote
equal biaxial state of stress rx = ry = r. Elastic deformation under plain strain conditions are assumed, so that rz = m(rx + ry),
where m is Poisson’s ratio. The inplane elastic stress field around the void (without the dislocation) is the sum of the isotropic
tension rr = ru = r and the pure shear state of stress rr = �ru = �ra2/r2, so that (Timoshenko and Goodier, 1970)

rr ¼ r 1� a2

r2

� �
; ru ¼ r 1þ a2

r2

� �
; rru ¼ 0: ð1Þ

The polar coordinates r and u can be expressed in terms of the polar coordinates q and h, emanating from the surface of the
void (Fig. 1), such that h = const. defines a slip plane of a dislocation considered in Section 2.1. The relationships are

r2 ¼ a2 þ q2 þ 2aq cos h; tanu ¼ q sin h
aþ q cos h

: ð2Þ

The shear stress sa = rqh along the slip plane is determined from the stress components rr and ru by using the transforma-
tion sa = �0.5(rr � ru) sin2(h � u). By substituting (1), this gives

sa ¼ r a2

r2
sin 2ðh�uÞ: ð3Þ

The superscript a is attached to indicate that this shear stress is due to the applied stress r. The solid curve in Fig. 2 represents
the variation of the shear stress sa/rwith the angle h due to applied stress r = 0.125G, at distance q = 1.5b from the void (b is

1 Elastic interaction between a circular prismatic dislocation loop and a spherical cavity has been studied by Wolfer and Drugan (1988).
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the magnitude of the Burgers vector of the dislocation, and G is the shear modulus of the material). The dashed curve is the
magnitude of the shear stress si/G due to attraction exerted on the dislocation by the surface of the void, determined from
the expression Fi/b, which is derived in the next section.

2.1. Glide force on a dislocation near the void

Suppose that an edge dislocation is emitted from the surface of the void and that it is in the position shown in Fig. 1. The
dislocation is attracted by the surface of the void along the slip plane of the dislocation by the image force Fi = sib, where si is
the shear stress at the place of the dislocation exerted by the free surface of the nearby void. By using the results for the
stress fields of the Volterra dislocation near the surface of a circular void, it can be shown (see Appendix A) that

Fi ¼ Gb2 cosðh�uÞ
2pð1� mÞ

a2

r3
2
r2 � a2

r2
sin2 h� r2

a2
r2

r2 � a2

� �
: ð4Þ

Fig. 1. Dislocation emitted from the surface of the void under remote equal biaxial tension r. The two sets of polar coordinates (r,u) and (q,h) specify the
position of the dislocation relative to the center of the void and the point on the surface of the void, respectively.

Fig. 2. (a) The solid curve is the shear stress sa/r due to applied stress r = 0.125G vs. the angle h, when the dislocation is at the distance q = 1.5b from the
void. The dashed curve is the magnitude of the shear stress si/r due to attraction exerted on the dislocation by the surface of the void. The two stresses
balance each other at h = 59.3�. (b) The shear stress sa/r vs. the angle h, at the distance: q = 0 (solid), q = b (dashed), and q = 2b (dotted curve) from the void.
Greater the value of q, further is the maximum shear stress direction away from the angle h = 45� (corresponding to q = 0).
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This force corresponds to the imposed displacement discontinuity along the cut from the surface of the void to the center of
the dislocation. The expression for the image force derived by Dundurs andMura (1964) corresponds to the displacement dis-
continuity along the cut from the center of the dislocation to infinity. This was not noted in the earlier work by Lubarda et al.
(2004), Song et al. (2006), and Traiviratana et al. (2008), who used the Dundurs and Mura expression for the image force,
rather than (4). The two expressions for the dislocation force are different, the attraction being stronger in the case of the
cut between the void and the dislocation (Lubarda, submitted for publication), because the stress field around dislocation
in a multiply connected region depends on the cut along which the displacement discontinuity is imposed. This cut depen-
dence was originally pointed out for screw dislocations by Lubarda (1999), and elaborated upon by Lubarda and Markenscoff
(2003). Since the Volterra model was utilized in deriving (4), this expression is appropriate for a dislocation sufficiently away
from the surface of the void (i.e., at the distances greater than a dislocation cut-off radius, to be discussed later in this paper).

If the remote applied stress around the void is a biaxial tension r, its contribution to the dislocation glide force is specified
by the Peach–Koehler expression Fa = sab. In view of (3), this is

Fa ¼ rb a
2

r2
sin 2ðh�uÞ: ð5Þ

The total glide force on the dislocation, driving it out of the void, is then F = Fa + Fi. By using (4) and (5), this gives

F ¼ rb a
2

r2
sin 2ðh�uÞ þ Gb2 cosðh�uÞ

2pð1� mÞ
a2

r3
2
r2 � a2

r2
sin2 h� r2

a2
r2

r2 � a2

� �
: ð6Þ

The variation of the normalized force F/Gb with the dislocation position q/b in the case a/b = 5, m = 1/3, h = 59.3�, and
r = 0.125G is shown in Fig. 3 by the solid curve. The repulsive portion of the force due to the applied stress is shown by
the dashed curve; the attractive portion due to void’s free surface is shown by the dotted curve.

2.2. An analysis of the dislocation emission

In the equilibrium dislocation position, the attraction from the void is balanced by the applied stress. Thus, the condition
F = 0 in (6) gives

rr sinðh�uÞ ¼ Gb
4pð1� mÞ

r2

a2
r2

r2 � a2
� 2

r2 � a2

r2
sin2 h

� �
: ð7Þ

Adopting the criterion from Lubarda et al. (2004), it is assumed that the dislocation will be emitted from the surface of the
void if its equilibrium distance q from the surface of the void is equal to the dislocation core cut-off radius q0 (one half of the
dislocation width, which represents the extent of the dislocation core spreading). For example, if a Peierls semi-discrete
model of a lattice dislocation is adopted, the core cut-off of an isolated edge dislocation is q0 = d/2(1 � m), where d is the
atomic interplanar separation across the slip plane. Physically, the length q0 represents the distance from the center of
the dislocation at which the slip discontinuity reaches half of the maximum slip. Other definitions of q0 are also possible
(Lubarda and Markenscoff, 2006, 2007). In the present study, we consider the core cut-off to be the minimum distance of
the center of the dislocation from the surface of the void for which the image force on the dislocation, calculated from linear
elasticity and the Volterra dislocation model, is a reliable measure of the dislocation attraction to the void by its free surface.

Fig. 3. The repulsive portion (Fa) of the force due to applied stress (dashed curve), the attractive portion (Fi) due to the surface of the void (dotted curve), and
their sum giving the total force F (solid curve) vs. the dislocation position q/b. The plots are for a/b = 5, m = 1/3, hcr = 59.3�, and r = 0.125G (corresponding to
equilibrium dislocation position at q = 1.5b).
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The applied stress required to keep the dislocation in equilibrium at the distance greater than q0 is smaller than the stress
required to keep it in equilibrium at the distance equal to q0, and thus we propose that this maximum stress value is the
critical stress required for the dislocation emission. We do not consider in the present analysis the movement of the dislo-
cation for q < q0, where an incipient (incomplete) dislocation is created near the void, characterized by a strongly nonlinear
slip discontinuity across the glide plane.2 Consequently, by setting q = q0 in (7) specifies the stress required to emit the dis-
location from the surface of the void. In view of (2), this yields the following expression for the critical stress:

rcr ¼ Gb=a
4pð1� mÞ

r20
a2

1
f0
� 2f 0

� �
; ð8Þ

where

f0 ¼ r20 � a2

r20
sin h; r20 ¼ a2 þ q2

0 þ 2aq0 cos h: ð9Þ

A lower stress would suffice to keep the dislocation in the equilibrium at the distance greater than q0, i.e., the equilibrium
position of the dislocation is unstable, and the dislocation would be driven away from the void indefinitely, or until it is
blocked by an obstacle.

The angle h = hcr at which the dislocation is emitted from the surface of the void corresponds to the minimum value of the
applied stress, rmin

cr , and is therefore obtained numerically as the point on the contour plot z = 0, obtained from the minimi-
zation condition drcr/dh = 0, which gives

z ¼ 2aq0f0 sin hþ r20 þ 2a2f 20
� �df0

dh
¼ 0; ð10Þ

where

df0
dh

¼ 1� a2

r20

� �
cos h� 2a3q0

r40
sin2 h:

The contour plots z = 0 for the three selected values of the dislocation core radius are shown in Fig. 4a. The plots reveal the
effect of the void size a/b on the critical angle hcr (scaled by p/4) at which the dislocation is emitted. Smaller the void, more
pronounced is the departure of the angle hcr from the direction h = 45� associated with the maximum applied shear stress at
the surface of the void due to applied stress r. The departure is also more pronounced for larger values of the dislocation core
radius q0. Fig. 4b shows the variation of rmin

cr with a/b for the three selected values of the ratio q0/b, which is obtained numer-
ically by substituting hcr into (8). Larger stress is required to emit the dislocation from a smaller void, and the emission is
further away from the h = 45� direction, associated with the maximum shear stress direction at the surface of the void
due to applied stress.3 The physical reason for hcr – 45� is that the attraction on the dislocation from the void surface may

Fig. 4. (a) The effect of the void size a/b on the critical angle hcr (scaled by p/4) for the three selected values of the dislocation core radius q0. For large values
of a/b, the critical angle hcr ? p/4. (b) The minimum critical stress rmin

cr =G required for dislocation emission vs. the ratio a/b. The solid curves are for q0 = b,
the dashed curves for q0 = 1.5b, and the dotted curves for q0 = 2b. Poisson’s ratio is taken to be m = 1/3.

2 An analytical study of this stage of the dislocation nucleation would, of course, be of great interest, but it is hindered by the absence of a closed form
solution for the Peierls dislocation near a circular void. An analytical study of the dislocation nucleation from a crack tip within the Peierls framework was
performed by Rice (1992), whose analysis eliminated the need for the introduction of the poorly defined core cut-off near the crack tip.

3 Voids with radius smaller than 3b are presumingly beyond the reach of the employed continuum type analysis. The minimum size of the void should
probably be even larger than this, possibly about 5b, so that the ledge left at the surface of the void by emitted dislocation does not appreciably distort the
circular geometry of the void, assumed in the derivation of the image force.
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be weaker at the angle different from 45�, so that in spite of the smaller resolved shear stress at that angle, the net tendency
for the dislocation emission is greatest along such direction. This was not realized in the original work by Lubarda et al.
(2004), who assumed that the dislocation is emitted along the direction of the maximum shear stress at the surface of
the void (hcr = 45�), regardless of the size of the void, or the width of the dislocation.

It is noted that the cut-off radius q0 appears in the denominator of the expression (8) for the critical stress. Thus, less
stress is required to emit a wide dislocation (with a spread dislocation core) than a narrow dislocation, at least within
our model which does not consider details of the incipient dislocation movement for q < q0. This implies that dislocations
are more easily emitted from voids in softer materials, which are characterized by a wider dislocation core. Furthermore,
softer materials have lower lattice friction stress (Peierls stress is a decreasing function of the dislocation core width; Hirth
and Lothe, 1982; Nabarro, 1997), so that once emitted dislocations will glide away through the lattice with a less resistance
from it. Analytical and numerical studies suggest that reasonable estimates of the core radius are in the range from 0.5b to
2b, depending on the crystalline structure (Lubarda and Markenscoff, 2007).

The curves shown in Fig. 5a are the traces of the surface rcr = rcr(h,a/b) in the planes corresponding to different values of
the ratio a/b, and for the selected value of the core radius q0 = 1.5b. Fig. 5b illustrates the effect of the dislocation core radius
on the critical stress, in the case a/b = 5. With the increase of the core radius, the angle hcr increases, while rmin

cr decreases.
Some numerical values are listed in Table 1. The levels of applied stress required for dislocation emission is high (�0.1–0.2G),
but it is available under high strain rate shock loading of metals with high spall strength.

In the limit of very large voids (a� b), (8) becomes4

rcr ¼ Gb=q0

4pð1� mÞ
1

sin 2h
; rmin

cr ¼ rcrð45�Þ ¼ Gb=q0

4pð1� mÞ : ð11Þ

The compressive remote stress of the same magnitude would emit the positive dislocation at hcr = �45�. If the dislocation is
the negative edge dislocation, the tensile stress would cause the emission at hcr = �45�, and the compressive stress at
hcr = 45�. Similar conclusions apply to smaller voids and their corresponding values of hcr (Fig. 6).

A comment should be made regarding large values of the predicted stress required to grow a nanovoid by dislocation
emission from its surface, as compared to far smaller values required to grow a micron-size or larger voids. A significantly
lower stress is required to grow larger voids, because in the vicinity of such voids there are pre-existing dislocations, or their
sources from which dislocations can nucleate under relatively low resolved shear stress. The void grows in this case by the
exit or sink of dislocations, or their segments, at the surface of the void (Huang et al., 2007; Segurado and Llorca, 2009). For
lower and medium loading rates, the void growth is also facilitated by the vacancy pipe diffusion through the cores of the
dislocations (Cuitiño and Ortiz, 1996; Fisher and Antretter, 2009).

For example, in an undeformed single crystal with an initial dislocation density of the order qd = 1010–1012/m2, the aver-
age dislocation spacing is about 1–10 lm q�1=2

d

� �
. Therefore, in the region of the radius of several microns around a nanovoid

in such a crystal there are no dislocations at all, so that the only available mechanism for the void growth under dynamic
loading, without sufficient time for the vacancy diffusion, is by the dislocation emission from the surface of the void. This
emission may also be facilitated by the local geometric irregularities at the surface of the void.

Fig. 5. The critical stress rcr/G vs. the angle h in the case q0 = 1.5b. (a) Solid curve: a/b = 10, rmin
cr ¼ 0:103G, hcr = 52.4�; dashed curve: a/b = 5, rmin

cr ¼ 0:125G,
hcr = 59.3�; dotted curve: a/b = 3, rmin

cr ¼ 0:153G, hcr = 67.7�. (b) The effect of the dislocation core radius q0 on the critical stress, in the case a/b = 5. The solid
curve: q0 = b, rmin

cr ¼ 0:166G, hcr = 54.5�; dashed curve: q0 = 1.5b, rmin
cr ¼ 0:125G, hcr = 59.3�; dotted curve: q0 = 2b, rmin

cr ¼ 0:104G, hcr = 63.6�.

4 For large voids, however, other mechanisms of the void growth prevail, which operate under far lower critical stress, as discussed below.
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It should also be pointed out that the utilized quasi-static analysis of the void growth is reasonably appropriate even for
the dynamic-impact loading, because the wave front passes through the material around a nanovoid within picoseconds,
leaving it in the state of nearly uniform remote stress for several nanoseconds of the duration of the pulse during which
the emission of dislocations takes place.5

2.3. Ledge effects on the dislocation emission

The effect of the ledge left at the surface of the void behind the dislocation on the dislocation emission can be included in
the analysis as follows. When the dislocation is far from the void, the ledge is fully formed with its width equal to the mag-
nitude of the Burgers vector b. The corresponding increase of the energy is cb, where c is the surface energy. When the dis-
location is near the surface of the void, the ledge is only partially formed due to nearby dislocation core effects. Adopting the
Peierls model of the dislocation, as in Lubarda et al. (2004), and the earlier work by Rice and Thomson (1974) in the context
of dislocation emission from the crack tip, we assume that the width of the ledge left behind the dislocation is

2b
p

tan�1 2q
e3=2q0

; ð12Þ

where e is the Neperian logarithm base. Thus, the energy increase due to the creation of the ledge is

Ul ¼ 2cb
p

tan�1 2q
e3=2q0

: ð13Þ

Table 1
The critical stress rmin

cr and the corresponding angle hcr of dislocation emission for different void sizes and different core cut-offs. Poisson’s ratio is taken to be
m = 1/3. If m – 1/3, the listed values for rmin

cr should be multiplied by 2/[3(1 � m)].

a/b = 3 a/b = 5 a/b = 10

q0 = 1.5b
rmin
cr =G 0.153 0.125 0.103

hcr (�) 67.7 59.3 52.4

q0 = b q0 = 1.5b q0 = 2b

a/b = 5
rmin
cr =G 0.166 0.125 0.104

hcr (�) 54.5 59.3 63.6

Fig. 6. Positive and negative edge dislocation emission under remote equiaxial (a) tension, and (b) compression.

5 The reflected tensile pulse from the free surface of the shock-impacted Cu crystal can be of the order of G/10. If the duration of the pulse is s = 10 ns, its
spatial length is cs = 0.36 lm, where c = 3.6 km/s is the longitudinal wave speed in copper.
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The corresponding ledge force is

Fl ¼ � oUl

oq
¼ �2c

p
f

f2 þ ðq=bÞ2
; f ¼ e3=2ðq0=2bÞ � 2:24ðq0=bÞ: ð14Þ

At a given temperature, the surface energy can be expressed as c = gGb, where g is a non-dimensional parameter that de-
pends on the crystalline lattice and the strength of interatomic bonding within and across the material surface under con-
sideration. With this representation of the surface energy, (14) becomes

Fl ¼ �2gGb
p

f

f2 þ ðq=bÞ2
; ð15Þ

which is independent of h. At large q� b, the ledge force approaches zero, while Fl/Gb � � 0.284gb/q0 if q� b.
The total force F on the dislocation is the sum of (6) and (15), and in the equilibrium dislocation position F = 0. As in Sec-

tion 2.2, it is assumed that dislocation will be emitted from the surface of the void if its equilibrium distance from the surface
of the void is equal to the dislocation core radius q0. The corresponding stress required to emit the dislocation is

rcr ¼ Gb=a
4pð1� mÞ

r20
a2

1
f0
� 2f 0

� �
þ Ggf=p
f2 þ ðq0=bÞ2

r30
a3

1
g0

; ð16Þ

where f0 is given by (9), and

g0 ¼ sin h 1� a2

r20
sin2 h

� �1=2

: ð17Þ

The angle h = hcr at which the dislocation is emitted corresponds to the minimum value of the applied stress, rmin
cr , which is

calculated numerically. The results are shown in Fig. 7. The critical stress for the emission of dislocation is significantly in-
creased by the ledge creation. This is so because the ledge exerts a strong retarding force on the dislocation near the void,
attracting it back to the surface of the void, regardless of the angle h. The value g = 0.2, used to obtain one of the curves in
Fig. 7, corresponds to a single crystal of copper at the shock temperature of 500 �C. The shear modulus of copper is
G = 40 GPa, and the Poisson ratio is taken to be m = 1/3. The magnitude of the Burgers vector of {111} h110i dislocation is
0.255 nm, with its edge component b = 0.22 nm ¼ 0:255 nm�

ffiffiffi
3

p
=2

� �
. The surface energy of copper at 773 K is estimated6

to be c773 = 1.75 J/m2.
In the limit of very large voids,

rcr ¼ G=p
sin 2h

b=q0

4ð1� mÞ þ
2gf

f2 þ ðq0=bÞ2
" #

; a � b: ð18Þ

Fig. 7. The comparison of rmin
cr vs. a/b with and without included dislocation ledge effect, in the case q0 = 1.5b. The solid curve is the critical stress without

the ledge effect. The dashed curve corresponds to ledge parameter g = 0.1, the dashed–dotted curve to g = 0.15, and the dotted curve to g = 0.2.

6 The surface energy of solids decreases with the temperature. For copper, this decrease is from c0 = 1.79 J/m2 at 0 K (Rice, 1992) to cm = 1.72 J/m2 at the
melting temperature Tm = 1357 K (Porter and Easterlingp. 113, 2004). If a linear interpolation is used, the surface energy at the room temperature is c298 =
1.775 J/m2, while c773 = 1.75 J/m2. The parameter g is also temperature dependent, and this dependence can be deduced from the temperature dependence
of c, G and b via the relationship c = gGb.
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This has the minimum value

rmin
cr ¼ G

p
b=q0

4ð1� mÞ þ
2gf

f2 þ ðq0=bÞ2
" #

; a � b; ð19Þ

corresponding to dislocation emission at hcr = 45�. Since

f

f2 þ ðq0=bÞ2
� 0:372

b
q0

;

the critical stress (19) can also be written as

rmin
cr ¼ Gb

pq0

1
4ð1� mÞ þ 0:744g

	 

; a � b: ð20Þ

3. Biaxial loading conditions

A cylindrical void of radius a in an infinitely extended material, subjected to remote biaxial state of stress rx = kr and
ry = r is shown in Fig. 8. For applied equal biaxial stress: rx = ry, k = 1; for uniaxial applied stress: rx = 0, k = 0; for the applied
shear state of stress: rx = �ry, k = �1; for inplane uniaxial remote strain: �x = 0, k = m/(1 � m) (equal to 1/2 if m = 1/3). The elas-
tic stress field around the void is

rr ¼ r
2

ð1þ kÞ 1� a2

r2

� �
� ð1� kÞ 1� 4

a2

r2
þ 3

a4

r4

� �
cos 2ð/þuÞ

	 

;

ru ¼ r
2

ð1þ kÞ 1þ a2

r2

� �
þ ð1� kÞ 1þ 3

a4

r4

� �
cos 2ð/þuÞ

	 

;

rru ¼ r
2
ð1� kÞ 1þ 2

a2

r2
� 3

a4

r4

� �
sin 2ð/þuÞ:

ð21Þ

The polar coordinates r and u can be expressed in terms of the polar coordinates q and h, emanating from the surface of the
void (Fig. 8), by using the relationship (2). The angle / specifies the intersection of the slip plane with the surface of the void,
and is one of the unknowns in the analysis of the dislocation emission under biaxial loading conditions. The shear stress

Fig. 8. A positive edge dislocation emitted from the surface of the void under remote biaxial state of stress. The angle / specifies the intersection of the slip
plane with the surface of the void. The slip plane is at the angle / + h relative to the horizontal x-direction.

V.A. Lubarda / International Journal of Plasticity 27 (2011) 181–200 189



sa = rqh along the slip plane of the dislocation, induced by the applied loading, is determined from (21) by using the
transformation

sa ¼ �1
2
ðrr � ruÞ sin 2ðh�uÞ þ rru cos 2ðh�uÞ: ð22Þ

This gives

sa ¼ rha2

2r2
; ð23Þ

where a non-dimensional parameter h = h(q,h,/) is defined by

h ¼ ð1� kÞ r
2

a2
sin 2ðhþ /Þ þ ð1þ kÞ sin 2ðh�uÞ þ ð1� kÞ 3

a2

r2
� 2

� �
sin 2ðh� 2u� /Þ: ð24Þ

The corresponding Peach–Koehler force on the dislocation is

Fa ¼ sab ¼ rb a2

2r2
hðq; h;/Þ: ð25Þ

It is noted that the hoop stress around the void (r = a) due to applied stress is r/ = r[1 + k + 2(1 � k) cos2/], which is obtained
from the second equation in (21) by taking r = a and u = 0. The corresponding maximum shear stress at the surface of the
void is smax = r//2. For positive r, the hoop stress has the maximum value rmax

/ ¼ ð3� kÞr at / = 0, if k < 1, and
rmax

/ ¼ ð3k� 1Þr at / = ±p/2, if k > 1. Also, it noted that (21) delivers the stress distribution corresponding to the uniaxial
loading rx – 0, ry = 0 by performing the limit k?1 and r? 0, such that rk? rx. The resulting stress field is

rr ¼ rx

2
1� a2

r2
þ 1� 4

a2

r2
þ 3

a4

r4

� �
cos 2ð/þuÞ

	 

;

ru ¼ rx

2
1þ a2

r2
� 1þ 3

a4

r4

� �
cos 2ð/þuÞ

	 

;

rru ¼ �rx

2
1þ 2

a2

r2
� 3

a4

r4

� �
sin 2ð/þuÞ:

ð26Þ

3.1. An analysis of the dislocation emission

The total glide force of the dislocation, driving it out of the void, is F = Fa + Fi, where the image force Fi exerted by the sur-
face of the void is given by (4). Thus, by adding (4) and (25),

F ¼ rb a2

2r2
hðq; h;/Þ þ Gb2 cosðh�uÞ

2pð1� mÞ
a2

r3
2
r2 � a2

r2
sin2 h� r2

a2
r2

r2 � a2

� �
: ð27Þ

Adopting the same criterion as in Section 2.2, the substitution of q = q0 in the equilibrium condition F = 0 specifies the stress
required to emit the dislocation from the surface of the void. This is

rcr ¼ Gb=a
2pð1� mÞ

sin 2ðh�uÞ
h

r20
a2

1
f0
� 2f 0

� �
; ð28Þ

where sin (h � u) = asinh/r, and f0 is specified by (9).
The non-dimensional parameter h = h(q0,h,/) can be conveniently rewritten from (24) as

h ¼ ð1� kÞ r20
a2

� 3
a2

r20
� 2

� �
cos 4ðh�u0Þ

	 

sin 2ðhþ /Þ þ ð1� kÞ 3

a2

r20
� 2

� �
sin 4ðh�u0Þ

	 

cos 2ðhþ /Þ

þ ð1þ kÞ sin 2ðh�u0Þ; ð29Þ
so that the angle / appears in the combination 2(h + /) only. The coordinates r0 and u0 are specified by (2) with q = q0. If r is
positive, the parameter h in (28) must also be positive. Table 2 lists this critical stress rmin

cr , and the angles /cr and hcr which

Table 2
The critical stress required for the dislocation emission under different biaxial loading conditions. In all four cases, a = 5b, q0 = b, and m = 1/3. If m – 1/3, the
listed values for rmin

cr should be multiplied by 2/[3(1 � m)].

k = 1 k = 1/2 k = 0 k = �1

rmin
cr =G 0.166 0.143 0.126 0.101

/cr (�) Any value �9.8� �10.5 �11.3
hcr (�) 54.5 56.0 57.1 58.8
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specify the location and the direction of the dislocation emission from the surface of the void. The remote pure shear loading
(k = �1) emits the dislocation most easily rmin

cr ¼ 0:101G
� �

, because the stress concentration at the surface of the void is in
this case the greatest (equal to 4). In the case of equal biaxial loading (k = 1), the stress concentration is only 2, and a signif-
icantly greater remote stress rmin

cr ¼ 0:166G
� �

is required for the dislocation emission.
In retrospect, note that the critical stress rcr in (28) depends on the angle / only through the /-dependence of the func-

tion h given by (29). Thus, the minimum value of rcr is associated with the maximum value of the function h(h,/) with re-
spect to /. The condition oh/o/ = 0 then gives

tan2ðhþ /Þ ¼ r20=a
2 � ð3a2=r20 � 2Þ cos 4ðh�u0Þ
ð3a2=r20 � 2Þ sin 4ðh�u0Þ

: ð30Þ

This can be substituted into (29), so that h becomes a function of h only. The angle hcr is the angle which maximizes such h.
Having determined hcr, the angle /cr follows from (30).

Fig. 9 shows the variation of rmin
cr with a/b for the four selected values of the loading parameter k, in the case q0 = b. Fig. 10

shows the corresponding variation of the angles hcr and /cr with a/b. In the limit of very large voids (a� 1), one has

rcr ¼ Gb=q0

2pð1� mÞ
1
h
; h ¼ ½1þ kþ 2ð1� kÞ cos 2/	 sin 2h: ð31Þ

For k 6 1, this has the minimum value

rmin
cr ¼ Gb=q0

2pð1� mÞ
1

3� k
; hcr ¼ p=4; /cr ¼ 0; ð32Þ

Fig. 9. The critical stress rmin
cr =G vs. the void size a/b under combined loading in the case q0 = b. The solid curve is for k = 1, the dashed curve is for k = 1/2, the

dotted–dashed curve is for k = 0, and the dotted curve is for k = �1.

Fig. 10. The critical angles hcr and /cr (scaled by p/4) vs. the void size a/b under combined loading in the case q0 = b. The solid curve is for k = 1, the dashed
curve is for k = 1/2, the dotted–dashed curve is for k = 0, and the dotted curve is for k = �1. In the case k = 1, the angle /cr can be any angle, independently of
a/b.
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while for kP 1,

rmin
cr ¼ Gb=q0

2pð1� mÞ
1

3k� 1
; hcr ¼ p=4; /cr ¼ 
p=2: ð33Þ

For the considerations in Section 4, which is concerned with the lattice orientation effects, we note that in the case of the
uniaxial loading along the x-axis (rx = r, ry = 0), the critical stress is given by (28) with the function h defined by

h ¼ � r20
a2

� 3
a2

r20
� 2

� �
cos 4ðh�u0Þ

	 

sin 2ðhþ /Þ � 3

a2

r20
� 2

� �
sin 4ðh�u0Þ

	 

cos 2ðhþ /Þ þ sin 2ðh�u0Þ: ð34Þ

The minimum value rmin
cr ¼ 0:126G corresponds to /cr = 79.5� and hcr = 57.1�, in agreement with the case k = 0 from Table 2

(uniaxial loading along the y-direction), the two critical angles /cr being the 90� complements of each other (Fig. 11). The
stress concentration at the surface of the void in the first case is at / = 0�, and in the second case at / = ±p/2.

4. Lattice orientation effects

In this section, we determine the critical stress required to emit the dislocation along a particular slip plane within a sin-
gle crystal available for the dislocation glide. Four {111} slip planes of an fcc crystal are shown in Fig. 12a. Consider a straight
dislocation along ½1 �10	 direction, having the Burgers vector of the magnitude a0=

ffiffiffi
2

p
in the direction ½0 �11	, where a0 is the

lattice parameter of the crystalline lattice. The edge component of this dislocation is in the direction ½�1 �12	, with the

Fig. 11. Dislocation emission under uniaxial loading in the case a = 5b, q0 = b, and m = 1/3. Each of the four shown dislocations are emitted under the stress
rcr = 0.126G.

Fig. 12. (a) Four {111} slip planes of an fcc crystal, with atoms shown schematically for one of the planes only. The Burgers vector ða0=2Þ½0 �11	 of the
dislocation line along ½1 �10	 direction has the edge component of magnitude a0=

ffiffiffi
2

p� �
sin 60� in the ½�1 �12	 direction. (b) The Burgers vector of the partial

dislocation is ða0=6Þ½1 �21	, with its edge component ða0=12Þ½�1 �12	.
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magnitude a0=
ffiffiffi
2

p� �
sin 60� ¼

ffiffiffi
6

p
a0=4. One third of this value a0=2

ffiffiffi
6

p� �
is the magnitude of the Burgers vector of the edge

component ða0=12Þ½�1 �12	 of the partial dislocation ða0=6Þ½1 �21	. We are considering here only the emission of a single dislo-
cation with the Burgers vector in the direction of the edge component of the leading partial dislocation.7 The extension of the
analysis to address the emission of an extended dislocation, in which the leading partial dislocation [121]/6 is emitted first,
leaving a faulted plane behind it, and then the trailing partial dislocation ½21 �1	=6 is emitted under increased external loading
to complete the [110]/2 dislocation, is a worthwhile extension of the present analysis, particularly for fcc metals with a law
stacking fault energy (such as Cu).8 For bcc metals such as Mo dislocations do not split into Shockley partials and a perfect

Fig. 13. (a) The mid-section of the lattice shown in Fig. 12a, within the plane spanned by [110] and [001] directions. The normal distance between the two
slip planes is d ¼ a0=

ffiffiffi
2

p� �
sinx ¼ a0=

ffiffiffi
3

p
, where tanx ¼

ffiffiffi
2

p
. (b) The cylindrical void with the axis in the ½1 �10	 direction. The edge components of two

dislocations are along h112i directions.

Fig. 14. A slip direction [112] emanating from the surface of the void at the point defined by the angle /. The slip direction is at the angle x relative to the
[110] direction. Two slip directions [112], tangent to the void and with an effective dislocation loop on each, are also shown. The void is under biaxial
remote loading. Infinite stress would be required to emit the dislocation along the slip planes tangent to the surface of the void (orthogonal to indicated
½�1 �11	 direction), because there is no shear stress along those directions at the surface of the void.

7 MD simulations by Bringa et al. (submitted for publication) also reveal that during the process of void growth in copper by emission of partial dislocations,
in many cases the leading partial is not followed by the trailing partial, which results in a complex network of stacking faults left behind.

8 An analytical study of the emission of partial dislocations from the crack tip within the Rice–Thomson model has been performed by Anderson (1986). See
also Lin et al. (1996).
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dislocation [111]/2 is emitted. A comprehensive MD analysis of the void growth by dislocation emission in bcc metals has been
recently reported by Rudd (2009).

The section of the lattice within the plane spanned by the [110] and [001] directions is shown in Fig. 13a. The cylindrical
void whose axis is in the ½1 �10	 direction is shown in Fig. 13b; the edge component of two dislocations are along the indicated
h112i directions. Only two pairs of slip directions are shown in Fig. 13b. Suppose that the biaxial loading is applied along the
[110] and [001] directions, and that the dislocation emission along the [112] is considered (Fig. 14). The angle x = / + h

Fig. 15. (a) The variation of rcr with / in the case of the loading specified by k = 1 (solid), k = 1/2 (dashed), k = 0 (dotted–dashed), and k = �1 (dotted curve);
a = 5b and q0 = b. In each case the minimum value of rcr is the critical stress for the positive dislocation emission. The corresponding / specifies the location
of the emission. The opposite-signed dislocation would be emitted at the same / under the opposite directed loading. (b) The same as in part (a), but with
the core radius q0 = 1.5b.

Table 3
The critical stress rmin

cr =G and the angle /cr for the dislocation emission along the [112] direction, under different loading conditions, for dislocations with the
core radii q0 = b and 1.5b. In all cases a/b = 5 and m = 1/3.

k = 1 k = 1/2 k = 0 k = �1

q0 = b
rmin
cr =G 0.166 0.145 0.128 0.104

/cr (�) �0.1 �2.7 �4.9 �7.5

q0 = 1.5b
rmin
cr =G 0.125 0.112 0.100 0.080

/cr (�) �4.6 �6.9 �9.5 �13.2

Fig. 16. (a) The variation of rmin
cr with a/b in the case of the loading specified by k = 1 (solid), k = 1/2 (dashed), k = 0 (dotted–dashed), and k = �1 (dotted

curve) in the case q0 = b. (b) The corresponding variation of /cr.
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between the [110] and [112] directions isx = 54.7� ðtanx ¼
ffiffiffi
2

p
Þ, and therefore sin 2ð/þ hÞ ¼ 2

ffiffiffi
2

p
=3 and cos2(/ + h) = �1/

3. When this is substituted into (29), the function h becomes

h ¼ 2
ffiffiffi
2

p

3
ð1� kÞ r20

a2
� 3

a2

r20
� 2

� �
cos 4ðh�u0Þ

	 

� 1
3
ð1� kÞ 3

a2

r20
� 2

� �
sin 4ðh�u0Þ

	 

þ ð1þ kÞ sin 2ðh�u0Þ; ð35Þ

where h =x � /. The required stress9 for the emission of the positive edge dislocation is obtained by minimizing the stress rcr

in (28) with respect to /, in the range �p/2 +x 6 / 6 p/2 +x. Fig. 15a shows the plots rcr = rcr(/) for the four different load-
ings (k = 1,1/2,0,�1), in the case a = 5b and q0 = b.10 Table 3 lists the corresponding values of the critical stress rmin

cr and the
associated angle /cr. The remote pure shear loading (k = �1) emits the dislocation most easily (rcr = 0.104G). In the case of equal
biaxial loading (k = 1), the stress concentration factor at the surface of the void is only one half of that from the pure shear load-
ing, and the critical stress for the dislocation emission is rmin

cr ¼ 0:166G. Fig. 15b shows the same as part (a) of this figure, but for
the dislocation core radius q0 = 1.5b. By comparing the results listed in Table 3, it follows that less stress is required to emit the
wider dislocations, and the emission is further away from the point of maximum stress concentration on the surface of the void
(/cr more pronouncedly different from zero).

Fig. 16a shows the variation of rmin
cr with a/b in the four considered loading cases, with q0 = b. The corresponding variation

of /cr is shown in Fig. 16b. Table 4 lists the specific values of the critical stress rmin
cr and the associated angle /cr, for a = 3b and

a = 10b, which reveals that greater the radius of the void, smaller the stress required for the dislocation emission, and closer
the emission of the dislocation from the point of the void with the maximum stress concentration factor (/ = 0). In the limit
of very large voids (a� 1), one has

rcr ¼ Gb=q0

2pð1� mÞ
1
h
; h ¼ ½1þ kþ 2ð1� kÞ cos 2/	 sin 2ðx� /Þ; ð36Þ

which has the minimum at the angle / which maximizes h. Table 5 lists the values of the critical stress rmin
cr =G and the angle

/cr for the dislocation emission along the [112] direction in the case q0 = b, and m = 1/3. For different q0/b and m the tabulated
values of rmin

cr =G should be multiplied by 2b/[3(1 � m)q0]. For k = 1, the angle /cr =x � p/4, hmax = 2, and rmin
cr ¼

Gðb=q0Þ=½4pð1� mÞ	.
It should be noted that for smaller voids, there is only a set of few (discrete) slip planes emanating from the surface of the

void (their distance being d ¼ a0=
ffiffiffi
3

p
). The determination of the required stress for the dislocation emission based on the as-

sumed continuous distribution of the slip planes and the condition drcr/d/ = 0 can then be interpreted as follows. If there is a
dilute distribution of voids within a crystalline lattice, statistically there is always a void positioned relative to the lattice so
that it is intersected by the slip plane at an arbitrary point on its surface; thus the condition drcr/d/ = 0. If a growth of a par-
ticular void is only considered, one can evaluate rcr for the discrete set of values of /, corresponding to the actual slip planes,

Table 4
The critical stress rmin

cr =G and the angle /cr for the dislocation emission along the [112] direction, under different loading conditions, for the void sizes a = 3b
and 10b. In all cases q0 = b and m = 1/3.

k = 1 k = 1/2 k = 0 k = �1

a = 3b
rmin
cr =G 0.194 0.175 0.158 0.130

/cr (�) �6.1 �8.3 �10.9 �15.0

a = 10b
rmin
cr =G 0.144 0.122 0.106 0.083

/cr (�) 4.8 1.9 0.4 �1.3

Table 5
The critical stress rmin

cr =G and the angle /cr for the dislocation emission along the [112] direction, under different loading conditions, for large voids a � b, and
for q0 = b and m = 1/3.

a� b k = 1 k = 1/2 k = 0 k = �1

rmin
cr =G 0.1194 0.0971 0.0814 0.0614

/cr (�) 9.72 6.93 5.85 4.86(+90)

9 The assumption of isotropy is adopted to proceed with the analytical study, because there is no closed form solution for a dislocation near the void in a
cubic crystal or in an anisotropic material. A similar analysis of the crystal-orientation dependent evolution of edge dislocations from a void in a single crystal
copper was used by Song et al. (2006) and Zhu et al. (2007). See also Kysar et al. (2005) and Gan et al. (2006).
10 The infinite value of rcr in the plots for some values of /means that the shear stress due to applied loading at the location of the dislocation is there equal to
zero, so that there is no driving force on the dislocation to overcome the image force from the surface of the void and the dislocation cannot be in equilibrium at
q = q0 at those values of /.
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and identify the minimum value among these by direct comparison. In this case, it may be reasonably expected that the slip
plane which intersects the surface of the void in close proximity of the point of the greatest stress concentration due to ap-
plied loading is the critical slip plane along which the emission of the first dislocation will take place. An alternative ap-
proach to predict the onset and evolution of the growth or collapse of nanovoids is to employ the molecular dynamics
based calculations (e.g., Dávila et al., 2005; Marian et al., 2005; Traiviratana et al., 2008). The calculations performed by Trai-
viratana et al. (2008) under remote uniaxial strain conditions predict the values of critical stress in good agreement with the
results presented in this paper, particularly for larger voids (Table 6).

Table 6
The comparison of the critical stress rmin

cr =G for the dislocation emission along the [112] direction in the case of the remote uniaxial strain from the present
calculations (with k = 1/2, q0 = b and m = 1/3), and from the atomistic calculations for copper by Traiviratana et al. (2008). The critical stress in the second raw of
the table is twice the value of the von Mises stress reported in their Fig. 4a.

rmin
cr =G a/b = 4 a/b = 8 a/b = 16

This paper 0.157 0.128 0.113
Atomistic calculation 0.147 0.124 0.100

Fig. 17. Dislocation emission along the [112] direction in the case of uniaxial loading along the: (a) [001], and (b) [110] direction. The required stress for
the dislocation emission in the first case is rcr = 0.131G, and in the second case rcr = 0.128G (for a/b = 5, q0 = b, and m = 1/3).

Fig. 18. Dislocation emission along the slip planes in the case: (a) hcr >x, and (b) hcr <x. In both cases, the angle b = hcr +x � p/2.
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In the case of the uniaxial loading along the [110] direction, rmin
cr is determined by minimizing (28), with the function h

given by (34), with / + h =x. The positive dislocation is emitted at /cr = �71.4� and the negative dislocation at /cr = 108.6�,
each under the critical stress rmin

cr ¼ 0:131G (Fig. 17b). Fig. 17a shows the emission of positive and negative dislocations under
the uniaxial loading along the [001] direction (the case k = 0 in Table 3; rmin

cr ¼ 0:128G). The slight difference in these values
of the critical stress is because the slip direction [112] is only slightly more inclined toward the [110] than [001] direction
(the anglex = 54.7� being relatively close to 45�). By symmetry, in both cases there would also be an equally likely emission
along the conjugate slip plane ½11�2	 (not shown in Fig. 17, but similar to Fig. 11). The opposite sign dislocations at the same
locations on the void surface would be emitted by the compressive stress of the same magnitude.

5. Conclusions

Among all directions available for the dislocation emission from the surface of a cylindrical nanovoid, we determined the
direction of the most likely emission. In Section 2, it was shown that this direction is different from the direction of the max-
imum shear stress at the surface of the void due to applied loading. The corresponding critical stress for the dislocation emis-
sion is higher than earlier reported values. The analysis of the dislocation emission under isotropic remote loading was
extended to non-isotropic loading conditions in Section 3, where the emission of dislocations was considered under remote
uniaxial, pure shear, and arbitrary biaxial loadings. The critical stress required for the dislocation emission and the direction
of the emission are determined for each type of the loading. In Section 4, we incorporated in the analysis the effects of the
loading orientation relative to the discrete lattice (slip plane) orientation. The most favorable slip plane for the dislocation
emission was identified and the corresponding critical stress for this emission was calculated. The dependence of the critical
stress on the void size is established. It is found that dislocations are emitted more readily from larger nanovoids, and that
wider dislocations are emitted under lower applied stress than narrow dislocations. The growth of micron-size voids dom-
inantly takes place by sinking of pre-existing or newly created remote dislocations or their segments at the surface of the
void, under much lower level of the applied stress.

The dislocation interaction during the process of multiple dislocation emission is not considered in this paper. Several
comments are nevertheless given below. Fig. 18 shows two pairs of edge dislocations emitted from the surface of the void,
along two available slip directions, specified by the anglex = 54.7� relative to the [110] direction. The loading is assumed to
be equal biaxial tension. Points of dislocation emission from the surface of the void are determined so that the direction at
angle hcr from the radial direction coincides with the slip direction, i.e., /cr =x � hcr. Depending on the size of the void and
the dislocation core radius, the angle hcr can either be greater or smaller thanx and accordingly the dislocation emission can
proceed along the slip planes as shown in Fig. 18a or 18b. The dislocations may be emitted simultaneously or sequentially,

Fig. 19. Four dislocation dipoles (pairs of a positive and negative edge dislocations on two parallel slip planes), emitted from the surface of the void, cause
its isotropic expansion by the amount proportional to the magnitude of the Burgers vector of the dislocation.
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and therefore their interaction and possible locking at the slip plane intersection become an important part of the analysis
(Lubarda et al., 1993; Cleveringa et al., 1999; Lubarda, 2006). The interaction among dislocations may hinder or facilitate the
emission, thus contributing to an increase or decrease of the threshold stress level required for the void growth. The details
of this analysis are not given here, but the study is analogous to that presented by Lubarda et al. (2004), i.e., in the expression
for the Peach–Koehler force on each dislocation the contribution from the shear stress produced by all other, or at least near-
by dislocations needs to be included. Fig. 19 shows a plausible scenario of an isotropic void growth by emission of four dis-
location dipoles along two pairs of [112] and ½11�2	 slip directions. It is assumed that dislocations arrived at the positions
shown sequentially, one after another, avoiding their locking at the slip plane intersections. A quantitative analysis will
be presented in a separate paper.
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Appendix A. Stress field due to edge dislocation near a void

The stress state at an arbitrary point B due to edge dislocation with the Burgers vector b = {bn,bg} located at the point A
near a circular void of radius a (Fig. A.1) is determined as follows. If the dislocation is created by the displacement discon-
tinuity along the cut from the free surface of the void to the center of the dislocation, the Airy stress functions for the two
dislocation components are (Lubarda, submitted for publication)

vbn ¼ � Gbn

2pð1� mÞ z1 ln z1 sinw1 � z2 ln z2 sinw2 þ
a2 � 1
2a3 a sin 2w2 �

a2 � 1
a

a
z2

sinw2

� �	 

; ðA:1Þ

vbg ¼ Gbg
2pð1� mÞ z1 ln z1 cosw1 � z2 ln z2 cosw2 �

a2 � 1
2a3 a cos 2w2 �

a2 � 1
a

a
z2

cosw2 þ 2a2 ln
z
z2

� �	 

: ðA:2Þ

The Airy stress function for the whole dislocation is v ¼ vbn þ vbg , which delivers the stress components by

rn ¼ o2v
og2 ; rg ¼ o2v

on2
; rng ¼ � o2v

onog
: ðA:3Þ

The nonsingular parts of the stress, giving rise to image force on the dislocation exerted by the surface of the void, are

rn ¼ � Gbg
2pð1� mÞ

r2 � a2

r3
� a2

r
1

r2 � a2

� �
;

rg ¼ Gbg
2pð1� mÞ

r2 � a2

r3
þ a2

r
1� 2r2=a2

r2 � a2

� �
;

rng ¼ � Gbn

2pð1� mÞ
r

r2 � a2
:

ðA:4Þ

Fig. A.1. The radii z, z1, z2 and the angles w,w1, w2 appearing in the expressions for the Airy stress functions and the stress components at an arbitrary point
B due to edge dislocation at the point A. The radius of the void is a, and the lengths OA ¼ r ¼ aa and OC ¼ a=a.
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The shear stress along the slip of the dislocation is

si ¼ 1
2
ðrg � rnÞ sin 2ðh�uÞ þ rng cos 2ðh�uÞ: ðA:5Þ

Since bn = bcos(h � u), bg = bsin (h � u), where b is the magnitude of the Burgers vector of the dislocation, and since sin
(h � u) = (a/r) sinh, the substitution of (A.4) into (A.5) yields

si ¼ Gb cosðh�uÞ
2pð1� mÞ

a2

r3
2
r2 � a2

r2
sin2 h� r2

a2
r2

r2 � a2

� �
: ðA:6Þ

Thus, the image force on the dislocation (Fi = bsi) is as given by expression (4) of the main text.
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