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Abstract A new insight into the mechanics of belt friction is given. A conceptual and methodological
drawback in the presentation of the classical derivation of the force required to pull the belt over a fixed
drum against the hold-force and the friction between the belt and a drum is pointed out, corrected and
discussed. The total forces due to pressure and friction (P and F ) are evaluated in magnitude and
direction. It is shown that not only the local friction force is proportional to the local pressure (f = μp), but
also their resultants (F = μP ), where μ is the coefficient of static friction. The magnitude of the pressure
force is P = FR/(1 + μ2)1/2, where FR is the magnitude of the resultant of the pull- and hold-forces applied
at two ends of the belt. Different methodological approaches to the analysis are presented, which are
particularly appealing from the educational point of view. These include the local and integral equilibrium
considerations, the virtual work approach, and the dimensional analysis.
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Introduction

Flexible belts, cables, and ropes have wide applications in engineering, where they are
used as belt drives for power transmission between rotating shafts, band breaks to re-
duce angular speed of rotating machine parts in automobile and other industries, hoist
devices for lifting or lowering loads in construction industry, conveyors, magnetic tape
drives, etc. In all cases, they operate by friction between the belt and the surface of a
drum or a pulley. Because of its wide importance, the mechanics of belt friction and
Euler's formula1 relating the pull-force to the hold-force applied at two ends of the belt
are discussed in every undergraduate textbook of engineering mechanics.2–8

Figure 1a shows a flat belt of negligible weight wrapped around a fixed circular disk
or cylindrical drum with the contact (wrap) angle θ. The hold-force on the left end
(low-tension side) is T1, and the pull-force on the right end (high-tension side) at the in-
stant of impending slip (incipient sliding) of the belt is T2. The coefficient of static fric-
tion between the belt and the cylinder is μ. Figure 1b shows a free-body diagram of a
differential element of the belt, subtended by the angle dϕ. The total normal force from
the disk to the belt over the length Rdϕ is commonly denoted in the mechanics text-
books4,5,7 by dN. The total tangential force due to friction is then μdN. The increment
of the force in the belt from the left to the right of the infinitesimal element is dT. The
equilibrium conditions for the forces in the normal (n) and tangential (t) direction yield

dN ¼ T d’ ; dT ¼ �dN ; ð1Þ

neglecting the second-order products of the involved differentials. The elimination of
dN between the aforementioned two expressions gives dT = μTdϕ, and the integration
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over ϕ from 0 to the entire contact angle θ gives the Euler formula,17 or the belt friction
(capstan) equation,

T2 ¼ T1exp ��ð Þ : ð2Þ

From the methodological and pedagogical points of view, there are two drawbacks
in the presented derivation. First, while the force increment dT is well-defined physi-
cally, representing an increment of the magnitude of the tensile force T in the belt with
its arc length Rdϕ, the force increment dN is designated poorly, because the notation
suggests that it represents an increment of the force N, which is not clearly defined and
which lacks a definite physical meaning. For example, it does not represent a vector
quantity, because there is no direction that can be associated with N. Indeed, if P = P
(ϕ) is the total normal force exerted by the cylinder on the belt in the angle range [0,ϕ],
then its increment is dP = (pRdϕ)n, where p is the local pressure between the belt and
the cylinder, and n is the unit vector orthogonal to the belt at the considered point of
the contact. The magnitude of this force increment is |dP| = pR dϕ ≡ dN. However, the
so-defined dN is not equal to the increment of the magnitude of the physical force
P(dN ≠ d|P |), because for the forces with the varying direction the magnitude of
the force increment is not equal to the increment of its magnitude. Indeed,

dP ¼ d Pj j ¼ jPþ dPj � jPj ¼ cos ’� �ð ÞpRd’ ¼ cos ’� �ð Þ jdPj
¼ cos ’� �ð Þ dN ; ð3Þ

a b

Fig. 1 (a) A flat belt wrapped around a fixed circular cylinder of radius R. The contact angle
between the belt and the cylinder is θ. The hold-force at the left end is T1, and the pull-force at

the right end of the belt at the instant of its impending slip is T2. The coefficient of static
friction between the contacting surfaces is μ. (b) An infinitesimal belt segment subtended by the

angle dϕ. The tension in the belt at the left end of the segment is T and at the right end
T+dT. The total normal force exerted by the cylinder on the belt along the contact length Rdϕ

is designated by dN. The total friction force at the instant of impending slip is μdN. The
tangential and normal directions at the considered point of the belt are designated by t and n.
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where φ is the angle specifying the direction of the normal force P relative to the
direction ϕ = 0 (Fig. 2a).
The second drawback in the presented derivation is that it does not offer an op-

portunity to discuss more closely the independence of the force T2 (required to slip
the belt) of the radius R, evident from the absence of R in the expression (2). This
independence is to some extent counterintuitive, if one considers the fact that the
frictional resistance between the belt and the cylinder acts over the contact length
Rθ, which is proportional to R. The objective of this paper is to present a deriva-
tion which does not suffer from either of these drawbacks and which offers addi-
tional insight into the mechanics of belt friction. Alternative approaches to the
analysis are presented, which include the local and integral equilibrium consider-
ations, the virtual work approach, and the dimensional analysis.

Euler's formula

The following derivation is based on the explicit use of the local pressure and the
local friction force acting along the contact length between a belt and a cylinder,
as originally pursued by Euler1 and as commonly adopted in the literature on the
mechanism and machine theory.9,10 A belt wrapped around the fixed cylinder and
pulled against it by the forces T1 and T2 builds a pressure p = p(ϕ) over the entire
contact angle θ, as well as the (local) friction force f = f (ϕ) (both per unit length
of the belt). The free-body diagram of the belt segment of length Rdϕ is shown in
Fig. 3. The equilibrium conditions, before or at the instant of impending slip, give

X
Fn ¼ 0 : T ¼ pR ;

X
Ft ¼ 0 : dT ¼ fR d’ : ð4Þ

a b

Fig. 2 (a) A finite segment of the belt wrapped around a circular cylinder along the
contact angle θ. The considered belt segment is subtended by the angle ϕ. The belt tension
at the left end of the segment is T1 and on the right end T(ϕ). The total normal force acting
on the belt segment from the pressure exerted by the cylinder on the belt along the contact
angle ϕ is P(ϕ). Its direction is specified by the angle φ(ϕ). The increment of this force
dP = (pRdϕ)n is due to pressure acting along an additional infinitesimal length of the belt
Rdϕ, where n is the unit vector orthogonal to the belt at the point specified by the angle ϕ.
(b) The vector addition of the forces P(ϕ) and dP = (pRdϕ)n, producing the force P(ϕ) + dP.
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Thus, the force in the belt at any point in the contact region is equal to the prod-
uct of the radius of the cylinder and the pressure at that point i.e. T(ϕ) = Rp(ϕ).18

The two equilibrium conditions in (4) involve three unknown quantities, the force
in the belt T = T(ϕ), the pressure p = p(ϕ), and the friction f = f(ϕ). The problem
is thus statically indeterminate, unless the pull-force is sufficiently increased to pro-
duce the state of impending gross slip of the belt. In the latter case, adopting the
Amontons–Coulomb law of dry friction12, the local friction force is f = μp and the
system of equations (4) becomes statically determinate. The increment of the force
in the belt is then dT = μTdϕ, and the integration gives T2 = T1exp(μθ). If a
weightless belt is actually slipping over the cylindrical surface, the coefficient of
kinetic friction μk, rather than the coefficient of static friction μ, should be used in
the aforementioned derivation. In either case, the coefficient of friction is assumed
to be constant along the contact.
One could also proceed with the analysis by deriving from (4) the differential

equation for the pressure, rather than the force in the belt. In this case, from the
first of (4), the increment of the force can be expressed as dT = Rdp, and the sub-
stitution into the second of (4) gives dp = fdϕ. In the state of impending slip this
becomes dp = μpdϕ, and the integration gives p(ϕ) = p(0)exp(μϕ), with p(0) =
T1/R being the pressure at the contact point ϕ = 0.
The derivation based on the free body diagram shown in Fig. 3, with the explic-

itly introduced and utilized local pressure p and local friction force f, is conceptu-
ally and pedagogically more appealing than the derivation presented in the
introductory section (Fig. 1b), because it delivers a physically clear, fundamental
expression between the force in the belt and the pressure (T = Rp), rather than its
masked19 version dN = Tdϕ appearing in (1). The expression T = Rp shows that
the contact pressure between the belt and the cylinder decreases with the increase
of the radius of the cylinder, as physically expected, and it does so inversely pro-
portional to the radius (p = T/R). The force in the belt cannot depend on R, be-
cause there is no length scale in the problem other than R, and thus by the
dimensional argument T = T(ϕ).20 The local friction force is also inversely

Fig. 3 An infinitesimal belt segment subtended by the angle dϕ. The tension in the belt at the
left end of the segment is T and on the right end T + dT. The total force from the pressure p
acting along the contact length Rdϕ is p(ϕ)Rdϕ (neglecting the small quantities of higher

order). Likewise, the total force from the local friction f is f (ϕ)Rdϕ. The tangential and normal
directions at the considered point of the belt are designated by t and n.
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proportional to R, both before and at the instant of impending slip, because
from the second of (4) it follows that f = R−1 dT/dϕ before impending slip, and
f = μT/R at the instant of impending slip.
For the same coefficient of friction (μ) and the same contact angle (θ), the force

T2 required to cause the slip and overcome the frictional resistance between the belt
and the cylinder is the same for a large (R2) and small (R1) radius of the cylinder,
because the local pressure and the local friction force are smaller but act over a lon-
ger contact length in the case of a larger cylinder, and vice versa for a smaller cylin-
der. This is sketched in Fig. 4. Students in classroom commonly express the
opinion that the frictional resistance over a longer contact length should be greater,
because more resistive force accumulate along a longer distance, forgetting that the

Fig. 4 An infinitesimal belt segment taken from two belt/cylinder configurations with the
same total contact angle θ, and the same hold- and pull-forces T1 and T2. In the first case,
the radius of the cylinder is R1 and in the second case R2. The total pressure forces acting

on two infinitesimal segments subtended by the angle dϕ are the same
(p1R1 dϕ = p2R2 dϕ), because T = p1R1 = p2R2. Likewise, the corresponding total friction
forces are the same ( f1R1 dφ = f2R2 dφ), where f1 = μp1 and f2 = μp2. It is assumed that

the same coefficient of friction μ characterizes both contact surfaces.

a b

Fig. 5 A rectangular block of unit thickness and weight W, having the sides a1 and a2,
pushed against a rough horizontal substrate when it is placed with (a) shorter and (b)

longer side in contact with it. The average pressure exerted by the substrate is p1 = W/a1 in
case (a), and p2 = W/a2 in case (b). The corresponding average local friction forces (per
unit contact length), at the instant of impending slipping, are f1 = μp1 and f2 = μp2, where
μ is the coefficient of static friction. The moment equilibrium condition is satisfied by the

actual nonuniform pressure distribution (not shown in the figure).
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increase of the contact length is accompanied by the decrease of the local pressure
and thus the decrease of the local friction force.21 This situation is analogous to the
effect of the contact area on the sliding of a rectangular block over a rough flat sur-
face (Fig. 5). The total frictional resistance is the same in cases (a) and (b), because
the local pressure and the local friction force are larger in the first, and smaller in
the second case. Since the contact area is smaller in the first case and larger in the
second case, the total friction force is the same in both cases. The use of this ele-
mentary example is pedagogically very effective in the classroom discussion of the
Euler's belt friction formula and the explanation of its independence of the radius R.

Integral equilibrium considerations
Figure 6 shows a free-body diagram of a finite segment of the belt wrapped around
a cylinder over the contact angle θ. The shown segment is subtended by the angle
ϕ. The force in the belt at the right end is denoted by T(ϕ). For the equilibrium of
the entire belt segment, the moment of all forces for the point A has to be zero,
which gives

T ’ð ÞR 1� cos’ð Þ � R

Z ’

0
ðsin#Þp #ð Þ þ ð1� cos#Þf #ð Þ½ �R d# ¼ 0 : ð5Þ

Upon taking the derivative d/dφ, (5) reduces to

dT
d’

� Rf ’ð Þ
� �

1� cos’ð Þ þ T ’ð Þ � Rp ’ð Þ½ �sin’ ¼ 0 : ð6Þ

Fig. 6 A free-body diagram of the finite segment of the belt wrapped around the cylinder
along the contact angle θ. The shown segment is subtended by the angle φ. The force in the
belt at the left end is T1 and at the right end T(ϕ). The local pressure and friction forces

(per unit length) at an arbitrary angle ϑ ∈ [0,ϕ] are p(ϑ) and f(ϑ).
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Since this must hold for any ϕ, there follows

dT
d’

¼ Rf ’ð Þ ; T ’ð Þ ¼ Rp ’ð Þ : ð7Þ

Physically, applying the derivative to the integral condition of equilibrium (5) in
effect reproduces the local conditions of equilibrium for an infinitesimally small
belt element.

Virtual work consideration
The Euler belt friction formula can be derived by the virtual work consideration as
follows. Suppose that a belt is given a uniform virtual displacement in the radial
direction δun. The virtual work for the belt segment Rϕ is

�W ¼
Z ’

0
p #ð ÞR d# �un ¼ N ’ð Þ�un ; N ’ð Þ ¼ R

Z ’

0
p #ð Þ d# : ð8Þ

The force N(φ) can here be interpreted as a generalized force in the sense that
δW = N(φ)δun. By the principle of virtual work, this virtual work must be equal to
the virtual strain energy associated with the virtual hoop (circumferential) strain
due to radial belt expansion (δun/R), which is

�U ¼
Z ’

0
T

�un
R

R d# ¼
Z ’

0
T �un d# : ð9Þ

Thus, by equating (8) and (9),

N ’ð Þ ¼
Z ’

0
T d# : ð10Þ

Suppose next that the belt is giving a uniform virtual displacement δut tangential
to the belt (uniform slip displacement throughout the contact length). The corre-
sponding virtual work for the belt segment Rϕ is

�W ¼ T ’ð Þ � T1½ ��ut �
Z ’

0
f #ð ÞR d# �ut ¼ 0 : ð11Þ

Since f = μp, this gives

T ’ð Þ � T1 ¼ �N ’ð Þ : ð12Þ
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By combining (10) and (12), we obtain

T ’ð Þ � T1 ¼ �

Z ’

0
T d# ; ð13Þ

which has the solution T(ϕ) = T1exp(μϕ), in agreement with the Euler's formula.

Dimensional consideration
Almost entire expression for the force T2 required to pull the belt over a rough circular
cylinder against the hold-force T1 can be deduced by the dimensional arguments. Since
there is no length scale other than the radius of the circular cylinder, the force T2 must
scale with T1 and be a function of the nondimensional coefficient of friction μ and the
contact angle θ, i.e. T2 = T1g(μ, θ). The function g(μ, θ) must have the property

g �; �1 þ �2ð Þ ¼ g �; �1ð Þg �; �2ð Þ ; ð14Þ

because physically the force in the belt must obey the transitivity property (Fig. 7)

T2 �; �1 þ �2ð Þ ¼ T1g �; �1 þ �2ð Þ ¼ T1;2g �; �2ð Þ ¼ T1g �; �1ð Þ½ �g �; �2ð Þ : ð15Þ

The function g(μ, θ) satisfying the property (14) is an exponential function,
g(μ, θ) = exp[c(μ)θ]. Thus, for any angle ϕ ∈ [0, θ], we can write

T �; ’ð Þ ¼ T1exp c �ð Þ’½ � ; dT ¼ c �ð ÞT d’ : ð16Þ

It remains to specify the function c(μ). The analysis cannot proceed further on
the basis of the dimensional analysis alone, and one has to invoke the equilibrium

a b c

Fig. 7 (a) A flat belt wrapped around a fixed cylinder along the contact angle
θ = θ1 + θ2. The hold-force at the left end is T1, and the pull-force at the right end of the
belt at the instant of impending slip is T2. (b) The belt segment from part (a) subtended by
the angle θ2. The force at the left end is designated by T1,2, while the force at the right end
is T2. (c) The belt segment from part (a) subtended by the angle θ1. The force at the left end

is T1, and at the right end T1,2.
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conditions. The increment of the force in the belt at any point within the contact
angle is physically due to the local friction force, so that dT = fR dϕ = μpR dϕ.
Since the circumferential force in the belt is supported by the pressure in the belt
(T = Rp), the increment of the force becomes dT = μT dϕ, and the comparison
with (16) establishes c(μ) = μ.

Total interaction forces

By comparing (1) and (4), we can write dN = pR dϕ, and by integrating from
ϕ = 0 to an arbitrary ϕ ∈ (0, θ], there follows

N ’ð Þ ¼ R

Z ’

0
p #ð Þ d# ¼

Z s

0
p sð Þ ds ; ð17Þ

in agreement with (8). Thus, the force N(ϕ) at an arbitrary point of the belt rep-
resents the integral of pressure p = p(s) over the length s = Rϕ of the belt, re-
gardless of the direction of the local pressure p along the belt within the contact
region. Such force quantity (N) has no physical meaning in the considered prob-
lem, apart from the fact that its increment represents the magnitude of the nor-
mal force acting on the arc length ds of the belt due to the contact pressure (p)
along that length. Nevertheless, we proceed to evaluate N = N(ϕ) to later com-
pare it with the physical force P from section 3.1. Since Rp(ϕ) = T(ϕ) = T1exp
(μϕ), the integration in (17) gives

N ’ð Þ ¼ 1
�

T ’ð Þ � T1½ � ¼ T1
�

exp �’ð Þ � 1½ �: ð18Þ

In particular N1 = N(0) = 0 and N2 = N(θ) = (T2 − T1)/μ. The difference
T2 − T1 can be interpreted as the line integral of the friction force f(ϕ) = μp(ϕ),
while N2 is the line integral of the pressure p(ϕ) over the entire contact length Rθ.
Also, the gradient of N with respect to ϕ is the force in the belt dN/dϕ = T(ϕ), in
accord with (1).
Alternatively, the expression (18) can be deduced by imposing the equilibrium

condition for the vanishing moment of all forces acting in Fig. 6 for the point O.
This gives

T ’ð Þ � T1½ �R ¼ R

Z ’

0
f #ð ÞR d# : ð19Þ

At the instant of impending slip, f(ϑ) =μp(ϑ) and (19) gives T(ϕ) = T1 +μN(ϕ).
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Total forces due to pressure and friction
It is appealing to evaluate the total pressure and friction forces acting between the
belt and a cylinder. The total force due to pressure is

P �ð Þ ¼
Z �

0
n ’ð Þ p ’ð ÞR d’ ; dP ¼ p ’ð ÞR d’ n ’ð Þ ; ð20Þ

where n(ϕ) = − cos(θ0 + ϕ)i + sin(θ0 + ϕ)j is the unit vector orthogonal to the
cylinder at an arbitrary contact point (Fig. 8a). By substituting the pressure expres-
sion p(ϕ) = (T1/R)exp(μϕ) and by integrating, it follows that P(θ) = Px(θ)i +
Py(θ)j, with

Px �ð Þ ¼ � 1
1þ �2

T2 �cos �0 þ �ð Þ þ sin �0 þ �ð Þ½ � � T1 �cos�0 þ sin�0ð Þf g;

Py �ð Þ ¼ 1
1þ �2

T2 �sin �0 þ �ð Þ � cos �0 þ �ð Þ½ � � T1 �sin�0 � cos�0ð Þf g:
ð21Þ

The direction of the force P passes through O at an angle α defined by tanα =
Py/Px (Fig. 8b).
Since each local friction force f is orthogonal and proportional to the correspond-

ing pressure p, the total friction force F is orthogonal to P and equal to F(θ) =
Fx(θ)i + Fy(θ)j, where

Fx �ð Þ ¼ ��Py �ð Þ ; Fy �ð Þ ¼ �Px �ð Þ : ð22Þ

a b

Fig. 8 (a) A free-body diagram of the belt wrapped around a cylinder along the contact
angle θ. The hold-force at the left end (defined by the angle θ0) is T1, and the pull-force at
the right end is T2. The local pressure and friction forces at an arbitrary angle φ ∈ (0, θ)
are p(φ) and f(φ). The total reactive force from the cylinder, balancing the forces T1 and
T2 is FR = T1 + T2. (b) The force-triangles showing the components of the total reactive

force FR = T1 + T2 = P + F, where P is the total reactive force from the pressure, and F is
the total reactive force from the friction. The angles α and γ are defined by tanα = Py/Px

and tanγ = F/P = μ.
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The magnitudes F ¼ F2
x þ F2

y

� �1=2
and P ¼ P2

x þ P2
y

� �1=2
are related by

F ¼ �P ; P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p FR ; ð23Þ

where FR is the magnitude of the total reactive force from the cylinder to the belt,
FR = P + F = (Px − μPy)i + (Py + μPx)j, which is (Fig. 8a)22

FR �ð Þ ¼ T2
1 þ T2

2 �ð Þ � 2T1T2 �ð Þcos�� �1=2
; T2 �ð Þ ¼ T1exp ��ð Þ : ð24Þ

Figure 9 shows the variation of the forces P, F, FR, and T2 (all scaled by T1)
with θ/π for two selected values of the friction coefficient (μ = 0.2 and μ = 0.3).
Due to directional changes of the local pressure and friction forces, the total reac-
tive force FR as well as the total pressure and friction forces (P and F) can have as-
cending and descending portions along the axis of increasing contact angle θ. This
is particularly pronounced for lower values of the friction coefficient μ.
The normal distance of the direction of the total friction force F from the point

O can be calculated from the moment equilibrium condition for the point O
(Fig. 10), which gives h = R(T2 − T1)/F, i.e.

h

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
�

T2 � T1

T2
1 þ T2

2 � 2T1T2cos�
	 
1=2 ; T2 ¼ T1exp ��ð Þ : ð25Þ
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Fig. 9 The variation of the forces P, F, FR, and T2 (all scaled by T1) with the contact
angle θ/π in the case: (a) μ = 0.2 and (b) μ = 0.3.
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Finally, we compare the forces N(θ) and P(θ), which are defined by

N �ð Þ ¼ T1
�

exp ��ð Þ � 1½ � ;

P �ð Þ ¼ T1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p 1þ exp 2��ð Þ � 2cos�exp ��ð Þ½ �1=2 : ð26Þ

Their variation with the contact angle θ (scaled by the magnitude of the hold-force
T1), for the selected values of the friction coefficient μ, is shown in Fig. 11. While the
direction of P passes through O for all θ, there is no direction associated with N (thus
a vector N does not exist). As a consequence, N is monotonically increasing with θ,
while the force P has the descending portions for the smaller values of μ, because it
accounts for the directional changes of pressure along the contact between the cylin-
der and the belt. Being monotonically increasing, the gradient of N(ϕ) with respect to
φ gives a monotonically increasing force in the belt, T(ϕ) = dN/dϕ, which is the most
significant property of the otherwise unphysical force N.

Further remarks on the R-independence

Since the radius R does not enter the Euler's formula (2), one can conclude that (2)
also applies to belts wrapped around smooth surfaces of any shape,5 such as shown
in Fig. 12a. Indeed, in this case the radius of the curvature changes along the arc
length, ρ = ρ(s), so that the equilibrium conditions applied to an infinitesimal belt
segment shown in Fig. 12b (vanishing resulting force in the tangential and normal
direction) give T(s) = p(s)ρ(s) and dT(s) = f(s)ds, where ds = ρ(s)dϕ.23 In the state

Fig. 10 The total reactive force from the cylinder to the belt, due to applied forces T1 and
T2, is FR. The three forces intersect at the same point. The pressure component of FR is P,

which passes through the point O at the angle α = arctan(Py/Px) with respect to the
horizontal direction. The normal distance of the direction of the total friction force F from

the point O is h = R(T2 − T1)/F.
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of impending slip f(s) = μp(s), and the integration gives T2 = T1exp(μθ), where θ is
the angle between the normals to the contact surface at the end points of the contact.
The force in the belt and the contact pressure at an arbitrary point within the contact
angle are

T ’ð Þ ¼ T0exp �’ð Þ ; p ’ð Þ ¼ �0p0
� ’ð Þ exp �’ð Þ ; ð27Þ

where p0 is the pressure and ρ0 the radius of curvature at the contact point ϕ = 0.
An independent derivation of the aforementioned results, in the spirit of an ap-

proach used to derive the expressions for the tangential and normal components of ac-
celeration,3,5 or that used in the mechanics of curved beams and thin shells,11,14 is
instructive. For equilibrium, the vector sum of the forces acting on the segment of the
belt shown in Fig. 12b must be equal to zero. This gives

dT ¼ f� d’ t� p� d’ n ; ð28Þ

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

/π

P(θ)
N(θ)

0 0.5 1 1.5 2
0

2

4

6

8

10

/π

P(θ)
N(θ)

0 0.5 1 1.5 2
0

5

10

15

20

/π

P(θ)
N(θ)

0 0.5 1 1.5 2
0

10

20

30

40

50

/π

P(θ)
N(θ)

a b

c d

(P
, N

) 
/T

1

(P
, N

) 
/T

1

(P
, N

) 
/T

1

(P
, N

) 
/T

1

Fig. 11 The variations of P and N (scaled by T1) with the angle θ (scaled by π) in the
cases: (a) μ = 0, (b) μ = 0.1, (c) μ = 0.3, and (d) μ = 0.5.
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where n and t are the unit vectors orthogonal and tangential to the cylinder at the
considered contact point. On the other hand, by writing T = Tt, its increment is
dT = dTt + Tdt. Since dt = −ndϕ, the increment of the belt force becomes

dT ¼ dT t� T d’ n : ð29Þ

The comparison of (28) and (29) then yields T = pρ and dT = fρdϕ, in agree-
ment with the earlier more elementary considerations. A related discussion can be
found in15, which also offers an analysis of the belt friction in the case of the
three-dimensional contact geometry.

Conclusions

We have pointed out and discussed a methodological and conceptual drawback in
the derivation of the force required to pull a thin flexible belt over a fixed drum,
present in all undergraduate mechanics textbooks which utilize an increment of a
poorly defined and unphysical force (N). This drawback is corrected by employing
in the derivation to local pressure and local friction force between the belt and the
drum. The explicit use of the local pressure and friction forces also provides an op-
portunity to better explain physically the independence of the pull-force required to
slip the belt of the radius of the drum. The latter is to some extent counterintuitive,
if one considers the fact that the frictional resistance between the belt and the drum
acts over the entire contact length between the two. Dimensional arguments are
provided to shed additional light to this independence. Although the difference be-
tween the pull- and hold-force at the two ends of the bell equals the integral of the
shear forces along the contact length, we evaluate the total forces due to pressure
and friction alone (P and F) to examine their contributions in carrying the resultant
(FR) of the forces applied at two ends of the belt. It is shown that, in the state of
impending slip, not only the local friction force is proportional to the local pres-
sure, but also their resultants (F = μP), where μ is the coefficient of static friction.
The magnitude of the pressure force is P = FR/(1 + μ2)1/2. We quantify the

a b

Fig. 12 (a) A flat belt wrapped around a noncircular cylinder. The contact angle θ is
defined by the intersection of the directions orthogonal to the cylindrical surface at the end
contact points. (b) A free-body diagram of an infinitesimal segment of the belt. The local

radius of the curvature is ρ(s), where s is the arc length along the belt.
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difference between the physical force P and a nonphysical force quantity N by pro-
viding their variations with the contact angle for different values of the coefficient
of friction. The presented analysis may be useful to the university instructors of en-
gineering mechanics in their discussion of the belt friction, the derivation of the
Euler's formula, and the explanation of its independence of the radius of the cylin-
der supporting the belt. The analysis of the belt force before the state of impending
slip has been reached is presented separately.16
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