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Effects of a frictionless
hinge on internal forces,
deflections, and load
capacity of beam
structures

Vlado A Lubarda

Abstract

The redistribution of internal forces and deflections in a uniformly loaded propped

cantilever and a fixed-end beam caused by the insertion of a frictionless hinge is eval-

uated for an arbitrary position of the hinge. This is accomplished by an extended use of

the method of discontinuity functions to incorporate the slope discontinuity at the

hinge, without the separation of structures into their constituting parts, as commonly

done in other methods of analysis. It is shown that the insertion of a hinge in the middle

of a propped cantilever increases the reactive moment at the fixed end two times.

A hinge in the middle of a fixed-end beam increases its reactive moments by 50%, while

the maximum deflection increases three times. The maximum allowable load is deter-

mined for all considered structures by using the classical and the limit design criteria. If a

hinge is placed in a propped cantilever at the distance from its fixed end smaller than

one-fourth of its span, the classical design criterion predicts that a hinged propped

cantilever can transmit a greater distributed load than a propped cantilever without a

hinge. However, according to the limit design criterion, the insertion of a hinge in a

propped cantilever decreases the ultimate load for any location of a hinge. The insertion

of a hinge in a fixed-end beam decreases the maximum load according to both, the

classical and the limit design criteria. For the rectangular cross section, the ratio of the

maximum loads according to the limit and the classical design criterion is constant and

equal to 3/2 in the case of a hinge-relaxed propped cantilever, while it varies with the

position of the hinge in the case of a hinge-relaxed fixed-end beam. The presented

analysis and the obtained results are of interest for undergraduate engineering educa-

tion in the courses of mechanics of materials and structural design.
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Introduction

The determination of deflected shape of elastic beam structures and their allowable
loads according to the classical or the limit design criterion are classic problems of
solid mechanics and engineering design (Beer et al., 2014; Budynas and Nisbett,
2014; Craig, 2011; Gere and Goodno, 2013). Nevertheless, an analytical examin-
ation of the effect of the location of an inserted frictionless hinge on the redistri-
bution of internal forces and deflections, and the resulting changes of the load
capacity of beam structures, have not been fully addressed or reported in the lit-
erature. Toward that goal, in this paper we consider two important structural beam
problems, a propped cantilever and a fixed-end beam, with and without an inserted
hinge, under a uniformly distributed load. Their elastic deflections and internal
forces are determined by making an extended use of the method of discontinuity
functions to incorporate the slope discontinuity at the hinge, without the separ-
ation of structures into their constituting parts, common to other types of analyzes.
The utilized method significantly facilitates the analysis, but surprisingly has not
yet been incorporated in the mechanics of materials textbooks, although it has been
promoted in the journal literature fifty years ago (Brungraber, 1965). It is shown,
inter alia, that the insertion of a hinge in the middle of a propped cantilever
increases the reactive moment at the fixed end two times, while a hinge in the
middle of a fixed-end beam increases its reactive moments by 50%. The mid-deflec-
tion of a fixed-end beam is increased three times by the introduction of a hinge in
its mid-section. The maximum allowable load is determined by using the classical
and the limit design criteria. According to the classical design criterion, if a hinge is
placed in a propped cantilever at the distance from its fixed end smaller than one-
fourth of its span (a<L/4), the hinged structure can, surprisingly, transmit a
greater distributed load than a propped cantilever without a hinge. The maximum
load that a hinged structure can transmit is about 46% greater than the maximum
load transmitted by a propped cantilever without a hinge. However, according to
the limit design criterion, the insertion of a hinge in a propped cantilever decreases
the limit load for any a/L. On the other hand, the insertion of a hinge in a fixed-end
beam decreases the maximum load according to both design criteria, for any pos-
ition of a hinge. The classical design criterion in this case predicts the greatest load
decrease if a hinge is placed at a¼ 0.4171 L, the maximum load is about 61% of the
maximum load transmitted by a fixed-end beam without a hinge. According to the
limit design criterion, the load decrease is greatest for a¼ 0.5 L, when it is 50% of
the maximum load transmitted by a fixed-end beam without a hinge. For rectangu-
lar cross-sections, the ratio of the maximum load according to the limit and the
classical design criteria is constant and equal to 3/2 in the case of a hinge-relaxed
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propped cantilever, while it varies with a/L in the case of a hinge-relaxed fixed-end
beam.

Analysis of two beams connected by a hinge

A frictionless hinge connecting two beams cannot transmit a bending moment and
thus does not place any restriction on the relative rotation of adjacent beams. The
determination of deflections in a structure consisting of two beams connected by a
hinge, such as one shown in Figure 1(a), by the integration of the corresponding
differential equation requires a lengthy integration for each beam separately, unless
discontinuity functions are used. The use of discontinuity functions for hinge-
connected beam structures was first advocated by Brungraber (1965) and subse-
quently expanded upon by Failla (2011), Falsone (2002), and Yavari et al. (2000),
but, surprisingly, the method has not yet found its place in solid mechanics text-
books, which include the use of discontinuity functions for the unhinged structures
only. To demonstrate its effectiveness, the method is applied in this section to
determine deflections and internal forces in a hinge-connected beam structure
from Figure 1(a). The derived general results are then specialized to generate the
solutions to two hinge-relaxed structures shown in Figure 1(b) and 1(c).

The Macaulay functions of integer degree n� 0 are defined by

hz� ain ¼
0, z5 a

ðz� aÞn, z � a

�
ð1Þ

where the angle brackets hi are the so-called Macaulay brackets (e.g. Craig, 2011).
The Macaulay functions can be conveniently used to represent a suddenly

(a)

(b) (c)

Figure 1. (a) Two beams connected by a hinge at C. The end A is fixed, and the end B is

simply supported. The loading consists of a uniform load w applied along the entire length of

the structure, and a concentrated moment MB at the end B. The deflection of the beam is

v¼ v(z), where z is measured from A. (b) Two beams connected by a hinge at C. The end A is

fixed, and the end B is simply supported. (c) Two cantilever beams connected by a hinge at C.
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terminating or abruptly changing distributed load. A concentrated force is repre-
sented by a singularity function hi�1, which is singular at z¼ a and zero for z 6¼ a
(unit impulse function). Similarly, a concentrated couple can be represented by a
singularity function hi�2 (unit doublet function). The latter are defined so that the
integrals of discontinuity functions are

Z
hz� ain dz ¼

hz� ainþ1, n � 0

1

nþ 1
hz� ainþ1, n4 0

8<
: ð2Þ

Since the discontinuity of the shear force, i.e. the discontinuity of the third
derivative of deflection, is represented by using the singularity function hz� ai�1,
and the discontinuity of the moment (or second derivative of deflection) by using
the singularity function hz� ai�2, the discontinuity of the first derivative of deflec-
tion (slope discontinuity) at the hinge can be incorporated in the analysis by using
the singularity function hz� ai�3 (Brungraber, 1965).

With the so-introduced discontinuity functions, the governing differential equa-
tion for the deflection of the beam in Figure 1(a) can be written as

EIv0000ðzÞ ¼MAhzi
�2 � YAhzi

�1 þ EI�v0Chz� ai�3

� YBhz� Li�1 �MBhz� Li�2 þ whzi0 ð3Þ

The slope discontinuity at the hinge is denoted by �v0C ¼ v0ðaþÞ � v0ða�Þ.
Respecting the rules of integration, equation (2), four consecutive integrals of
equation (3) are

EIv000ðzÞ ¼MAhzi
�1�YAhzi

0þEI�v0Chz� ai�2�YBhz�Li0�MBhz�Li�1þwhzi1

ð4Þ

EIv00ðzÞ ¼MAhzi
0�YAhzi

1þEI�v0Chz� ai�1�YBhz�Li1�MBhz�Li0þ
1

2
whzi2

ð5Þ

EIv0ðzÞ ¼MAhzi
1 �

1

2
YAhzi

2 þ EI�v0Chz� ai0 �
1

2
YBhz� Li2 �MBhz� Li1

þ
1

6
whzi3 þ EIv0ð0Þhzi0, v0ð0Þ ¼ 0 ð6Þ

EIvðzÞ ¼
1

2
MAhzi

2 �
1

6
YAhzi

3 þ EI�v0Chz� ai1 �
1

6
YBhz� Li3 �

1

2
MBhz� Li2

þ
1

24
whzi4 þ EIvð0Þhzi0, vð0Þ ¼ 0 ð7Þ

The moment conditions at C and B are v00(a)¼ 0 and EIv00(L)¼MB (with
the assumed direction of MB as shown in Figure 1(a)). In view of equation (5),
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they give

MA � YAa ¼ �
1

2
wa2, MA � YAL ¼MB �

1

2
wL2 ð8Þ

which can be solved for YA and MA to obtain

YA ¼
1

2
wðaþ LÞ �

MB

b
, MA ¼

1

2
waL�

a

b
MB ð9Þ

The reaction YB follows from the closure condition V(Lþ)¼�EIv000(Lþ)¼ 0,
from which YB¼wL�YA, i.e.

YB ¼
1

2
wbþ

MB

b
ð10Þ

The boundary condition v(L)¼ 0 of zero deflection at the support B requires,
from equation (7), that

1

2
MAL

2 �
1

6
YAL

3 þ EI�v0Cb ¼ �
1

24
wL4 ð11Þ

In view of equation (9), this yields an expression for the slope discontinuity at
the hinge

EI�v0C ¼
wL3

24
1� 3

a

b

� �
þ
MBL

2

6b
2
a

b
� 1

� �
ð12Þ

The internal force at the hinge is obtained from YC¼�EIv000(a), which gives

YC ¼
1

2
wb�

MB

b
ð13Þ

The expression for the slope at the support B is

EIv0ðLÞ ¼ �
wa4

24

b

a

� �4

þ4
b

a
þ 3

" #
þ
MBb

3
1þ

a

b

� �3� �
ð14Þ

The expression for the deflected shape is obtained by substituting equations (9)
and (12) into equation (7). The presented derivation demonstrates the effectiveness
of the method, which does not require the separation of the structure into two parts
and the explicit imposition of the continuity conditions at the hinge, inherent to
other methods of solution.
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Analysis of a hinge-relaxed propped cantilever

If the moment at the support B vanishes (MB¼ 0), the hinged structure from
Figure 1(b) is obtained. The corresponding reactions and the slope discontinuity
are, from equations (9) to (12)

YA ¼
1

2
wðaþ LÞ, YB ¼ YC ¼

1

2
wb, MA ¼

1

2
waL, �v0C ¼

wL3

24EI
1� 3

a

b

� �
ð15Þ

The overall deflected shape is

vðzÞ ¼
wL4

24EI
6
a

L

z

L

� �2
�2 1þ

a

L

� � z

L

� �3
þ

z

L

� �4
þ

a

L
1� 3

a

b

� � z

a
� 1

D E� �
ð16Þ

In particular, the deflection at the hinge is

vðaÞ ¼
wa3

24EI
ð3aþ 4bÞ ð17Þ

Figures 2(a) and 2(b) show deflected shapes when the hinge is located at a¼ 0.5L
and a¼ 0.3L. In the former case the deflection is maximum at the hinge and equal
to vC’ 18.23 v0, where v0¼ 10�3wL4/EI. In the later case the deflection at the hinge
is vC’ 4.16 v0, while the maximum deflection is vmax’ 5.5 v0, reached at z’ 0.55L,
which is about 32% greater than vC. If a’ 0.3591 L, the slope v0(aþ)¼ 0
(Figure 2(c)). There is no slope discontinuity at C (passive hinge, �v0C ¼ 0) if
b¼ 3a, i.e. a¼L/4 (Figure 2(d)). In this case the deflection at C is vC’ 2.44 v0.
The numerical evaluation of the maximum deflection was performed by executing
the Matlab function [�, fval]¼ fminbnd(fun,0,1), which returns a local minimizer �
(¼z/L) at which the function specified in the function_handle fun reaches its min-
imum value (fval) within the interval 0<�< 1. The fun¼� v(z) is specified by
equation (16). The Matlab details of this minimization procedure are included
for educational purposes, because this simple exercise offers an opportunity for
students to demonstrate their ability to use modern tools in engineering education,
such as the Matlab software, which contributes to the fulfillment of the ABET
student outcome criterion 3k (ABET, 2015).

Other aspects of the analysis can be pursued. For example, since the end slope of
a simply supported beam is wb3/24EI, the maximum deflection will occur to the
right of the hinge if

wb3

24EI
4

vðaÞ

b
, i:e:,

b

a

� �4

�4
b

a
� 34 0 ð18Þ

By using the Matlab function roots(p) (Attaway, 2013) to find the roots of the
polynomial whose coefficients are p¼ [1, 0, 0,� 4,� 3], it follows that the inequality
(18) holds provided that b> 1.7844a, i.e. a< 0.3591L.
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Analysis of hinge-connected cantilever beams

The reactions and deflected shape of a hinged structure made of two cantilever
beams, shown in Figure 1(c), can be directly obtained from the derived general
results by imposing the condition v0(L)¼ 0. From equation (14) it follows that the
corresponding reactive moment is

MB ¼
wb

8
bþ

3a3

d2

� �
, d2 ¼ a2 þ b2 � ab ð19Þ

The other reactions follow from equations (9) and (10) as

YA ¼
w

8
5aþ

3b3

d2

� �
, YB ¼

w

8
5bþ

3a3

d2

� �
, MA ¼

wa

8
aþ

3b3

d2

� �
ð20Þ

(a) (b)

(c) (d)

Figure 2. Deflected shapes of a hinge-connected beam structure from Figure 1(b) in the case

when the hinge is placed at: (a) a¼ 0.5L; (b) a¼ 0.3L; (c) a¼ 0.3591L; and (d) a¼ 0.25L. The

scaling factor for deflections is the magnitude of the deflection at the hinge, which is

v(a)’ 18.23 v0 in case (a), v(a)’ 4.16 v0 in case (b), v(a)’ 7.02 v0 in case (c), and v(a)’ 2.44 v0

in case (d), where v0¼ 10�3 wL4/EI. In case (c) the slope v0(aþ)¼ 0, and in case (d) the hinge is

passive in the sense that v0(a�)¼ v0(aþ).
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The symmetry of the expressions for YA and YB, and MA and MB, regarding the
interchange of a and b, is noted in equations (19) and (20). The internal force at the
hinge C is

YC ¼
3w

8

b3 � ad2

d2
¼

3w

8

b4 � a4

a3 þ b3
ð21Þ

In the last step, the identity a3þ b3¼ (aþ b)d2 was used. The slope discontinuity at
the hinge C is

�v0C ¼
wL3

48EI
1� 3

ab

d2

� �
ð22Þ

The deflected shape of the beam follows from equation (7), and is given by

EIvðzÞ ¼
1

2
MAz

2 �
1

6
YAz

3 þ
1

24
wz4 þ EI�v0Chz� ai ð23Þ

where YA, MA, and �v0C are specified by equations (20) and (22). In particular, the
deflection of the hinge is

vðaÞ ¼
wa3b3

8EId2
ð24Þ

There is no slope discontinuity at the hinge if �v0C ¼ 0 in equation (22), i.e. if

b

a

� �2

�4
b

a
þ 1 ¼ 0 ð25Þ

The solutions of this quadratic equation are b=a ¼ 2�
ffiffiffi
3
p

. In terms of the ratio
a/L, the two corresponding locations of the hinge are specified by
a ¼ ð1�

ffiffiffi
3
p
=3ÞL=2 (i.e. a’ 0.2113L and a’ 0.7887L), symmetrically positioned

with respect to a¼ 0.5L (Figure 3(a)). The deflection at C in either case is
vC’ 1.158 v0. The deflected shape in case a¼ 0.5L is shown in Figure 3(b).
Figures 3(c) and (d) show deflected shapes in cases a¼ 0.25L and a¼ 0.3L. In
the former case the deflection at the hinge is vC’ 1.883 v0, while the maximum
deflection is vmax’ 2.612 v0 (reached at z’ 0.479L, and about 39% greater than
vC). In the latter case, v0(aþ)’ 0.

An important design question is to determine for which ratio a/L the maximum
deflection in the structure does not occur at the hinge. The outcome of the analysis
is that for 0< a< 0.3043L the maximum deflection occurs to the right of C, and for
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0.6957< a<L to the left of C. In each case the location of the maximum deflection
is specified by

z ¼
1

2w
3YA � 9Y2

A � 24wMA


 �1=2h i
, 9Y2

A � 24wMA ð26Þ

Redistribution of reactions in a propped cantilever
by a hinge

It is important for the design purposes to evaluate the redistribution of reactions at
A and B in a propped cantilever from Figure 4(a) (case I) caused by the insertion
of a hinge (Figure 4(b), case II). The reactions in a propped cantilever of length L
(e.g. Gere and Goodno, 2013) are

YI
A ¼

5

8
wL, YI

B ¼
3

8
wL, MI

A ¼
1

8
wL2 ð27Þ

(a) (b)

(c) (d)

Figure 3. Deflected shapes of the beam structure from Figure 1(c) in the case when the

hinge is placed at: (a) a¼ 0.2113L; (b) a¼ 0.5L; (c) a¼ 0.25L; and (d) a¼ 0.3L. The scaling

factor for deflections is the magnitude of deflection at the hinge, which is v(a)’ 1.158 v0 in

case (a), v(a)’ 7.813 v0 in case (b), v(a)’ 1.883 v0 in case (c), and v(a)¼ 3.129 v0 in case (d),

where v0¼ 10�3 wL4/EI.
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The corresponding deflected shape is

vIðzÞ ¼
wL4

48EI

z

L

� �2
2

z

L

� �2
�5

z

L
þ 3

� �
ð28Þ

On the other hand, from equation (15), the reactions in a propped cantilever with a
hinge at C (Figure 4(b)) are

YII
A ¼

1

2
wð2aþ bÞ, YII

B ¼
1

2
wb, MII

A ¼
1

2
waðaþ bÞ

Thus, the redistribution of the reactions at A and B are specified by the following
ratios

YII
A

YI
A

¼
4ð2aþ bÞ

5ðaþ bÞ
,

YII
B

YI
B

¼
4b

3ðaþ bÞ
,

MII
A

MI
A

¼
4a

aþ b

For example, a hinge in a propped cantilever of length L placed in the middle of its
span (a¼ b¼L/2) increases the reactive moment at the fixed end two times
(MII

A ¼ wL2=4 versus MI
A ¼ wL2=8). The corresponding diagrams of the shear

force and bending moment for the beams from Figure 4, in the case a¼ b¼L/2,
are shown in Figure 5.

Figure 6(a) shows the variation of deflections vICðaÞ and vIICðaÞ for beams in
Figure 4(a) and 4(b) with the position of the hinge (0� a�L). In the mathematical
limit as a!L, the hinged structure from Figure 4(b) behaves as a cantilever
beam, so that vIIC ! wL4=8EI. It is tacitly assumed in performing the mathematical
limit that the extent of the link BC approaches the infinitesimal length wL4/8EI, so
that the hinge C ends right below the support B. The corresponding deflec-
tion vIICðLÞ ¼ 0:125wL4=EI is about 23 times greater than the maximum deflec-
tion in a propped cantilever from Figure 4(a), which is vICð0:5785LÞ ’
0:0054wL4=EI.

Redistribution of reactions in a fixed-end beam by a hinge

Similar analysis can be performed to determine the redistribution of reactions at A
and B in the fixed-end beam from Figure 7(a), caused by the insertion of a hinge at

(a) (b)

Figure 4. (a) A propped cantilever of length L¼ aþ b under uniform load w (case I). (b) A

propped cantilever from part (a) with an inserted hinge at z¼ a (case II).
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z¼ a (Figure 7(b)). The well-known results (Beer et al., 2014) for a fixed-end beam
of length L are

YI
A ¼ YI

B ¼
1

2
wL, MI

A ¼MI
B ¼

1

12
wL2, vIðzÞ ¼

wL4

24EI

z

L

� �2 z

L
� 1

� �2
ð29Þ

(a) (b)

Figure 6. The deflection of the point C (scaled by v*¼wL4/48EI) versus its position a/L for

the beam structures in (a) Figure 4(a) and 4(b), and (b) Figure 7(a) and 7(b).

(a) (b)

Figure 5. The plots of (a) shear force V(z) (scaled by VI
A ¼ 5wL=8), and (b) bending moment

M(z) (scaled by MI
A ¼ wL2=8) for the beams shown in Figure 4(a) and 4(b), when a¼ 0.5 L.

The usual conventions for positive bending moment and shear force were used in making the

plots.

(a) (b)

Figure 7. (a) A fixed-end beam of length L under uniformly distributed load w (case I). (b) A

fixed-end beam from part (a) with an inserted hinge at point C (case II).
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In view of (20), it readily follows that

YII
A

YI
A

¼
a

4ðaþ bÞ
5þ

3b3=a

a2 þ b2 � ab

� �
,

MII
A

MI
A

¼
3a2

2ðaþ bÞ2
1þ

3b3=a

a2 þ b2 � ab

� �

The results for a¼ b could have been recognized immediately. If the hinge is
inserted in the middle of a fixed-end beam, it cannot transmit any force (by sym-
metry), and each half of a hinge-connected structure is in the state of a cantilever
beam. Thus YII

A ¼ wa and MII
A ¼ wa2=2. Since, YI

A ¼ wa and MI
A ¼ wa2=3 (because

L¼ 2a), we have YII
A=Y

I
A ¼ 1 and MII

A=M
I
A ¼ 3=2. Therefore, the introduction of a

hinge in the middle of a fixed-end beam increases the reactive moment at its ends by
50%. The diagrams of the shear force and bending moment for the beams from
Figure 7(a) and 7(b) in the case a¼ 0.1L are shown in Figure 8(a) and (b).

Figure 6(b) shows the variation of deflections vICðaÞ and vIICðaÞ with the position
of the hinge (0� a�L). If the hinge is in the middle of the structure,
vII(0.5L)¼wL4/128EI. Since the mid-deflection of the fixed-end beam from
Figure 7(a) is vICð0:5LÞ ¼ wL4=384EI, the introduction of the hinge increases the
maximum deflection three times.

Various other aspects of the force and displacement redistribution caused by the
insertion of a hinge can be pursued, which may be of interest for structural analysis
and engineering design. For example, one may control the location of a hinge to
achieve a desired value of stress or displacement at a specified location of the
structure. The effect of the hinge on the magnitude of the maximum load that
can be transmitted by the beam is pursued next.

Allowable stress design

The objective is now to compare the maximum load that can be carried by
the considered beam structures with and without inserted hinge (Figure 4
and 7), respecting the classical design criterion according to which the

(a) (b)

Figure 8. The plots of (a) shear force V(z) (scaled by VI
A ¼ wL=2), and (b) bending moment

M(z) (scaled by MI
A ¼ wL2=12) for the beams shown in Figure 7(a) and (b), when a¼ L/10.
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maximum magnitude of the bending stress must not be greater than the yield
stress sY, i.e.

jMjmax

S
� �Y, S ¼

I

j yjmax

ð30Þ

The section modulus is denoted by S, and jyjmax is the maximum y-distance of the
point within the cross section from the neutral (x) axis, passing through the
centroid of the cross section. We consider first a propped cantilever and then a
fixed-end beam. The limit design analysis based on the consideration of the plastic
collapse mechanisms will be presented in the subsequent section.

Propped cantilever

The maximum magnitude of the bending moment in a propped cantilever from
Figure 4(a) is jMjmax¼wL2/8, which is the magnitude of the reactive moment (MA)
at the fixed end A. Thus, from equation (30), the maximum load before the onset of
plastic yield is

wY
max ¼

8S�Y
L2

ð31Þ

For a hinged structure in Figure 4(b), the reactions at A, and the extreme value of
the moment Mm¼M(zm), where zm¼YA/w specifies the cross section of the van-
ishing shear force, are

YA ¼
wL

2
1þ

a

L

� �
, MA ¼

wL2

2

a

L
, Mm ¼

Y2
A

2w
�MA ð32Þ

The variations of MA and Mm with the position of hinge a/L are shown in
Figure 9(a). The maximum magnitude of the bending moment is either MA or
Mm, depending on a/L, such that

jMjmax ¼

Mm,
a

L
� 3� 2

ffiffiffi
2
p

MA,
a

L
� 3� 2

ffiffiffi
2
p

8><
>: ð33Þ

i.e.

jMjmax ¼
wL2

8

ð1� a=LÞ2,
a

L
� 3� 2

ffiffiffi
2
p

4ða=LÞ,
a

L
� 3� 2

ffiffiffi
2
p

8><
>: ð34Þ
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This is plotted in Figure 9(b). Consequently, from equation (30), the maximum
allowable load is

wY
max ¼

8S�Y
L2

1

ð1� a=LÞ2
,

a

L
� 3� 2

ffiffiffi
2
p

1

4a=L
,

a

L
� 3� 2

ffiffiffi
2
p

8>><
>>: ð35Þ

The variation of wY
max with a/L is shown in Figure 9(d). If a hinge is placed at

a< 0.25 L, the hinged structure in Figure 4(b) can transmit a greater maximum
load than a propped cantilever from Figure 4(a). At first sight, this hinge-induced
increase of the loading capacity is a surprising outcome of the analysis, but it may
by easily explained by observing that, for a<L/4, the reactive moment MA¼waL/
2 of a hinged structure from Figure 4(b) becomes smaller than the reactive moment
MA¼wL2/8 of a propped cantilever from Figure 4(a). The maximum load
(wY

max ¼ 1:4569 �w) is transmitted when the hinge is placed at a ¼ ð3� 2
ffiffiffi
2
p
ÞL ’

0:1716L, and is 1.4569 times greater than the maximum load transmitted by a
propped cantilever ( �w). Figure 10 shows the plots of the deflection v(z) in a propped
cantilever from Figure 4(a) and the hinged structure from Figure 4(b) in the case

(a) (b)

(c)

Figure 9. (a) The variations of MA and Mm with the position of the hinge a/L in the structure

shown in Figure 4(b). The scaling factor is �M ¼ wL2=8. (b) The corresponding variation of the

maximum magnitude of the bending moment. (c) The variation of the maximum allowable load

wY
max, scaled by �w ¼ 8S�Y=L

2.
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a¼ 0.1716 L and a¼ 0.5 L. The overall increase of the deflection produced by the
inserted hinge is naturally much greater in the latter case.

Fixed-end beam

The maximum magnitude of the bending moment in a fixed-end beam
in Figure 7(a) is jMjmax¼wL2/12, which is the magnitude of the reactive
moment at the ends A and B. Thus, from equation (30), the maximum allowable
load is

wY
max ¼

12S�Y
L2

ð36Þ

For the hinged structure in Figure 7(b), the reactive moments at two fixed ends
are specified by equations (19) and (20), such that

MA ¼
wL2

8

a

L

a

L
þ 3

ð1� a=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� �

MB ¼
wL2

8
1�

a

L

� �
1�

a

L
þ 3

ða=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� �
ð37Þ

The extreme value of the moment Mm¼M(zm), where zm¼YA/w, is

Mm ¼
Y2

A

2w
�MA, YA ¼

wL

8
5
a

L
þ 3

ð1� a=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� �
ð38Þ

The plots of MA, MB, and Mm with a/L are shown in Figure 11(a). The hinge is
passive if a¼ 0.2113 L or a¼ 0.7887 L, since then MA ¼ �M ¼ wL2=12 in the first

(a) (b)

Figure 10. The deflected shape of a propped cantilever from Figure 4(a), vI(z), and the

hinged structure from Figure 4(b), vII(z), in the case: (a) a¼ 0.1716 L and (b) a¼ 0.5 L. The

scaling factor is v*¼wL4/48EI.
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case, and MB ¼ �M ¼ wL2=12 in the second case. The maximum magnitude of the
bending moment is

jMjmax ¼

MB, 0 �
a

L
� 0:2113

MA, 0:21135
a

L
� 0:5

MB, 0:5 �
a

L
� 0:7887

MA, 0:7887 �
a

L
� 1

8>>>>>>>><
>>>>>>>>:

ð39Þ

which is shown in Figure 11(b). The greatest bending moment jMjmax ’ 1:6346 �M
occurs when the hinge is placed at a¼ 0.4171 L or a¼ 0.5829 L, and is 63.46%
greater than the maximum bending moment in the fixed-end beam without a hinge.
If the hinge is placed in the middle of a fixed-end beam, the maximum bending
moment increases by 50%.

(a) (b)

(c)

Figure 11. (a) The variations of MA, MB, and Mm with the position of the hinge a/L in the

structure from Figure 9(b). The scaling factor is �M ¼ wL2=12. (b) The corresponding variation

of the maximum magnitude of the bending moment. (c) The variation of the maximum allow-

able load wY
max, scaled by �w ¼ 12S�Y=L

2.
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When equation (37) is substituted into equation (39), and this into equation (30),
the maximum load is found to be

wY
max ¼

8S�Y
L2

1�
a

L

� ��1
1�

a

L
þ 3

ða=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� ��1
, 0 �

a

L
� 0:2113

a

L

� ��1 a

L
þ 3

ð1� a=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� ��1
, 0:2113 �

a

L
� 0:5

1�
a

L

� ��1
1�

a

L
þ 3

ða=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� ��1
, 0:5 �

a

L
� 0:7887

a

L

� ��1 a

L
þ 3

ð1� a=LÞ3

3ða=LÞ2 � 3ða=LÞ þ 1

� ��1
, 0:7887 �

a

L
� 1

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð40Þ

The corresponding plot is shown in Figure 11(c). The insertion of a hinge decreases
the allowable load for any a/L. The decrease is greatest for a¼ 0.4171 L, when
wY
max ¼ 0:6118 �w. For a hinge in the middle (a¼L/2), the allowable load is

wY
max ¼ ð2=3Þ �w, where �w ¼ 12S�Y=L

2. Figure 12 shows the plots of the deflection
v(z) in a fixed-end beam from Figure 7(a) and a hinged structure from Figure 7(b)
in the case a¼ 0.25 L and a¼ 0.5 L. As expected, the overall increase of the deflec-
tion produced by the inserted hinge is much greater in the latter case. The consid-
eration of the maximum deflection places its own restriction on the maximum load,
if the maximum deflection is constrained to be smaller than a prescribed value.

Limit design by collapse mechanisms

In this section, we determine the ultimate load capacity according to the limit
design analysis. The ultimate load is the load at which the structure fails by

(a) (b)

Figure 12. The deflected shape of a fixed-end beam from Figure 7(a), vI(z), and the hinged

structure from Figure 7(b), vII(z), in the case: (a) a¼ 0.25 L and (b) a¼ 0.5 L. The scaling factor

is v*¼wL4/48EI.
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becoming a collapse mechanism, i.e. a linkage of rigid bars connected by plastic
hinges (Cook and Young, 1999; Lubliner, 2008). Assuming ideal plasticity (no
strain hardening), the plastic hinge allows relative rotation of adjacent bars with
constant resisting (yield) moment MY ¼ �YðA0=2Þ �y0. The plastic neutral axis div-
ides the cross-sectional area A0 into two equal halves, whose centroids are at the
distance �y0 from each other. For example, if the cross section is rectangular, with
the dimensions B�H, the yield moment isMY¼sY(BH

2/4). The quantity BH2/4 is
the plastic section modulus of the rectangular cross section. Its elastic section
modulus is S¼ I/jyjmax¼BH2/6. We consider first a propped cantilever and then
a fixed-end beam with an inserted hinge. The ultimate load is determined from the
virtual work equation, which states that ‘‘the external work of applied loads on the
virtual deflection of the considered collapse mechanism’’ minus ‘‘the internal work
of the resisting yield moments on relative rotations of adjacent bars at plastic
hinges’’ must be equal to zero. The calculated ultimate loads will then be compared
with the allowable loads determined by the classical design criterion from the
previous section.

Propped cantilever

Figure 13(a) shows a collapse mechanism of a propped cantilever from Figure 4(a).
Plastic hinges are assumed to form at the end A and at the distance z0 from it. The
infinitesimal virtual deflection at z0 is denoted by �, and the angles of rotation at A
and B by �A and �B. The corresponding virtual work equation (�W¼ 0) is

1

2
wL��MY�A �MYð�A þ �BÞ ¼ 0, �A ¼

�

z0
, �B ¼

�

L� z0
ð41Þ

which gives

w ¼
2MY

L

2

z0
þ

1

L� z0

� �
ð42Þ

(a)

(b)
(c)

Figure 13. (a) A collapse mechanism of a propped cantilever from Figure 4(a), with plastic

hinges formed at the end A and at a distance z0 from it. Two plausible collapse mechanisms of

the hinged structure from Figure 4(b). In the mechanism shown in part (b), the plastic hinge

formed at the fixed end A, and in part (c) in the middle between the points C and B.
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The ultimate load is obtained by minimizing equation (42) with respect to z0
(dw/dz0¼ 0), from which

z20 � 4Lz0 þ 2L2 ¼ 0 ) z0 ¼ ð2�
ffiffiffi
2
p
ÞL ’ 0:5858L ð43Þ

The substitution of equation (43) into equation (42) specifies the ultimate load

wu
max ¼ ð3þ 2

ffiffiffi
2
p
Þ
2MY

L2
ð44Þ

For the hinged structure from Figure 4(b), depending on the location of the hinge
C, the collapse mechanism can be either the mechanism shown in Figure 13(b)
or 13(c). For the mechanism in Figure 13(b), the virtual work equation is

1

2
wL��MY�A ¼ 0, �A ¼

�

a
ð45Þ

giving

w ¼
1

a=L

2MY

L2
ð46Þ

For the mechanism in Figure 13(c), the virtual work equation is

1

2
wb��MYð�B þ �CÞ ¼ 0, �B ¼ �C ¼

2�

b
ð47Þ

so that, in this case

w ¼
4

ð1� a=LÞ2
2MY

L2
ð48Þ

For each a/L, the true ultimate load is the smaller of the two values in equations
(46) and (48). Thus

wu
max ¼

2MY

L2

4

ð1� a=LÞ2
,

a

L
� 3� 2

ffiffiffi
2
p

1

a=L
,

a

L
� 3� 2

ffiffiffi
2
p

8>><
>>: ð49Þ

The variation of wu
max with a/L is shown in Figure 14(a). The ratio a/L separating

the two intervals in equation (49) is 3� 2
ffiffiffi
2
p
’ 0:1716. At this ratio the ultimate

load for both mechanisms from Figure 13(b) and (c) is equal to the ultimate load of
a propped cantilever from Figure 13a, which is �w ¼ 2ð3þ 2

ffiffiffi
2
p
ÞMY=L

2. For all
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other ratios a/L, the ultimate load for the mechanisms in Figure 13(b) and (c) is
lower than the ultimate load of a propped cantilever from Figure 13(a).

Figure 14(b) shows the plots of wY
max, as specified by equation (35), and wu

max, as
specified by (49), together. It is assumed that the cross section is rectangular with
the dimensions B�H, so that S¼BH2/6 and MY¼sYBH

2/4. The scaling factor
for both plots is �w ¼ ð4=3Þ�YBH

2=L2, which is the load at the onset of first yield in
a propped cantilever from Figure 4(a). In this case, the two ultimate loads are
related by wu

max ¼ ð3=2Þw
Y
max for all a/L.

Fixed-end beam

Figure 15(a) shows a collapse mechanism of a fixed-end beam from Figure 7(a),
with plastic hinges formed at the ends A and B, and in the middle of the beam. The
corresponding virtual work equation is

1

2
wL��MY�A �MY�B �MYð�A þ �BÞ ¼ 0, �A ¼ �B ¼

2�

L
ð50Þ

which gives the ultimate load

wu
max ¼ 8

2MY

L2
ð51Þ

For a hinged structure from Figure 7(b), depending on the location of the hinge C,
the collapse mechanism can be either the mechanism shown in Figure 15(b)
or 15(c). For the mechanism in Figure 15(b), the virtual work equation is

1

2
wb��MY�B �MYð�B þ �CÞ ¼ 0, �B ¼

�

b� z1
, �C ¼

�

z1
ð52Þ

(a) (b)

Figure 14. (a) The variation of the ultimate load wu
max of the hinged structure from Figure

4(a) with a/L. The scaling factor is �w ¼ 2ð3þ 2
ffiffiffi
2
p
ÞMY=L

2. (b) The plots of wY
max and wu

max, both

normalized by �w ¼ ð4=3Þ�YBH2=L2, in the case of the rectangular cross section with the dimen-

sions B�H.
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from which

w ¼
2MY

L

2

b� z1
þ

1

z1

� �
ð53Þ

The ultimate load is obtained by minimizing equation (53) with respect to z1
(dw/dz1¼ 0). This gives

z21 þ 2bz1 � b2 ¼ 0 ) z1 ¼ ð
ffiffiffi
2
p
� 1Þb ’ 0:4142 b ð54Þ

The substitution of equation (54) into equation (53) specifies the load

w ¼ ð3þ 2
ffiffiffi
2
p
Þ
2MY

b2
ð55Þ

For the mechanism in Figure 15(c), the virtual work equation is

1

2
wL��MY�A �MY�B ¼ 0, �A ¼

�

a
, �B ¼

�

b
ð56Þ

so that

w ¼
2MY

ab
ð57Þ

(a)

(b) (c)

Figure 15. (a) A collapse mechanism of a fixed-end beam from Figure 9(a), with plastic

hinges formed at the ends A and B, and in the middle of the span. Two plausible collapse

mechanisms of the hinged structure from Figure 9(b). In the mechanism shown in part (b), the

plastic hinges formed at the fixed end B, and at a distance z1 from C. In the mechanism shown

in part (c), the plastic hinges formed at the fixed ends A and B.
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The true ultimate load, for each a/L, is the smaller of the two values in equations
(55) and (57). Thus,

wu
max ¼

2MY

L2

3þ 2
ffiffiffi
2
p

ð1� a=LÞ2
,

a

L
� 0:1464

1

ða=LÞð1� a=LÞ
,

a

L
� 0:1464

8>><
>>: ð58Þ

The value of the ratio a/L’ 0.1464 was obtained by equating the two equations
(55) and (57), i.e.

2MY

ab
¼ 2ð2þ

ffiffiffi
2
p
Þ
MY

b2
) ða=LÞ2�ð5þ 2

ffiffiffi
2
p
Þða=LÞþ 1¼ 0 ) a=L’ 0:1464

The variation of wu
max with a/L is shown in Figure 16(a). The scaling load is

�w ¼ 16MY=L
2, which is the ultimate load of a fixed-end beam from Figure 7(a).

Only half of that load would be the limiting load if the hinge C was placed in the

(a) (b)

(c)

Figure 16. (a) The variation of the ultimate load wu
max of the hinged structure from Figure

7(a) with a/L. The scaling factor is �w ¼ 16MY=L
2. (b) The plots of wY

max and wu
max, both normal-

ized by �w ¼ 2�YBH2=L2, in the case of the rectangular cross section with the dimensions

B�H. (c) The variation of the load ratio wu
max=w

Y
max with a/L.
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middle of a fixed-end beam. For all ratios a/L, the ultimate load of a fixed-end
beam from Figure 7(a) is greater than the ultimate load of the hinged structure
from Figure 7(b).

Figure 16(b) shows the plots of wY
max, as specified by equation (40), and wu

max, as
specified by equation (58), together. The cross section is assumed to be rectangular
with the dimensions B�H. The scaling factor for both plots is �w ¼ 2�YBH

2=L2,
which is the load at the onset of first yield in the fixed-end beam from Figure 7(a).
In contrast to the case of a hinge-relaxed propped cantilever (Figure 4(b)), for
which the load ratio wu

max=w
Y
max ¼ 3=2 is constant, in the case of a hinge-relaxed

fixed-end beam (Figure 7(b)), the ratio wu
max=w

Y
max varies with a/L. The variation is

shown in Figure 16(c). The maximum load ratio is about 2.2246, at a/L¼ 0.1464
and a/L’ 0.8536. The minimum load ratio is equal to 1.5, at a/L’ 0.2113 and
a/L’ 0.7887.

Conclusions

The internal forces and deflections are determined for the structure consisting of
two hinge-connected beams, whose left end is fixed and right end simply supported.
The loading consists of a uniformly distributed load along the entire length of the
structure, and a concentrated couple at the right end. The solution is obtained by
an extended use of the method of discontinuity functions to incorporate the slope
discontinuity at the hinge, without the separation of the structure into two parts,
commonly done in other methods of analysis. Based on the derived general for-
mulas, the redistribution of internal forces and deflections, caused by the insertion
of a frictionless hinge, is evaluated in a propped cantilever and a fixed-end beam. It
is shown that a hinge placed in the middle of a propped cantilever increases the
reactive moment at the fixed end two times, while its insertion in the middle of a
fixed-end beam increases its reactive moments by 50%. The mid-deflection of a
fixed-end beam increases three times by the introduction of a hinge.

The maximum allowable load is then determined by using the classical and the
limit design criteria. According to the classical design criterion, if the hinge is
placed in a propped cantilever at the distance from its fixed end less than one-
fourth of its span (a<L/4), the hinged structure can transmit a greater distributed
load than a propped cantilever without a hinge. The maximum load that a hinged
structure can transmit is about 46% greater than the maximum load transmitted by
a propped cantilever without a hinge. However, according to the limit design cri-
terion, the insertion of a hinge in a propped cantilever decreases the limit load for
any a/L. On the other hand, the insertion of a hinge in a fixed-end beam decreases
the maximum load according to both design criteria, for any position of the hinge.
The classical design criterion in this case predicts the greatest load decrease if a
hinge is placed at a¼ 0.4171 L, the maximum load is about 61% of the maximum
load transmitted by a fixed-end beam without a hinge. According to the limit
design criterion, the load decrease is greatest for a¼ 0.5 L, when it is 50% of the
maximum load transmitted by a fixed-end beam without a hinge. For rectangular
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cross-sections, the ratio of the maximum load according to the limit and the clas-
sical design criterion is constant and equal to 3/2 in the case of a hinge-relaxed
propped cantilever, while it varies with a/L in the case of a hinge-relaxed fixed-end
beam. In the latter case, the greatest load ratio is about 2.225, while the lowest
value of this ratio is equal to 1.5.

Apart from its practical importance for the analysis of various structural systems
in mechanical and civil engineering, the presented evaluation of the deflection and
force redistribution caused by insertion of a frictionless hinge, and the corresponding
calculation of allowable and ultimate loads based on classical and limit design
criteria, is important for engineering education and the development of student
ability to design and analyze structural systems, which is one of the ABET student
outcomes criterion for accrediting engineering programs (ABET, 2015).
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