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a b s t r a c t

The solutions to axially and centrally symmetric Lamé problems are derived within the dis-
placement, stress and strain-based approach by the specification of the general boundary
conditions which encompass all possible combinations of kinematic and kinetic conditions
at the inner and outer boundaries. It is shown that the mathematical structure of the
governing differential equations in the strain-based approach is identical to that in the
stress-based approach. A reduction of the compatibility conditions from general two and
three-dimensional elasticity to their form applicable to axially and centrally symmetric
problems is also discussed.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this note devoted to classical Lamé elasticity problems of pressurized hollow disk/cylinder or pressurized
sphere [1–3] is to indicate the following four results that were not previously reported in the literature:

(a) The solutions of Lamé problems can be derived simultaneously for general boundary conditions, which encompass all
possible combinations of kinematic and kinetic conditions at the inner and outer boundaries.

(b) The solutions of Lamé problems can be obtained by using the displacement, stress, or strain-based approach, indepen-
dently of each other (apart from boundary conditions).

(c) The governing differential equations of the stress and strain-based approach have the identical mathematical struc-
ture for axially symmetric plane elasticity problems, and for centrally symmetric three-dimensional problems.

(d) The reduction of the compatibility conditions from the general elasticity to their form applicable to axially or centrally
symmetric problems needs to be done with care to avoid a redundant integration constant associated with a second,
rather than a first order differential equation expressing the actual compatibility condition for these problems.

2. Axially symmetric Lamé problem

A thin hollow disk (plane stress conditions), or a long hollow cylinder (plane strain conditions) is subjected to axisym-
metric displacement or stress boundary conditions uðaiÞ ¼ ui or rrðaiÞ ¼ �pi, where a1 are a2 are the inner and outer radii
of the hollow disk or cylinder. The Cauchy differential equation of equilibrium, in the absence of body forces, is [3]
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drr

dr
þ rr � rh

r
¼ 0; ð1Þ

where rr is the radial and rh the hoop stress. The corresponding radial and hoop strains are related to the radial displace-
ment u ¼ uðrÞ by �r ¼ du=dr and �h ¼ u=r. From these relations, the compatibility condition for strain components is
�r ¼ dðr�hÞ=dr, which can be rewritten as [4–6]

d�h

dr
� �r � �h

r
¼ 0: ð2Þ

This is the Saint–Venant compatibility condition in terms of strains for the problem under consideration.
The stress–strain relations in the case of plane stress (thin disk) are

�r ¼
1
E
ðrr � mrhÞ; �h ¼

1
E
ðrh � mrrÞ; ð3Þ

with the inverse relations

rr ¼
E

1� m2 ð�r þ m�hÞ; rh ¼
E

1� m2 ð�h þ m�rÞ: ð4Þ

The Young modulus of elasticity is E, and m is the Poisson coefficient of lateral contraction. In the case of plane stain (long
cylinder), E and m are replaced by E=ð1� m2Þ and m=ð1� mÞ, respectively.

2.1. Displacement-based solution

The well-known solution of the considered problem is most commonly derived by using the displacement approach (e.g,
[7,8]). The strain–displacement relations are substituted into constitutive relations Eq. (4), and these into the equilibrium
equation Eq. (1). The resulting differential equation for the radial displacement is u00 þ u0=r � u=r2 ¼ 0, having the solution

u ¼ c1r þ c2

r
: ð5Þ

The general boundary conditions at the inner and outer surface, expressed in terms of the displacement and its gradient,
are

uðaiÞ þuiai
du
dr

� �
r¼ai

¼ giai; ð6Þ

where

ui ¼ 0; gi ¼
ui

ai
; ½for prescribed uðaiÞ ¼ ui�;

ui ¼
1
m
; gi ¼ �

1� m2

m
pi

E
; ½for prescribed rrðaiÞ ¼ �pi�:

The corresponding integration constants c1 and c2 are readily found to be

c1 ¼
1
c
ð1�u1Þg2a2

2 � ð1�u2Þg1a2
1

� �
; c2 ¼

1
c
ð1þu2Þg1 � ð1þu1Þg2½ �a2

1a2
2; ð7Þ

with the parameter c ¼ ð1�u1Þð1þu2Þa2
2 � ð1þu1Þð1�u2Þa2

1.

2.2. Stress-based solution

The differential equation of equilibrium Eq. (1) contains two unknown stress components ðrr ;rhÞ, which makes the prob-
lem statically indeterminate. To provide the second needed differential equation, the Saint–Venant compatibility condition is
recast by eliminating strain in terms of stress components. When Eq. (3) is substituted into Eq. (2), and with a help of the
equilibrium condition Eq. (1), there follows:

drh

dr
� rr � rh

r
¼ 0: ð8Þ

This is the Beltrami–Michell compatibility condition in terms of stresses for the considered problem. By comparing Eq. (2)
and Eq. (8), it is seen that the Beltrami–Michell condition in terms of stresses has the same mathematical form as the Saint–
Venant compatibility condition in terms of strains. By solving Eqs. (1) and (8), the radial and hoop stress components are

rr ¼ C1 þ
C2

r2 ; rh ¼ C1 �
C2

r2 : ð9Þ
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The constant C2 can be given a physical interpretation in terms of the maximum inplane shear stress, C2 ¼ smaxa2
1, while

C1 represents the uniform average inplane normal stress.1

The general boundary conditions, expressed in terms of stresses, are

rrðaiÞ þ airhðaiÞ ¼ bi; ð10Þ

where

ai ¼ �
1
m
; bi ¼ �

E
m

ui

ai
; ½for prescribed uðaiÞ ¼ ui�;

ai ¼ 0; bi ¼ �pi; ½for prescribed rrðaiÞ ¼ �pi�:

The corresponding integration constants C1 and C2 are readily found to be

C1 ¼
1
C
ð1� a1Þb2a2

2 � ð1� a2Þb1a2
1

� �
; C2 ¼

1
C
ð1þ a2Þb1 � ð1þ a1Þb2½ �a2

1a2
2; ð11Þ

with C ¼ ð1� a1Þð1þ a2Þa2
2 � ð1þ a1Þð1� a2Þa2

1.
Having determined the stress components, the radial displacement is calculated from u ¼ r�h ¼ rðrh � mrrÞ=E, which

gives

u ¼ 1
E
ð1� mÞC1r � ð1þ mÞC2

r

� �
: ð12Þ

The connections between the integration constants c1 and c2 from the displacement-based approach, and C1 and C2 from
the stress-based approach, follow by comparing Eqs. (5) and (12). The result is

c1 ¼
1� m

E
C1; c2 ¼ �

1þ m
E

C2: ð13Þ

2.3. Strain-based solution

To derive the differential equation in strain domain, corresponding to equilibrium condition Eq. (1), we substitute the
stress–strain relations Eq. (4) into Eq. (1), and use the Saint–Venant compatibility condition Eq. (2), to obtain

d�r

dr
þ �r � �h

r
¼ 0: ð14Þ

By comparing the differential equation of equilibrium Eq. (1) with Eq. (14), we conclude that the two equations, express-
ing the equilibrium in stress and strain domains, have the identical mathematical form. Since we have already shown that
the compatibility condition in terms of strains Eq. (2) has the same form as the compatibility condition in terms of stresses
Eq. (8), the solution of the differential equations Eqs. (2) and (14) is

�r ¼ k1 þ
k2

r2 ; �h ¼ k1 �
k2

r2 ; ð15Þ

in duality with Eq. (9).
The general boundary conditions, expressed in terms of strains, are

ui�rðaiÞ þ �hðaiÞ ¼ gi; ð16Þ

where ui and gi are defined by the expressions following Eq. (6). The corresponding integration constants k1 and k2 are read-
ily found to be

k1 ¼
1
k
ð1�u1Þg2a2

2 � ð1�u2Þg1a2
1

� �
; k2 ¼

1
k
ð1þu1Þg2 � ð1þu2Þg1½ �a2

1a2
2; ð17Þ

with k ¼ c, given by the expression following Eq. (7). The corresponding radial displacement is

u ¼ r�h ¼ k1r � k2

r
: ð18Þ

By comparing Eqs. (5), (12), and (18), the three sets of integration constants are related by

c1 ¼ k1 ¼
1� m

E
C1; c2 ¼ �k2 ¼ �

1þ m
E

C2: ð19Þ

1 By adding Eqs. (1) and (8), there follows dðrr þ rhÞ=dr ¼ 0. In a recent paper [9] this was used, in conjunction with Eq. (1), to derive a stress-based solution
for the cylinder with a constrained inner and pressurized outer boundary.
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3. Centrally symmetric Lamé problem

An analogous derivation proceeds in the case of a hollow sphere subjected to symmetric displacement or stress boundary
conditions at the inner and outer surfaces. The Cauchy equation of equilibrium, in the absence of body forces, is

drr

dr
þ 2

rr � rh

r
¼ 0; ð20Þ

where rr is the radial and rh ¼ r/ is the hoop stress. The corresponding strains are related to the radial displacement
u ¼ uðrÞ by �r ¼ du=dr and �h ¼ �/ ¼ u=r. From these relations, the compatibility condition for strain components is
�r ¼ dðr�hÞ=dr, as in the case of axisymmetric problems, i.e., Eq. (2). The stress–strain relations are

�r ¼
1
E

rr � 2mrhð Þ; �h ¼
1
E
ð1� mÞrh � mrr½ �; ð21Þ

with the inverse relations

rr ¼
E

ð1þ mÞð1� 2mÞ ½ð1� mÞ�r þ 2m�h�; rh ¼
E

ð1þ mÞð1� 2mÞ ð�h þ m�rÞ: ð22Þ

3.1. Displacement-based solution

When the strain–displacement relations are substituted into constitutive relations Eq. (22), and these into the equilib-
rium equation Eq. (20), the resulting differential equation for the radial displacement is u00 þ 2u0=r � 2u=r2 ¼ 0, with the
solution

u ¼ c1r þ c2

r2 : ð23Þ

The general boundary conditions at the inner and outer surface, expressed in terms of the displacement and its gradient,
are

uðaiÞ þuiai
du
dr

� �
r¼ai

¼ giai; ð24Þ

where

ui ¼ 0; gi ¼
ui

ai
; ½for prescribed uðaiÞ ¼ ui�;

ui ¼
1� m

2m
; gi ¼ �

ð1þ mÞð1� 2mÞ
2m

pi

E
; ½for prescribed rrðaiÞ ¼ �pi�:

The corresponding integration constants c1 and c2 are readily found to be

c1 ¼
1
c
½ð1� 2u1Þg2a3

2 � ð1� 2u2Þg1a3
1�; c2 ¼

1
c
½ð1þu2Þg1 � ð1þu1Þg2�a3

1a3
2; ð25Þ

with c ¼ ð1� 2u1Þð1þu2Þa3
2 � ð1� 2u2Þð1þu1Þa3

1.

3.2. Stress-based solution

When Eq. (21) is substituted into Eq. (2), by incorporating the equilibrium condition Eq. (20), there follows:

drh

dr
� rr � rh

r
¼ 0; ð26Þ

which is the Beltrami–Michell compatibility condition for the considered problem and which has the identical mathematical
form as the Saint–Venant compatibility condition Eq. (2) in terms of strains.

From the equations of equilibrium Eq. (20) and compatibility Eq. (26), there follows:

rr ¼ C1 þ 2
C2

r3 ; rh ¼ C1 �
C2

r3 : ð27Þ

Thus, the average normal stress is uniform throughout the sphere and equal to C1 (see also [10, p. 193] and [11, p. 251]).
The general boundary conditions, expressed in terms of stresses, are

rrðaiÞ þ airhðaiÞ ¼ bi; ð28Þ
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where

ai ¼ �
1� m

m
; bi ¼ �

E
m

ui

ai
; ½for prescribed uðaiÞ ¼ ui�;

ai ¼ 0; bi ¼ �pi; ½for prescribed rrðaiÞ ¼ �pi�:

The corresponding integration constants C1 and C2 are readily found to be

C1 ¼
1
C
½ð2� a1Þb2a3

2 � ð2� a2Þb1a3
1�; C2 ¼

1
C
½ð1þ a2Þb1 � ð1þ a1Þb2�a3

1a3
2; ð29Þ

with C ¼ ð2� a1Þð1þ a2Þa3
2 � ð2� a2Þð1þ a1Þa3

1.
Having determined the stress components, the radial displacement is calculated from u ¼ r�h ¼ r½ð1� mÞrh � mrr �=E,

which gives

u ¼ 1
E
ð1� 2mÞC1r � ð1þ mÞC2

r2

� �
: ð30Þ

The connections between the integration constants (c1; c2), and (C1;C2), follow by comparing Eqs. (23) and (30), and are

c1 ¼
1� 2m

E
C1; c2 ¼ �

1þ m
E

C2: ð31Þ

3.3. Strain-based solution

By substituting the stress–strain relations Eq. (22) into Eq. (20), and by incorporating the Saint–Venant compatibility con-
dition Eq. (2), there follows:

d�r

dr
þ 2

�r � �h

r
¼ 0: ð32Þ

By comparing Eqs. (20) and (32), we conclude that these equations have the identical mathematical form. Since the com-
patibility condition in terms of strains Eq. (2) has the identical form as the compatibility condition in terms of stresses Eq.
(26), the solution of the differential equations Eqs. (2) and (32) is

�r ¼ k1 þ 2
k2

r3 ; �h ¼ k1 �
k2

r3 ; ð33Þ

in duality with Eq. (27).
The general boundary conditions, expressed in terms of strains, are

ui�rðaiÞ þ �hðaiÞ ¼ gi; ð34Þ

where ui and gi are defined by the expressions following Eq. (24). The corresponding integration constants k1 and k2 are
readily found to be

k1 ¼
1
k
½ð1� 2u1Þg2a3

2 � ð1� 2u2Þg1a3
1�; k2 ¼ �

1
k
½ð1þu2Þg1 � ð1þu1Þg2�a3

1a3
2; ð35Þ

with k ¼ c, given by the expression following Eq. (25). The radial displacement is

u ¼ r�h ¼ k1r � k2

r2 : ð36Þ

By comparing Eqs. (23), (30), and (36), the three sets of integration constants are related by

c1 ¼ k1 ¼
1� 2m

E
C1; c2 ¼ �k2 ¼ �

1þ m
E

C2: ð37Þ

4. Additional remarks on the compatibility conditions

There is a subtle point in the stress-based approach to solve the Lamé problem, if the equilibrium equation Eq. (1) is used
in conjunction with the general compatibility condition from the two-dimensional elasticity, r2ðrr þ rhÞ ¼ 0. When the
stresses depend on r only, this condition is

d2

dr2 ðrr þ rhÞ þ
1
r

d
dr
ðrr þ rhÞ ¼ 0: ð38Þ

Two successive integrations give

d
dr
ðrr þ rhÞ ¼

C0

r
; rr þ rh ¼ C0 ln r þ C1: ð39Þ
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These expressions, with nonvanishing constants C0 and C1, apply, for example, to pure bending of curved circular bars
([3], p. 71), where the stresses are independent of the polar angle h, but there is a nonvanishing h-dependent circumferential
displacement t, in addition to the radial displacement u. For a fully axisymmetric Lamé problem, the constant C0 ¼ 0,
although this cannot be recognized from Eq. (39) itself, except when there is no hole in the disk, or when there is a hole
in an infinitely extended disk (C0 ¼ 0 in these cases to eliminate the unbounded stress contributions; in the latter case C1

is also equal to zero to make stresses vanish at infinity). The procedure to specify C0 would then be to apply the boundary
conditions and express C1 and C2 in terms of C0, and then derive two expressions for the radial displacement u, from each of
the two strain expressions (�r and �h). In order that these two expressions for u are the same, C0 must be equal to zero.2 In
this way, however, the procedure ceases to be purely stress-based, as one presented in Section 2.2, based on the stronger form of
the Beltrami–Michell compatibility condition Eq. (8), rather than Eq. (38).

The transition from the Saint–Venant compatibility condition of general two-dimensional elasticity to its form applicable
to axisymmetric Lamé problem is easier. With no shear strain �rh, and with the radial and hoop strains dependent on r only,
the general Saint–Venant compatibility condition of plane elasticity (e.g., [14, p. 669]) reduces to

r
d2�h

dr2 þ 2
d�h

dr
� d�r

dr
¼ d

dr
r

d�h

dr
þ �h � �r

� �
¼ 0; ð40Þ

and the integration gives

r
d�h

dr
þ �h � �r ¼ k0: ð41Þ

But the left-hand side is identically equal to zero, which can be verified by inspection, because �r ¼ du=dr and �h ¼ u=r.
Therefore, k0 ¼ 0, reducing Eq. (41) to proper form of the Saint–Venant compatibility condition Eq. (2) for the problem under
consideration.

Analogous remarks apply to the reduction of the general compatibility condition to centrally symmetric case. The Saint–
Venant general compatibility conditions in the centrally symmetric case reduce to ([15, p. 21])

d
dr

r2 d�h

dr

� �
� r

d�r

dr
¼ 0; r

d�h

dr
þ �h � �r ¼ 0: ð42Þ

However, the first of these can be rewritten as

r
d
dr

r
d�h

dr
þ �h � �r

� �
¼ 0; ð43Þ

which is identically satisfied whenever the second one is. Thus, as anticipated, there is just one Saint–Venant compatibility
condition for the centrally symmetric case, given by the second of Eq. (42), i.e., Eq. (2). Similarly, instead of

d2

dr2 ðrr þ 2rhÞ þ
2
r

d
dr
ðrr þ 2rhÞ ¼ 0; ð44Þ

the proper form of the Beltrami–Michell compatibility condition, applicable to the Lamé problem of a hollow sphere, is given
by Eq. (26).
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