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ABSTRACT: New representations of the effective elastic stiffness and compliance ten-
sors are derived using an appropriate fourth order tensor basis. This paper considers some
of the typical crack distributions associated with an initially isotropic matrix and propor-
tional loading. Resulting isotropic and transversely isotropic responses of the damaged
material are described, neglecting direct interaction between adjacent cracks. Derived ten-
sor representations enable easy manipulations and are particularly convenient in obtaining
explicit expressions for the inverse operators.
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1. INTRODUCTION

ANALYTICAL DETERMINATION OF the effective elastic properties of crackedsolids has been a topic of intensive research in the last several decades.
Various phenomenological and micromechanically based models are developed.
Within a phenomenological approach, a macroscopic damage variable is intro-
duced as an internal variable which in some average sense represents existing
crack distribution. Elastic stress (or strain) potential is then taken to be an iso-
tropic function of both the strain (or stress) and damage tensors (Vakulenko and
Kachanov, 1971; Kachanov, 1980). To capture the damage induced anisotropy,
vectorial, second-order and fourth-order damage tensors were introduced by
various authors (see recent reviews by Krajcinovic, 1989; Kachanov, 1992;
Lubarda and Krajcinovic, 1993). Within a micromechanical approach, the effec-
tive elastic properties are derived by using the pertinent results of the micro-
constituent analysis, such as that of a planar crack embedded in an infinite
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medium. Various averaging schemes are utilized in the transition from micro- to
macro-response, depending on the density of cracks and their interaction. In this
paper, a noninteracting, dilute crack distribution is assumed. An approximate
crack interaction is taken into account according to the self-consistent scheme
(Budiansky and O’Connell, 1976; Horii and Nemat-Nasser, 1983), originally de-
veloped for estimates of the elastic properties of composite materials.
The objective of this paper is to reexamine the mathematical structure of the ef-

fective compliances and stiffnesses of the damaged material in the case of the
dilute distribution of penny-shaped cracks. The presented tensor analysis simulta-
neously gives expressions for all components of the elastic compliance or
stiffness tensors, and it has an advantage over previous derivations published in
the literature. Furthermore, obtained formulae enable easy manipulations and are
particularly convenient in derivation of the explicit expressions for needed in-
verse operators.

2. ELASTIC PROPERTIES OF DAMAGED MATERIAL

Analytical micromechanical estimates of the effective (overall) elastic proper-
ties of a solid containing a large number of microcracks are usually derived by
considering an isolated crack in an elastic body, and determining the change in
the body’s compliance due to the presence of the crack. An adequate averaging
scheme is then utilized to estimate the overall properties in the presence of many
(interacting or noninteracting) cracks. In this section, one of the several available
procedures is applied to derive the elastic compliance due to a single crack. The
selected procedure utilizes expressions for the crack release energies (Budiansky
and O’Connell, 1976), which leads directly to a compliance tensor having a con-
venient structure. Other procedures, such as one based on the expressions for the
crack opening or jump displacements (see, for example, Horii and Nemat-

Nasser, 1983 or Ju and Tseng, 1992) can be used as well. Therefore, let a single
penny-shaped crack be embedded in an infinite isotropic elastic solid, uniformly
loaded at infinity. Decompose this problem into two problems, that of the body
without a crack loaded at infinity (°), and that of the body with a crack appro-
priately loaded over the crack faces (*). Correspondingly, the local strain e can
be written as the sum of the strains belonging to two problems, i.e.,
e = e° + e*. The volume-average strains are decomposed in the same manner,
E = e° + f*. Let or be the remote loading and Ai° the elastic compliance of the
virgin material without the crack. Introducing .H as the average elastic compli-
ance of the body with a crack, and denoting by .0* the compliance mapping Q
to &euro;* (e* = -/g*:or), it follows that
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The compliance -0*1 related to the complementary strain energy
’It* = (l/2)J6r*:(o 0 or) by

can be conveniently determined by observing that ’It* is equal to the energy
release associated with the self-similar crack growth from zero to the current size
a. As shown by Budiansky and Rice (1973), this energy can be expressed as

where M is the M-conservation integral of fracture mechanics. The M integral
can be written in terms of the J integral by means of a line integral along the crack
perimeter 1

Substituting Equation (4) into Equation (3), it follows that (Budiansky and
O’Connell, 1976)

In the close neighborhood of the crack edge, the stress and strain states are a
combination of plane strain and antiplane shear. Thus, the energy release rate or
the J integral can be expressed in terms of the corresponding stress-intensity fac-
tors KM(M = I,ll,lll) as

Expression (6) can be rewritten in a compact form as
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where

Consequently, substituting Equation (7) into Equation (5) gives

For a penny-shaped crack, the stress-intensity factors, written in the symmetrized
form, are (Tada, 1973):

where (1,~ are the stress components in the crack coordinate system, and a is an
angle defined in Figure 1. The stress component (1;1 is assumed to be tensile. The
same procedure was used by Sumarac (1987), except that Expressions (10) were

Figure 1. The penny-shaped crack of radius a and circumference I. (1’,2’,3’) denotes the
local crack coordinate system, direction 1 ’ bemg coincident with the normal to the crack
plane m. The angles 0 and 0 define orientation of the vector m relative to the global coor-
dinate system (1,2,3).
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not written in a symmetrized form, which led to nonsymmetric structure of the

compliance tensor. Differentiating (10), it follows that:

If a§i is compressive stress, K, = 0 along with the right-hand side of the first ex-

pression in Equation (11).
The components of the compliance tensor -0* in the local crack coordinate

system are

Since

substitution of Equations (11) and (13) into Equation (12) gives

The Heaviside step function, H(ail), is introduced in Equation (14) to enable si-
multaneous consideration of tensile and compressive stress component Q;1. In the
local (crack) coordinate system, the normal to the crack plane has the compo-
nents
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The expression for the compliance tensor [Equation (14)] thus becomes

Expression (16) can be rearranged as

The required symmetry properties, ..~1 *k, = .llL *kl = .lIZ *,k = .lyl k ,’&dquo; clearly
hold. Expression (17) defines the change of elastic compliance due to the pres-
ence of a single penny-shaped crack, expressed in a local-crack coordinate
system.

3. REPRESENTATION IN TERMS OF
FOURTH-ORDER TENSOR BASIS

In the subsequent analysis, it is advantageous to introduce the following set of
the fourth order tensors:
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This set of tensors, combining products of the Kronecker delta tensor and a unit
vector m, form the basis for the fourth-order tensors that are symmetric with re-
spect to the first and second pairs of indices, but not necessarily symmetric with
respect to permutation of the pairs (Kunin, 1981). All tensors of the fourth-order
made up of Kronecker delta and the unit vector, possessing described symmetry,
can be represented as a linear combination of the basic tensors I’. The linear ten-
sor space spanned by this basis is closed with respect to the trace product, form-
ing an algebra. For example, it can be shown that I3:I2 = I2, I4:I2 = 3I4,
p:p = 14 , and I6:I2 = I4.
Using Equation (18), Expression (17) can be rewritten in a compact form as

In Equation (19), 1&copy;71’ and Ij71’ are the tensors defined by Equation (18), in which
the components of the normal m are expressed relative to the local crack coor-
dinate system (m,’ = 61,).

If a§i 1 ~ 0, the expressions for the compliance attributable to cracks [Equation
(19)] further reduces to

The expanded form of this expression was used by Krajcinovic and Fanella (1986)
to model the concrete behavior.

The compliance tensor expressed in Equation (19) relative to the local crack
coordinate system can be written in the global coordinate system using the coor-
dinate transformation

where Q is the orthogonal tensor of the transformation between the two coor-
dinate systems. Using Equation (21), Expression (20) can be written in terms of
the global coordinates as

where:
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are the fourth order tensors combining the Kronecker delta and the unit vector m,
expressed in the global coordinate system as

If a’, = ml - a - m a 0 (Q is the stress tensor with the components in global
coordinate system), Equation (22) reduces to

This is the same expression as Equation (20), except that in Equation (20) the
components of normal m are expressed in the local crack coordinate system,
while in Equation (25) they are expressed relative to the global coordinate
system. The superscript m indicates the reference to the plane of the crack
(Figure 1).

4. TRANSVERSELY ISOTROPIC CRACK DISTRIBUTION

Consider now the case of a solid containing many cracks. If all cracks have the
same normal m, and if the direct crack interaction is neglected (dilute crack con-
centration), the average compliance is

The nondimensional scalar quantity w = N<a3~ is a micromechanical damage
parameter (Budiansky and O’Connell, 1976), which defines the density of the
considered crack distribution within a representative unit volume (< ~ denotes

the average value). Material response corresponding to Equation (26) is

transversely isotropic.
Consider next a crack distribution in which all normals to the crack planes

have the same angle 0 = const. Neglecting direct interaction between adjacent
cracks (dilute distribution of cracks), the average compliance attributable to
cracks is
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In the derivation of Equation (27), the stress state is assumed to be such that

ml - a . m ;::: 0 for all m, allowing the representation [Equation (25)] for the
components of the compliance tensor ./IZ *k~.

In general, for an arbitrary angle 0,

Consider the cylindrical crack distribution, 0 = 0. The normal m to a crack
plane has components {cos 6, sin ~,0}. In this case, Equation (28) reduces to

Hence,

Introduce the vector n, normal to m, having the components in the global coor-
dinate system

The integral [Equation (30)] can be accordingly written as

such that
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Using the fourth order tensor basis I’ introduced in Equation (18), the integral
[Equation (33)] can be written in a compact form as

To evaluate the integral

expressions of the type [Equation (29)] are substituted for products, m,m, and
m,,m,. Performing integration, it follows that

After a somewhat delicate rearrangement of terms, described in the Appendix,
Equation (36) can be cast in a remarkably simple form

or

 © 1994 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV CALIFORNIA SAN DIEGO on October 12, 2007 http://ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com


48

Utilizing the fourth order tensors forming the basis of Equation (18), Equation
(38) can be written as

The average compliance attributable to the considered crack distribution is finally
derived substituting Equations (33) and (38) into Equation (27)

Note that Al* is linearly proportional to the damage parameter w, i.e.,
.~tl * = wM*, where M* is the constant tensor given by

5. ISOTROPIC CRACK DISTRIBUTION

If the crack distribution is dilute and isotropic, the average compliance is

By using Equations (23) and (28), it can be shown that:
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The average compliance is derived substituting Equation (43) into Equations (25)
and (42)

It is easily shown that Equation (44) produces the compliance components in
agreement to those given by Equation (20) of Horii and Nemat-Nasser (1983).

6. EFFECTIVE COMPLIANCE TENSOR

The compliance tensor of the undamaged, isotropic, and homogeneous elastic
matrix is

The effective (overall) compliance is derived by superposing Equation (45) and
the expression for the average compliance k5*. For an isotropic crack distribu-
tion, i.e., for k5* defined by Equation (44), the overall compliance becomes

where the damage dependent shear modulus and Poisson’s ratio are given by:

The above expressions are in agreement with Expressions (2.24) given in
Kachanov (1992). In the case of cylindrical crack distribution such that Equation
(40) applies, it follows that
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where the parameters C, are given by:

In the expanded form, Equation (48) is

recognized as the compliance tensor of a transversely isotropic material with the
plane of symmetry normal to the direction n. Indeed, written in terms of the elas-
tic moduli and Poisson’s ratios in two orthogonal directions, the parameters
C, = C,l2~,o appearing in Equation (48) are:

where E and E’ are the Young’s moduli in the plane of isotropy and in the direc-
tion normal to it. Also, v is the Poisson’s ratio characterizing transverse contrac-
tion in the plane of isotropy when tension is applied in the same plane. In con-
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trast, v’ is the Poisson’s ratio when tension is applied normal to the plane of
isotropy. Finally, 1&dquo; is the shear modulus for any plane perpendicular to the plane
of isotropy (Lekhnitskii, 1981). These five material parameters can, therefore, be
expressed from Equation (51) in terms of the parameters C, as:

7. EFFECTIVE STIFFNESS TENSOR

To derive the expression for the stiffness tensor, i.e., the inverse of the compli-
ance tensor [Equation (48)], it is convenient to use the fourth-order tensors of the
new basis J’, defined in terms of the old basis I’ (i = 1,2,...,6) through the
linear transformation (Kunin, 1981):

The tensor [Equation (40)] written in the basis [Equation (53)] takes the form

The compliance of the undamaged solid J~°, defined by Equation (45), can also
be expressed in terms of J’ basis. The effective overall compliance,
.~l = .~l + -ff *1 consequently becomes
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In Equation (55), the parameters c, are given by:

The representation [Equation (55)] in terms of the basis J’ is very useful because
it provides the explicit inverse representation

As discussed in Kunin (1981), the coefficients b, are related to coefficients c, by

where A = c; - c2 - c3 + c4.
Returning to the original I’ basis, Equation (57) becomes

where the coefficients a, are related to coefficients b, by:
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Note that c4 - c3 = -2(c3 + c4), hence b4 - b3 = -2(b3 + b4) and a3 =

a4, which assures the self-adjoint symmetry of the tensor X.
Expression (59) is the exact inverse of Equation (48). If the damage parameter

v is sufficiently small so that the quadratic and higher order terms in v can be
neglected, coefficients [Equation (60)] can be simplified to:

The components of Equation (59), with the parameters a, defined by Equation
(61), are identical to the components of the stiffness tensor derived by Nemat-
Nasser and Hori (1990) [their Equation (5.llb)]. Also, from Equations (59) and
(61) it clearly follows that -r = $0 + ú.1L*, where

is the constant fourth-order tensor (independent of v), and $0 = 21’0[11 +
v° / (1 - 2 v°)Iz] .

8. CONCLUSION

This paper contains derivations of the explicit tensorial representations of the
effective stiffness and compliance tensors for some typical crack distributions,
corresponding to isotropic and transversely isotropic macroresponse. An ade-
quate averaging scheme is utilized to obtain the effective elastic properties of a
cracked solid with a dilute distribution of cracks. Derived expressions allow easy
manipulations and are compared with some previously published results.
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An alternative phenomenological analysis and elaboration on the structure of
the elastic potential as a function of strain and appropriate damage tensors will
be presented in a separate paper. Future work will also focus on the description
of strongly nonproportional loading and associated damage evolution that

changes direction in its progression.
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APPENDIX

To evaluate the integral appearing in Expression (35) of the text, i.e.,

expressions of the type in Equation (29) are substituted for products m, m, and
mkml. Performing integration, it then follows that

This can be rearranged into
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In view of the relationship of the type

where n, = 6,3, Equation (A.3) can be rewritten as

An alternative rearrangement of Equation (A.2) similarly gives

Summation of Equations (A.5) and (A.6) finally gives

which is Equation (37) of the text.
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