
Mechanics of Materials

1. Yield Surface

Materials capable of plastic deformation usually have
an elastic range of purely elastic response. This range
is a closed domain in either stress or strain space
whose boundary is called the yield surface. The shape
of the yield surface depends on the entire deformation
path from the reference state. The yield surfaces for
actual materials are mainly smooth, but may have or
develop pointed pyramidal or conical vertices.
Physical theories of plasticity (Hill 1967) imply the
formation of a corner or vertex at the loading point
on the yield surface. However, experimental evidence
suggests that, while relatively high curvature at the
loading point is often observed, sharp corners are
seldom seen (Hecker 1976). Experiments also indicate
that yield surfaces for metals are convex in Cauchy
stress space, if elastic response within the yield
surface is linear and unaffected by plastic flow.

1.1 Yield Surface in Strain Space

The yield surface in strain space is defined by
gðE;HÞ ¼ 0, where E is the strain tensor, and H
the pattern of internal rearrangements due to plastic
flow, that is, the set of appropriate internal variables
including the path history by which they are achieved
(Rice 1971). The shape of the yield surface specified
by function g is different for different choices of E. If
elastic response within the yield surface is Green-
elastic, associated with the strain energy c ¼
cðE;HÞ per unit reference volume, the correspond-
ing stress is T ¼ @c=@E. From the strain state on the
current yield surface, an increment of strain dE
directed inside the yield surface constitutes an elastic
unloading. The associated incremental elastic re-
sponse is governed by

’T ¼ K : ’E; K ¼ @2c
@E#@E

ð1Þ

where K ¼ KðE;HÞ is a tensor of elastic moduli of
the material at the considered state of strain and
internal structure. An increment of strain directed
outside the current yield surface constitutes plastic
loading. The resulting increment of stress consists of
elastic and plastic parts, such that

’T ¼ ’T e þ ’T
p ¼ K : ’Eþ ’T p ð2Þ

The elastic part of the stress rate ’T e gives a stress
decrement deT associated with elastic removal of the
strain increment dE. The plastic part of the stress rate
’T p gives a residual stress decrement dpT in a

considered infinitesimal strain cycle. A transition
between elastic unloading and plastic loading is a
neutral loading, in which an infinitesimal strain
increment is tangential to the yield surface and
represents pure elastic deformation. Thus,

@g

@E
: ’E

40; for plastic loading

¼ 0; for neutral loading

o0; for elastic unloading
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>: ð3Þ

The gradient @g=@E is codirectional with the
outward normal to a locally smooth yield surface
g¼ 0 at the state of strain E. For incrementally linear
response, all infinitesimal increments dE with equal
projections on the normal @g=@E, produce equal
plastic increments of stress dpT , since the compo-
nents of dE obtained by projection on the plane
tangential to the yield surface represent elastic
deformation only.

1.2 Yield Surface in Stress Space

The yield surface in stress space is defined by
f ðT ;HÞ ¼ 0. The stress T is a work-conjugate to
strain E, in the sense that T : ’E represents the rate of
work per unit initial volume (Hill 1978). The function
f is related to g by

f ½TðE;HÞ;H� ¼ gðE;HÞ ¼ 0 ð4Þ

provided that physically identical conditions of yield
are imposed in both spaces. If elastic response within
the yield surface is Green-elastic, associated with the
complementary strain energy f ¼ fðT;HÞ per unit
reference volume, the corresponding strain is
E ¼ @f=@T . For material in the hardening range
relative to measures E and T , an increment of stress
dT from the stress state on the yield surface, directed
inside the yield surface constitutes an elastic unload-
ing. The associated incremental elastic response is
governed by

’E ¼ M : ’T; M ¼ @2f
@T#@T

ð5Þ

The tensor M ¼ MðT ;HÞ is a tensor of elastic
compliances of the material at the considered state of
stress and internal structure. An increment of stress
directed outside the current yield surface constitutes
plastic loading in the hardening range of material
response. The resulting increment of strain consists of
elastic and plastic parts, such that

’E ¼ ’E
e þ ’E

p ¼ M : ’Tþ ’E
p ð6Þ

During plastic loading of hardening material, the
yield surface locally expands the stress state remain-
ing on the yield surface. The elastic part of the strain
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rate ’E
e
gives an elastic increment of strain deE, which

is recovered upon elastic unloading of the stress
increment dT . The plastic part of the strain rate ’E p

gives a residual increment of strain dpE which is left
upon removal of the stress increment dT . A transi-
tion between elastic unloading and plastic loading is a
neutral loading, in which an infinitesimal stress
increment is tangential to the yield surface and
produces only elastic deformation. Thus, in the
hardening range

@f

@T
: ’T

40; for plastic loading

¼ 0; for neutral loading

o0; for elastic unloading

8><
>: ð7Þ

The gradient @f =@T is codirectional with the
outward normal to a locally smooth yield surface
f¼ 0 at the state of stress T . For incrementally linear
response, all infinitesimal increments dT with equal
projections on @f =@T produce equal plastic incre-
ments of deformation dpE, since the components of
dT obtained by projection on the plane tangential to
the yield surface give rise to elastic deformation only.
In a softening range of material response Eqn. (6)

still holds, although the elastic and plastic parts of the
strain rate have purely formal significance, since in
the softening range it is not physically possible to
perform an infinitesimal cycle of stress starting from a
stress point on the yield surface. The hardening is,
however, a relative term: material that is in the
hardening range relative to one pair of stress and
strain measures, may be in the softening range
relative to another pair.

2. Plasticity Postulates, Normality and
Convexity of the Yield Surface

Several postulates in the form of constitutive inequal-
ities have been proposed for certain types of materials
undergoing plastic deformation. The two most well
known are by Drucker (1960) and Ilyushin (1961).

2.1 Ilyushin’s Postulate

According to Ilyushin’s postulate, the network in an
isothermal cycle of strain must be positiveI

E

T : dE40 ð8Þ

if a cycle at some stage involves plastic deformation.
The integral in (8) over an elastic strain cycle is equal
to zero. Since a cycle of strain that includes plastic
deformation, in general, does not return the material
to its initial state, the inequality (8) is not a law of
thermodynamics. For example, it does not apply to
materials which dissipate energy by friction. For
materials obeying Ilyushin’s postulate it can be

shown that (Hill and Rice 1973, Havner 1992)

dpT : dEo0 ð9Þ

Since during plastic loading the strain increment
dE is directed outward from the yield surface, and
since the same dpT is associated with a fan of
infinitely many dE around the normal @g=@E, all
having the same projection on that normal, the
inequality (9) requires that dpT is codirectional with
the inward normal to a locally smooth yield surface
in strain space,

dpT ¼ �dg
@g

@E
ð10Þ

The scalar multiplier dg40 is called a loading
index. At a vertex of the yield surface, dpT must lie
within the cone of limiting inward normals.

The inequality (9) and the normality rule (10) hold
for all pairs of conjugate stress and strain measures,
irrespective of the nature of elastic changes caused by
plastic deformation, or possible elastic nonlinearities
within the yield surface. Also, (10) applies regardless
of whether the material is in a hardening or softening
range.

If elastic response within the yield surface is
nonlinear, Ilyushin’s postulate does not imply that
the yield surface is necessarily convex. For a linearly
elastic response, however, it follows that

ðE0 � EÞ : dpT40 ð11Þ

provided that there is no change of elastic stiffness
caused by plastic deformation ðdK ¼ 0Þ, or the
change is such that dK is negative semi-definite. The
strain E0 is an arbitrary strain state within the yield
surface. Since dpT is codirectional with the inward
normal to a locally smooth yield surface in strain
space, (11) implies that the yield surface is convex.
The convexity of the yield surface is not an invariant
property, because dK can be negative definite for
some measures ðE;TÞ, but not for others.

Plastic stress and strain rates are related by
’T
p ¼ �K : ’E

p
, so that, to first order,

dpT ¼ �K : dpE ð12Þ

Since for any elastic strain increment, dE, emanat-
ing from a point on the yield surface in strain space
and directed inside of it,

dpT : dE40 ð13Þ

substitution of (12) into (13) gives

dpE : dTo0 ð14Þ

Here, dT ¼ K : dE is the stress increment from the
point on the yield surface in stress space, directed
inside of it (elastic unloading increment associated

2

Mechanics of Materials



with elastic strain increment dE). Inequality (14)
holds for any dT directed inside the yield surface.
Consequently, dpE must be codirectional with the
outward normal to a locally smooth yield surface in
stress T space,

dpE ¼ dg
@f

@T
; dg40 ð15Þ

At a vertex of the yield surface, dpE must lie within
the cone of limiting outward normals. Inequality (14)
and the normality rule (15) hold for all pairs of
conjugate stress and strain measures.
If material is in a hardening range relative to E and

T , the stress increment dT producing plastic defor-
mation dpE is directed outside the yield surface,
satisfying

dpE : dT40 ð16Þ

If material is in the softening range, the stress
increment dT producing plastic deformation dpE is
directed inside the yield surface, satisfying the
reversed inequality in (16). The normality rule (15)
applies to both hardening and softening. Inequality
(16) is not measure invariant, since material may be
in the hardening range relative to one pair of
conjugate stress and strain measures, and in the
softening range relative to another pair.
The normals to the yield surfaces in stress and

strain space are related by

@g

@E
¼ K :

@f

@T
ð17Þ

This follows directly from Eqn. (4) by partial
differentiation.

2.2 Drucker’s Postulate

A noninvariant dual to (8) isI
T

E : dTo0 ð18Þ

requiring that the net complementary work (relative
to measures E and T) in an isothermal cycle of stress
must be negative, if the cycle at some stage involves
plastic deformation. Inequality (18) is noninvariant
because the value of the integral in (18) depends on
the selected measures E and T , and the reference state
with respect to which they are defined. This is because
T is introduced as a conjugate stress to E such that,
for the same geometry change, T : dE (and not
E : dT) is measure invariant. If inequality (18) applies
to conjugate pair ðE;TÞ, it follows that in the
hardening range (16) holds, and dpE is codirectional
with the outward normal to a locally smooth yield
surface in stress T space, Eqn. (15). At a vertex of the
yield surface, dpE must lie within the cone of limiting

outward normals. In the softening range,

dpE : dTo0 ð19Þ

Since dT is now directed inside the current yield
surface, (19) also requires that dpE is codirectional
with the outward normal to a locally smooth yield
surface in stress T space, with the same generalization
at a vertex as in the case of hardening behavior.

If elastic response is nonlinear, the yield surface in
stress space is not necessarily convex. A concavity of
the yield surface in the presence of nonlinear elasticity
for a particular material model has been demon-
strated by Palmer et al. (1967). For linear elastic
response, however,

ðT � T0Þ : dpE40 ð20Þ

provided that there is no change of elastic stiff-
ness caused by plastic deformation ðdM ¼ 0Þ, or that
the change is such that dM is positive semi-definite.
The stress state T0 is an arbitrary stress state within
the yield surface. Since dpE is codirectional with the
outward normal to a locally smooth yield surface in
strain T space, (20) implies that the yield surface in a
considered stress space is convex. Inequality (20) is
often referred to as the principle of maximum plastic
work (Hill 1950, Johnson and Mellor 1973, Lubliner
1990). If inequality is assumed at the outset, it by
itself assures both normality and convexity.

3. Constitutive Equations of Elastoplasticity

3.1 Strain Space Formulation

The stress rate is a sum of elastic and plastic parts,
such that

’T ¼ ’T e þ ’T
p ¼ K : ’E� ’g

@g

@E
ð21Þ

For incrementally linear and continuous response
between loading and unloading, the loading index is

’g ¼ 1

h

@g

@E
: ’E

� �
;

@g

@E
: ’E40 ð22Þ

where h40 is a scalar function of the plastic state on
the yield surface in strain space, determined from the
consistency condition ’g ¼ 0. Consequently, the con-
stitutive equation for elastoplastic loading is

’T ¼ K � 1

h

@g

@E
#

@g

@E

� �� 	
: ’E ð23Þ

The fourth-order tensor (within the square brack-
ets) is the elastoplastic stiffness tensor associated with
the considered measure and reference state. Within the
framework based on Green-elasticity and normality
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rule, the elastoplastic stiffness tensor possesses reci-
procal or self-adjoint symmetry (with respect to first
and second pair of indices) in addition to symmetries
in the first and last two indices associated with the
symmetry of stress and strain tensors.
The inverted form of (23) is

’E ¼ M þ 1

H
M :

@g

@E

� �
#

@g

@E
: M

� �� 	
: ’T ð24Þ

where

H ¼ h� @g

@E
: M :

@g

@E
ð25Þ

3.2 Stress Space Formulation

The strain rate is a sum of elastic and plastic parts,
such that

’E ¼ ’E e þ ’E p ¼ M : ’Tþ ’g
@f

@T
ð26Þ

The loading index is obtained from the consistency
condition ’f ¼ 0,

’g ¼ 1

H

@f

@T
: ’T

� �
ð27Þ

where H is a scalar function of the plastic state on the
yield surface in stress space. Thus,

’E ¼ M þ 1

H

@f

@T
#

@f

@T

� �� 	
: ’T ð28Þ

The fourth-order tensor (within the square brack-
ets) is the elastoplastic compliance tensor associated
with the considered measure and reference state.
The scalar parameter H can be positive, negative,

or equal to zero. Three types of response can be
identified within this constitutive framework. These
are (Hill 1978)

H40;
@f

@T
: ’T40 hardening

Ho0;
@f

@T
: ’To0 softening

H ¼ 0;
@f

@T
: ’T ¼ 0 ideally plastic

ð29Þ

Starting from the current yield surface in stress
space, the yield point moves outward in the case of
hardening, inward in the case of softening, and
tangentially to the yield surface in the case of ideally
plastic response. In the case of softening, ’E is not
uniquely determined by prescribed stress rate ’T, since
either Eqn. (28), or the elastic unloading expression
’E ¼ M : ’T, applies. In the case of ideally plastic

response, the plastic part of the strain rate is
indeterminate to the extent of an arbitrary positive
multiple, since ’g in Eqn. (27) is indeterminate.

3.3 Yield Surface with a Vertex

Physical theories of plasticity imply the formation of
a corner or vertex at the loading point on the yield
surface. Suppose that the yield surface in stress space
has a pyramidal vertex formed by n intersecting
segments f/iS ¼ 0, then near the vertex

Yn
i¼1

f/iSðT;HÞ ¼ 0; nX2 ð30Þ

It follows that

’E ¼ M þ
Xn
i¼1

Xn
j¼1

H�1
/ijS

@f/iS
@T

#
@f/jS
@T

� �" #
: ’T ð31Þ

This is an extension of the constitutive structure
(28) for the smooth yield surface to the yield surface
with a vertex. Elements of the matrix inverse to
plastic moduli matrix H/ijS are denoted by H�1

/ijS.
The papers by Koiter (1953), Hill (1978), and Asaro
(1983) can be referred to for further analysis.

4. Constitutive Models of Plastic Deformation

4.1 Isotropic Hardening

Experimental determination of the yield surface
shape is commonly done with respect to Cauchy
stress r. Suppose that this is given by f ðr; kÞ ¼ 0,
where f is an isotropic function of r and k ¼ kðWÞ is a
scalar which defines the size of the yield surface. This
depends on the history parameter, such as the
effective plastic strain

W ¼
Z t

0

ð2Dp : DpÞ1=2 dt ð32Þ

The hardening model in which the yield surface
expands during plastic deformation preserving its
shape is known as the isotropic hardening model.
Since f is an isotropic function of stress, the material
is assumed to be isotropic. For nonporous metals, the
onset of plastic deformation and plastic yielding is
unaffected by moderate superimposed pressure. The
yield condition can consequently be written as an
isotropic function of the deviatoric part of the
Cauchy stress, i.e., its second and third invariant,
f(J2, J3, k)¼ 0. The well-known examples are the
Tresca maximum shear stress criterion, or the von
Mises yield criterion. In the latter case,

f ¼ J2 � k2ðWÞ ¼ 0; J2 ¼ 1
2
r0 : r0 ð33Þ
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The corresponding plasticity theory is referred to
as the J2 flow theory of plasticity. The yield stress in
simple shear is k. If Y is the yield stress in uniaxial
tension, k ¼ Y=

ffiffiffi
3

p
. The consistency condition gives

’g ¼ 1

4k2hpt
ðr0 : (sÞ; H ¼ 4k2hpt ð34Þ

where the plastic tangent modulus in shear test is
h
p
t ¼ dk=dW. The stress rate

s
3

�
¼ (r þ r tr D; (r ¼ ’r �W 
 r þ r 
W ð35Þ

represents the Jaumann rate of the Kirchhoff stress
s ¼ ðdet FÞr, when the current state is taken as the
reference ðdet F ¼ 0Þ. The deformation gradient is F,
and the material spin is W . The total rate of
deformation is therefore

D ¼ M þ 1

2hpt

r0#r0

r0 : r0

� �
: (s ð36Þ

The elastic compliance tensor for infinitesimal
elasticity is

M ¼ 1

2m
I � l

2mþ 3l
d#d

� �
ð37Þ

The Lam!e elastic constants are l and m. The
second- and fourth-order unit tensors are designated
by d and I , respectively. The plastic deformation is in
this case isochoric ðtr Dp ¼ 0Þ, and principal direc-
tions of Dp are parallel to those of r (DpBs0). The
inverted form of (36) is

(s ¼ K � 2m
1þ hpt =m

r0#r0

r0 : r0

� �
: D ð38Þ

where

K ¼ ld#d þ 2mI ð39Þ

is the elastic stiffness tensor. Constitutive structures
(36) and (38) have been extensively used in analytical
and numerical studies of large plastic deformation
problems (Neale 1981, Needleman 1982). Infinitesi-
mal strain formulation, derivation of classical
Prandtl–Reuss equations for elastic-ideally plastic,
and Levy–Mises equations for rigid-ideally plastic
material models can be found in standard texts or
review papers (Hill 1950, Naghdi 1960).

4.2 Kinematic Hardening

To account for the Bauschinger effect and anisotropy
of hardening, a simple model of kinematic hardening
was introduced by Prager (1956). According to this
model, the initial yield surface does not change its size
and shape during plastic deformation, but translates
in the stress space according to some prescribed rule.

Thus, f ðr � a; kÞ ¼ 0, where a represents the current
center of the yield surface (back stress), and f is an
isotropic function of the stress difference r � a. The
size of the yield surface is specified by the constant k.
The evolution of the back stress is governed by

(a ¼ cðaÞDp þ CðaÞð2Dp : DpÞ1=2 ð40Þ

where c and C are appropriate scalar and tensor
functions of a. This representation is in accord with
assumed time independence of plastic deformation,
which requires Eqn. (40) to be a homogeneous
relation of degree one.

If C ¼ 0 and c is taken to be constant, the model
corresponds to Prager’s linear kinematic hardening.
The plastic tangent modulus h

p
t in shear test is in this

case constant and related to c by c ¼ 2hpt . The
resulting constitutive structure is

D ¼ M þ 1

2hpt

ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ

� 	
: (s ð41Þ

with the inverse

(s ¼ K � 2m
1þ hpt =m

ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ

� 	
: D ð42Þ

If C in Eqn. (40) is taken to be proportional to a
(i.e., C ¼ �c0 a; c0 ¼ constant), a nonlinear kine-
matic hardening model of Armstrong and Frederick
(1966) is obtained. Details can be found in Khan and
Huang (1995). Ziegler (1959) used it as an evolution
equation for the back stress

(a ¼ ’bðr0 � aÞ ð43Þ

The proportionality factor ’b is determined from
the consistency condition in terms of r and a.

4.3 Combined Isotropic-kinematic Hardening

In this hardening model, the yield surface expands
and translates during plastic deformation, so that

f ðr � a; kÞ ¼ 0; k ¼ kðWÞ ð44Þ

The function kðWÞ, with W defined by Eqn. (32),
specifies expansion of the yield surface, while evolu-
tion Eqn. (40) specifies its translation.

4.4 Multisurface Models

Motivated by the need to better model nonlinearities
in stress–strain loops, cyclic hardening or softening,
cyclic creep and stress relaxation, more involved
hardening models were suggested. Mr !oz (1967)
introduced a multiyield surface model in which there
is a field of hardening moduli, one for each yield
surface. Initially the yield surfaces are assumed to be

5

Mechanics of Materials



concentric. When the stress point reaches the inner-
most yield surface, the plastic deformation develops
according to linear hardening model with a pre-
scribed plastic tangent modulus, until the active yield
surface reaches the adjacent yield surface. Subsequent
plastic deformation develops according to linear
hardening model with another specified value of the
plastic tangent modulus, until the next yield surface is
reached, etc. Dafalias and Popov (1975) and Krieg
(1975) suggested a hardening model, which uses the
yield (loading) surface and the limit (bounding)
surface. A smooth transition from elastic to plastic
regions on loading is assured by introducing a
continuous variation of the plastic tangent modulus
between the two surfaces.

5. Pressure-dependent Plasticity

For porous metals, concrete and geomaterials like
soils and rocks, plastic deformation has its origin in
pressure-dependent microscopic processes and the
yield condition for these materials, in addition to
deviatoric components, depends on hydrostatic com-
ponent of stress, i.e., its first invariant I1 ¼ tr r.

5.1 Drucker–Prager Yield Condition for
Geomaterials

Drucker and Prager (1952) suggested that yielding of
soil occurs when the shear stress on octahedral planes
overcomes cohesive and frictional resistance to sliding
on those planes. The yield condition is consequently

f ¼ J1=22 þ 1
3
aI1 � k ¼ 0 ð45Þ

where a is a frictional parameter. This geometrically
represents a cone in the principal stress space with its
axis parallel to hydrostatic axis. The radius of the
circle in the deviatoric plane is

ffiffiffi
2

p
k, where k is the

yield stress in simple shear. The angle of the cone is
tan�1ð

ffiffiffi
2

p
a=3Þ. The yield stresses in uniaxial tension

and compression according to Eqn. (45) are

Yþ ¼
ffiffiffi
3

p
k

1þ a=
ffiffiffi
3

p ; Y� ¼
ffiffiffi
3

p
k

1� a=
ffiffiffi
3

p ð46Þ

For the yield condition to be physically meaningful,
the restriction holds ao

ffiffiffi
3

p
. If the compressive states

of stress are considered positive (as commonly done in
geomechanics), the minus sign appears in front of the
second term in Eqn. (45).
When Drucker–Prager cone is applied to porous

rocks, it overestimates the yield stress at higher
pressures and inadequately predicts inelastic volume
changes. To circumvent this, DiMaggio and Sandler
(1971) introduced an ellipsoidal cap to close the cone
at certain level of pressure. Other shapes of the cap
were also used. Details can be found in Chen and
Han (1988).

5.2 Gurson Yield Condition for Porous Metals

Based on a rigid-perfectly plastic analysis of spheri-
cally symmetric deformation around a spherical
cavity, Gurson (1977) suggested a yield condition
for porous metals in the form

f ¼ J2 þ
2

3
vY2

0 cosh
I1

2Y0

� �
� ð1þ v2Þ Y

2
0

3
¼ 0 ð47Þ

where v is the porosity (void/volume fraction), and
Y0 ¼ constant is the tensile yield stress of the matrix
material. Generalizations to include hardening matrix
material were also made. The change in porosity
during plastic deformation is given by the evolution
equation

’v ¼ ð1� vÞ tr Dp ð48Þ

Other evolution equations, which take into account
nucleation and growth of voids, have been consid-
ered. To improve its predictions and agreement with
experimental data, Tvergaard (1982) introduced two
additional material parameters in the structure of the
Gurson yield criterion. Mear and Hutchinson (1985)
incorporated the effects of anisotropic (kinematic)
hardening by replacing J2 of r0 in Eqn. (47) with J2 of
r0 � a, where a is the back stress.

5.3 Constitutive Equations of Pressure-dependent
Plasticity

The two considered pressure-dependent yield condi-
tions are of the type

f ðJ2; I1;HÞ ¼ 0 ð49Þ

For materials obeying Ilyushin’s postulate, the
plastic part of the rate of deformation tensor is
normal to the yield surface, so that

Dp ¼ ’g
@f

@r
;

@f

@r
¼ @f

@J2
r0 þ @f

@I1
d ð50Þ

The loading index is

’g ¼ 1

H

@f

@J2
r0 þ @f

@I1
d

� �
: (s ð51Þ

where H is an appropriate hardening modulus.
Therefore,

Dp ¼ 1

H

@f

@J2
r0 þ @f

@I1
d

� �
#

@f

@J2
r0 þ @f

@I1
d

� �� 	
: (s ð52Þ

The volumetric part of the plastic rate of deforma-
tion is

tr Dp ¼ 3

H

@f

@I1

@f

@J2
r0 þ @f

@I1
d

� �
: (s ð53Þ
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For the Drucker–Prager yield condition,

@f

@J2
¼ 1

2
J
�1=2
2 ;

@f

@I1
¼ 1

3
a ð54Þ

and

H ¼ dk

dW
; W ¼

Z t

0

ð2Dp0 : Dp0 Þ1=2 dt ð55Þ

For the Gurson yield condition,

@f

@J2
¼ 1;

@f

@I1
¼ 1

3
vY0 sinh

I1

2Y0

� �
ð56Þ

and

H ¼ 2

3
vð1� vÞY3

0 sinh
I1

2Y0

� �
v� cosh

I1

2Y0

� �� 	
ð57Þ

6. Nonassociative Plasticity

Constitutive equations, in which plastic part of the
rate of strain is normal to locally smooth yield
surface f¼ 0 in stress space,

’E
p ¼ ’g

@f

@T
ð58Þ

are often referred to as associative flow rules. A
sufficient condition for this constitutive structure to
hold is that the material obeys the Ilyushin’s postulate.
However, many pressure-dependent dilatant materials
with internal frictional effects are not well described by
associative flow rules. For example, associative flow
rules largely overestimate inelastic volume changes in
geomaterials like rocks and soils (Rudnicki and Rice
1975), and in certain high-strength steels exhibiting the
strength-differential effect by which the yield strength is
higher in compression than in tension (Spitzig et al.
1975). For such materials, plastic part of the rate of
strain is taken to be normal to plastic potential surface
p¼ 0, which is distinct from the yield surface. The
resulting constitutive structure,

’E
p ¼ ’g

@p
@T

ð59Þ

is known as nonassociative flow rule (Nemat-Nasser
1983). The consistency condition ’f ¼ 0 gives

’g ¼ 1

H

@f

@T
: ’T ð60Þ

so that

’E
p ¼ 1

H

@p
@T

#
@f

@T

� �
: ’T ð61Þ

Since paf , the plastic compliance tensor in Eqn.
(61) does not possess a reciprocal symmetry.

Consider an inelastic behavior of geomaterials,
whose yield is governed by the Drucker–Prager yield
condition of Eqn. (45). A nonassociative flow rule
can be used with the plastic potential

p ¼ J1=22 þ 1
3
bI1 � k ¼ 0 ð62Þ

The material parameter b is in general different
from the frictional parameter a of Eqn. (45). The rate
of plastic deformation is

Dp ¼ ’g
@p
@r

¼ ’g
1

2
J
�1=2
2 r0 þ 1

3
bd

� �
ð63Þ

The consistency condition ’f ¼ 0 gives the loading
index

’g ¼ 1

H

1

2
J
�1=2
2 r0 þ 1

3
ad

� �
: (s; H ¼ dk

dW
ð64Þ

Consequently,

Dp ¼ 1

H

1

2
J
�1=2
2 r0 þ 1

3
bd

� ��

#
1

2
J
�1=2
2 r0 þ 1

3
ad

� �	
: (s ð65Þ

The deviatoric and spherical parts are

Dp0 ¼ 1

2H

r0

J
1=2
2

r0 : (s

2J
1=2
2

þ 1

3
a tr (s

 !
ð66Þ

tr Dp ¼ b
H

r0 : (s

2J
1=2
2

þ 1

3
a tr (s

 !
ð67Þ

The parameter b can be expressed as

b ¼ tr Dp

ð2Dp0 : Dp0 Þ1=2
ð68Þ

which shows that b is the ratio of the volumetric and
shear part of the plastic strain rate, often called the
dilatancy factor (Rudnicki and Rice 1975). Frictional
parameter and inelastic dilatancy of material actually
change with progression of inelastic deformation. An
analysis which accounts for their variation is presented
by Nemat-Nasser and Shokooh (1980). Constitutive
formulation of elastoplastic theory with evolving
elastic properties is studied by Lubarda and Krajci-
novic (1995) and others (see also Lubarda 2002).

6.1 Yield Vertex Model for Fissured Rocks

In a brittle rock, modeled to contain a collection of
randomly oriented fissures, inelastic deformation
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results from frictional sliding on the fissure surfaces.
Inelastic dilatancy under overall compressive loads is
a consequence of opening the fissures at asperities
and local tensile fractures at some angle at the edges
of fissures. Individual yield surface may be associated
with each fissure. The macroscopic yield surface is the
envelope of individual yield surfaces for fissures of all
orientations, similarly to slip models of metal
plasticity (Rudnicki and Rice 1975, Rice 1976).
Continued stressing in the same direction will cause
continuing sliding on (already activated) favorably
oriented fissures, and will initiate sliding for a
progressively greater number of orientations. After
certain amount of inelastic deformation, the macro-
scopic yield envelope develops a vertex at the loading
point. The stress increment normal to the original
stress direction will initiate or continue sliding of
fissure surfaces for some fissure orientations. In
isotropic hardening idealization with smooth yield
surface, however, a stress increment tangential to the
yield surface will cause only elastic deformation,
overestimating the stiffness of response. In order to
take into account the effect of the yield vertex in an
approximate way, a second plastic modulus H1 is
introduced, which governs the response to part of the
stress increment directed tangentially to what is taken
to be the smooth yield surface through the same
stress point. Since no vertex formation is associated
with hydrostatic stress increments, tangential stress
increments are taken to be deviatoric, and Eqn. (66)
is replaced with

D p0 ¼ 1

2H

r0

J
1=2
2

r0 : (s

2J
1=2
2

þ 1

3
a tr (s

 !

þ 1

2H1

(s0 � r0 : (s

2J2
r0

� �
ð69Þ

The dilation induced by the small tangential stress
increment is assumed to be negligible, so that Eqn.
(67) applies for tr Dp. The constitutive structure of
Eqn. (69) is intended to model the response at a yield
surface vertex for small deviations from proportional
(straight ahead) loading (sBr0. For the full range of
directions of stress increment, the relationship
between the rates of stress and plastic deformation
is not expected to be necessarily linear, although it is
homogeneous in these rates in the absence of time-
dependent creep effects.

7. Deformation Theory of Plasticity

Simple plasticity theory has been suggested for
proportional loading and small deformation by
Hencky (1924) and Ilyushin (1963). A large deforma-
tion version of the theory can be formulated by using
the logarithmic strain and its conjugate stress. Since
stress proportionally increase, elastoplastic response

is described macroscopically by constitutive structure
of nonlinear elasticity, where strain is a function of
stress. The strain tensor is decomposed into elastic
and plastic part, E ¼ E e þ E p. The elastic part is
expressed in terms of stress by generalized Hooke’s
law, and plastic part is assumed to be

E p ¼ jT 0 ð70Þ

where j is an appropriate scalar function. Suppose
that a nonlinear relationship %t ¼ %tð%gpÞ is available
from the elastoplastic shear test. Define the plastic
secant and tangent moduli by hps ¼ %t=%gp; hpt ¼ d%t=d%gp,
and let

%t ¼ 1
2
T 0 : T 0� �1=2

; %gp ¼ ð2E p : E pÞ1=2 ð71Þ

The scalar function j is then j ¼ 1=2hps . Although
deformation theory of plasticity is total strain theory, it
is useful to cast it in the rate-type form, particularly
when the considered boundary value problem needs to
be solved in an incremental manner. The resulting
expression for the plastic part of the total rate of
deformation is

D p ¼ 1

2hps
(s0 þ 1

2hpt
� 1

2hps

� �
ðs0#s0Þ : (s

s0 : s0
ð72Þ

where (s is the Jaumann derivative of the Kirchhoff
stress.

7.1 Application of Deformation Theory Beyond
Proportional Loading

Deformation theory agrees with flow theory of
plasticity only under proportional loading, since then
specification of the final state of stress also specifies
the stress history. For general (nonproportional)
loading, more accurate and physically appropriate
is the flow theory of plasticity, particularly with an
accurate modelling of the yield surface and hardening
behavior. Budiansky (1959), however, indicated that
deformation theory can be successfully used for
certain nearly proportional loading paths, as well.
The stress rate (s0 in Eqn. (72) does not then have to be
codirectional with s0, and the plastic part of the rate
of deformation depends on both components of the
stress rate (s0, one in the direction of s0 and the other
normal to it. In contrast, according to flow theory
with the von Mises smooth yield surface, the
component of the stress rate (s0 normal to s0 (thus
tangential to the yield surface) does not affect the
plastic part of the rate of deformation. Since the
structure of the deformation theory of plasticity
under proportional loading does not use any notion
of the yield surface, Eqn. (72) can be used to
approximately describe the response when the yield
surface develops a vertex. Rewriting Eqn. (72) in the
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form

D p ¼ 1

2hps
(s0 � ðs0#s0Þ : (s

s0 : s0

� 	

þ 1

2hpt

ðs0#s0Þ : (s
s0 : s0

ð73Þ

the first term on the right-hand side gives the response
to component of the stress increment normal to s0. The
associated plastic modulus is hps . The plastic modulus
associated with the component of the stress increment
in the direction of s0 is hpt . A corner theory that
predicts continuous variation of the stiffness and
allows increasingly nonproportional increments of
stress was formulated by Christoffersen and Hutch-
inson (1979). When applied to the analysis of necking
in thin sheets under biaxial stretching, the results were
in better agreement with experiments than those
obtained from the theory with smooth yield char-
acterization. Similar observations were long known in
the field of elastoplastic buckling. Deformation theory
predicts buckling loads better than flow theory with a
smooth yield surface (Hutchinson 1974).

8. Thermoplasticity

Nonisothermal plasticity is considered here assuming
that temperature is not too high, so that creep
deformation can be neglected. The analysis may also
be adequate for certain applications under high
stresses of short duration, where temperature increase
is more pronounced but viscous (creep) strains have
no time to develop (Prager 1958, Kachanov 1971).
Thus, infinitesimal changes of stress and temperature
applied to the material at a given state produce a
unique infinitesimal change of strain that is indepen-
dent of the speed with which these changes are made.
Rate-dependent plasticity models will be presented in
Sect. 9.
The formulation of thermoplastic analysis under

described conditions can proceed by introducing a
nonisothermal yield condition in either stress or
strain space. For example, the yield condition in
stress space is f ðT ; y;HÞ ¼ 0. The response within
the yield surface is thermoelastic. If the Gibbs energy
relative to selected stress and strain measures is f ¼
fðT ; y;HÞ per unit reference volume, the strain is
E ¼ @f=@T .
Let the stress state T be on the current yield

surface. The rates of stress and temperature asso-
ciated with thermoplastic loading satisfy the consis-
tency condition ’f ¼ 0, which gives

@f

@T
: ’Tþ @f

@y
’y� ’gH ¼ 0 ð74Þ

The hardening parameter is H ¼ HðT ; y;HÞ, and
the loading index is ’g40. Three types of response are

possible,

H40;
@f

@T
: ’Tþ @f

@y
’y40

thermoplastic hardening

Ho0;
@f

@T
: ’Tþ @f

@y
’yo0

thermoplastic softening

H ¼ 0;
@f

@T
: ’Tþ @f

@y
’y ¼ 0

ideally thermoplastic ð75Þ

This parallels the isothermal classification of
Eqn. (29).

Since rate-independence is assumed, the constitu-
tive relationship has to be homogeneous of degree
one in rates of stress, strain, and temperature. For
thermoplastic part of the rate of strain this is satisfied
by the normality structure

’E
p ¼ ’g

@f

@T
ð76Þ

which, in view of Eqn. (74), becomes

’E
p ¼ 1

H

@f

@T
: ’Tþ @f

@y
’y

� �
@f

@T
ð77Þ

The strain rate is a sum of thermoelastic and
thermoplastic parts. The thermoelastic part is

’E
e ¼ @2f

@T#@T
: ’Tþ @2f

@T@y
’y ð78Þ

For example, if

f ¼ 1

4m
tr T2 � l

3lþ 2m
tr2 T

� �
þ aðyÞ tr T þ bðy;HÞ ð79Þ

there follows

’E
e ¼ 1

2m
I � l

2mþ 3l
d#d

� �
: ’Tþ a0ðyÞ’yd ð80Þ

where l and b are the Lam!e-type elastic constants
corresponding to selected measures, a and b are
appropriate functions of indicated arguments, and
a0 ¼ da=dy.

Suppose that nonisothermal yield condition in the
Cauchy stress space is temperature-dependent von
Mises condition

f ¼ 1
2
r0 : r0 � ½jðyÞkðWÞ�2 ¼ 0 ð81Þ

9

Mechanics of Materials



The thermoplastic part of the deformation rate is
then

D p ¼ 1

2jhpt

r0#r0

r0 : r0 : (s � r0 j
0

j
’y

� �
ð82Þ

where h
p
t ¼ dk=dW and j0 ¼ dj=dy. Combining with

Eqn. (80), the total rate of deformation is

D ¼ 1

2m
I � l

2mþ 3l
d#d

� �
þ 1

2jhpt

r0#r0

r0 : r0

� 	
: (s

þ a0ðyÞd � j0

2j2hpt
r0

� 	
’y ð83Þ

The inverse equation is

(s ¼ ld#d þ 2mI � 2m
1þ jhpt =m

r0#r0

r0 : r0

� �
: D

� ð3lþ 2mÞa0d � 1

1þ jhpt =m
j0

j
r0

� 	
’y ð84Þ

Infinitesimal strain formulation for rigid-thermo-
plastic material was given by Prager (1958) (see also
Lee 1969, Naghdi 1990). Experimental investigation
of nonisothermal yield surfaces was reported by
Phillips (1982).
In the case of thermoplasticity with linear kine-

matic hardening ðc ¼ 2h
p
t Þ, and the temperature-

dependent yield surface

f ¼ 1

2
ðr0 � aÞ : ðr0 � aÞ � ½jðyÞk�2 ¼ 0;

k ¼ constant ð85Þ

there follows

D p ¼ 1

2h
p
t

ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ : (s � j0

j
ðr0 � aÞ’y

� 	
ð86Þ

9. Rate-dependent Plasticity

This section is devoted to inelastic constitutive
equations for metals in the strain rate sensitive range
of material response, where time effects play an
important role. There is an indication from the
dislocation dynamics point of view (Johnston and
Gilman 1959) that plasticity caused by crystallo-
graphic slip in metals is inherently time dependent.
Once it is assumed that the rate of shearing on a given
slip system depends on local stresses only through the
resolved shear stress in slip direction, the plastic part
of the rate of strain is derivable from a scalar flow
potential (Rice 1971) as

’E p ¼ @OðT ; y;HÞ
@T

ð87Þ

The history of deformation is represented by the
pattern of internal rearrangements H, and the

absolute temperature y. Geometrically, the plastic
part of the strain rate is normal to surfaces of
constant flow potential in stress space. There is no
yield surface in the model and plastic deformation
commences from the onset of loading. Time-inde-
pendent behavior can be recovered under certain
idealizations—neglecting creep rate effects, as an
appropriate limit (Rice 1970).

9.1 Power-law and Johnson–Cook Models

The power-law representation of the flow potential in
the Cauchy stress space is

O ¼ 2’g0

mþ 1

J
1=2
2

k

 !m
J
1=2
2

J2 ¼ 1
2
r0 : r0

ð88Þ

where k ¼ kðy;HÞ is the reference shear stress, ’g0 is
the reference shear strain rate to be selected for each
material, and m is the material parameter (of the order
of 100 for metals at room temperature and strain rates
below 104 s�1; Nemat-Nasser (1992). The correspond-
ing plastic part of the rate of deformation is

Dp ¼ ’g0
J
1=2
2

k

 !m
r0

J
1=2
2

ð89Þ

The equivalent plastic strain is usually used as the
only history parameter H, and the reference shear
stress depends on W and y according to

k ¼ k0 1þ W

W0

� �a

exp �b
y� y0
ym � y0

� �
ð90Þ

Here, k0 and W0 are the normalizing stress and strain,
y0 and ym are the room and melting temperatures,
and a and b are the material parameters. From the
onset of loading, the deformation rate consists of
elastic and plastic constituents, although for large
m the plastic contribution may be small if J2 is less
than k.

Another representation of the flow potential,
constructed according to Johnson and Cook (1983)
model, is

O ¼ 2’g0

a
k exp a

J
1=2
2

k
� 1

 !" #
ð91Þ

The reference shear stress is

k ¼ k0 1þ b W

W0

� �c� 	
1� y� y0

ym � y0

� �d" #
ð92Þ

where a, b, c, and d are the material parameters. The
corresponding plastic part of the rate of deformation
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is, in this case,

Dp ¼ ’g0 exp a
J
1=2
2

k
� 1

 !" #
r0

J
1=2
2

ð93Þ

9.2 Viscoplasticity Models

For high-strain rate applications in dynamic plasti-
city (Cristescu 1967, Clifton 1983), the flow potential
can be taken as

O ¼ 1

z
½J1=22 � ksðWÞ�2 ð94Þ

where z is the viscosity coefficient, and ksðWÞ
represents the shear stress—plastic strain relationship
from the (quasi) static shear test. The positive
difference J

1=2
2 � ksðWÞ between the measure of the

current dynamic stress state and corresponding static
stress state (at the given level of equivalent plastic
strain W) is known as the overstress measure (Malvern
1951). The plastic part of the rate of deformation is

Dp ¼ 1

z
½J1=22 � ksðWÞ�

r0

J
1=2
2

ð95Þ

The inverted form of Eqn. (95) is

r0 ¼ zDp þ 2ksðWÞ
Dp

ð2Dp : DpÞ1=2
ð96Þ

which shows that the rate dependence in the model
comes from the first term on the right-hand side. In
quasi-static tests, viscosity z is taken to be equal to
zero, and Eqn. (96) reduces to time-independent von-
Mises isotropic hardening plasticity. In this case, flow
potential O is constant within the elastic range
bounded by the yield surface J

1=2
2 ¼ ksðWÞ.

More general representation for O is possible by
using the Perzyna (1966) viscoplastic model. For
example, one can take

O ¼ C

mþ 1
½ f ðrÞ � ksðWÞ�mþ1 ð97Þ

which yields

Dp ¼ C½ f ðrÞ � ksðWÞ�m
@f

@r
ð98Þ

If f ¼ J1=22 , C ¼ 2=z, and ksðWÞ ¼ k0 ¼ constant,
then Eqn. (98) gives

Dp ¼ 1

z
ðJ1=22 � k0Þm r0

J
1=2
2

ð99Þ

which is a nonlinear Bingham model. If ksðWÞ ¼ 0,
f ¼ J1=22 , and C ¼ 2’g0=km, then Eqn. (98) reproduces
the power-law J2 creep given by Eqn. (89).

10. Phenomenological Plasticity based on
the Multiplicative Decomposition

In this section, a multiplicative decomposition of the
total deformation gradient into elastic and plastic
parts is introduced to provide an additional frame-
work for dealing with finite elastic and plastic
deformation. The decomposition in the specific
context of a strain rate dependent, J2-flow theory of
plasticity is applied. Consider the current elastoplas-
tically deformed configuration of the material sam-
ple. Let F be the deformation gradient that maps an
infinitesimal material element dX from initial config-
uration to dx in current configuration, such that
dx ¼ F 
 dX . An intermediate configuration is intro-
duced by elastically destressing the current config-
uration to zero stress. Such configuration differs from
the initial configuration by a residual (plastic)
deformation, and from the current configuration by
a reversible (elastic) deformation. If dxp is the
material element in the intermediate configuration,
corresponding to dx in the current configuration,
then dx ¼ F e 
 dxp, where F e represents a deforma-
tion gradient associated with elastic loading from the
intermediate to current configuration. If the deforma-
tion gradient of plastic transformation is F p, such
that dxp ¼ F p 
 dX , the multiplicative decomposition
of the total deformation gradient into its elastic and
plastic parts holds

F ¼ F e 
 F p ð100Þ

The decomposition was introduced in the phenom-
enological rate-independent theory of plasticity by
Lee (1969). In the case when elastic destressing to
zero stress is not physically achievable due to possible
onset of reverse inelastic deformation before the state
of zero stress is reached, the intermediate configura-
tion can be conceptually introduced by virtual
destressing to zero stress, locking all inelastic
structural changes that would take place during the
actual destressing. The deformation gradients F e and
F p are not uniquely defined because the intermediate
unstressed configuration is not unique. Arbitrary
local material rotations can be superposed to the
intermediate configuration, preserving it unstressed.
In applications, however, the decomposition (100)
can be made unique by additional specifications,
dictated by the nature of the considered material
model. For example, for elastically isotropic materi-
als the elastic stress response depends only on the
elastic stretch V e, and not on the rotation Re from
the polar decomposition F e ¼ V e 
 Re. Conse-
quently, the intermediate configuration can be
specified uniquely by requiring that elastic unloading
takes place without rotation ðF e ¼ V eÞ. An alter-
native choice will be pursued in the constitutive
derivation presented here; see also Lubarda (2002).
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The velocity gradient in the current configuration
at time t is defined by

L ¼ ’F 
 F�1 ð101Þ

The superposed dot designates the material time
derivative. By introducing the multiplicative decom-
position of deformation gradient (100), the velocity
gradient becomes

L ¼ ’F e 
 F e�1 þ F e 
 ð ’F p 
 F p�1Þ 
 F e�1 ð102Þ

The rate of deformation D and the spin W are,
respectively, the symmetric and antisymmetric part of
L,

D ¼ ð ’F e 
 F e�1Þs þ ½F e 
 ð ’F p 
 F p�1Þ 
 F e�1�s ð103Þ

W ¼ ð ’F e 
 F e�1Þa þ ½F e 
 ð ’F p 
 F p�1Þ 
 F e�1�a ð104Þ

Since Fe is specified up to an arbitrary rotation,
and since the stress response of elastically isotropic
materials does not depend on the rotation, an
unloading program can be chosen, such that

½F e 
 ð ’F p 
 F p�1Þ 
 F e�1�a ¼ 0 ð105Þ

With this choice, therefore, the rate of deformation
and the spin tensors are

D ¼ ð ’F e 
 F e�1Þs þ F e 
 ð ’F p 
 F p�1Þ 
 F e�1 ð106Þ

W ¼ ð ’F e 
 F e�1Þa ð107Þ

10.1 Elastic and Plastic Constitutive Contributions

It is assumed that the material is elastically isotropic
in its initial undeformed state, and that plastic
deformation does not affect its elastic properties.
The elastic response is then given by

s ¼ F e 
 @C
eðE eÞ
@E e


 F eT ð108Þ

The elastic strain energy per unit unstressed
volume, Ce, is an isotropic function of the Lagran-
gian strain E e ¼ ðF eT 
 F e � IÞ=2. Plastic deforma-
tion is assumed to be incompressible
ðdet F e ¼ det FÞ, so that s ¼ ðdet FÞr is the Kirchh-
off stress. By differentiating Eqn. (108), one obtains

’s � ð ’F e 
 F e�1Þ 
 s � s 
 ð ’F e 
 F e�1ÞT

¼ #L : ð ’F e 
 F e�1Þs ð109Þ

The rectangular components of #L are

#Lijkl ¼ F e
imF

e
jn

@2Ce

@E e
mn@E

e
pq

F e
kpF

e
lq ð110Þ

Equation (109) can be equivalently written as

’s � ð ’F e 
 F e�1Þa 
 s þ s 
 ð ’F e 
 F e�1Þa
¼ L : ð ’F e 
 F e�1Þs ð111Þ

The modified elastic moduli tensor L has the
components

Lijkl ¼ #Lijkl þ 1
2
ðtikdjl þ tjkdil þ tildjk þ tjldikÞ ð112Þ

In view of Eqn. (107), we can rewrite Eqn. (111) as

(s ¼ L : ð ’F e 
 F e�1Þs ð113Þ

where

(s ¼ ’s �W 
 s þ s 
W ð114Þ

is the Jaumann rate of the Kirchhoff stress with
respect to total spin. By inversion, Eqn. (113) gives
the elastic rate of deformation as

D e ¼ ð ’F e 
 F e�1Þs ¼ L�1 : (s ð115Þ

Physically, the strain increment De dt is a reversible
part of the total strain increment D dt, which is
recovered upon loading–unloading cycle of the stress
increment (s dt. The remaining part of the total rate of
deformation,

Dp ¼ D�De ð116Þ

is the plastic part, which gives a residual strain
increment left upon the considered infinitesimal cycle
of stress. When the material obeys Ilyushin’s work
postulate, the so-defined plastic rate of deformationDp

is codirectional with the outward normal to a locally
smooth yield surface in the Cauchy stress space, i.e.,

Dpjj@f
@r

ð117Þ

10.2 Rate-dependent J2 Flow Theory

Classical J2 flow theory uses the yield surface as
generated earlier as a flow potential. Thus, the current
yield criteria %s ¼ k defines a series of yield surfaces in
stress space, where k serves the role of a scaling
parameter. Here we rephrase the yield criterion in
terms of the effective stress, %s ¼ ð3=2s0

ijs
0
ijÞ

1=2; k is
then the uniaxial yield stress. J2 flow theory assumes
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that Dpjjr0. This amounts to taking

Dpjj@ %s
@r0 ð118Þ

or

D
p
ij jj

@ %s
@s0

ij

¼ 3

2

s
0

ij

%s
ð119Þ

Thus one can write

Dp ¼ ’%ep
3

2

r0

%s
ð120Þ

where ’%ep is an effective plastic strain rate whose
specification requires an additional model statement.
By incorporating Eqn. (120) one can write from
Eqn. (113)

(s ¼L : D e ¼ L : ðD�D pÞ

¼L : D� ’%ep
3

2

r0

%s

� �
ð121Þ

By adopting a simple power law expression of the
form

’%ep ¼ ’e0
%s
g

� �1=m

ð122Þ

where ’e0 is a reference strain rate and 1/m represents a
strain rate sensitivity coefficient. For common metals,
50o1/mo200. For values of 1/mB100, or larger, the
materials will display a very nearly rate independent
response in the sense that %s will track g at nearly any
value of strain rate.
Strain hardening is described as an evolution of the

hardness function g. This is often taken to be

gð%epÞ ¼ s0 1þ %ep

ey

� �n
ð123Þ

where

’%ep ¼ 2

3
Dp : Dp

� �1=2

%ep ¼
Z t

0

2

3
Dp : Dp

� �1=2

dt
ð124Þ

are the effective plastic strain rate and effective plastic
strain, respectively. The remaining parameters are the
material parameters; the initial yield stress is s0, and n
is the hardening exponent.
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