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Abstract
Mathematical and physical aspects in the analysis of pendulum motion in
the presence of quadratic and linear damping are presented. New results are
obtained from the analysis which are of research and educational interest.
Closed-form expressions for the velocity vs large angle of swing are derived
in the case of quadratic damping for both forward and backward swings.
In the case of linear damping, there is no closed-form expression for the veloc-
ity vs large angle of swing, but an implicit relationship between the velocity and
small angle of swing is derived and discussed. The derived formulas are useful
for the determination of the amplitudes of the pendulum swings correspond-
ing to given initial velocities and for the evaluation of the dissipated energy at
any stage of the pendulum motion. Instructive project-based activities are sug-
gested, which are suitable for collaborative learning and undergraduate student
research.

Keywords: drag force, Lagrangian, linear damping, pendulum motion, quadratic
damping, spherical pendulum, spring pendulum

1. Introduction

Pendulums have been used since Galileo Galilei’s time for various scientific and engineering
applications. They have been used to design mechanical clocks (Huygens pendulum), to exper-
imentally determine the acceleration of gravity and demonstrate Earth’s rotation (Foucault
pendulum), as parts of seismometer instruments to record earthquake motion, in metronomes
to help maintain the speed of music, in viscometry and rheometry to experimentally deter-
mine viscoelastic properties of fluids (torsional pendulums), in vibration absorption and
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attenuation devices to protect engines, buildings, and bridges from damage (centrifugal pen-
dulums, friction pendulums), in devices for structural health monitoring, in materials test-
ing to determine the crushing strengths of rocks (absorbing and striking pendulums) or the
toughness of the material (Charpy’s impact test of notched bars). Other well-known examples
are pendulums used in recreation and amusement (park swings, swinging trapeze), wreck-
ing ball pendulums used to demolish old buildings, and wooden ballistic pendulums used to
measure the velocity of a fired bullet.

In this paper, we present the analysis of pendulum motion under quadratic and linear
damping. The quadratic damping is based on the assumption that the magnitude of the drag
force, opposite in direction to the velocity vector, is proportional to the square of the veloc-
ity, Fd = cv2, where c is the damping resistance coefficient. For the motion of a spherical
ball of diameter d in a fluid of mass density ρ, the resistance coefficient is c = (1/8)cdρπd2,
where cd = 0.47 is the so-called drag coefficient. This type of drag, known as Newton’s drag,
applies in the range of Reynolds number 103 < Re = vd/ν < 3 × 105, where ν is the kine-
matic viscosity of the fluid. In the model of linear damping the magnitude of the drag force
is assumed to be proportional to the velocity, Fd = cLv, where the resistance coefficient cL

is, for a spherical ball, given by cL = 3πηd, with η = ρν being the dynamic viscosity of the
fluid. This type of drag is known as Stokes’ drag, which applies for slow (creepy) flows, in the
range of small Reynolds number (Re < 1). For the intermediate range of Reynolds number
(1 < Re < 1000), the drag force is a more complicated nonlinear function of velocity, which
can be obtained by fitting experimental data [1].

There is a large amount of literature devoted to pendulum motion in the presence of vari-
ous types of drag. The effects of damping on pendulum motion in the context of the precise
experimental determination of the local gravitational acceleration were examined in [2]. Differ-
ent models of pendulum damping and their comparison with the behavior of real pendulums
were studied in [3]. The estimation of damping parameters in planar motion of pendulums
have been reported in [4]. An analytical approximation of the solution to the differential
equation describing a linearly damped pendulum undergoing large-angle swings is presented
in [5]. Asymptotic stability of pendulums under quadratic damping with a time-varying damp-
ing coefficient has also been investigated [6]. The free and forced oscillations of a torsion
spring pendulum damped by viscous and dry friction were investigated in [7]. The nonlinear
behavior of a kinematically excited spring pendulum, in which its suspension point moves in
an elliptic path, has been considered in [8]. The resonance dynamics of an elastic pendulum
(swinging spring) in three dimensions has been studied in [9]. A historical survey of different
approaches used in the study of pendulums with air resistance was given in [10]. The analysis
of damped pendulum motion in relation to undergraduate engineering and physics education
was discussed from both theoretical and experimental points of view in [11–15]. Classical
mechanics and physics textbooks such as [16–18] also address various aspects of pendulum
motion. The linear and quadratic damping models have also been frequently used in the study
of projectile motion in the presence of ambient drag [19–24].

The contents of the present paper are as follows. The plane pendulum undergoing large
swings is considered in section 2. A closed-form expression for the velocity vs angle of swing,
v = v(θ), is derived for both the forward and backward swings. The non-dimensional param-
eter kl, where k = c/m and l is the length of the pendulum, accounts for the interplay of the
geometry, inertia, and damping. The minimum initial velocity required for a full pendulum
revolution is determined as a function of kl. Pendulum motion under linear damping is consid-
ered in section 3. In contrast to quadratic damping, in this case there is no explicit closed-form
expression for the velocity v = v(θ). A new derivation is presented in the case of small angle
of swing which provides an implicit closed-form expression of the type f (v, θ) = 0, as well as
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the parametric expressions for v and θ in terms of an introduced time-like parameter. Energy
considerations are also discussed. The analysis of an elastic (spring) pendulum and a spherical
pendulum under quadratic damping is briefly discussed in the closing section 4. Throughout
the presentation, effort is made to include pedagogically appealing exercises which can be used
in teaching undergraduate courses of applied mechanics and physics.

2. Pendulum motion in the presence of quadratic damping

Figure 1(a) shows a pendulum with a small spherical ball of mass m attached to an inexten-
sible and massless cable of length l. The other end of the cable is fixed. The acceleration of
gravity is g. The initial position of the pendulum is defined by the angle θ0, at which the ball is
given an initial velocity v0. At an arbitrary position defined by the angle θ, the forces acting
on the ball are its weight mg, the drag force cv2, opposite in direction to the current velocity v
and assumed to be quadratic in the velocity, and the force of the cable S. By Newton’s second
law applied in the direction orthogonal to the cable, and in the direction of the cable, we have,
during the forward swing,

dv
dt

+ kv2 = −g sin θ,
v2

l
=

S
m

− g cos θ, (2.1)

where k = c/m is the parameter with the dimension 1/length. Since v = ldθ/dt, the first
equation in (2.1) becomes a second-order quasi-linear differential equation for the angle θ,

d2θ

dt2
+ kl

(
dθ
dt

)2

+
g
l

sin θ = 0. (2.2)

Equation (2.2) does not have a closed-form solution, but it can be readily solved by numerical
means. The force in the cable then follows from the second equation in (2.1), and it must remain
positive (tensile) during pendulum swings. For the backward swing, the plus sign in front of
the kl term in (2.2) is replaced with the minus sign.

Student exercise 1. Solve (2.2) numerically for kl = 0.25 and initial conditions θ(0) = 0
and θ̇(0) =

√
gk. Determine the extents of the first forward and backward pendulum swings

and plot the corresponding variations of the cable force with θ. [Hint: reduce the second order
ODE (2.2) to two first order ODEs dθ/dt = ω and dω/dt = −kl sign(ω)ω2 − (g/l)sin θ, and
apply the MATLAB function ode45.]

2.1. Closed-form expression for v = v(θ)

Although there is no closed-form solution to equation (2.2), there is a closed-form expression
for the velocity in terms of the angle of swing, which is derived in this section. Because the
velocity of the ball during forward swing is defined by v = ldθ/dt, its time rate of change can
be expressed as

dv
dt

=
v

l
dv
dθ

=
1
2l

dv2

dθ
, (2.3)

and the first equation in (2.1) becomes [12, 13]

dv2

dθ
+ 2klv2 = −2gl sin θ. (2.4)
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Figure 1. (a) A pendulum with a spherical ball of mass m attached to a thin inextensible
cable of length l. The other end of the cable is fixed. The initial position of the pendulum
is defined by the angle θ0, at which the ball is given an initial velocity v0. In an arbitrary
configuration during forward swing of the pendulum, defined by angle θ, the forces
acting on the ball are its weight mg, the drag force cv2, and the force in the cable S. (b)
The motion of pendulum during its reverse swing θ2 � θ � θ1. Shown are the weight
mg, the drag force cv2 and the cable force S in the configuration specified by the angle
θ. The velocity of the ball is equal to zero for θ = θ1 and θ = θ2.

The general solution of the linear differential equation (2.4) for v2 can be easily derived by
multiplying (2.4) with the integrating factor e2klθ, which gives, upon integration,

v2 = Ce−2klθ +
2gl

1 + 4k2l2
(cos θ − 2kl sin θ). (2.5)

Alternatively, (2.5) can be obtained as the sum of the complementary and particular solution
to (2.4), the latter being sought in the form of a linear combination of sin θ and cos θ. The
integration constant C in (2.5) is found by applying the initial condition v(θ0) = v0, which
gives

C = v2
0e2klθ0 − 2gl

1 + 4k2l2
(cos θ0 − 2kl sin θ0) e2klθ0 . (2.6)

Consequently, the velocity expression (2.5) becomes

v2 = v2
0e−2kl(θ−θ0) +

2gl
1 + 4k2l2

[
cos θ − 2kl sin θ

− (cos θ0 − 2kl sin θ0)e−2kl(θ−θ0)
]
. (2.7)

If kl = 0 (no air resistance), (2.7) reduces to v2 = v2
0 − 2gl(cos θ0 − cos θ), which also

follows directly from the conservation of mechanical energy.
Student exercise 2. Derive equation (2.4) by using the work principle dK + dU = dWdiss,

where K and U are the kinetic and potential energy of the ball, and dWdiss is the incre-
ment of dissipative work from the drag force opposing the motion. [Hint: K = (1/2)mv2,
U = mgl(1 − cos θ), dWdiss = −(cv2)ldθ.]
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The swings of the pendulum in the range |θ| � π/2 are of particular interest. The
initial velocity must then be v0 < v0,π/2, where v0,π/2 is determined from the condition
v(θ = π/2) = 0. This gives

v2
0,π/2 =

2gl
1 + 4k2l2

[
cos θ0 − 2kl sin θ0 + 2klekl(π−2θ0)

]
. (2.8)

For any v0 < v0,π/2, the force in the cable S = mg cos θ + mv2/l is positive, because cos θ > 0.
If θ0 = 0, (2.8) simplifies to

v2
0,π/2 =

2gl
1 + 4k2l2

(
1 + 2kleklπ

)
. (2.9)

2.2. Angle of maximum swing

The angle of maximum swing (θ1) in the range of pendulum swings |θ| � π/2 is obtained from
the condition v(θ1) = 0, which, by (2.7), is

(cos θ1 − 2kl sin θ1)e2kl(θ1−θ0) + (1 + 4k2l2)
v2

0

2gl
− (cos θ0 − 2kl sin θ0) = 0.

(2.10)

For a given v0/(2gl)1/2, and a given value of kl, this nonlinear equation for θ1 can be solved
numerically by using, for example, the MATLAB function fzero. The results for the variation
of θ1/π with v0/(2gl)1/2 for several values of kl are shown in figure 2 (portions of the curves
corresponding to θ1 � π/2). The initial angle is taken to be θ0 = 0, and the initial velocity is
in the range 0 � v0 � v0,π/2, where v0,π/2 is specified by (2.9). Note also that for |θ| � π/2,
the force in the cable S = mg cos θ + mv2/l is necessarily positive (tensile).

2.3. Pendulum swings beyond θ = π/2

Pendulum motion beyond θ = π/2 is possible provided that the force in the cable remains
tensile, i.e.

S =
mv2

l
+ mg cos θ � 0, (2.11)

where v2 is given by (2.7). The force becomes equal to zero (S = 0) at the angle θ = θ1 � π/2,
defined by v2(θ1) = −gl cos θ1. Upon using (2.7), this gives the relationship between θ1 and
v0,

v2
0 =

2gl
1 + 4k2l2

[
cos θ0 − 2kl sin θ0 − (cos θ1 − 2kl sin θ1)e2kl(θ1−θ0)

]
− gl cos θ1e2kl(θ1−θ0). (2.12)

If the ball is launched with the initial velocity determined from (2.12), the ball will swing from
θ = θ0 to θ = θ1, but will subsequently, in the absence of the cable force (slack cable), begin
its projectile motion in the field of gravity with the initial velocity v =

√
−gl cos θ1, where

cos θ1 < 0 in the range π/2 < θ1 < 3π/2.
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Figure 2. The variation of the angle of maximum swing θ1 (scaled by π) with
cv0/(2gl)1/2 for the case θ0 = 0 and for the selected values of kl shown in the figure
legends of parts (a) and (b). For v0 � v0,π/2, the velocity v(θ1) = 0 and θ1 � π/2. For
v0,π/2 < v0 � v0,π , the cable force S(θ1) = 0, the angle π/2 < θ1 � π, and v(θ1) > 0.
For v0,π < v0 � v0,2π , the cable force S(θ1) = 0, the angle π < θ1 � θmax

1 , and v(θ1) >
0. If the pendulum reaches the angle θmax

1 , it will extend its swing to complete a full rev-
olution, and continue to swing beyond θ = 2π for an amount that depends on the value
of the residual velocity v(2π). The expression for v0,π/2 is given by (2.9), and for v0,π by
(2.13). The value v0,2π is the value of initial velocity required for the pendulum to reach
θmax

1 (and thus 2π).

The required (minimum) initial velocity to reach the angle θ1 = π is defined by

v2
0,π =

2gl
1 + 4k2l2

[
cos θ0 − 2kl sin θ0 + e2kl(π−θ0)

]
+ gle2kl(π−θ0). (2.13)

The velocity of the ball at that angle is v(π) =
√

gl, independently of k. The variation of the
angle of maximum swing θ1/π with v0/(2gl)1/2 in the range v0,π/2 � v0 � v0,π , where S(θ1) =
0, is shown in figure 2 (portions of the curves corresponding to π/2 � θ1 � π). The initial angle
is taken to be θ0 = 0 with used values of kl shown in the figure captions.

If kl = 0, (2.12) simplifies to

v2
0 = 2gl

(
cos θ0 −

3
2

cos θ1

)
. (2.14)

In this case, from (2.13), the (minimum) initial velocity required to reach the angle θ1 = π
from θ0 = 0 is v0 =

√
5gl, while v(π) =

√
gl. For any initial velocity v0 greater or equal to that

specified by (2.14) with θ1 = π, the ball will circle indefinitely (in the same counterclockwise
direction) around the hanging point of the pendulum cable.

2.4. Pendulum swings beyond θ = π

If the initial velocity v0, corresponding to a given value of kl, is greater than v0,π specified by
(2.13), the cable force S(θ = π) is positive and the pendulum motion extends beyond θ = π,
until S becomes equal to zero in the range π < θ < 3π/2 (or the velocity becomes equal to
zero, if v0 is sufficiently large for the pendulum to swing beyond 2π, but less than 5π/2). For
each kl and an assumed v0 > v0,π , one can determine numerically the corresponding value
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of π < θ1 < 3π/2 at which S(θ1) = 0. The numerical results for the variation of θ1 with v0

are included in figure 2 (portions of the curves corresponding to θ1 > π). For example, for
kl = 0.25, it is found that θmax

1 = 1.051π, corresponding to v0 = 2.675
√

2gl, while for
kl = 0.5 the values are θmax

1 = 1.102π and v0 = 5.073
√

2gl. The corresponding velocities
v(θmax

1 ) in these two cases are 0.7026
√

2gl = 0.2645v0 π and 0.6889
√

2gl = 0.1417v0 π ,
respectively, where v0,π is defined by (2.13).

Once the pendulum reaches the configuration defined by θmax
1 , it has enough velocity

(energy) to extend its swing and complete a full revolution (because for θmax
1 < θ < 2π, both

S > 0 and v > 0), and to swing beyond θ = 2π by an amount that depends on the residual
velocity v(2π) at the end of the first revolution. The motion beyond θ = 2π can be analyzed
by considering the velocity v(2π) as the initial velocity for the beginning of that stage of
motion. (Note that within the fourth quadrant 3π/2 � θ � 2π, v2(θ) and S(θ) as given by
(2.7) and (2.11) are both positive definite, thus if the pendulum enters the third quadrant it
will necessarily swing through it and exit from it).

Figure 3 shows the variations of v = v(θ) and S = S(θ) in the case when v0 is just large
enough (v0 = v0,2π) for the pendulum to reach the angle θmax

1 for each value of kl, and
subsequently to complete a full revolution of 2π. Clearly, from figure 3 the cable force
S(θmax

1 ) = 0 for each kl, while S(θ) > 0 for all other values of 0 � θ � 2π.
Student exercise 3. If kl = 0.3, determine the minimum initial velocity v0(θ = 0) for which

the pendulum will complete a full revolution, from θ = 0 to θ = 2π. At what angle θ is
the cable force equal to zero? Plot the corresponding variations v = v(θ) and S = S(θ) for
0 � θ � 2π. How far will the pendulum extend its swing beyond the angle θ = 2π? [Partial
answer: v0 = 3.0124

√
2gl, θmax

1 = 1.0622π.]

2.5. Reverse swing

The analysis in this and subsequent sections will be restricted to pendulum swings in the range
|θ| � π/2. Upon reaching the angle of maximum swing θ1, at which the velocity of the ball is
equal to zero, the pendulum begins its reverse swing (figure 1(b)). The corresponding equation
of motion is

dv2

dθ
− 2klv2 = −2gl sin θ. (2.15)

This equation is identical to equation (2.4), provided that k in equation (2.4) is replaced with
−k. Thus, the general solution of (2.15) can be recognized from (2.5) to be

v2 = Ce2klθ +
2gl

1 + 4k2l2
(cos θ + 2kl sin θ). (2.16)

The integration constant C is found by applying the initial condition v(θ = θ1) = 0, which
gives

C = − 2gl
1 + 4k2l2

(cos θ1 + 2kl sin θ1) e−2klθ1 . (2.17)

Thus, the velocity expression (2.16) becomes

v2 =
2gl

1 + 4k2l2
[
cos θ + 2kl sin θ − (cos θ1 + 2kl sin θ1)e2kl(θ−θ1)

]
. (2.18)
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Figure 3. (a), (c) The variation of the velocity v = v(θ) (scaled by v0,π) in the range
0 � θ � 2π in the case of initial velocity v0 = v0,2π , where v0,2π is the smallest initial
velocity for the pendulum to swing from θ = 0 to θ = 2π. (b), (d) The corresponding
variation of the cable force S = S(θ). For each value of kl, the cable force S(θmax

1 ) = 0,
while v(θmax

1 ) > 0. The large values of the cable force for large values of kl in the early
stage of motion, associated with large velocity and correspondingly large centripetal
force, are cut off in part (d) to better depict the variation of S with θ near S = 0.

2.6. Angle of maximum reverse swing

The angle of maximum reverse swing (θ2) is obtained from the condition v(θ2) = 0. From
(2.18), this condition is

cos θ2 + 2kl sin θ2 − (cos θ1 + 2kl sin θ1)e2kl(θ2−θ1) = 0. (2.19)

For any value of 0 < θ1 � π/2, the nonlinear equation (2.19) can be solved for θ2 numerically
by using the MATLAB function fzero. The variation of the velocity of the ball v(θ) in the angle
range θ2 � θ � θ1 = π/2, for the same values of kl as used in figure 2, is shown in figure 4(a).
The variation of the corresponding force in the cable S(θ)/mg is shown in figure 4(b). This force
is determined from S = mg cos θ + mv2/l, where v2 is defined by (2.18). Since the velocity of
the ball decreases with the increase of the parameter kl, the maximum value of S also decreases
with the increase of kl.
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Figure 4. (a) The variation of the velocity of the ball v(θ)/
√

2gl in the entire angle
range of the reverse swing from θ = θ1 = π/2 to θ = θ2 for the indicated values of
kl. The value of θ2 depends on kl and is determined from (2.19). (b) The corresponding
variation of the cable force S(θ)/mg. Except for kl = 0, the force at the end of the reverse
swing S(θ2) �= 0.

2.7. Subsequent swings

The expressions for the velocity of the ball during subsequent forward and reverse swings
can be recognized immediately from the derived expressions for the first forward and the first
reverse swing. Indeed, from (2.18) it follows that the square of the velocity for the reverse
swing from θ = θ2n−1 to θ = θ2n (n = 1, 2, 3, . . . ) is

v2 =
2gl

1 + 4k2l2
[
cos θ + 2kl sin θ − (cos θ2n−1 + 2kl sin θ2n−1)e2kl(θ−θ2n−1)

]
,

(2.20)

while for the forward swing from θ = θ2n to θ = θ2n+1, the square of the velocity is, from
(2.7),

v2 =
2gl

1 + 4k2l2
[
cos θ − 2kl sin θ − (cos θ2n − 2kl sin θ2n)e−2kl(θ−θ2n)

]
.

(2.21)

2.8. Time variation θ = θ(t)

The time variation θ = θ(t) in the case of quadratic damping cannot be determined analytically,
even in the case of small angles of swing, but can be obtained numerically by consecutive
numerical integration of∫ t

dt = ±l
∫ θ dθ

v(θ)
, (2.22)

with the explicit expressions for v = v(θ) determined in the previous sections for both for-
ward and reverse swings. The time and angle intervals of each swing, needed to specify the

9
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Figure 5. The time variation of θ for two selected values of kl during several consecutive
forward and reverse swings of the pendulum whose length is l = 0.5 m. The pendulum
motion is launched from the configuration θ = 0 with the initial velocity adjusted so that
the maximum angle in the first forward swing is θ1 = π/2 for both values of kl.

bounds of the integrals in (2.22), have been determined numerically in previous sections. The
plus sign in (2.22) corresponds to forward swings and the minus sign to reverse swings. The
results of numerical integration using the MATLAB function integral for several consecutive
swings and two selected values of kl are shown in figure 5. The length of the pendulum is
taken to be l = 0.5 m. In each case the time duration of the reverse swing is longer than the
time duration of the preceding forward swing, due to continuously decreasing magnitude of the
velocity caused by damping. The pronounced effect of the parameter kl on the rate of decrease
of the maximum angle of swing with the increase of the number of swings can be quantified
by comparing parts (a) and (b) of figure 5.

Student exercise 4. The motion of a toboggan of mass m along a circular track of radius
R in the presence of dry (Coulomb) friction is described by equations analogous to equations
that describe the pendulum motion in the presence of quadratic drag. The coefficient of kinetic
friction μ appears in the equations instead of the parameter kl, and the normal reaction force
N from the track replaces the cable force S. Derive and solve the differential equation of the
toboggan motion for the velocity v = v(θ), with the initial condition v(θ0) = v0. [Hint: The
governing differential equations of the toboggan’s motion are: mdv/dt = −μN − mg sin θ and
N = (mv2/R) + mg cos θ.]

2.9. Time variation in the absence of damping

As is well known, in the absence of damping there is an explicit t = t(θ) expression in terms of
the elliptic integral of the first kind [16–18]. In this case, by energy considerations or from (2.7),
the velocity v = v(θ) expression during the forward swing from θ = θ0, with initial velocity
v0, is

v =
√
v2

0 − 2gl(cos θ0 − cos θ). (2.23)

10
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Using conveniently the angle θ/2, (2.23) can be rewritten as

v =
2
√

gl
K0

√
1 − K2

0 sin2 θ

2
,

1
K2

0

=
v2

0

4gl
+ sin2 θ0

2
. (2.24)

The explicit time vs angle relationship then follows by integration of the expression dt = ldθ/v,
i.e.

t = K0

√
l/g

∫ θ/2

θ0/2

d(ϑ/2)√
1 − K2

0 sin2(ϑ/2)
, θ � θmax. (2.25)

The expression for the angle θmax depends on the range of the forward swing. If θmax � π/2,
the condition to determine θmax is the vanishing of the velocity, v(θmax) = 0. From (2.24), this
gives θmax = 2 sin−1(1/K0). In order that θmax � π/2, the initial velocity must be such that
v2

0 � 2gl cos θ0. If 2gl cos θ0 � v2
0 � gl(3 + 2 cos θ0), then π/2 � θmax � π, where θmax is

determined from the condition of the vanishing cable force, S(θmax) = 0. From (2.7) and (2.11),
this gives

θmax = 2 sin−1

√
1
6
+

2
3K2

0

. (2.26)

The time to reach a particular angle θ � θmax can be obtained from (2.25) with the help of the
MATLAB function ellipticF. For example, if the ball is given the initial velocity v0 =

√
2gl

at θ0 = 0, it will reach the angle θ = π/2 in time t = 1.854
√

l/g. On the other hand, if the
ball is given the initial velocity v0 =

√
5gl at θ0 = 0, it will reach the angle θ = π/2 in time

t = 0.766
√

l/g and the angle θ = π in time t = 2.019
√

l/g. The derivation of the exact and
approximate expressions for the large-swing amplitude-dependent pendulum period is also of
great importance, which has been elaborated upon in this journal by a number of investigators
[25–28].

Student exercise 5. If a pendulum is released from the position θ0 with zero initial speed,
derive the expression for the pendulum period T , i.e. show that

T =
2T0

π

∫ φ0

0

dφ√
sin2 φ0 − sin2 φ

=
2T0

π

∫ π/2

0

dψ√
1 − sin2 φ0 sin2 ψ

,

where the last integral represents the complete elliptic integral of the first kind, K(sin2 φ0), and
the small-angle period is T0 = 2π

√
l/g. [Hint: Note that sinφ = sinφ0 sinψ.]

3. Pendulum motion in the presence of linear damping

Slow swings of certain pendulums in a viscous fluid could be analyzed by assuming the drag
force to be linear in velocity, provided that the Reynolds number remains less than 1. In contrast
to quadratic damping, however, in the case of linear damping there is no explicit closed-form
expression for the v = v(θ) relationship for an arbitrary amplitude of oscillations, although
there is a well-known closed-form expression for θ = θ(t) in the case of small-amplitude
oscillations. This is discussed in this section. We first give the classical derivation of the expres-
sion θ = θ(t), and then present an alternative, less known and possibly novel derivation of the
solution to the considered problem.
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The differential equation of motion in the case of a pendulum with linear damping and small
swing angles (sin θ ≈ θ) is

d2 θ

dt2
+ kL

dθ
dt

+ ω2
nθ = 0, kL =

cL

m
, ω2

n =
g
l

, (3.1)

subjected to the initial condition θ(t = 0) = θ0 and θ̇(t = 0) = θ̇0, where the superimposed dot
denotes the time derivative, and ωn is the natural frequency. By assuming the solution to (3.1)
in the form θ = exp(pt), it readily follows that, in the case of oscillatory motion (ωn > kL/2),

p1,2 = −kL

2
± iωd, ωd = ωn

√
1 − ζ2, ζ =

kL

2ωn
, (3.2)

where i =
√
−1 and ωd is the damped natural frequency, dependent on the damping ratio ζ .

Consequently,

θ = e−kLt/2

[
θ0 cos ωdt +

1
2ωd

(
kLθ0 + 2θ̇0

)
sin ωdt

]
, (3.3)

and

θ̇ = −kL

2
θ − ωde−kLt/2

[
θ0 sin ωdt − 1

2ωd

(
kLθ0 + 2θ̇0

)
cosωdt

]
. (3.4)

If θ0 = 0, the response (θ and θ̇) is proportional to θ̇0; if θ̇0 = 0, the response is proportional
to θ0.

3.1. Relation v = v(θ)

An alternative approach to describe the pendulum motion in the presence of linear damping
during the first forward swing is as follows. Instead of solving the second-order differential
equation (3.1) for the angle of swing θ = θ(t), we consider the first-order, albeit quasi-linear,
differential equation for the velocity v = v(θ), similarly as in the analysis of quadratic damp-
ing presented in section 2.1. Since (ldθ/dt)2 = vdv/dθ, the differential equation (3.1) can be
rewritten as

v
dv
dθ

+ kLlv + (ωnl)2θ = 0, (3.5)

with the initial condition v(θ0) = v0. In contrast to quadratic damping, there is no explicit
closed-form solution to (3.5) for v = v(θ). However, the following derivation provides an
implicit closed-form expression of the type f (v, θ) = 0, as well as the parametric expressions
for v and θ, from which the velocity can be determined for any given angle of swing. To that
goal, we introduce a new time scale τ = θ/θ̇, in terms of which the velocity is

v =
ldθ
dt

=
lθ
τ
. (3.6)

The substitution of (3.6) and

dv
dθ

= l

(
1
τ
− θ

τ 2

dτ
dθ

)
(3.7)

12
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Figure 6. (a) The variation of the velocity v = v(θ) during the first swing in the case
θ0 = 0 and θ̇0 = v0/l for several values of the damping ratio ζ = kL/2ωn. The pendulum
length is l = 1 m. The velocity is scaled with the initial velocity v0, and the angle θ with
the angle θ∗ = v0/

√
gl, which is the angle at the end of the first swing in the absence of

damping (kL = 0). (b) The corresponding variation of θ = θ(τ ), where τ = lθ/v.

into (3.5) gives

dθ
θ

=

(
1
τ
− kLτ + ω2

nτ

1 + kLτ + ω2
nτ

2

)
dτ. (3.8)

For 2ωn > kL, (3.8) can be integrated by using tables of integrals [29] to obtain

θ

θ0
=

τ

τ0

(
1 + kLτ0 + ω2

nτ
2
0

1 + kLτ + ω2
nτ

2

)1/2

exp

[
−kLγ(τ )

2ωd

]
, (3.9)

where τ 0 = lθ0/v0, and

γ(τ ) = tan−1 kL + 2ω2
nτ

2ωd
− tan−1 kL + 2ω2

nτ0

2ωd
. (3.10)

The expression (3.9) is a single-valued expression for θ = θ(τ ) during the first forward swing.
For any θ in this range, one can apply the MATLAB function fzero to obtain the corresponding
τ , and thus the velocity v = lθ/τ . In this sense, we have determined the desired relationship
v = v(θ). The plot for several values of ζ = kL/2ωn and l = 1 m is shown in figure 6. The
subsequent swings can be analyzed similarly.

The relationship between the physical time t and the time parameter τ can be easily obtained
from the definition of τ , given in (3.6), and expression (3.8), i.e.

dt = τ
dθ
θ

=
dτ

1 + kLτ + ω2
nτ

2
. (3.11)

Upon integration, this gives t = γ(τ )/ωd, where γ(τ ) is defined by (3.10). The time to reach
the end of the first forward swing is obtained from

t∗ = lim
τ→∞

t =
1
ωd

tan−1 2ωd

kL + 2ω2
nτ0

. (3.12)

13
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With the expression (3.9) for θ = θ(τ ) derived, the velocity v = v(τ ) follows from
v = lθ/τ . This expression and expression (3.9) represent the parametric expressions v = v(τ )
and θ = θ(τ ), in terms of the parameter τ , which specify the relationship v = v(θ).

Student exercise 6. Solve the differential equation (3.5) by introducing as a parameter the
auxiliary velocity u, related to the actual velocity v by v = θu. Compare the obtained expres-
sion for θ = θ(u) with expression (3.9) for θ = θ(τ ). [Hint: the differential equation relating u
and θ turns out to be

dθ
θ

= − u du
u2 + kLlu + ω2

nl2
. ]

3.2. Energy-angle of swing relation

Another derivation of the implicit-type relationship between the velocity and angle of swing
can be obtained from the consideration of energy. Toward that end, equation (3.5) is recast as

dE
dθ

= −mkLlv, E = K + U =
1
2

mv2 +
1
2

mglθ2, (3.13)

where K is the kinetic energy, and U = mgl(1 − cos θ) ≈ (1/2)mglθ2 is the potential energy
relative to the datum θ = 0. Thus, since v can be expressed in terms of E and θ as

v =

√
2
m

(E − U)1/2 =

√
2
m

(
E − 1

2
mglθ2

)1/2

, (3.14)

the differential equation (3.13) becomes

dE
dθ

= −b

(
E − 1

2
mglθ2

)1/2

, b = kLl
√

2m. (3.15)

This equation can be solved by introducing the function κ = κ(θ) such that

K = E − 1
2

mglθ2 =

(
θ

κ

)2

, (3.16)

which transforms (3.15) into

dθ
θ

= −b

[
1
κ
− (b/2) + (m/2)glκ

1 + (b/2)κ+ (m/2)glκ2

]
dκ. (3.17)

For ωn > kL/2, (3.17) can be integrated to obtain

θ

θ0
=

κ

κ0

(
1 + bκ0/2 + mglκ2

0/2
1 + bκ/2 + mglκ2/2

)1/2

exp

[
−kLβ(κ)

2ωd

]
, (3.18)

where

β(κ) = tan−1 kL +
√

2m gκ
2ωd

− tan−1 kL +
√

2m gκ0

2ωd
, (3.19)

and θ0/κ0 = K1/2
0 =

√
m/2 v0. Expression (3.18) is equivalent to expression (3.9), as can be

verified by using the relationship between the parameters τ and κ, given by τ = κl
√

m/2. A
comprehensive study of the energy-displacement relations in other oscillators with linear and
quadratic damping can be found in [12, 30].
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4. Conclusions and discussion

We have presented in this paper an analysis of damped pendulum motion, in which the
ambient drag was assumed to be either quadratic (Newton’s type drag), or linear in velocity
(Stokes’ type drag). In the case of quadratic damping, a closed-form expression for the velocity
v vs angle of swing θ is derived for both the forward and backward swings. A single non-
dimensional parameter kl, where k = c/m is the ratio of the damping coefficient and the
hanging mass, and l is the length of the pendulum, accounts for the combined effect of geome-
try, inertia, and damping on the motion of the pendulum. The minimum initial velocity required
for a full pendulum revolution is determined as a function of kl. In contrast to quadratic damp-
ing, in the case of linear damping there is no explicit closed-form expression for the velocity
vs angle of swing relationship, but in the case of small-angle oscillations there is a closed-
form implicit relationship of the type f (v, θ) = 0. The parametric expressions for v and θ
are derived in terms of an introduced time-like parameter, from which the velocity can be
readily determined by numerical means. The presented combined analytical–numerical solu-
tion is appealing for design considerations, complementing an entirely numerical solution to
the governing differential equations of motion, which can be obtained directly from the outset
of the analysis.

In the cases of more involved pendulums, it is necessary to solve the governing differential
equations of motion numerically. For example, the motion of a spring pendulum in the pres-
ence of quadratic damping (figure 7(a)) is described by two coupled second-order differential
equations, expressed in polar coordinates (r, θ) as

mar = mg cos θ − cvṙ − ks(r − l0), maθ = −mg sin θ − cvrθ̇, (4.1)

where ar = r̈ − rθ̇2 and aθ = rθ̈ + 2ṙθ̇ are the radial and circumferential acceleration compo-
nents. The spring constant of a linearly elastic spring to which the ball of mass m is attached is
ks and the quadratic damping coefficient is c. The magnitude of the velocity is v = (v2

r + v2
θ )1/2,

where vr = ṙ and vθ = rθ̇. The unstretched length of the spring is l0, so that the force in the
spring of current length r is S = ks(r − l0). Details of the numerical solution of (4.1) are not
presented here, but obtaining such a solution would be an instructive student assignment.
Further analysis of the spring pendulum, including the analysis of the sensitivity of motion
to initial conditions and the resulting chaotic motion [31, 32] is also beyond the scope of the
present paper, but it could constitute an appealing undergraduate research project, assigned to
groups of students or as an independent study in the junior or senior year. The same applies to
double, triple, and multipendulums, as well as coupled pendulums.

The motion of a spherical pendulum (figure 7(b)) also requires numerical treatment. The
governing differential equations of motion in this case can be most conveniently derived by
using the Lagrangian equations

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi, (4.2)

where the Lagrangian L is defined by

L = K − U =
1
2

m (v2
θ + v2

φ) − mgl(1 − cos θ), vθ = lθ̇, vφ = l sin θ φ̇.

(4.3)
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Figure 7. (a) A spring pendulum with a spherical ball of mass m attached to elastic
spring of unstretched length l0 and stiffness ks. The mass is given an initial horizon-
tal velocity r0θ̇0, where r0 = l0 +Δ0 and Δ0 = mg/ks. In an arbitrary configuration
defined by the angle θ, the forces acting on the ball are its weight mg, the drag force cv2,
whose polar components are −cvṙ and −cvrθ̇, and the force in the cable S = ks(r − l0).
(b) A spherical pendulum with a mass m attached to the cable of length l. In the initial
configuration (θ0 < π/2,φ0 = 0) the mass is given an initial velocity v0

φ = l sin θ0φ̇0,
where φ̇(0) =

√
g/(l cos θ0). In the presence of damping, the mass moves along the

spherical surface of radius l with the center at O, approaching at large times the equi-
librium position (0, 0,−l). The velocity components in an arbitrary configuration of the
pendulum, defined by angles θ and φ, are vθ = lθ̇ and vφ = l sin θφ̇. The force in the
cable is S.

The generalized dissipative forces Qi can be recognized from the expression for the increment
of the dissipative work dWdiss = Qidqi. By choosing the generalized coordinates to be q1 = θ
and q2 = φ, and by assuming quadratic damping with the damping coefficient c, the dissipative
generalized forces are Qθ = −cvθv and Qφ = −cvφv, where v = (v2

θ + v2
φ)1/2. The equations

of motion consequently become

θ̈ − sin θ cos θ φ̇2 + kθ̇(θ̇2 + sin2 θ φ̇2)1/2 +
g
l

sin θ = 0,

sin θ φ̈+ 2 cos θ θ̇φ̇+ k sin θ φ̇(θ̇2 + sin2 θ φ̇2)1/2 = 0,
(4.4)

where k = c/m. The trajectory is obtained by solving (4.4) numerically, under given ini-
tial conditions. The force in the cable is then determined from mz̈ = S cos θ − mg, where
z = −l cos θ. Performing the numerical solution of (4.4) can be nicely incorporated as part of
a project assignment in an upper division mechanics or design course, particularly in conjunc-
tion with an experimental setup of a spherical pendulum and the measurement of the parameters
of its motion. If damping is absent, the differential equation (4.4) can be decoupled and solved
in closed-form in terms of special functions [33]. The incorporation of some of this analysis
could serve well to strengthen the analytical portion of the assigned project assignment. The
involvement of undergraduate students in project-based activities, collaborative learning, and
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research has become an important part of undergraduate education, with numerous positive
effects on students’ academic engagement and achievements [34, 35].
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