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The complete stress field, including the microstress, the moment-stress, and the line forces are derived
for the pure bending of a rigid-plastic beam of rectangular cross-section in the model of strain-gradient
plasticity. The workless spherical parts of the microstress and the moment-stress tensors are incorpo-
rated in the analysis. Their determination is shown to be of importance for the fulfilment of the higher-
order traction boundary conditions, the physical interpretation of line forces, and their contributions to
bending moments. Three equivalent methods are used to derive the moment-curvature relationship for
any of the gradient-enhanced effective plastic strain measures from the considered broad class of these
measures. Specific results are given for the selected choice of the stress-strain relationship describing the
uniaxial tension test. Closed-form analytical expressions are obtained in the case of linear hardening, and
in some cases of nonlinear hardening. The analysis of the plane-strain bending of thin foils is also
presented. In this case there are two sets of line forces along the edges of the beam. The relationships
between the applied bending moment and the curvature, and between the lateral bending moment and
the curvature are derived and discussed. The lateral bending moment along the lateral sides of the beam,
needed to keep the plane-strain mode of deformation, is one-half of the applied bending moment.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the strain-gradient plasticity theory the microstress and the
moment-stress are the deviatoric tensors introduced as the work-
conjugates to the deviatoric plastic strain tensor and its gradient
(Fleck and Hutchinson, 1997, 2001; Gudmundson, 2004; Anand
et al., 2005; Gurtin and Anand, 2005, 2009; Bardella, 2006; Fleck
and Willis, 2009; Hutchinson, 2012; Nielsen and Niordson, 2014;
Fleck et al., 2014, 2015; Lubarda, 2016a). We show in this paper
through the analysis of pure bending of a rigid-plastic beam that it
is important to incorporate in the analysis the (workless) spherical
parts of the microstress and the moment-stress tensors, in addition
to their deviatoric parts. This allows the fulfilment of the higher-
order traction boundary conditions, the interpretation of the line
forces along the intersection of the bounding surfaces of the beam,
and the evaluation of the (reactive) lateral bending moment in the
case of plane-strain bending. In Sections 2e4 we present a brief
review of the J2 deformation theory of strain-gradient plasticity by
served.
using an arbitrary measure of the gradient-enhanced effective
plastic strain from awide class of these measures introduced in the
literature (Fleck and Hutchinson, 1997, 2001). The stress fields in a
rigid-plastic beam of rectangular cross-section under pure bending
are derived in Section 5. The deviatoric pats are determined by
usual means from the established constitutive equations, while the
spherical parts are determined by the fulfilment of the higher-order
traction boundary conditions. Three equivalent methods are used
in Section 6 to derive the moment-curvature relationship for any of
the utilized gradient-enhanced effective plastic strain measures.
Closed-form analytical expressions are obtained in the case of
linear hardening, and for some measures of the effective plastic
strain in the case of nonlinear hardening. For an adopted nonlinear
stress-strain relationship describing the uniaxial tension test, the
moment-curvature relationships are evaluated numerically in
Section 7. The analysis of the plane-strain model of the bending of a
wide rigid-plastic beam is presented in Section 8, since such model
has been commonly adopted in the bending analysis of thin foils
(St€olken and Evans, 1998; Huang et al., 2000; Wang et al., 2003;
Haque and Saif, 2003; Voyiadjis and Abu Al-Rub, 2005; Engelen
et al., 2006; Lou et al., 2006; Evans and Hutchinson, 2009; Idiart
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et al., 2009). Two types of line forces are shown to act along
different edges of the beam. They are used to derive the applied
bending moment-curvature and the lateral bending moment-
curvature relationships. The lateral stresses are shown to be equal
to one-half of the corresponding longitudinal stresses. As a
consequence, the lateral bending moment (per unit length of the
beam) is equal to one-half of the applied bendingmoment (per unit
width of the beam).
2. Gradient-enhanced effective plastic strain

In a simple formulation of the deformation theory of strain-
gradient plasticity (Hutchinson, 2012), the specific plastic work
(per unit volume) is expressed in terms of the gradient-enhanced
effective plastic strain Ep by

wp
�
Ep
� ¼ ZEp

0

s0
�
εp
�
dεp; (1)

where s0 ¼ s0ðεpÞ represents the stress-strain curve from the
uniaxial tension test. A wide class of the gradient-enhanced effec-
tive plastic strain measures, each involving one (albeit possibly
different) material length parameter l (Fleck and Hutchinson, 1997;
Evans and Hutchinson, 2009), is

Ep ¼
�
esp þ lsgsp

�1=s
; ðs � 1Þ : (2)

Here, ep is the effective plastic strain and gp the effective plastic
strain-gradient, defined by

ep ¼
�
2
3
ε
p
ijε

p
ij

�1=2
; gp ¼

�
2
3
ε
p
ij;kε

p
ij;k

�1=2
: (3)

The two most frequently used measures are associated with the
choices s ¼ 1 and s ¼ 2, which specify Ep as either a linear or har-
monic sum of ep and lgp, i.e.,

Ep ¼ ep þ lgp ; Ep ¼
�
e2p þ l2g2p

�1=2
: (4)

The plastic strain is taken to be

ε
p
ij ¼ epmij ; mij ¼

3
2
s0ij
seq

; (5)

with the equivalent stress

seq ¼
�
3
2
s0ijs0ij

�1=2

; (6)

where prime designates the deviatoric part.
The total infinitesimal strain εij is the sum of elastic and plastic

contributions. For the rigid-plastic material model of concern in
this paper, the elastic component is absent, so that εij ¼ ε

p
ij .
3. Work-conjugates to plastic strain and its gradient

It is assumed that the plastic strain-gradients εpij;k contribute to

the work per unit volume. The work conjugate to ε
p
ij;k is the

moment-stress tijk ¼ tjik, and the work-conjugate to ε
p
ij is the

microstress qij ¼ qji, such that (Gudmundson, 2004)
_wp ¼ qij _ε
p
ij þ tijk _ε

p
ij;k : (7)

Since ε
p
kk ¼ 0, only the deviatoric parts of qij and tijk contribute

to plastic work. To identify them, we evaluate the rate of plastic
work from (1) as

_wp ¼ s0
�
Ep
�
_Ep : (8)

By the differentiation of (2) and (3), the rate of the gradient-
enhanced effective plastic strain is found to be

_Ep ¼ 2
3
E1�s
p

�
es�2
p ε

p
ij _ε

p
ij þ lsgs�2

p ε
p
ij;k _ε

p
ij;k

�
: (9)

The substitution of (9) into (8), and the comparison with (7),
establishes the constitutive expressions for the deviatoric parts

q0ij ¼
2
3

s0
�
Ep
�

Es�1
p

es�2
p ε

p
ij ; t0ijk ¼

2
3
ls
s0
�
Ep
�

Es�1
p

gs�2
p ε

p
ij;k : (10)

The spherical parts of qij and tijk do not contributing to the
plastic work, and at this point of the analysis are arbitrary. If
needed, however, they may be specified by the consideration of the
higher-order traction boundary conditions, as discussed in Section
5.1 in the context of the rigid-plastic beam bending.
4. Principle of virtual work

In the case of a rigid-plastic body of volume V, bounded by a
piece-wise smooth surface S, the principle of virtual work isZ
V

�
q0ijdε

p
ij þ t0ijkdε

p
ij;k þ

1
3
siidε

p
jj

�
dV

¼
Z
S

hbT idui þ bRiDðduiÞ
i
dSþ

X
n

I
Cn

pidui dCn ; (11)

provided that the equations of equilibrium hold

sij;j ¼ 0 ; tijk;k þ sij � qij ¼ 0 ; (12)

together with the relations

Ti ¼ sijnj ; tij ¼ t0ijknk (13)

between the traction vector Ti and the Cauchy stress tensor sij, and
between the (deviatoric) moment-traction tensor tij are the
deviatoric part of themoment-stress tensor t0ijk. The components of
the outward unit vector, orthogonal to the considered surface
element, aredenotedbyni, andui are thedisplacement components.

The three independent traction components bT i are

bT i ¼ Ti � ninjRjðDknkÞ � Di
�
njRj

�
; (14)

with

Ti ¼ Ti þ Ri
�
Djnj

�� Djtij ; Ti ¼ sijnj ; (15)

while the two independent higher-order traction components bRi,
tangential to S, are

bRi ¼ Ri � ninjRj ; Ri ¼ tijnj ; (16)

with tij ¼ t0ijknjnk. The utilized surface gradient operator is defined



Fig. 1. The beam of length L and a rectangular cross-section of dimensions b� h under
the bending moment M. The axis x1 passes through the centroids of the cross-sections,
and the axes (x2; x3) are as shown.
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by Di ¼ ðv=vxiÞ � niD, where D is the projection of the gradient
operator to the surface normal, D ¼ njðv=vxjÞ. The spherical
component of Cauchy stress sii=3 was used in (11) as the Lagrange
multiplier, associated with the incompressibility constraint εpjj ¼ 0

(Fleck and Willis, 2009b).
The line forces along the edges Cn of the smooth parts Sn of a

piece-wise smooth surface S are denoted in (11) by pi. For example,
the line force along an edge formed by the intersection of two
smooth surface segments Sð1Þ and Sð2Þ is

pi ¼
h
t0ijkk

ð1Þ
j nð1Þk � kð1Þi t0jkln

ð1Þ
j nð1Þk nð1Þl

i
þ
h
t0ijkk

ð2Þ
j nð2Þk

� kð2Þi t0jkln
ð2Þ
j nð2Þk nð2Þl

i
; (17)

where nðiÞ is the unit outward normal to surface SðiÞ ði ¼ 1;2Þ, and
kðiÞ ¼ cðiÞ � nðiÞ. The vector cðiÞ is the unit tangent vector along the
intersecting edge of two surfaces, with SðiÞ to the left. The first
subscript in tijk specifies the normal to the surface over which the
tijk component acts, the second index specifies the orientation of
the forces, and the third index specifies the orientation of the lever
arm between the two forces of the doublet. Details of the derivation
of (11)e(17) can be found in Lubarda (2016b).

The deviatoric parts of the microstress qij and the moment-
stress tijk are defined by

q0ij ¼ qij �
1
3
qkkdij ; t0ijk ¼ tijk �

1
3
tllkdij : (18)

The spherical part of Cauchy stress tensor is usually specified
from the equilibrium conditions in conjunction with the traction
boundary conditions. The workless spherical parts of the micro-
stress and themoment-stress tensor are included in the analysis for
the convenience, and are related to the spherical part of Cauchy
stress by tjjk;k þ sjj � qjj ¼ 0.
5. Bending of a prismatic beam

The effects of strain-gradients on plastic response have been
studied for various problems at micron scale, including bending and
torsion of thin beams and wires, plastic void growth, and indenta-
tion hardness testing (Fleck et al.,1994; St€olken and Evans,1998; Gao
et al., 1999; Nix and Gao, 1998; Huang et al., 2000; Haque and Saif,
2003; Shrotriya et al., 2003; Gudmundson, 2004; Lou et al., 2006;
Evans and Hutchinson, 2009; Idiart et al., 2009; Polizzotto, 2011;
Chen and Feng, 2011; Liu et al., 2013; Bardella and Panteghini,
2015; Lubarda, 2016a,b). In the bending analysis of ultra thin
nickel beams, St€olken and Evans (1998) observed a strong size effect;
12.5 mm thick beams showedmuch stronger plastic work hardening
than 100 mm thick beams. Their model was a plane-strain model
with zero imposed strain in the direction of the width of the beam,
as also used by Evans and Hutchinson (2009). Such model is
addressed in Section 8 of this paper. In this sectionwe consider pure
bending of a rigid-plastic prismatic beam of length L, having a
rectangular cross-section ofwidth b and height h (Fig.1). The applied
bending moment at the ends of the beam (x1 ¼ ±L=2) is M. The
corresponding curvature is k ¼ 1=r, where r is the radius of the
curvature, so that the two ends of the beam rotate relative to each
other by Lk. If the applied moment is greater than the yield-
threshold moment (M>MY ), the non-vanishing strains are

ε11 ¼ kx2 ; ε22 ¼ ε33 ¼ �1
2
ε11 ; (19)

with the corresponding gradients
ε11;2 ¼ k ; ε22;2 ¼ ε33;2 ¼ �1
2
ε11;2 : (20)

The expression for MY will be derived in the sequel. The displace-
ment fields is

u1 ¼ kx1x2 ; u2 ¼ �1
2
kx21 �

1
4
k
�
x22 � x23

�
; u3 ¼ �1

2
kx2x3 :

(21)

The anticlastic curvature is bk ¼ k=2, so that the sides of the beam
x3 ¼ ±b=2 rotate relative to each other by bbk.

Since elastic component of strain is absent in the case of a rigid-
plastic model, there is no deformation for M � MY , while for
M>MY the entire deformation is plastic. Assuming proportional
straining and the framework of the deformation theory of strain-
gradient plasticity from Sections 2e4, we find from (3),

ep ¼
�
2
3
ε
p
ijε

p
ij

�1=2
¼ k
��x2�� ; gp ¼

�
2
3
ε
p
ij;kε

p
ij;k

�1=2
¼ k : (22)

Upon substitution of (22) into (2), the gradient-enhanced effective
plastic strain becomes

Ep ¼ k
���x2��s þ ls

�1=s
: (23)

For any k, the entire contribution to Ep along x2 ¼ 0 plane is from
the strain-gradient. As x2 increases in magnitude the strain
contribution increases, while the strain-gradient contribution re-
mains constant. If l≪h, the strain contribution in the outer portions
of the beam (near x2 ¼ ±h=2) is a dominant contribution to Ep.

The deviatoric parts of the microstress and the moment-stress
components can be determined by introducing (23) into (10).
This gives

q011 ¼ 2s0
�
Ep
�

3

���x2���s�1
signðx2Þ���x2��s þ ls
�1�1=s ; q022 ¼ q033 ¼ �1

2
q011 ;

(24)
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t0112 ¼ 2s0
�
Ep
�

3
ls���x2��s þ ls
�1�1=s ; t0222 ¼ t0332 ¼ �1

2
t0112 :

(25)

The deviatoric part of the Cauchy stress follows from the second
equilibrium condition in (11) as

s011 ¼ q011 � t0112;2 ; s022 ¼ s033 ¼ �1
2
s011 : (26)

After evaluating t0112;2 from (25), we obtain

t0112;2 ¼ 2
3

ls
���x2���s�1

signðx2Þ���x2��s þ ls
�2�1=s

	
Ep

ds0
dEp

� ðs� 1Þs0
�
Ep
�

; (27)

and the substitution into (26) gives

s011 ¼ 2
3

���x2���s�1
signðx2Þ���x2��s þ ls
�2�1=s

	���x2��s þ sls
�
s0
�
Ep
�� lsEp

ds0
dEp



;

s022 ¼ s033 ¼ �1
2
s011 :

(28)

5.1. Boundary conditions and spherical parts of stress tensors

The equilibrium equation s22;2 ¼ 0 requires that s22 ¼ const:,
and from the boundary condition s22ðx2 ¼ ±h=2Þ ¼ 0 it follows that
s22 ¼ 0 in the entire beam. This specifies the spherical part of the
Cauchy stress, such that

s022 þ
1
3
skk ¼ 0 0

1
3
skk ¼ �s022 ¼ 1

2
s011 : (29)

Consequently, the normal stress components within the beam are

s11 ¼ 3
2
s011 ¼

���x2���s�1
signðx2Þ���x2��s þ ls
�2�1=s

	���x2��s þ sls
�
s0
�
Ep
�� lsEp

ds0
dEp



;

s22 ¼ s33 ¼ 0 :

(30)

The lateral surfaces of the beam are traction-free, and we
require that t222 ¼ 0 at x2 ¼ ±h=2 and t332 ¼ 0 at x3 ¼ ±b=2. Both
are fulfilled by defining the spherical part of the moment-stress tijk
such that

t222 ¼ t0222 þ
1
3
tpp2 ¼ 0 0

1
3
tpp2 ¼ �t0222 ¼ 1

2
t0112 :

(31)

Consequently, the moment-stress components within the beam
are

t112 ¼ 3
2
t0112 ¼ s0

�
Ep
� ls���x2��s þ ls

�1�1=s ; t222 ¼ t332 ¼ 0 :

(32)

Finally, we specify the spherical part of the microstress qij as
ð1=3Þqkk ¼ �q022 so that q22 ¼ q33 ¼ 0. The corresponding micro-
stress field is then

q11 ¼ 3
2
q011 ¼ s0

�
Ep
� ���x2���s�1

signðx2Þ���x2��s þ ls
�1�1=s ; q22 ¼ q33 ¼ 0 : (33)

In particular, the so-defined components s11, q11 and t112 are
related by

s11 ¼ q11 � t112;2 : (34)

The results are particularly simple in the case s ¼ 1; the derived
expressions reduce to

q11 ¼ s0
�
Ep
�
signðx2Þ ; t112 ¼ ls0

�
Ep
�
; Ep ¼ kðjx2j þ lÞ ;

(35)

s11 ¼
	
s0
�
Ep
�� lk

ds0
dEp



signðx2Þ : (36)

Fig. 2 shows the variation of the normal stress s11 (black curves)
and microstress q11 (red curves) with x2 at three levels of the
surface strain ε ¼ hk=2. Part (a) is for s ¼ 1, and part (b) for s ¼ 2.
The utilized stress-strain relationship is

s0
�
Ep
� ¼ s0Y

�
1þm

n
Ep
�n

; (37)

where the initial yield stress is s0Y , and the initial hardening rate

hp ¼ ms0Y . The material parameters are adjusted so that the initial

hardening rate is hp ¼ 46:66s0Y , while s0ð0:1Þ ¼ 2s0Y . The latter is
approximately an increase of stress due to hardening in poly-
crystalline copper after 10% strain; see experimental data reported
in Fleck et al. (1994) and Liu et al. (2013). The material length
parameter is chosen to be l ¼ h=4 for all curves. The corresponding
plots of the moment-stress t112 are shown in Fig. 3. For s ¼ 1, the
moment-stress t112 increases with jx2j (for k>0), while for s ¼ 2
the moment-stress t112 is a decreasing function of jx2j, with the
vanishing slope at x2 ¼ 0. As a consequence, the stress s11 is
smaller in magnitude than the microstress q11 in the case s ¼ 1, but
greater than q11 in the case s ¼ 2. Furthermore, the stresses s11 and
q11 in the case s ¼ 2 are zero at x2 ¼ 0, while in the case s ¼ 1 they
experience a discontinuity at x2 ¼ 0. For s ¼ 1 and k ¼ 0 the
Heaviside-type stress behavior resembles the ultimate (limit) state
from the classical ideal plasticity. The variations of the stress
components with x2 for s>2 can be more complex.

5.2. Line forces

For a rigid-plastic incompressible material, there is a line force
along the upper and lower edge of the cross-section of the beam
(x2 ¼ ±h=2). It readily follows from (17) that along the upper edge
(x2 ¼ h=2),

p1 ¼ �t0112 � t0222
�
x2¼h=2 ¼ 3

2
�
t0112

�
x2¼h=2 ¼ ðt112Þx2¼h=2: (38)

The result that p1 ¼ t112 along the edge x2 ¼ h=2 could have been
recognized from the outset by the basic equilibrium consideration:
the sum of q11 and �t112;2 give rise to s11 at any point of the cross-
section, see (34), while the edge value of t112 gives rise to p1.
Consequently, by using (25) or (32), we obtain from (38),



Fig. 2. The variations of s11 (black curves) and q11 (red curves) with x2=h at three levels of surface strain ε ¼ hk=2. The relationship s0 ¼ s0ðEpÞ is specified by (37), with m ¼ 46:66
and n ¼ 0:225. The material length parameter is l ¼ h=4. Part (a) is for s ¼ 1, and part (b) for s ¼ 2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. The variation of t112 with x2=h at three levels of surface strain ε ¼ hk=2 and the same data as used in Fig. 2. Part (a) is for s ¼ 1, and part (b) for s ¼ 2.
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p1 ¼ s0

�
E�p
� ls�ðh=2Þs þ ls

�1�1=s ; E�p ¼ k
�ðh=2Þs þ ls

�1=s
:

(39)

The same but opposite line force acts along the lower edge of the
beam (x2 ¼ �h=2). These line forces are peculiar feature of the
rigid-plastic strain-gradient model. If the elastic-plastic model was
used instead, the line forces would be absent, but the elastoplastic
solution would give rise to a rapidly increasing stress in boundary
layers near the top and bottom edge. In the limit as the modulus of
elasticity E/∞, these boundary layers of rapidly increasing stress
give rise to line forces of the rigid-plastic model. Detailed numerical
study of this transition has been performed by Engelen et al. (2006).
The latter authors also derived an analytical closed form solution
for the elastoplastic bending problem in the case of incompressible
elastic response and a constant hardening modulus.

Regarding the boundary tractions bT i and bRi from Section 4, the

only nonvanishing component is bT 1 ¼ s11, acting over the ends of
the beam x1 ¼ ±L=2.
6. Bending moment-curvature relationship

The bending moment required to produce a given curvature k

can be obtained from the overall moment-equilibrium condition. If
the Cauchy stress s11 and the line force p1 are used, the expression
is

MðkÞ ¼ 2b
Zh=2
0

s11x2 dx2 þ bhp1: (40)

If the equipollent stress system, consisting of the microstress q11
and the moment-stress t112 is used instead, the expression is

MðkÞ ¼ 2b
Zh=2
0

ðq11x2 þ t112Þ dx2: (41)

The equivalency of the two expressions can be easily demon-
strated by substituting (34) into (40) and by applying the integra-
tion by parts. An equivalent expression can also be derived by
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equating the rate of internal work (per unit length of the beam) to
the rate of external work, as done by Idiart et al. (2009). This gives

M _k ¼ 2b
Zh=2
0

�
q0ij _ε

p
ij þ t0ijk _ε

p
ij;k

�
dx2 ¼ 3b _k

Zh=2
0

�
q011x2 þ t0112

�
dx2:

(42)

Since q011 ¼ ð2=3Þq11 and t0112 ¼ ð2=3Þt112, upon the cancelation of
_k, (42) reproduces (41).

We proceed with the derivation of the expression for MðkÞ by
using (41). From (32) and (33), we have in the upper portion of the
beam (0 � x2 � h=2),

q11 ¼ s0
�
Ep
� xs�1

2�
xs2 þ ls

�1�1=s ; t112 ¼ s0
�
Ep
� ls�

xs2 þ ls
�1�1=s :

(43)

The substitution of (43) into (41) gives

MðkÞ ¼ 2b
Zh=2
0

�
xs2 þ ls

�1=s
s0
�
Ep
�
dx2: (44)

The corresponding rate of the bending moment with respect to the
curvature is

dM
dk

¼ 2b
Zh=2
0

�
xs2 þ ls

�2=s ds0
dEp

dx2: (45)

The yield-threshold moment for the onset of plastic deforma-
tion at k ¼ 0 is

MY ¼ 2bs0Y

Zh=2
0

�
xs2 þ ls

�1=s dx2: (46)

The yield-thresholdmoment in the absence of strain gradient effect
ðl ¼ 0Þ is M0

Y ¼ s0Ybh
2=4, regardless of s.

The right-hand sides of (44)e(46) can be evaluated numerically
for any s and for any assumed relationship s0 ¼ s0ðEpÞ. The results
for s ¼ 1 can be obtained analytically in a simple closed-form, as
shown in Section 7. For some forms of the function s0 ¼ s0ðEpÞ
there is also an analytical but more involved solution for s ¼ 2 (in
terms of the hypergeometric series, Idiart et al., 2009), but this will
not be pursued here. Instead, the results for s ¼ 2 presented in
Section 7 are obtained by the direct numerical integration of (44),
with the adopted relationship (37) for s0 ¼ s0ðEpÞ. For linear
hardening, closed-form solutions for s ¼ 1 and s ¼ 2 are given in
the next section.
6.1. Linear hardening

In their experimental and analytical study of plasticity length
scale effects in microbend testing of thin nickel foils, St€olken and
Evans (1998) reported a measured tensile stress-strain curves
with essentially linear strain hardening. Consequently, we derive in
this section the moment-curvature relationship in the case when

s0
�
Ep
� ¼ s0Y

�
1þ kEp

�
; ðk ¼ const:Þ: (47)

The substitution of (47) into (44) gives
MðkÞ ¼ 2bs0
Zh=2 �

xs þ ls
�1=s dx þ 2bs0kk

Zh=2 �
xs þ ls

�2=s dx :
Y

0

2 2 Y

0

2 2

(48)

In the cases s ¼ 1 and s ¼ 2, the integration in (48) can be per-
formed in closed-form. The results are

MðkÞ
M0

Y

¼ 1þ 4ðl=hÞ þ 1
3
hkk
h
1þ 6ðl=hÞ þ 12ðl=hÞ2

i
; ðs ¼ 1Þ;

(49)

MðkÞ
M0

Y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðl=hÞ2

q
þ 4ðl=hÞ2sinh�1ðh=2lÞ

þ 1
3
hkk
h
1þ 12ðl=hÞ2

i
; ðs ¼ 2Þ:

(50)

Expressions (49) and (50) parallel expressions (14a) and (14b) of
St€olken and Evans (1998), which were derived by using another
version of the strain-gradient plasticity, with the separate length
scales for the stretch and rotation gradients. Fig. 4a shows the
variations of the yield-threshold value of the bending moment
MY=M0

Y , given by the right-hand sides of (49) and (50) when k ¼ 0.
Fig. 4b shows the corresponding variations of the hardening rate
dM=dk.
7. Moment-curvature expressions for nonlinear hardening

If the stress-strain relationship from the uniaxial tension test is
specified by (37), the moment-curvature expression (44) becomes

MðkÞ ¼ 2bs0Y

Zh=2
0

h
1þmk

n

�
xs2 þ ls

�1=sin�xs2 þ ls
�1=s dx2: (51)

In the case s ¼ 1, (51) can be integrated to obtain

MðkÞ ¼ 2bs0Y
� n
mk

�2 znþ2

nþ 2
� znþ1

nþ 1

!x2¼h=2

x2¼0

;

z ¼ 1þmk

n
ðx2 þ lÞ:

(52)

The corresponding yield-threshold moment (at k ¼ 0) is

MY ¼ M0
Y

�
1þ 4

l
h

�
; M0

Y ¼ 1
4
bh2s0Y : (53)

Fig. 5a shows the variation of the normalized bending moment
M=M0

Y with the surface strain ε ¼ kh=2 for three indicated values of
l in the case s ¼ 1. Fig. 5b shows the same in the case s ¼ 2, which is
obtained by numerical integration of (51). The nonlinear hardening
was assumed with m ¼ 46:66 and n ¼ 0:225, as in Fig. 2. By
comparing parts (a) and (b) it is observed that the increase of the
material length l increases the moment significantly more in the
case s ¼ 1 than in the case s ¼ 2. There is a strong effect of l on the
initial yield strength; the smaller the ratio h=l, the higher the initial
yield strength. There is a less pronounced increase of the hardening
rate at larger values of ε with the increase of the ratio l=h. Experi-
mental observations on nickel beams by St€olken and Evans (1998)
indicate strong influence of the foil thickness on both the yield
strength and the hardening rate. See also a related discussion by
Evans and Hutchinson (2009), who extended the analysis to
include the elastic component of strain and solved the governing
equations of their model numerically.



Fig. 4. (a) The variation of the normalized yield-threshold moment MY=M0
Y with l=h according to (47) for s ¼ 1, and (48) for s ¼ 2. (b) The variation of the corresponding hardening

rate dM=dk (scaled by its value khM0
Y=3 at l ¼ 0).

Fig. 5. The variation of the normalized moment M=M0
Y with the surface strain ε ¼ kh=2 for the three indicated values of l. (a) Case s ¼ 1; (b) Case s ¼ 2.
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8. Rigid-plastic beam bending under plane-strain condition

The plane-strain approximation is commonly adopted in the
bending analysis of wide thin beams (foils), e.g., St€olken and Evans
(1998); Huang et al. (2000); Voyiadjis and Abu Al-Rub, 2005;
Engelen et al. (2006); Idiart et al. (2009); Evans and Hutchinson
(2009). The rationale for adopting the plane-strain approximation
stems from the original microbent experimental setting by St€olken
and Evans (1998), in which the foil was plastically bent around a
small cylindrical mandril by means of loads applied through a
profiled die. The anticlastic curvature was absent and the plane-
strain conditions prevailed in the direction of the width of the
foil, except near its ends. The objective in this section is to deter-
mine the stress fields and the moment-curvature relation,
including the lateral moment required to prevent the anticlastic
curvature and keep the plane-strain mode of the deformation. The
height of the beam is again denoted by h, its width is B[h, and L is
the length of the beam (Fig. 6).

Upon the onset of deformation, the non-vanishing strains are
ε11 ¼ �ε22 ¼ kx2 ; ε33 ¼ 0; (54)

with the corresponding gradients

ε11;2 ¼ �ε22;2 ¼ k ; ε33;2 ¼ 0: (55)

The displacement field is

u1 ¼ kx1x2 ; u2 ¼ �1
2
k
�
x21 þ x22

�
; u3 ¼ 0: (56)

The anticlastic curvature is equal to zero, so that the rectangular
cross-sections remain rectangular and of the same dimensions,
experiencing only translation and rotation about their horizontal
axis of symmetry (Fig. 6).

Since

ep ¼
�
2
3
ε
p
ijε

p
ij

�1=2

¼ 2ffiffiffi
3

p k
��x2�� ; gp ¼

�
2
3
ε
p
ij;kε

p
ij;k

�1=2

¼ 2ffiffiffi
3

p k;

(57)



Fig. 6. (a) Cross-section of a thin wide beam of the thickness h and the width B[h. The applied bending moment is M. (b) The deformed shape of the beam under plane-strain in
the x3 direction. The applied bending moment per unit width of the beam isM=B. The lateral bending moment per unit length of the beam bM=L is required to prevent the anticlastic
curvature and ensure the plane-strain mode of deformation.
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the gradient-enhanced effective plastic strain is

Ep ¼ 2ffiffiffi
3

p k
���x2��s þ ls

�1=s
: (58)

The only difference from the expression (23) of Section 5 is the
presence of the coefficient 2=

ffiffiffi
3

p
in (58).

The deviatoric parts of the microstress and the moment-stress
are determined by introducing (58) into (10),

q011 ¼ �q022 ¼ s0
�
Ep
�ffiffiffi

3
p

���x2���s�1
signðx2Þ���x2��s þ ls
�1�1=s ; q033 ¼ 0: (59)

t0112 ¼ �t0222 ¼ s0
�
Ep
�ffiffiffi

3
p ls���x2��s þ ls

�1�1=s ; t0332 ¼ 0; (60)

in agreement with expressions (40) and (41) from Idiart et al.
(2009).

The deviatoric part of the Cauchy stress follows from (11) as

s011 ¼ �s022 ¼ q011 � t0112;2 ; s033 ¼ 0 : (61)

Upon evaluating t0112;2 from (60), the substitution into (61) gives

s011 ¼ �s022

¼ 1ffiffiffi
3

p

���x2���s�1
signðx2Þ���x2��s þ ls
�2�1=s

	���x2��s þ sls
�
s0
�
Ep
�� lsEp

ds0
dEp



:

(62)
8.1. Boundary conditions and spherical parts of stress tensors

The equilibrium equation s22;2 ¼ 0 requires that s22 ¼ const:,
and from the boundary condition s22ðx2 ¼ ±h=2Þ ¼ 0 it follows that
s22 ¼ 0 in the entire beam. This specifies the spherical part of the
Cauchy stress as

1
3
skk ¼ �s022 ¼ s011: (63)

Consequently, the non-vanishing stress components are
s11 ¼ 2s011

¼ 2ffiffiffi
3

p

���x2���s�1
signðx2Þ���x2��s þ ls
�2�1=s

	���x2��s þ sls
�
s0
�
Ep
�� lsEp

ds0
dEp



;

s33 ¼ s011≡
1
2
s11:

(64)

The lateral surfaces x2 ¼ ±h=2 of the beam are traction-free, and
we require that t222 ¼ 0 there. Thus,

t222 ¼ t0222 þ
1
3
tpp2 ¼ 0 0

1
3
tpp2 ¼ �t0222 ¼ t0112: (65)

The non-vanishing moment-stress components are accordingly

t112 ¼ 2t0112 ¼ 2ffiffiffi
3

p s0
�
Ep
� ls���x2��s þ ls

�1�1=s ;

t332 ¼ t0112≡
1
2
t112 :

(66)

Therefore, while t332 ¼ 0 in Section 5, see Eq. (32), in the plane-
strain model t332s0, being associated with the constraint
ε33;2 ¼ 0. This is analogous to the presence of s33s0, associated
with the constraint ε33 ¼ 0.

Finally, if the spherical part of the microstress is specified by
ð1=3Þqkk ¼ �q022, then q22 ¼ 0 and the non-vanishing microstress
components are

q11 ¼ 2q011 ¼ 2ffiffiffi
3

p s0
�
Ep
� ���x2���s�1

signðx2Þ���x2��s þ ls
�1�1=s ; q33 ¼ q011≡

1
2
q11 :

(67)

The so-specified components s11, q11 and t112 are related by
s11 ¼ q11 � t112;2.

8.2. Line forces

From (17), the line force (per unit width of the beam) along the
edge x2 ¼ h=2 is

p1 ¼ �t0112 � t0222
�
x2¼h=2 ¼ 2

�
t0112

�
x2¼h=2≡ðt112Þx2¼h=2: (68)

Using (60) and (66), this gives
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p1 ¼ 2ffiffiffi
3

p s0

�
E�p
� ls�ðh=2Þs þ ls

�1�1=s ;

E�p ¼ 2ffiffiffi
3

p k
�ðh=2Þs þ ls

�1=s
:

(69)

The same but opposite line force acts along the lower edge
x2 ¼ �h=2.

The existence of line force p1 in the rigid-plastic beam bending
has been discussed by Engelen et al. (2006) in relation to elasto-
plastic beam bending model by analyzing the features of elasto-
plastic stress field in the limit of infinitely large modulus of
elasticity. However, neither in that work nor in the relatedworks by
Huang et al. (2000) and Idiart et al. (2009), the line force p3 along
the intersection of the lateral sides x2 ¼ ±h=2 and x3 ¼ ±B=2, has
been discussed. The determination of this force is important for the
calculation of the lateral moment along the sides x3 ¼ ±B=2 of the
beam, required to cancel the anticlastic curvature of the beam along
the edges x2 ¼ ±h=2 and keep the plane-strain mode of the
deformation. From (37), it follows that along the edge
(x2 ¼ h=2; x3 ¼ B=2>0), the line force per unit length (L) of the
beam is

p3 ¼ ��t0222�x2¼h=2≡ðt332Þx2¼h=2 ; p3≡
1
2
p1: (70)

The same line force acts along the edge (x2 ¼ �h=2; x3 ¼ �B=2),
and the opposite line force acts along the edges
(x2 ¼ �h=2; x3 ¼ B=2) and (x2 ¼ h=2; x3 ¼ �B=2).

This derivation demonstrates the importance of the incorpora-
tion in the analysis of the spherical component of the moment-
stress tensor tijk, since this enables the fulfilment of the higher-
order traction boundary conditions and the establishment of the
expressions for the line forces p1 ¼ ðt112Þx2¼h=2 and
p3 ¼ ðt332Þx2¼h=2, which have obvious physical interpretations,
which are more clear than those following from their representa-
tions in terms of deviatoric parts of the moment-stress tensor, p1 ¼
ðt0112 � t0222Þx2¼h=2 and p3 ¼ �ðt0222Þx2¼h=2.

Regarding the boundary tractions bT i and bRi from Section 4, the

only nonvanishing components are bT1 ¼ s11 over the ends of the

beam x1 ¼ ±L=2, and bT 3 ¼ s33 over the lateral sides of the beam
x3 ¼ ±B=2.
Fig. 7. The variation of M=M0
Y with the surface strain ε ¼ hk=2, according to (76). The

hardening parameter is k ¼ 100, and the utilized length scale l ¼ 8 mm.
8.3. Moment-curvature relationships

If the microstress q11 and the moment-stresses t112 are used,
the expression for the bending moment per unit width of the beam
in the x3 -direction is

MðkÞ
B

¼ 2
Zh=2
0

s11x2 dx2 þ hp1 ¼ 2
Zh=2
0

ðq11x2 þ t112Þ dx2 : (71)

The substitution of (66) and (67) into (71) gives

MðkÞ
B

¼ 4ffiffiffi
3

p
Zh=2
0

�
xs2 þ ls

�1=s
s0
�
Ep
�
dx2: (72)

When s ¼ 2, (72) reproduces the expression (31) from Idiart et al.
(2009).

The yield-threshold moment (at k ¼ 0) is
MY

B
¼ 4s0Yffiffiffi

3
p

Zh=2
0

�
xs2 þ ls

�1=s dx2: (73)

The yield-threshold moment in the absence of the strain gradient
effects ðl ¼ 0Þ is M0

Y=B ¼ s0Yh
2=ð2

ffiffiffi
3

p
Þ.

The lateral moment (per unit length L of the beam), along the
sides x3 ¼ ±B=2, is

bMðkÞ
L

¼ 2
Zh=2
0

s33x2 dx2 þ hp3 ¼ 2
Zh=2
0

ðq33x2 þ t332Þ dx2: (74)

Since s33 ¼ s11=2, q33 ¼ q11=2, and t332 ¼ t112=2, it readily follows
that

bMðkÞ
L

¼ 1
2

MðkÞ
B

: (75)

No work is done by this lateral moment because the sides of the
beam x3 ¼ ±B=2 do not rotate in the plane-strain bending model. It
may also be noted that (75) parallels the result from the elastic
thin-plate theory: if there is no anticlastic curvature in a rectan-
gular plate made of an incompressible material (Poisson's ratio
n ¼ 1=2), the bending moment (per unit length) along two parallel
lateral sides is equal to one-half of the bending moment acting
along the other two sides of the plate; see equation (b), page 289, of
Timoshenko and Goodier (1970).

For the linear hardening with the stress-strain relation (47), the
integral in (72) can be evaluated in closed-form for s ¼ 1 and s ¼ 2.
The results are

MðkÞ
M0

Y

¼ 1þ 4ðl=hÞ þ 2
3
ffiffiffi
3

p hkk
h
1þ 6ðl=hÞ þ 12ðl=hÞ2

i
; ðs ¼ 1Þ;

(76)

MðkÞ
M0

Y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðl=hÞ2

q
þ 4ðl=hÞ2sinh�1ðh=2lÞ

þ 2
3
ffiffiffi
3

p hkk
h
1þ 12ðl=hÞ2

i
; ðs ¼ 2Þ:

(77)

Fig. 7 shows the variation of M=M0
Y with the surface strain
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ε ¼ hk=2, determined from (76). The hardening parameter k ¼ 100
was used so that the tensile stress at the strain 2� 10�3, as
determined from s0 ¼ s0Y ð1þ kεpÞ, is 20% higher than the initial

yield stress s0Y , consistent with experimental data for poly-

crystalline Ni with the grain size of 27 mm and the yield stress s0Y ¼
42MPa (Ehrler et al., 2008; Evans and Hutchinson, 2009). The three
lines shown in the plot correspond to indicated ratios l=h, which are
obtained by taking the length parameter l ¼ 8 mm, as in Evans and
Hutchinson (2009), and the foil thickness h ¼ 10, 50, and 125 mm,
as used in experiments by Ehrler et al. (2008). The selected value of
l ¼ 8 mm makes the agreement between theoretical prediction and
experimental data for h ¼ 50 mm satisfactory, similar to agreement
reported in Evans and Hutchinson (2009). The agreement is mod-
erate for h ¼ 125 mm, being better for larger strains, while for
h ¼ 10 mm the predicted values of M=M0

Y are too high, which in-
dicates the limitation of the utilized strain-gradient plasticity
model with only one length scale. For example, the predicted initial
yield moment is about twice higher than experimentally observed
value, while the hardening rate is lower than the values reported by
Ehrler et al. (2008). This was further elaborated upon by Evans and
Hutchinson (2009), who expanded their analysis to include a
strain-dependent length scale, which improved the comparison
with experimental data, as reported in their paper. Also, the
thickness of the foil in the case l=h ¼ 0:8 is only about one-third of
the average grain size, which affected the predictions of the utilized
model compared to experimental observations.

9. Conclusion

We have derived in this paper the expressions for the Cauchy
stress, line forces, microstress, and moment-stress in prismatic
beams of rectangular cross-section made of a rigid-plastic material.
The model of strain-gradient plasticity with different measures of
the gradient-enhanced effective plastic strain was used. The
workless spherical parts of the microstress and the moment-stress
tensors are included in the analysis and determined by fulfilling the
higher-order traction boundary conditions. This was of importance
for the determination of line forces and the derivation of the
moment-curvature relationships. Closed-form analytical expres-
sions for the latter are given in the case of linear hardening, and for
some measures of the effective plastic strain in the case of
nonlinear hardening. The analysis of the plane-strain bending of
wide beams is then presented, since such model has been adopted
in the bending analysis of thin foils. The line forces p1 and p3 are
determined along the edges of the sides of the beam. They are used
to derive the applied bending moment-curvature relationship
M ¼ MðkÞ, and the lateral bending moment-curvature relationshipbM ¼ bMðkÞ. The lateral stresses s33, q33, and t332 are found to be
one-half of the corresponding longitudinal stresses s11, q11, and
t112. As a consequence, the lateral bending moment (per unit
length of the beam) is equal to one-half of the applied bending
moment (per unit width of the beam). The comparison to related
work is given throughout the paper.
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