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a b s t r a c t

The Eshelby stress tensor of micropolar elasticity with body forces and body couples, and the corre-
sponding Jk, Lk and M integrals are derived. These are used to determine the energy release rates and
configurational forces associated with particular modes of defect motion. The dual Eshelby stress tensor
and dual Ĵk , L̂k and M̂ integrals are then introduced. The duality properties Jk þ Ĵk ¼ 0, Lk þ L̂k ¼ 0 and
M þ M̂ ¼ 0 are established and used to construct alternative expressions for the configurational forces
on moving defects. The three-dimensional results are specialized to the plain strain case and compared
with earlier results obtained in the absence of body forces and body couples, which are of interest for
two-dimensional dislocation and fracture mechanics problems.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

A great amount of research was devoted to the study of
conservation integrals in classical and micropolar elasticity, ther-
moelasticity, piezoelectricity, and finite-strain elasticity. This
research initiated with the Eshelby’s (1951, 1956) work on the
energy momentum tensor and configurational forces on moving
material defects, and the subsequent contributions by Günther
(1962), Knowles and Sternberg (1972), Budiansky and Rice (1973),
and Eshelby (1975), who related the conservation integrals to
Noether’s theorem on invariant variational principles (Noether,
1918). A comprehensive survey of the advancements in the field
can be found in reviews by Olver (1984), Rice (1985), and Maugin
(1995), and books by Maugin (1993, 2011), Gurtin (2000a) and
Kienzler and Herrmann (2001). The energy momentum tensor, also
known as the Eshelby stress tensor, and configurational forces on
defects in couple stress and micropolar elasticity were studied by
Kluge (1969), Dai (1986), Jaric (1986), Vukobrat (1989), Pucci and
Saccomandi (1990), Lubarda and Markenscoff (2000, 2003), and
Lazar and Maugin (2007), among others.

The classical conservation integrals are expressed in terms of
spatial gradients of displacements and are related to the release

rates of the potential energy associated with a defect motion. The
dual conservation integrals are related to the release rates of the
complementary potential energy and are expressed in terms of
spatial gradients of stresses. The study of dual integrals originated
from Bui’s (1973, 1974) introduction of a dual integral to Rice’s
(1968) J integral of plane fracture mechanics. An independent
study of dual conservation integrals was presented by Carlsson
(1974). The subsequent work includes the contributions by Sun
(1985), Moran and Shih (1987), Li (1988), Bui (1994), Trimarco
and Maugin (1995), Li and Gupta (2006), and Bui (2007). Lubarda
and Markenscoff (2007a,b) derived the complementary energy
momentum tensor and dual integrals of classical and micropolar
elasticity (without body forces and couples), and related them to
the release rates of the potential and complementary potential
energy associated with particular modes of defect motion.

The analysis of configurational forces in the presence of body
forces is different, because the stress tensor and the energy
momentum tensor (Eshelby stress tensor) in this case are not
divergence free tensors, which precludes the existence of the J, L,
and M conservation laws (Eshelby, 1970; Cherepanov, 1979;
Kishimoto et al., 1980; Atluri, 1982; Honein and Herrmann, 1997;
Kirchner, 1999; Herrmann and Kienzler, 2001; Lubarda, 2008).
Lazar and Kirchner (2007) studied the Eshelby stress tensor and
related integrals of micropolar elasticity in the presence of body
forces and couples, as well as distributed dislocations and dis-
clinations, but without addressing the dual Eshelby stress tensor
and the corresponding dual integrals. On the other hand, Lubarda
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and Markenscoff (2008) addressed the dual integrals with body
forces, but only in the framework of the classical nonpolar elasticity.
The objective of this paper is thus to derive the dual Eshelby stress
tensors and the corresponding dual integrals of micropolar elas-
ticity in the presence of body forces and body couples, and to use
them to evaluate the energy release rates and configurational forces
associated with different types of defect motion.

Body couples commonly appear in a solid body due to its
exposure to an external field, e.g., within a polarized dielectric solid
in an electric field, where they are defined by a cross product of the
polarization vector and the force due to electric field, or in
a polarizable and magnetizable medium in the presence of elec-
tromagnetic field, where they are defined by a cross product of the
magnetization vector and the external magnetic field (Tiersten,
1971; Pao and Yeh, 1973; Pao and Hutter, 1975; Verma and Singh,
1984). Body couples can also be generated by an inhomogeneous
external body-force field, e.g., an inhomogeneous mass distribution
in the presence of gravity (Almong and Brenner, 1999). In general,
for microstructured continua they arise as the average of all
moments exerted by surroundings on microconstituents
comprising a continuum particle. Body couples are also important
for kinetic studies based on intermolecular potentials which
account for non-central force interactions. Furthermore, they can
appear as part of the mathematical procedure to solve various
elasticity problems (Boschi, 1973), notably the Eshelby inclusion
problem in micropolar elasticity, where, in addition to fictitious
body forces, the fictitious body couples are distributed within the
volume of the inclusion, associated with the couple-stress-free
compatible micro-strain (Hsieh, 1982). Fictitious body forces and
body couples can also be associated with micropolar elastic
multipoles, which are the sources of micropolar elastic singulari-
ties, and which can be utilized to quantitatively describe the
behavior of lattice defects (Hsieh et al., 1980).

2. Basic equations of micropolar elasticity

Deformation of a micropolar continuum is described by the
displacement vector and an independent rotation vector, because it
is assumed that an infinitesimal material element can experience
a microrotation without undergoing a macrodisplacement. An
infinitesimal surface element transmits a force and a couple vector,
which give rise to nonsymmetric stress and couple-stress tensors.
The stress tensor is related to nonsymmetric strain tensor, and the
couple-stress is related to the curvature tensor, defined as the
gradient of the rotation vector. This model of continuummechanics
was originally introduced by Voigt (1887) and the brothers Cosserat
(1909), and then further developed by Günther (1958), Grioli
(1960), Aero and Kuvshinskii (1960), Toupin (1962), Mindlin
(1964), Eringen and Suhubi (1964), Eringen (1968), Stojanovi�c
(1970), and Nowacki (1986). Additional contributions can be
found in the review article by Dhaliwal and Singh (1987), and Jasiuk
and Ostoja-Starzewski (1995), and in the books by Brulin and Hsieh
(1982), and Eringen (1999).

The physical motivation to extend the nonpolar to micropolar
elasticity was that the former could not predict the size effect
experimentally observed in problems with a geometrical length
scale that is comparable to the microstructural material length,
such as the grain size in a polycrystalline or granular material. For
example, the apparent strength of some materials with stress
concentrators such as holes and notches is higher for smaller grain
size; for a given volume fraction of dispersed hard particles, the
strengthening of metals is greater for smaller particles; the bending
and torsional strengths are higher for very thin beams and wires;
the singular nature of the crack tip fields is affected by the couple
stresses (Mindlin, 1963; Muki and Sterberg, 1965; Sternberg and

Muki, 1967; Kaloni and Ariman, 1967; Fleck et al., 1994; Xia and
Hutchinson, 1996). The nonpolar theory was also in disagreement
with experiments involving high-frequency ultra-short wave
propagation, in which the wave length was comparable to mate-
rial’s microstructural length (Mindlin, 1964; Brulin and Hsieh,
1982). The research in micropolar and related non-local and
strain-gradient theories of elastic and inelastic response has
intensified during the past two decades, because of an increasing
interest to describe the deformation mechanisms at micro and
nanostructural level (Fleck and Hutchinson, 1997, 2001; Valiev
et al., 2000; Gurtin, 2000b; Chen and Wang, 2001; Lazar and
Maugin, 2005; Asaro and Suresh, 2005; Meyers et al., 2006; Dao
et al., 2007; Kuroda and Tvergaard, 2008), inelastic localization
and instability phenomena (Zbib and Aifantis, 1989; De Borst and
Van der Giessen, 1998; Niordson and Tvergaard, 2005; Asaro and
Lubarda, 2006), and micromechanics of dislocations, inclusions,
and fractal media (Lubarda, 2003a,b; Yavari et al., 2002; Lazar and
Maugin, 2005; Li and Ostoja-Starzewski, 2011).

In a micropolar continuum, the surface forces Ti are in equilib-
rium with the nonsymmetric Cauchy stress tij, and the surface
couplesMi are in equilibriumwith the nonsymmetric couple-stress
mij, such that Ti ¼ njtji and Mi ¼ njmji, where nj are the rectangular
components of the unit vector orthogonal to the surface element
under consideration. The integral conditions of equilibrium are
Z
S

TidSþ
Z
V

bidV ¼ 0;

Z
S

�
Mi þ eijkxjTk

�
dSþ

Z
V

�
mi þ eijkxjbk

�
dV ¼ 0; ð1Þ

where bi are the body forces (per unit volume), mi are the body
couples, eijk are the components of the permutation tensor, and xi
are the rectangular coordinates with respect to the selected coor-
dinate origin. The corresponding differential equations of equilib-
rium are

tji;j þ bi ¼ 0; mji; j þ mi ¼ �eijktjk: (2)

The comma designates the partial derivative with respect to the
spatial coordinate.

For infinitesimal elastic deformations of micropolar continuum,
the specific strain energy W (per unit volume) is a function of the
nonsymmetric strain tensor gij and the curvature tensor kij, which
are defined by

gij ¼ uj;i � eijk4k; kij ¼ 4j;i; (3)

where ui are the components of the macroscopic displacement, and
4i of the microscopic rotation vector. The constitutive relations of
infinitesimal micropolar elasticity are then

tij ¼
vW
vgij

; mij ¼
vW
vkij

; (4)

so that _W ¼ tij _gij þmij _kij.
If the strain energy is a quadratic function of the strain and

curvature components,

W ¼ 1
2
Cijklgijgkl þ

1
2
Kijklkijkkl; (5)

the constitutive expressions (4) are the linear relations

tij ¼ Cijklgkl; mij ¼ Kijklkkl: (6)

Since the strain and curvature tensors are not symmetric, the
micropolar elastic moduli tensors obey only the reciprocal
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symmetries Cijkl ¼ Cklij and Kijkl ¼ Kklij. In the case of isotropy, and in
the notation of Nowacki (1986), these moduli are specified by

Cijkl ¼ ðmþ mÞdikdjl þ ðm� mÞdildjk þ ldijdkl;

Kijkl ¼ ðaþ aÞdikdjl þ ða� aÞdildjk þ bdijdkl;
(7)

where m; m; l and a; a; b are the Lamé-type elastic constants of
micropolar elasticity. They are defined so that the symmetric and
anti-symmetric parts of the stress and couple-stress tensors are

tðijÞ ¼ 2mgðijÞ þ lgkkdij; t<ij> ¼ 2mg<ij>;

mðijÞ ¼ 2akðijÞ þ bkkkdij; m<ij> ¼ 2ak<ij>:
(8)

The microstructural length scale (l) is implicitly embedded in
(8), because the two types of micropolar elastic moduli are
dimensionally related by ða; b;aÞwl2ðm; l;mÞ.

3. The Eshelby stress tensor

The spatial gradient of the strain energy function is

W;k ¼ vW
vgij

gij;k þ
vW
vkij

kij;k ¼ tijgij;k þmijkij;k: (9)

By using the expressions (3) for the strain and curvature tensors,
(9) can be rewritten as

W;jdjk � tjiui; jk �mji4i; jk þ tjiejil4l;k ¼ 0: (10)

In view of the equilibrium Eq. (2), this becomes

h
ðW�biui�mi4iÞdjk�tjiui;k�mji4i;k

i
; j
¼�

�
bj;kujþmj;k4j

�
: (11)

Eq. (11) defines the Eshelby stress tensor of linear micropolar
elasticity, in the presence of body forces and couples,

Pjk ¼ ðW � biui � mi4iÞdjk � tjiui;k �mji4i;k; (12)

such that

Pjk;j ¼ �
�
bj;kuj þ mj;k4j

�
: (13)

As shown in Section 7, the Eshelby stress tensor (12) is related to
the release rate of the potential energy associated with defect
motionwithin a micropolar medium, in the presence of body forces
and couples. In the absence of body forces and couples, (12) reduces
to the divergence free expression of Lubarda and Markenscoff
(2003). In the absence of micropolar effects, but in the presence
of body forces, (12) and (13) reduce to the results of Lubarda (2008).
With neither micropolar effects nor body forces, (12) and (13)
reproduce the celebrated results of Eshelby (1951, 1956).

4. J integrals in the presence of body forces and couples

The Jk integrals can be defined in terms of the Eshelby stress
tensor Pjk by

Jk ¼
Z
S

PjknjdS; (14)

where S is the bounding surface of the volume V, which does not
contain any singularity of defect. Thus, by applying the Gauss
divergence theorem to (14), and by incorporating (13), the Jk inte-
grals are equal to

Jk ¼ �
Z
V

�
bj;kuj þ mj;k4j

�
dV : (15)

In general, the right-hand side of (15) is not equal to zero, so that
Jks0. Therefore, the presence of spatially variable body forces or
couples precludes the existence of the Jk ¼ 0 conservation law.1

However, if the body forces and couples are spatially uniform
(bi,k ¼ 0 and mi,k ¼ 0), there is a conservation law

Jk ¼
Z
S

�ðW � biui � mi4iÞnk � Tiui;k �Mi4i;k
�
dS ¼ 0; (16)

for any surface S that does not enclose a singularity or defect.
The micropolar version of the conservation law Jk ¼ 0 in the

absence of body forces and couples was earlier derived by Dai
(1986) and Jaric (1986) in the case of elastostatics, and by
Fletcher (1975) and Vukobrat (1989) in the case of elastodynamics.
A derivation based on Noether’s theorem on invariant variational
principles was given by Pucci and Saccomandi (1990) and, in amore
general context, by Lubarda and Markenscoff (2000, 2003). An
extension of the latter analysis to account for the body forces and
couples was presented by Lazar and Kirchner (2007). Earlier, the
body force term was included in the structure of the J integral to
study the progressive failure of over-consolidated clay by Palmer
and Rice (1973), and the free-boundary flows in fluid mechanics
by Ben Amar and Rice (2002). The inclusion of the body force term
in the structure of the Eshelby stress tensor is also reminiscent of
the structure of the energy momentum tensor in the dynamic
fracture mechanics (Freund, 1990).

5. M integral in the presence of body forces and couples

If the strain energy is a homogeneous function of degree 2 in
both the strain and curvature components,2 from (4)e(6) it follows
that

W ¼ 1
2

�
tjkgjk þmjkkjk

�
: (17)

Furthermore, it can be verified by inspection that the Eshelby stress
tensor (12) satisfies the equation

�
Pjkxk

�
; j
� Pkk ¼ �

�
ujbj;k þ 4jmj;k

�
xk; (18)

where the trace of the Eshelby stress tensor is

Pkk ¼ 3ðW � bkuk � mk4kÞ � tjkuk; j �mjk4k; j: (19)

By incorporating (17), this can be rewritten as

Pkk ¼ 1
2

�
tjkuk þmjk4k

�
; j
� 5
2
ðbkuk þ mk4kÞ � eijktij4k: (20)

The substitution of (20) into (18) yields

�
Pjkxk �

1
2
tjkuk �

1
2
mjk4k

�
;j
¼ � 5

2
ðbkuk þ mk4kÞ � eijktij4k

�
�
ujbj;k þ 4jmj;k

�
xk: ð21Þ

1 If the energy momentum tensor of nonpolar elasticity is defined
by Pjk ¼ Wdjk � sjiui;k, there follows another nonconserved integral,

Jk ¼ R
S
PjknjdS ¼ R

V
biui;kdV , which was used in the work of Huang et al. (2002) and

Liang et al. (2003).
2 The analysis can be easily extended to encompass the case when the strain

energy is a homogeneous function of degree different from 2; Lubarda and
Markenscoff (2007b).
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An equivalent, but more convenient form of (21) is

Dj;j ¼ �mjkkjk �
5
2
bkuk �

3
2
mk4k �

�
ujbj;k þ 4jmj;k

�
xk; (22)

where

Dj ¼ Pjkxk �
1
2
tjkuk �

3
2
mjk4k; (23)

which is referred to as a dilatation or scaling vector (Lazar and
Kirchner, 2007).

The M integral of micropolar elasticity is defined by

M ¼
Z
V

DjnjdS ¼
Z
S

�
Pjkxk �

1
2
tjkuk �

3
2
mjk4k

�
njdS: (24)

The application of the Gauss divergence theorem to (24) within
a defect-free region reveals that the M integral of micropolar
elasticity is not equal to zero but to the volume integral of the right-
hand side of (22), i.e.,

M ¼ �
Z
V

�
mjkkjkþ

5
2
bkukþ

3
2
mk4kþ

�
ujbj;kþ4jmj;k

�
xk

	
dV : (25)

In the absence of body forces and couples, this reduces to

M ¼ �
Z
V

mjkkjkdV : (26)

There is no M ¼ 0 conservation law in micropolar elasticity,
because there is a material length scale in the structure of the
corresponding constitutive equations, so that the total strain
energy is not infinitesimally invariant under a self-similar scale
change (Lubarda and Markenscoff, 2003). In the absence of
micropolar effects and body forces, there is a conservation law

M ¼
Z
S

�
Pjkxk �

1
2
tjkuk

�
njdS; ¼ 0 (27)

for any closed surface that does not embrace a singularity or defect,
as originally shown by Günther (1962), Knowles and Sternberg
(1972), and Budiansky and Rice (1973).

6. L integrals in the presence of body forces and couples

An appealing construction of the Lk integrals of isotropic
micropolar elasticity is based on the identity

ekij
�
tilgjl þ tliglj þmilkjl þmliklj

�
¼ 0: (28)

This identity holds because for linear isotropic elasticity the
tensors (tilgjl þ tliglj) and (milkjl þmliklj) are symmetric in (i,j), which
can be verified by the substitution of the constitutive expressions
(6). The identity also holds in the case of material nonlinearity, as
demonstrated by Lubarda and Markenscoff (2003). In view of the
strain and curvature expressions, (28) can be rewritten as

ekij
�
tilul; j þ tliuj;l þmil4l; j þmli4j;l � eirstrs4j

�
¼ 0: (29)

By using the Eshelby stress tensor (12), this is equivalent to

ekij
�
Pji þ tliuj;l þmli4j;l � eirstrs4j

�
¼ 0; (30)

because ekijPji ¼ ekij(tilul, jþmil4l, j).
Introducing the second-order tensor, referred to as the angular

energy momentum tensor,

Hkl ¼ ekij


Plixj þ tliuj þmli4j

�
; (31)

and having in mind (2) and (13), it follows that

Hkl;l ¼ �ekij
�
biuj þ mi4j þ



bl;iul þ ml:i4l

�
xj
�
: (32)

Thus, by defining the integrals

Lk ¼
Z
S

HklnldS ¼ ekij

Z
S



Plixj þ tliuj þmli4j

�
nldS; (33)

the application of the Gauss divergence theorem gives

Lk ¼ �ekij

Z
V

�
biuj þ mi4j þ



bl;iul þ ml:i4l

�
xj
�
dV ; (34)

for any closed surface S enclosing a volume V without singularities
or defects. In the absence of body forces and couples, (34) yields the
conservation law Lk ¼ 0, originally derived by Lubarda and
Markenscoff (2000, 2003) by using the Noether’s theorem. The
plane-strain version of the results is presented in the Appendix of
the paper.

7. The energy release rates and configurational forces

The Jk, Lk, and M integrals, evaluated over the free surface of
a defect, are related to the potential energy release rates and
configurational forces associated with specific modes of defect’s
motion. By extending the nonpolar analysis of Budiansky and Rice
(1973), and micropolar analysis without body forces of Lubarda
and Markenscoff (2007b), consider the body of volume V loaded
by surface tractions Ti ¼ Ti over the portion ST of its external
surface S, and surface couples Mi ¼ Mi over the portion SM. The
displacements ui ¼ ui are prescribed over Su and the rotations 4i ¼
4i over S4. Within the body there is a defect (cavity) with the
bounding surface S0, free of surface tractions or couples. The
potential energy of such body and the loading system is

P ¼
Z
V

ðW � biui � mi4iÞdV �
Z
ST

TiuidS�
Z
SM

Mi4idS: (35)

If the boundary conditions on S are held fixed, the rate of change
of the potential energy associated with a spatial variation of the
surface of cavity, caused by its velocity field _u0i , is

_P ¼
Z
V



_W � bi _ui � mi _4i

�
dV �

Z
S0

ðW � biui � mi4iÞ _u0j njdS

�
Z
ST

Ti _uidS�
Z
SM

Mi _4idS; ð36Þ

where _ui and _4i are the kinematic fieldswithin V due to the imposed
velocity _u0i and _40

i ¼ 0 over S0. Body forces and couples are assumed
to be unaffected by the cavity motion (dead body forces and
couples). The surface integral over S0 follows from the Reynolds
transport theorem, where ni is the unit normal to S0, directed into
the material surrounding the cavity. Assuming that _ui and _4i are
kinematically admissible fields, the rate of the strain energy is

_W ¼ tij _gij þmij _kij; _gij ¼ _uj;i � eijk _4k; _kij ¼ _4j;i; (37)

i.e., by using the equilibrium conditions (2),

_W ¼ 

tij _uj þmij _4i

�
;i þ bi _ui þ mi _4i: (38)

Since the surface of the cavity is not loaded, by means of the
Gauss divergence theorem, the volume integral of (38) becomes

V.A. Lubarda / European Journal of Mechanics A/Solids 36 (2012) 9e1712
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Z
V

_WdV ¼
Z
ST

Tj _ujdSþ
Z
SM

Mi _4idSþ
Z
V



bi _ui þ mi _4i

�
dV : (39)

The substitution of (39) into (36) then yields

_P ¼ �
Z
S0

ðW � biui � mi4iÞ _u0j njdS: (40)

7.1. Configurational forces

The rate of energy release due to spatial variation of S0, specified
by a prescribed velocity field _u0i , is f ¼ � _P, which represents the
configurational force on a cavity or defect. Since (W�biui�mi4i)
nj ¼ Pijni over the free surface S0, (40) implies that

f ¼ � _P ¼
Z
S0

Pji _u
0
i njdS: (41)

If the cavity translates with a unit velocity in the k-direction, _u0i
can be replaced by dik, and (41) gives the rate of energy release per
unit cavity translation in the k-direction,

fk ¼
Z
S0

Pjknjds ¼ JkðS0Þ: (42)

By applying the Gauss divergence theorem to the surface S0 þ S
bounding a region V between S0 and any closed surface S around
the cavity, and in view of (15), the configurational force fk can also
be expressed as

fk ¼ Jk


S
�þ

Z
V

�
bj;kuj þ mj;k4j

�
dV : (43)

If the body forces and couples are spatially uniform,
fk ¼ Jk(S0) ¼ Jk(S).

If the cavity is given a unit angular velocity around the k-axis, _u0i
in (41) can be replaced by�ekilxl, and since ekilPjixlnj ¼ Hklnl over the
free surface S0, where Hkl is the angular energy momentum tensor
of Eq. (31), the configurational force (41) becomes

fk ¼ �
Z
S0

HklnldS ¼ �LkðS0Þ: (44)

When expressed in terms of the surface integral over any other
surface S around the cavity, from (34) and (44), it follows that the
configuration force can also be expressed as

fk ¼ �LkðSÞ � ekij

Z
V

�
biuj þ mi4j þ



bl;iul þ ml:i4l

�
xj
�
dV : (45)

If the absence of body forces andcouples, fk ¼ �LkðS0Þ ¼ �LkðSÞ,
as originally shown by Lubarda and Markenscoff (2007b).

Finally, if the cavity transforms such that _u0i ¼ xi, (41) yields

f ¼
Z
S0

DjnjdS ¼ M


S0
�
; (46)

because Pjixinj ¼ Djnj over S0, where Dj is the dilatation vector from
Eq. (23). In viewof (25), the configurational force (46) is also equal to

f ¼ M


S
�þ

Z
V

�
mjkkjkþ

5
2
bkukþ

3
2
mk4kþ

�
ujbj;kþ4jmj;k

�
xk

	
dV ;

(47)

where V is the volume between S0 and S. In the absence of polar
effects and body forces, f ¼ M(S0) ¼ M(S), for any closed surface S
surrounding the cavity (Budiansky and Rice, 1973).

8. Dual Eshelby stress tensor and related dual integrals

The complementary strain energy function Ŵ ¼ Ŵðtij;mijÞ is
related to the strain energy function W ¼ Wðgij; kijÞ by
W þ Ŵ ¼ tijgij þmjkkjk: (48)

A dual Eshelby stress tensor of linear micropolar elasticity, in the
presence of body forces and couples, is then defined by

P̂jk ¼ Ŵdjk � uitji;k � 4imji;k; (49)

such that

P̂jk;j ¼ ujbj;k þ 4jmj;k: (50)

The sum of the Eshelby stress tensor (12) and its dual (49) is

Pjk þ P̂jk ¼ ðW þ Ŵ � bkuk � mk4kÞdjk �


tjiui þmji4i

�
;k: (51)

In view of (13) and (50), this sum is divergence free, i.e.,�
Pjk þ P̂jk

�
;j
¼ 0: (52)

Furthermore, the traces of the two Eshelby stress tensors are

Pkk ¼ W � 3ðbkuk þ mk4kÞ � eijktij4k;

P̂kk ¼ 3Ŵ þ bkuk þ mk4k þ eijktij4k: (53)

8.1. Dual Ĵ integrals

The dual Ĵk integrals are defined in terms of the dual Eshelby
stress tensor by

Ĵk ¼
Z
S

P̂jknjdS; (54)

where S is the bounding surface of the volume V, which does not
include any singularity of defect. Thus, by applying the Gauss
divergence theorem, and by incorporating (50), it follows that

Ĵk ¼
Z
V



uibi;k þ 4imi;k

�
dV : (55)

The right-hand side of (55) is opposite to the right-hand side of
(15), so that the duality holds

Jk þ Ĵk ¼ 0: (56)

While the Jk integrals in (15) are expressed in terms of spatial
gradients of displacement and rotation, the Ĵk integrals in (55) are
expressed in terms of spatial gradients of stress and couple stress. In
the absence of micropolar effects and body forces, (15) and (55)
yield the conservation laws Jk ¼ 0 and Ĵk ¼ 0, for any surface that
does not enclose a singularity or defect. Thefirst of these is originally
due to Eshelby (1951, 1956), and the second due to Bui (1973, 1974).

8.2. Dual M̂ integrals

The dual Eshelby stress tensor (49) satisfies the equation�
P̂jkxk

�
; j
� P̂kk ¼

�
ujbj;k þ 4jmj;k

�
xk: (57)
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Since the trace of the dual Eshelby stress tensor is

P̂kk ¼ 3
2

�
tjkuk þmjk4k

�
; j
þ 5
2
ðbkuk þ mk4kÞ þ eijktij4k; (58)

the substitution of (58) into (57) yields

D̂j;j ¼ mjkkjk þ
5
2
bkuk þ

3
2
mk4k þ

�
ujbj;k þ 4jmj;k

�
xk; (59)

where

D̂j ¼ P̂jkxk �
3
2
tjkuk �

1
2
mjk4k (60)

is a dual dilatation vector; cf. (23). The duality is such that



Dj þ D̂j

�
; j ¼ 0; (61)

as obtained by adding (22) and (59).
A dual M̂ integral of micropolar elasticity is defined by

M̂ ¼
Z
V

D̂jnjdS ¼
Z
S

�
P̂jkxk �

3
2
tjkuk �

1
2
mjk4k

�
njdS: (62)

The application of the Gauss divergence theorem to (62), within
a defect-free region, shows that a dual M̂ integral of micropolar
elasticity is not equal to zero but to the volume integral of the right-
hand side of (59), i.e.,

M̂ ¼
Z
V

�
mjkkjkþ

5
2
bkukþ

3
2
mk4kþ

�
ujbj;kþ4jmj;k

�
xk

	
dV : (63)

Since the sum ðDjþ D̂jÞ is divergence free, the duality property
holds

M þ M̂ ¼ 0: (64)

Alternatively, this duality follows from (22) and (63), because
their right-hand sides are opposite to each other. In the absence of
micropolar effects and body forces (Sun, 1985; Lubarda and
Markenscoff, 2007a), there is a dual conservation law

M̂ ¼
Z
S

�
P̂jkxk �

3
2
uktjk

�
njdS ¼ 0: (65)

8.3. Dual L̂ integrals

In analogy with the derivation of the Lk integrals from Section 6,
consider the identity

ekij
�
ui;ltlj þ ul;itjl þ 4i;lmlj þ 4l;imjl � 4iejrstrs

�
¼ 0: (66)

By using the expression for the dual Eshelby stress tensor (49),
this can be rewritten as

ekij
�
P̂jiþui;ltljþ4i;lmlj�4iejrstrsþul;itjlþultjl;iþ4l;imjlþ4lmjl;i

�
¼0:

(67)

Introducing the dual angular energy momentum tensor,

Ĥkij

h
P̂lixj þ uitlj þ 4imlj þ dil



urtjr þ 4rmjr

�i
; (68)

and having in mind (50) and (67), it can be shown that

Ĥkl;l ¼ ekij
�
ujbi þ 4jmi þ



ulbl;i þ 4lml;i

�
xj
�
: (69)

The sum of the two dual angular energy momentum tensors is
divergence free, i.e.,

ðHkl þ ĤklÞ;l ¼ 0; (70)

which is obtained by adding (32) and (69). Thus, by defining the
integrals

L̂k ¼
Z
S

ĤklnldS

¼ ekij

Z
S

h
P̂lixj þ uitlj þ 4imlj þ dil



urtjr þ 4rmjr

�i
nldS; (71)

and by using (69), the Gauss divergence theorem yields

L̂k ¼ ekij

Z
V

�
ujbi þ 4jmi þ



ulbl;i þ 4lml;i

�
xj
�
dV ; (72)

for any closed surface S enclosing a volume V without a singularity
or defect. The integrals Lk and L̂k are dual in the sense that

Lk þ L̂k ¼ 0; (73)

which follows by adding (34) and (72). In the absence of body forces
and couples, (72) gives the conservation law L̂k ¼ 0, originally
derived by Lubarda and Markenscoff (2007b).

8.4. Configurational forces

The complementary potential energy P̂ is defined by

P̂ ¼
Z
V

ŴdV �
Z
Su

uiTidS�
Z
S4

4iMidS: (74)

It is related to the potential energy P of Eq. (35) by the duality
relation Pþ P̂ ¼ 0. Indeed, since the surface of cavity S0 is not
loaded,

Pþ P̂ ¼
Z
V

ðW þ Ŵ � biui � mi4iÞdV �
Z
S

ðTiui þMi4iÞdS ¼ 0;

(75)

which follows from W þ Ŵ ¼ tijgij þmijkij by using the equilib-
rium conditions (2), the geometric relationships (3), and the Gauss
divergence theorem.

The rate of change of the complementary potential energy
associated with a spatial variation of the surface of cavity, caused by
its velocity field _u0i , is

_̂
P ¼

Z
V

_̂WdV �
Z
S0

Ŵ _u0i nidS�
Z
Su

ui _TidS�
Z
S4

4i
_MidS: (76)

Here, _Ti and _Mi are the loading rates on Su and S4, where ui and
4i are prescribed, due to imposed infinitesimal motion of the
surface of cavity. By the same analysis as in Lubarda and
Markenscoff (2007b), it can be shown that (76) reduces to

_̂
P ¼ �

Z
S0

P̂ijni _u
0
j dS: (77)

In Section 7 it was shown that the configurational force asso-
ciated with the defect motion is f ¼ � _P. Since the complementary
potential energy is related to the potential energy byPþ P̂ ¼ 0, if

follows that _̂
P ¼ � _P. Consequently, in addition to being the

negative of the potential energy release rate, the configurational
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force is also equal to the release rate of the complementary
potential energy associated a defect motion, i.e.,

f ¼ _̂
P ¼ �

Z
S0

P̂ijni _u
0
j dS: (78)

By selecting _u0j to correspond to translation, rotation and dila-
tation, it follows that the configurational force for these three types
of defect motion is

fk ¼
��ĴkðS0Þ; translation;
L̂kðS0Þ; rotation;

(79)

and

f ¼ �M̂ðS0Þ; dilatation: (80)

Since JkðS0Þ þ ĴkðS0Þ ¼ 0, and since JkðSÞ þ ĴkðSÞ ¼ 0 for any
closed surface Swhich does not enclose a defect, it also follows that
JkðS1Þ þ ĴkðS1Þ ¼ 0 for any surface S1 enclosing a defect. Similarly,
LkðS1Þ þ L̂kðS1Þ ¼ 0 and MðS1Þ þ M̂ðS1Þ ¼ 0.

9. Conclusion

The Eshelby stress tensor ofmicropolar elasticitywith body forces
and body couples, and the corresponding Jk, Lk and M integrals are
derived. The dual Eshelby stress tensor and dual Ĵk, L̂k and M̂ integrals
are also introduced. It is shown that the sums of the dual energy
momentum tensors, dual angular momentum tensors, and dual
dilatation vectors are divergence free, which yields the duality
properties Jk þ Ĵk ¼ 0, Lk þ L̂k ¼ 0, and M þ M̂ ¼ 0. The configura-
tional forces associatedwith the translation, rotation, anddilatationof
the defect can therefore be determined from fk ¼ JkðS0Þ ¼ �ĴkðS0Þ,
fk ¼ �LkðS0Þ ¼ L̂kðS0Þ, and fk ¼ MðS0Þ ¼ �M̂ðS0Þ, respectively,
with the integrals evaluated over the free surface of a defect. The
three-dimensional results are specialized in theAppendix to theplain
strain caseandcomparedwith results obtained in theabsenceof body
forces and body couples, which were used by Lubarda and
Markenscoff (2007a,b) to evaluate the energetic forces on an edge
dislocation and a crack tip in a long slab of nonpolar and micropolar
materials. Lubarda (2008) applied the J integral in the presence of
body forces to evaluate the PeacheKoehler force on a dislocation
residing within a large block of the material, determining its equi-
librium position under different boundary conditions, which are of
interest for geomechanics. The potential applications also include the
fracture mechanics problems of piezoelectric materials, e.g., piezo-
electric and ferroelectric actuators (Suo et al., 1992; Loge and Suo,
1996), micromechanics of human bone with included interactions
between Haversian osteons and the cement substance (Park and
Lakes, 1986), granular and nanograin crystalline materials (Ieşan,
1981; Asaro and Suresh, 2005; Meyers et al., 2006), and other inter-
acting particle systems (Yavari and Marsden, 2009; Kim et al., 2010).
The presented analysis can further be extended to micromorphic
materials (Eringen, 2003;Georgiadis andGrentzelou, 2006; Lazar and
Anastassiadis, 2006; Lazar, 2007; Agiasofitou and Lazar, 2009; Galeş,
2012), microstretch elasticity (Lazar and Anastassiadis, 2006), and
piezoelectromagnetic materials (Kiral and Eringen, 1990; O’Handley,
2000; Kronmüller and Parkin, 2007; Gao and Zhou, 2009).

Acknowledgment

This research was supported by the Montenegrin Academy of
Sciences and Arts. Valuable comments and suggestions by the
reviewers are also gratefully acknowledged.

Appendix. Plane-strain micropolar elasticity with body forces
and couples

In the case of plane strain parallel to (x1, x2) plane, the compo-
nents ua, ba, tab, t33, 43,ma3 are in general different from zero, while
other kinematic and kinetic components are equal to zero. The
Greek indices take the values (1,2). The corresponding inplane
components of the Eshelby stress tensor are

Pab ¼ 

W � bgug � m343

�
dab � tagug;b �ma343;b: (A.1)

The nonvanishing out-of-plane component is given by
P33 ¼W�bgug�m343. The Jb integrals are defined over the contour C
within the (x1, x2) plane, such that

Jb ¼
Z
C

PabnadC ¼ �
Z
A

�
ba;bua þ m3;b43

�
dA; (A.2)

where A is the area enclosed by C. In the context of plain strain
couple-stress theorywithout body forces, the Jb integrals were used
by Atkinson and Leppington (1974, 1977), Jaric (1986), and Xia and
Hutchinson (1996) to study the stress field around the crack tip. For
example, the J1 integral for an infinitely long rectangular slab, made
of a micropolar material and weakened by a semi-infinite crack, is
J1 ¼ K(mu2)/h, where the top and bottom side of the slab (x2 ¼ �h)
are given the opposite uniform displacement�u in the x1-direction
(for the plane strain, Atkinson and Leppington, 1974), and x3-
direction (for the antiplane strain, Lubarda and Markenscoff,
2007b), and

K ¼
�
1� m

mþ m

tanh ðkhÞ
kh

	�1

; k2 ¼ 4mm
ðmþ mÞðaþ aÞ: (A.3)

The micropolar elastic constants m;m;a, and a appear in the
representation of the elastic moduli tensors (7).

The L3 integral is

L3 ¼
Z
C

H3gngdC ¼ e3ab

Z
C

�
Pgaxb þ tgaub

�
ngdC

¼ �e3ab

Z
A

h
baub þ



bg;aug þ m3;a43

�
xb
i
dA;

(A.4)

where H3g ¼ e3abðPgaxb þ tgaubÞ is the angular energy
momentum. Finally, the M integral of plane-strain micropolar
elasticity is

M ¼
Z
C

DanadC ¼
Z
C

�
Pabxb �ma343

�
nadC

¼ �
Z
A

h
ma3ka3 þ 2baua þ m343 þ

�
uaba;b þ 43m3;b

�
xb
i
dA;

(A.5)

where Da ¼ Pabxb �ma343 is the dilatation vector. An alternative
nonconserved M integral of plain strain couple-stress elasticity,
without body forces and couples, was proposed by Atkinson and
Leppington (1977); see also Lubarda and Markenscoff (2000,
2003).

The inplane components of the dual Eshelby stress tensor are

P̂ab ¼ Ŵdab � ugtag;b � 43ma3;b; (A.6)

where W þ Ŵ ¼ tabgab þma343;a and gab ¼ ub;a � e3ab43. The
out-of-plane component of the dual Eshelby stress tensor is
P̂33 ¼ Ŵ . The dual Ĵb integrals are
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Ĵb ¼
Z
C

P̂abnadC ¼
Z
A

�
uaba;b þ 43m3;b

�
dA: (A.7)

The dual L̂3 integral is

L̂3 ¼
Z
C

Ĥ3gngdC ¼ e3ab

Z
C

h
P̂gaxb þ uatgb

þdag
�
udtbd þ 43mb3

�i
ngdC

¼ e3ab

Z
A

h
ubba þ



ugbg;a þ 43m3;a

�
xb
i
dA; (A.8)

where Ĥ3g ¼ e3ab½P̂gaxb þ uatgb þ dagðudtbd þ 43mb3Þ� is the dual
angular energy momentum. Finally, the dual M̂ integral is

M̂ ¼
Z
C

D̂anadC ¼
Z
C

�
P̂abxb � ubtab

�
nadC

¼
Z
A

h
ma3ka3 þ 2uaba þ 43m3 þ

�
uaba;b þ 43m3;b

�
xb
i
dA;

(A.9)

with D̂a ¼ P̂abxb � ubtab denoting the dual dilatation vector.
It is noted that the sums ðPab þ P̂abÞ, ðH3a þ Ĥ3aÞ, and ðDa þ D̂aÞ

are divergence free, i.e., ðPab þ P̂abÞ;a ¼ 0, ðH3a þ Ĥ3aÞ;a ¼ 0, and
ðDa þ D̂aÞ;a ¼ 0, so that in the plane-strain problems the duality
holds Jb þ Ĵb ¼ 0 (b ¼ 1,2), L3 þ L̂3 ¼ 0 and M þ M̂ ¼ 0, as antici-
pated from the three-dimensional results of Section 8. If there is
a defect within the body, whose contour in the ðx1; x2Þ plane is C0,
the configurational force corresponding to its translation, rotation
and dilation is, respectively, fb ¼ JbðC0Þ ¼ �ĴbðC0Þ, f3 ¼ �L3ðC0Þ
¼ L̂3ðC0Þ, and f ¼ MðC0Þ ¼ �M̂ðC0Þ.
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