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Abstract

Dual integrals of small strain elasticity are derived and related to the energy release rates associated with a defect motion in
the presence of body forces. A modified energy momentum tensor is used, which includes a work term due to body forces, and
which yields simple expressions for the configurational forces in terms of the Jk , Lk , and M integrals. Since the complementary
potential energy does not include body forces explicitly, the complementary energy momentum tensor has the same structure as in
the elasticity without body forces. The expressions for the nonconserved Jk , Lk , and M integrals, and their duals, are related to the
volume integrals whose integrands depend on body forces and their gradients. If body forces are spatially uniform, the conservation
laws Jk = Ĵk = 0 hold for both 2D and 3D problems, and L3 = L̂3 = 0 for the antiplane strain problems. The conservation law
M = M̂ = 0 holds if body forces are absent, or if they are homogeneous functions of particular degree in spatial coordinates.
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Résumé

Intégrales duales en élasticité infinitésimale avec forces de masse. Des intégrales duales en élasticité infinitésimale sont
obtenues et reliées aux taux de restitution d’énergie associés au mouvement d’un défaut en présence de forces de masse. On définit
un tenseur d’énergie–impulsion qui inclut un terme de travail des forces de masse, et qui fournit des expressions simples des
forces configurationnelles en fonction des intégrales Jk , Lk et M . Du fait que l’énergie potentielle complémentaire n’inclut pas
explicitement les forces de masse, le tenseur d’énergie-impulsion complémentaire a la même structure qu’en élasticité sans forces
de masse. Les expressions des intégrales non-conservées Jk , Lk et M et de leurs duales sont reliées à des intégrales de volume dont
les intégrandes dépendent des forces de masse et de leurs gradients. Si les forces de masse sont spatialement uniformes, les lois de
conservation Jk = Ĵk = 0 s’appliquent aux problèmes tant 2D que 3D, de même que la loi L3 = L̂3 = 0 aux problèmes antiplans.
La loi de conservation M = M̂ = 0 s’applique en l’absence de forces de masse ou si ce sont des fonctions homogènes de degré
particulier des coordonnées. Pour citer cet article : V.A. Lubarda, X. Markenscoff, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In absence of body forces, the conservation laws Jk = 0, Lk = 0, and M = 0 hold for any closed surface that does
not embrace a singularity or defect [1–4]. The energy momentum tensor (or Eshelby stress) used to construct the
Jk , Lk , and M integrals depends on spatial gradients of displacements. If the surface used to evaluate these integrals
surrounds a defect, the integrals do not vanish, but represent the configurational forces associated with particular
defect motions and the corresponding potential energy release rates [5].

In a dual analysis, the complementary or dual energy momentum tensor, expressed in terms of spatial gradients of
stresses, is used to construct the dual Ĵk , L̂k , and M̂ integrals, which are related to the release rates of the complemen-
tary potential energy. The study of dual integrals was initiated by Bui’s [6,7] introduction of the Ĵ integral as a dual
to Rice’s [8] J integral of fracture mechanics. In the context of elastodynamics, the dual integrals were introduced
in [9]. In the subsequent work, the dual integrals were studied in [10,11], although they were there incorrectly related
to the release rates of the complementary potential energy. This was corrected in [12] by an extension of the analysis
from [5], which involves the complementary energy considerations and an appropriate incorporation of the rates of
stress and the change of the surface orientation of the moving defect. Other work on dual conservation integrals, in
both nonpolar or micropolar elasticity, includes Refs. [13–22].

The evaluation of the configurational force on a defect in the presence of body forces, thermal strains, or in nonho-
mogeneous elastic media, was considered in [23–32]. In the presence of body forces, the stress tensor and the energy
momentum tensor are not divergence-free tensors, which precludes the existence of the Jk , Lk , and M conservation
laws. In most of the previous work, the energy momentum tensor was defined by the same expression as in the case
of elasticity without body forces, which leads to less appealing relationships between the integrals, the energy re-
lease rates and the corresponding configurational forces on moving defects. In the present article, we use a modified
energy momentum tensor, which includes a work term due to body forces, and which yields simple expressions for
the configurational forces on defects, in terms of the Jk , Lk , and M integrals evaluated over the unloaded surface of
the defect. Since the complementary potential energy does not include a body force term, the complementary energy
momentum tensor has the same structure as in the elasticity without body forces. The expressions for the noncon-
served Jk , Lk , and M integrals, and their dual Ĵk , L̂k , and M̂ integrals, are derived and related to the volume integrals
whose integrands depend on the body forces and their gradients. In particular case, when the body forces are spatially
uniform, we show that the conservation laws Jk = Ĵk = 0 hold for both 2D and 3D problems, and L3 = L̂3 = 0 for
the antiplane strain problems. The conservation law M = M̂ = 0 holds if the body forces are absent, or if they are
homogeneous functions of particular degree in spatial coordinates.

The considerations in this paper are restricted to small deformations of an elastic material, which are geometrically
described by the displacement vector with rectangular components ui , and the corresponding infinitesimal strain com-
ponents εij = (ui,j + uj,i)/2. The surface tractions Ti are in equilibrium with the symmetric Cauchy stress σij , such
that Ti = njσji , where nj are the components of the unit vector orthogonal to the surface element under consideration.
If the components of body forces (per unit volume) are bi , the differential equations of equilibrium are

σji,j + bi = 0 (1)

The elastic strain energy, W = W(εij ), and the complementary strain energy, Φ = Φ(σij ), are related by

Φ(σij ) = σij εij − W(εij ) (2)

The corresponding constitutive relations are

σij = ∂W

∂εij

, εij = ∂Φ

∂σij

(3)

2. Dual Jk integrals

A spatial gradient of the strain energy function W = W(εij ) is

W,k = ∂W
εij,k = σjiui,jk (4)
∂εij
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In view of equilibrium equations (1), this can be rewritten as

(Wδjk − σjiui,k),j = biui,k (5)

This can be rewritten as[
(W − biui)δjk − σjiui,k

]
,j

= −bi,kui (6)

which specifies the energy momentum tensor in the presence of body forces as [33]

Pjk = (W − biui)δjk − σjiui,k, Pjk,j = −bi,kui (7)

As shown in Section 5, this definition of the energy momentum tensor is directly related to the release rates of the
potential energy due to defect motion in the presence of body forces. The Jk integrals, corresponding to (7), are

Jk =
∫
S

Pjknj dS = −
∫
V

bi,kui dV (8)

where S is the bounding surface of the volume V which does not include any singularity of defect.1

If the body forces are spatially uniform (bi,k = 0), we have

Jk =
∫
S

Pjknj dS = 0, Pjk = (W − biui)δjk − σjiui,k (9)

i.e.,

Jk =
∫
S

[
(W − biui)nk − Tiui,k

]
dS = 0 (10)

In the absence of body forces (bi = 0), this result is originally due to Eshelby [1,2].
In a dual analysis, a spatial gradient of the complementary strain energy function Φ = Φ(σij ) is

Φ,k = ∂Φ

∂σij

σij,k = ui,j σji,k (11)

In view of equilibrium equations (1), the above can be recast as

(Φδjk − uiσji,k),j = uibi,k (12)

which defines a dual energy momentum tensor, such that

P̂jk = Φδjk − uiσji,k, P̂jk,j = uibi,k (13)

This definition of the dual energy momentum tensor will be later shown to be directly related to the release rates of the
complementary potential energy associated with a defect motion, in the presence of body forces. The corresponding
dual Ĵk integrals are

Ĵk =
∫
S

P̂jknj dS =
∫
V

uibi,k dV (14)

for any closed surface S that does not embrace a singularity or a defect. While Jk in (8) is expressed in terms of spatial
gradients of displacement, Ĵk in (14) is expressed in terms of the stress gradients.2 If the body forces are spatially
uniform, Ĵk = 0 for any closed surface which does not surround a singularity. In the absence of body forces, and in
two-dimensional context, this result is originally due to Bui [6,7].

Since the right-hand sides in (8) and (14) are opposite, we conclude that

Jk + Ĵk = 0 (15)

1 The body force term is also included in the structure of the JP integral used in the study of the progressive failure of over-consolidated clay [34].
2 Computational aspects of the evaluation of dual integrals via the displacement-based and hybrid finite element calculations have been discussed

in [27].
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It is also noted that

Pjk + P̂jk = (W + Φ − biui)δjk − (σjiui),k

Pkk = 3(W − bkuk) − σjkuk,j , P̂kk = 3Φ + bkuk (16)

If the strain energy W is a homogeneous function of degree r in strain components (1 < r � 2), the complementary
strain energy Φ is a homogeneous function of degree s = r/(r − 1) in stress components (s � 2), and Φ = rW/s. In
this case it readily follows that

rJk − sĴk =
∫
S

(suiσij,k − rσij ui,k − rbiuiδjk)nj dS = −rs

∫
V

bi,kui dV (17)

Combining (15) and (17), it follows that

Jk =
∫
S

(
1

r
uiσij,k − 1

s
σij ui,k − 1

s
biuiδjk

)
nj dS (18)

In absence of body forces and for homogeneous materials of degree two (r = s = 2), the last expression reduces to
the reciprocal representation of the Jk integral [14],

Jk = 1

2

∫
S

(uiσij,k − σijui,k)nj dS (19)

3. Dual M integrals

Let the strain energy W = W(εij ) be a homogeneous function of degree r in strain components, so that

W = 1

r
σjkεjk (20)

The energy momentum tensor (7) satisfies the equation

(Pjkxk),j − Pkk = −uibi,kxk (21)

In view of (16) and (20), we have

Pkk = 3 − r

r
(σjkuk),j + 3 − 4r

r
bkuk (22)

and the substitution into (21) gives(
Pjkxk − 3 − r

r
σjkuk

)
,j

= ui

(
3 − 4r

r
bi − bi,kxk

)
(23)

Upon the application of the Gauss divergence theorem, this yields

M =
∫
S

(
Pjkxk − 3 − r

r
σjkuk

)
nj dS =

∫
V

ui

(
3 − 4r

r
bi − bi,kxk

)
dV (24)

In the absence of body forces, the M integral vanishes for any closed surface that does not embrace a singularity or
defect [3,4].3

A dual energy momentum tensor (13) satisfies the equation

(P̂jkxk),j − P̂kk = uibi,kxk (25)

3 In contrast to nonpolar elasticity, there is no conservation law M = 0 in couple stress and micropolar elasticity, due to an inherent material
length scale present in these material models; e.g., [20–22].
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The complementary strain energy, corresponding to (20), is

Φ = 1

s
σjkεjk, s = r

r − 1
(26)

so that

P̂kk = 3

s
(ukσjk),j + 3 + s

s
bkuk (27)

The substitution into (25) gives(
P̂jkxk − 3

s
ukσjk

)
,j

= ui

(
3 + s

s
bi + bi,kxk

)
(28)

Consequently, there is a dual M integral

M̂ =
∫
S

(
P̂jkxk − 3

s
ukσjk

)
nj dS =

∫
V

uj

(
3 + s

s
bj + bj,kxk

)
dV (29)

The duality is such that M is expressed in terms of spatial gradients of displacements, while M̂ is in terms of the
stress gradients. In absence of body forces, M̂ = 0 for any surface which does not embrace a defect [10–12]. The
conservation law M = M̂ = 0 also holds if the body forces are homogeneous functions of degree −(1 + 3/s) =
−(4 − 3/r) in spatial coordinates xk , although this type of body forces is probably of little practical interest.

Since rs = r + s, the right-hand sides in (24) and (29) are opposite, and we conclude that

M + M̂ = 0 (30)

It also follows that

rM − sM̂ =
∫
S

[
(suiσij,k − rσijui,k)xk + r(σjkuk − bkukxj )

]
nj dS

= −rs

∫
V

ui

(
3 + s

s
bi + bi,kxk

)
dV (31)

Combining (30) and (31), it follows that

M =
∫
S

[(
1

r
uiσij,k − 1

s
σijui,k

)
xk + 1

s
(σjkuk − bkukxj )

]
nj dS

= −
∫
V

ui

(
3 + s

s
bi + bi,kxk

)
dV (32)

In absence of body forces, this simplifies to

M =
∫
S

[(
1

r
uiσij,k − 1

s
σijui,k

)
xk + 1

s
σjkuk

]
nj dS = 0 (33)

which parallels the reciprocal representation (18) of the Jk integral.

4. Dual Lk integrals

To derive the Lk integrals of isotropic infinitesimal elasticity, we begin from an identity

ck = ekij (σilεj l + σliεlj ) = ekij (σilul,j + σliuj,l) = 0 (34)

The components of the permutation tensor are eijk . This identity holds because the tensor (σilεj l +σliεlj ) is symmetric
in ij (for isotropic elasticity), as can be verified by the substitution of the constitutive expression for stress. By using
the definition of the energy momentum tensor (7), we can write ekijPji = ekij σilul,j , and (34) becomes

ck = ekij (Pji + σliuj,l) (35)
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In view of (1) and (7), this can be expressed as

ck = dkl,l + ekij (biuj + bl,iulxj ), dkl = ekij (Plixj + σliuj ) (36)

Since ck = 0, this yields the integrals

Lk =
∫
S

dklnl dS (37)

which is, in the expanded form,

Lk = ekij

∫
S

(Plixj + σliuj )nl dS = −ekij

∫
V

ul(δlj bi + bl,ixj )dV (38)

In absence of body forces, Lk = 0 for any closed surface S that does not embrace a singularity or defect [3,4].
To derive dual L̂k integrals, introduce the components of a dual vector ĉk , defined by ĉk + ck = 0. From (34) it

follows that

ĉk = ekij (ui,lσlj + ul,iσjl) (39)

Since, by Eq. (13),

ekij (P̂ji + ulσjl,i ) = 0 (40)

we rewrite (39) as

ĉk = ekij (P̂ji + ui,lσlj + ul,iσjl + ulσjl,i ) (41)

In view of (1) and (13), Eq. (41) can be expressed in the following form

ĉk = d̂kl,l − ekij ul(bl,ixj − δlibj ), d̂kl = ekij (P̂lixj + uiσlj + δilurσjr ) (42)

Consequently, the dual integrals are

L̂k =
∫
S

d̂klnl dS (43)

i.e., in the expanded form,

L̂k = ekij

∫
S

(P̂lixj + uiσlj + δilurσjr )nl dS = ekij

∫
V

ul(bl,ixj − δlibj )dV (44)

In absence of body forces, L̂k = 0 for any surface not surrounding a defect [11,12].
Since (bl,ixj + bl,j xi) is symmetric and ekij skew-symmetric in ij , the right-hand sides in (38) and (44) are

opposite, and we conclude that

Lk + L̂k = 0 (45)

It also follows that

Lk − L̂k = ekij

∫
S

[
(urσlr,i − σlrur,i)xj + 2σliuj − δilurσjr

]
nl dS

= 2ekij

∫
V

ul(δlibj + bl,j xi)dV (46)

Combining (45) and (46), we obtain

Lk = 1

2
ekij

∫
S

[
(urσlr,i − σlrur,i)xj + 2σliuj − δilurσjr

]
nl dS

= ekij

∫
ul(δlibj + bl,j xi)dV (47)
V
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In absence of body forces, this simplifies to

Lk = 1

2
ekij

∫
S

[
(urσlr,i − σlrur,i)xj + 2σliuj − δilurσjr

]
nl dS = 0 (48)

which is the reciprocal representation of the type (18) and (33).

5. Dual integrals and energy release rates

The physical interpretation of the dual integrals is given in this section, based on the consideration of the energy
release rates of the potential and complementary potential energies. The analysis is an extension of the analysis of the
conservation integrals and the release rates of the potential energy, presented by Budiansky and Rice [5]. Consider
the body of volume V loaded by the surface tractions Ti = T̄i over the portion ST of its external surface S. The
displacements ui = ūi are prescribed over the remaining part Su. Suppose that within a body there is an unloaded
cavity of the bounding surface S0. The potential energy of such body is

Π =
∫
V

W dV −
∫
ST

T̄iui dS −
∫
V

biui dV (49)

Without changing the boundary conditions on S, the rate of change of the potential energy associated with the spatial
variation of the cavity surface S0, described by its velocity field u̇0

i , is

Π̇ =
∫
V

Ẇ dV −
∫
S0

Wu̇0
i ni dS −

∫
ST

T̄i u̇i dS −
∫
V

biu̇i dV +
∫
S0

bjuj u̇
0
i ni dS (50)

where u̇i is the associated velocity field within V (t) due to imposed velocity u̇0
i . Body forces are assumed to be

unaffected by the cavity motion (dead body forces). The surface integrals over S0 on the right-hand side follow from
the Reynolds transport theorem, where ni is the unit normal to S0 directed into the material. Assuming that u̇i is a
kinematically admissible field within V (t), and by using the Gauss divergence theorem, it readily follows that [33]

Π̇ = −
∫
S0

(W − bjuj )u̇
0
i ni dS (51)

The rate of energy release due to spatial variation of S0, specified by a prescribed velocity field u̇0
i , is f = −Π̇ .

This represents an energetic or configurational force on the cavity (defect). Since (W − bjuj )ni = Pjinj over the
unloaded S0, we obtain

f = −Π̇ =
∫
S0

Pji u̇
0
i nj dS (52)

If the cavity translates with a unit velocity in the k-direction, then u̇0
i can be replaced by δik , and (52) gives the rate

of energy release per unit cavity translation in the k-direction,

fk =
∫
S0

Pjknj dS = Jk(S0) (53)

Since the cavity is unloaded, this is equal to Jk evaluated over S0. By applying the Gauss divergence theorem to
the surface S0 + S bounding a region between S0 and any closed surface S around the cavity, and by using (7), the
configurational force fk is also equal to

fk = Jk(S) +
∫
V

bj,kuj dV (54)

where

Jk(S) =
∫

Pjknj dS (55)
S
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If the body forces are spatially uniform, there is a conservation law Jk = 0 over the closed surface that does not enclose
a cavity, so that fk = Jk(S0) = Jk(S). In the absence of body forces, that result was originally derived in [5].

If the cavity transforms such that u̇0
i = xi ,

f =
∫
S0

Pjixinj dS = M(S0) (56)

Alternatively, by using any other closed surface S around the cavity,

f = M(S) −
∫
V

ui

(
3 − 4r

r
bi − bi,kxk

)
dV (57)

where

M(S) =
∫
S

(
Pjkxk − 3 − r

r
σjkuk

)
nj dS (58)

If the absence of body forces, there is a conservation law M = 0 over the closed surface that does not enclose a cavity,
so that f = M(S0) = M(S), as originally shown in [5].

If the cavity is given a unit angular velocity around the k-axis, then u̇0
i in (52) can be replaced by −ekilxl , and

fk = −ekil

∫
S0

Pjixlnj dS = −Lk(S0) (59)

When expressed in terms of the surface integral over S, this is

fk = −Lk(S) − ekij

∫
V

ul(δlj bi + bl,ixj )dV (60)

where

Lk(S) = ekij

∫
S

(Plixj + σliuj )nl dS (61)

If the absence of body forces, there is a conservation law Lk = 0 over the closed surface that does not enclose a cavity
[5], so that fk = Lk(S0) = Lk(S).

5.1. Complementary energy release rates

We now relate the release rates of the complementary potential energy to the previously derived dual integrals. The
complementary potential energy is defined by

Ω =
∫
V

Φ dV −
∫
Su

ūiTi dS (62)

such that Π + Ω = 0. The rate of the complementary potential energy associated with spatial variation of the cavity
due to its velocity field u̇0

i is

Ω̇ =
∫
V

Φ̇ dV −
∫
S0

Φu̇0
i ni dS −

∫
Su

ūi Ṫi dS (63)

where Ṫi is the induced loading rate on Su due to infinitesimal motion of S0. In geometrically linear theory, we ignore
the change of S due to u̇0

i . Assuming the stress rate field within V (t) is statically admissible, and that body forces are
unaffected by the motion of the cavity, we can write

Φ̇ = εij σ̇ij = (uj σ̇ij ),i (64)
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The stress rate σ̇ij is the stress rate at fixed points in space, i.e., a nonconvected stress rate. Thus,∫
V

Φ̇ dV =
∫
S

uj σ̇ij ni dS −
∫
S0

uj σ̇ij ni dS (65)

For a geometrically linear theory, σ̇ij ni = Ṫj on S (Ṫj being equal to zero on ST ). Consequently, (65) can be rewritten
as ∫

V

Φ̇ dV =
∫
Su

ūj Ṫj dS −
∫
S0

uj σ̇ij ni dS (66)

The substitution into (63) yields

Ω̇ = −
∫
S0

(Φu̇0
i + uj σ̇ij )ni dS (67)

The surface of the cavity is unloaded, so that its traction Tj = niσij remains zero throughout the motion. Thus,

dTj

dt
= dni

dt
σij + ni

dσij

dt
= 0 (68)

where d/dt designates the material time derivative, following the particle. Expressing the material derivative of stress
as the sum of its local (σ̇ij ) and convected (σij,l u̇

0
l ) part, (68) gives

niσ̇ij = −dni

dt
σij − niσij,l u̇

0
l (69)

If the cavity translates, or expands in a self-similar manner, then dni/dt = 0 and

niσ̇ij = −niσij,l u̇
0
l (70)

When (70) is introduced in (67), there follows

Ω̇ =
∫
S0

(−Φδil + ujσij,l)ni u̇
0
l dS = −

∫
S0

P̂ilni u̇
0
l dS (71)

Since Π + Ω = 0, the release rate of the complementary potential energy due to spatial variation of S0 is

f = −Π̇ = Ω̇ = −
∫
S0

P̂ilni u̇
0
l dS (72)

If the cavity translates with a unit velocity in the k-direction, then u̇0
l is replaced by δkl , and (72) gives the release

rate of the complementary potential energy per unit cavity translation in the k-direction,

fk = −
∫
S0

P̂ikni dS = −Ĵk(S0) (73)

Furthermore, by (14) and the Gauss divergence theorem, it follows that

fk = −Ĵk(S) +
∫
V

uibi,k dV (74)

where

Ĵk(S) =
∫
S

P̂jknj dS (75)

By comparing with (54) we also conclude that

Ĵk(S) = −Jk(S) (76)
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for any surface S surrounding the cavity.
If the cavity transforms such that u̇0

l = xl , the energy release rate is

f = −
∫
S0

P̂ilnixl dS = −M̂(S0) (77)

In view of (29), the configurational force can be expressed as

f = −M̂(S) +
∫
V

ui

(
3 + s

s
bi + bi,kxk

)
dV (78)

where

M̂(S) =
∫
S

(P̂jkxk − 3

s
ukσjk)nj dS (79)

By comparing with (57), we conclude that

M̂(S) = −M(S) (80)

for any surface S surrounding the cavity.
If the cavity rotates within the material, then

dni

dt
= −njQji (81)

where Qji are the components of antisymmetric spin matrix, and u̇0
i = Qijxj . When this is introduced into (69), there

follows

niσ̇ij = (δikσlj − σij,kxl)niQkl (82)

and (67) gives

f = Ω̇ = −
∫
S0

(P̂ikxl + δikujσlj )niQkl dS (83)

If the spin is of unit magnitude and about the k-axis, then Qij = −eijk and from (83) the corresponding configura-
tional force is

fk = eijk

∫
S0

(P̂lixj + δliurσjr )nl dS = L̂k(S0) (84)

If an arbitrary surface S around the cavity is used, and in view of (44), we obtain

fk = L̂k(S) − ekij

∫
V

ul(bl,ixj − δlibj )dV (85)

where

L̂k(S) = ekij

∫
S

(P̂lixj + uiσlj + δilurσjr )nl dS (86)

By comparing with (60) we conclude that

L̂k(S) = −Lk(S) (87)

for any surface S surrounding the cavity.
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Appendix A. Dual integrals for plane strain

In the case of plane strain, the energy momentum tensor and its dual are

Pαβ = (W − bγ uγ )δαβ − σαγ uγ,β, Pαβ,α = −bα,βuα

P̂αβ = Φδαβ − uγ σαγ,β, P̂αβ,α = bα,βuα

where the Greek subscripts range from 1 to 2. The dual J integrals are

Jβ =
∫
C

Pαβnα dC = −
∫
A

bα,βuα dA

Ĵβ =
∫
C

P̂αβnα dC =
∫
A

bα,βuα dA

for any closed contour C which does not surround a singularity or defect. The area within C is denoted by A. If the
body forces are spatially uniform, there is a conservation law Jβ = Ĵβ = 0.

The energy momentum tensor satisfies the equation

(Pαβxβ),α − Pαα = −uαbα,βxβ

where

Pαα = 2 − r

r
σαβuβ,α − 2bαuα

Thus,

M =
∫
C

(
Pαβxβ − 2 − r

r
σαβuβ

)
nα dC =

∫
A

uα

(
2 − 3r

r
bα − bα,βxβ

)
dA

Similarly, the complementary energy momentum tensor satisfies the equation

(P̂αβxβ),α − P̂αα = uαbα,βxβ

where

P̂αα = 2

s
σαβuβ,α + bαuα

Consequently,

M̂ =
∫
C

(
P̂αβxβ − 2

s
σαβuβ

)
nα dC =

∫
A

uα

(
2 + s

s
bα + bα,βxβ

)
dA

If body forces are absent, or if they are homogeneous functions of degree −(3 − 2/r) = −(1 + 2/s), there is a
conservation law M = M̂ = 0 for any contour C that does not embrace a singularity or defect.

Finally, the dual L integrals of plane strain elasticity are

L3 = e3αβ

∫
C

(Pγαxβ + σγαuβ)nγ dC = −e3αβ

∫
A

uγ (δγβbα + bγ,αxβ)dA

L̂3 = e3αβ

∫
C

(P̂γαxβ + uασγβ + δαγ uδσβδ)nγ dC = e3αβ

∫
A

uγ (bγ,αxβ − δγαbβ)dA
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Appendix B. Dual integrals for anti-plane strain

In the case of anti-plane strain, the dual energy momentum tensors are

Pαβ = (W − b3u3)δαβ − σα3u3,β , Pαβ,α = −b3,βu3

P̂αβ = Φδαβ − u3σα3,β , P̂αβ,α = b3,βu3

The corresponding dual Jβ integrals are given by

Jβ =
∫
C

Pαβnα dC = −
∫
A

b3,βu3 dA

Ĵβ =
∫
C

P̂αβnα dC =
∫
A

b3,βu3 dA

The energy momentum tensor satisfies the equation

(Pαβxβ),α − Pαα = −u3b3,αxα

where

Pαα = 2 − r

r
σα3u3,α − 2b3u3

Thus, since σα3,α + b3 = 0, we obtain

M =
∫
C

(
Pαβxβ − 2 − r

r
σα3u3

)
nα dC =

∫
A

u3

(
2 − 3r

r
b3 − b3,αxα

)
dA

Similarly, the complementary energy momentum tensor satisfies the equation

(P̂αβxβ),α − P̂αα = u3b3,αxα

where

P̂αα = 2

s
σα3u3,α + b3u3

Consequently,

M̂ =
∫
C

(
P̂αβxβ − 2

s
u3σα3

)
nα dC =

∫
A

u3

(
2 + s

s
b3 + b3,αxα

)
dA

Finally, the dual L3 integrals are

L3 = eαβ3

∫
C

Pγαxβnγ dC = −e3αβ

∫
A

u3b3,αxβ dA

L̂3 = eαβ3

∫
C

(P̂γαxβ + δαγ u3σβ3)nγ dC = e3αβ

∫
A

u3b3,αxβ dA

If the body force b3 is uniform, or absent, the conservation laws Jβ = Ĵβ = 0 and L3 = L̂3 = 0 hold for any contour
C which does not embrace a singularity or defect. There is also a conservation law M = M̂ = 0 if the body force b3

is absent, or of it is a homogeneous function of degree −(3 − 2/r) = −(1 + 2/s) in spatial coordinates x1 and x2.
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