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Abstract The Peach–Koehler expressions for the glide and climb components of the force exerted on a straight
dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane
and antiplane strain versions of J integrals around the center of the dislocation. After expressing the elas-
tic fields as the sums of elastic fields of each dislocation, the energy momentum tensor is decomposed into
three parts. It is shown that only one part, involving mixed products from the two dislocation fields, makes a
nonvanishing contribution to J integrals and the corresponding dislocation forces. Three examples are con-
sidered, with dislocations on parallel or intersecting slip planes. For two edge dislocations on orthogonal slip
planes, there are two equilibrium configurations in which the glide and climb components of the disloca-
tion force simultaneously vanish. The interactions between two different types of screw dislocations and a
nearby circular void, as well as between parallel line forces in an infinite or semi-infinite medium, are then
evaluated.

Keywords Climb force · Dislocation · Energy momentum tensor · Glide force · J integral · Line force ·
Peach–Koehler force · Strain energy · Void

1 Introduction

In the wake of Eshelby’s [1,2] work on the energy momentum tensor and the subsequent developments in
[3–7], there have been numerous contributions to the study of conservation integrals and configurational
forces on material defects, such as cracks, voids, inclusions, grain or phase boundaries, and dislocations.
A comprehensive survey of the field, with the referral to the original contributions, can be found in the review
papers or books [8–11]. The objective of the present paper is to derive the expressions for the components
of the force exerted on a straight dislocation by another parallel straight dislocation by evaluating the two-
dimensional version of J integrals around the dislocation, rather than by deducing them from the general

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell’Isola.

V. A. Lubarda (B)
Departments of NanoEngineering and Mechanical and Aerospace Engineering,
University of California, San Diego, La Jolla, CA 92093-0448, USA
E-mail: vlubarda@ucsd.edu

V. A. Lubarda
Montenegrin Academy of Sciences and Arts, Rista Stijovića 5,
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Peach–Koehler expression for the dislocation force F = (σ · b) × e3.1 If the Burgers vector of the straight
dislocation along the e3 direction is b = {b1, b2, b3} and if σ is the stress tensor along the dislocation line
produced by the second dislocation, the components of the dislocation force (per unit dislocation length) are

F1 = σ21b1 + σ22b2 + σ23b3, F2 = −(σ11b1 + σ12b2 + σ13b3). (1)

The derivation of these expressions by the J integrals evaluation is tedious, if the integrals are evaluated
using the total stress and displacement fields, as done, for example, in [16]. The calculations are, however,
significantly simplified if the elastic fields are decomposed into the sums of the elastic fields of each dislocation
alone. This gives rise to the decomposition of the energy momentum tensor into three parts. It is shown in
Sect. 2 that only one part of the energy momentum tensor, involving mixed products of two dislocation fields,
contributes to the J integrals and the corresponding dislocation forces.2 Since there is no interaction between
parallel edge and screw dislocations, the interaction forces are first evaluated between two edge dislocations
(Sects. 3, 4), and then between two screw dislocations (Sect. 5). The forces between mixed-type parallel
dislocations are obtained by superposition (Sect. 6). Three examples are considered to illustrate the application
of the derived formulas. These include two edge dislocations on parallel and orthogonal slip planes (Sect. 4), and
two mixed-type straight dislocations on intersecting slip planes (Sect. 6). Interaction forces between different
types of screw dislocations and a nearby circular void are deduced from the expressions for the interaction
forces between two or three screw dislocations in an infinite medium (Sect. 7). The interaction between parallel
line forces in an infinite and semi-infinite medium under antiplane strain conditions is evaluated in Sect. 8.
Concluding remarks with discussion are given in Sect. 9.

2 Decomposition of the energy momentum tensor

The J integrals of the plane strain infinitesimal elastic deformations are

Jβ =
∮

Pαβnα dl, (α, β) = 1, 2, (2)

evaluated over a closed contour whose infinitesimal element is dl with the outward normal nα . The components
of the energy momentum tensor Pαβ [2] are defined by

Pαβ = Wδαβ − σαγ uγ,β, W = 1

2
σαβεαβ. (3)

The strain energy density is denoted byW . The inplane strain components are related to stress components
by Hooke’s law

εαβ = 1

2μ

(
σαβ − νσγγ δαβ

)
, (4)

where μ is the elastic shear modulus, ν is the Poisson ratio, and σγγ = σ11 + σ22.
Two edge dislocations parallel to the x3 direction, at the distance d from each other, are shown in Fig. 1.

Their Burgers vectors have the magnitudes b′ and b′′, with the orientation ϕ′ and ϕ′′ relative to the x1 axis.
The objective is to determine the components of the interaction forces between these dislocations (Fig. 2). The
total elastic stress, strain, and displacement fields can be expressed as the sum of the elastic fields from each
dislocation alone, i.e.,

σαβ = σ ′
αβ + σ ′′

αβ, εαβ = ε′
αβ + ε′′

αβ, uα,β = u′
α,β + u′′

α,β . (5)

Upon the substitution of (5) into (3), the strain energy and the components of the energy momentum tensor
are found to be

W = W ′ + W ′′ + σ ′
αβε′′

αβ, (6)

Pαβ = P ′
αβ + P ′′

αβ + P̂αβ, (7)

1 Peach and Koehler [12] derived a general expression for the force on a line element of a curved dislocation in an arbitrary
stress field by applying the energy/work analysis associated with an infinitesimal translation of a dislocation loop. See also the
energy analysis in [13–15].

2 To evaluate configurational forces in a more general setting, with arbitrary external or image loading, or arbitrary sources of
internal stress, Eshelby [1,2] also used the decomposition of the elastic fields into their constituent parts.
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Determination of interaction forces between parallel dislocations

Fig. 1 Two edge dislocations with the Burgers vectors b′ and b′′, whose angles of orientation relative to the x1 axis are ϕ′ and
ϕ′′. The normal distance between two dislocations is d

(a) (b)

Fig. 2 a x1 and x2 components of the dislocation forces at O and A. Two sets of components are related by F A
1 = −FO

1 and
F A
2 = −F0

2 . b The glide and climb components of the forces on two dislocations

where

W ′ = 1

2
σ ′

αβε′
αβ, W ′′ = 1

2
σ ′′

αβε′′
αβ, (8)

and

P ′
αβ = W ′δαβ − σ ′

αγ u
′
γ,β, P ′′

αβ = W ′′δαβ − σ ′′
αγ u

′′
γ,β . (9)

The remaining part of the energy momentum tensor in (7) is a mixed or coupling part3

P̂αβ = σ ′
mnε

′′
mnδαβ −

(
σ ′

αγ u
′′
γ,β + σ ′′

αγ u
′
γ,β

)
. (10)

In view of the Hooke’s law (4), the trace term in (10) can be rewritten as

σ ′
mnε

′′
mn = 1

2μ

(
σ ′
mnσ

′′
mn − νσ ′

mmσ ′′
nn

)
, (11)

so that (10) becomes

P̂αβ = 1

2μ

(
σ ′
mnσ

′′
mn − νσ ′

mmσ ′′
nn

)
δαβ −

(
σ ′

αγ u
′′
γ,β + σ ′′

αγ u
′
γ,β

)
. (12)

Explicitly, the four components of the mixed part of the energy momentum tensor P̂αβ are

3 This can be compared with the Eshelby’s analysis of cross-terms appearing in the expression for the force on an elastic
singularity [2, p. 104].
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P̂11 = 1

2μ

[(
σ ′′
11σ

′
11 + σ ′′

22σ
′
22 + 2σ ′′

12σ
′
12

) − ν
(
σ ′′
11 + σ ′′

22

) (
σ ′
11 + σ ′

22

)]

− (
u′′
1,1σ

′
11 + u′′

2,1σ
′
12 + σ ′′

11u
′
1,1 + σ ′′

12u
′
2,1

)
,

P̂22 = 1

2μ

[(
σ ′′
11σ

′
11 + σ ′′

22σ
′
22 + 2σ ′′

12σ
′
12

) − ν
(
σ ′′
11 + σ ′′

22

) (
σ ′
11 + σ ′

22

)]

− (
u′′
1,2σ

′
21 + u′′

2,2σ
′
22 + σ ′′

21u
′
1,2 + σ ′′

22u
′
2,2

)
,

P̂12 = − (
u′′
1,2σ

′
11 + u′′

2,2σ
′
12 + σ ′′

11u
′
1,2 + σ ′′

12u
′
2,2

)
,

P̂21 = − (
u′′
1,1σ

′
21 + u′′

2,1σ
′
22 + σ ′′

21u
′
1,1 + σ ′′

22u
′
2,1

)
. (13)

2.1 J integrals around the dislocation

Upon the substitution of (7) into (2), the Jβ integrals can be additively decomposed as

Jβ = J ′
β + J ′′

β + Ĵβ, (14)

where

J ′
β =

∮
P ′

αβnα dl, J ′′
β =

∮
P ′′

αβnα dl, Ĵβ =
∮

P̂αβnα dl. (15)

To evaluate the configurational forces on the dislocationwith its center at point O , exerted by the dislocation
with its center at point A, the Jβ integrals are evaluated around a small circle of radius r about the center of
the dislocation at O . The J ′

β integrals in (15) vanish because the dislocation alone in an infinite medium does
not exert any force on itself. The J ′′

β integrals also vanish, because the elastic fields ′′ from the dislocation at
A are non-singular within a small circle around the core of the dislocation at O . Thus, J ′

β = 0, J ′′
β = 0, and

(14) reduces to

Jβ = Ĵβ =
∮

P̂αβnα dl. (16)

Its component representation is

J1 =
∫ 2π

0

(
P̂11 cos θ + P̂21 sin θ

)
r dθ, J2 =

∫ 2π

0

(
P̂12 cos θ + P̂22 sin θ

)
r dθ. (17)

3 Dislocation stress and displacement fields

The stress components due to edge dislocation with the Burgers vector b = {b1, b2, 0} in an infinite isotropic
medium are [17]

σ11 = −kb1x2
3x21 + x22

r4
+ kb2x1

x21 − x22
r4

,

σ22 = kb2x1
x21 + 3x22

r4
+ kb1x2

x21 − x22
r4

,

σ12 = kb1x1
x21 − x22

r4
+ kb2x2

x21 − x22
r4

,

(18)

where
k = μ

2π(1 − ν)
. (19)

The corresponding displacement components, to within an arbitrary constant, are

u1 = b1
2π

[
tan−1 x2

x1
+ 1

2(1 − ν)

x1x2
r2

]
+ b2

8π(1 − ν)

[
(1 − 2ν) ln r2 − x21 − x22

r2

]
,

u2 = b2
2π

[
tan−1 x2

x1
− 1

2(1 − ν)

x1x2
r2

]
− b1

8π(1 − ν)

[
(1 − 2ν) ln r2 + x21 − x22

r2

]
.

(20)
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Determination of interaction forces between parallel dislocations

The displacement gradients, needed for the evaluation of the components of the energy momentum tensor
listed in (13), are

u1,1 = − b1
2π

[
x2
r2

+ 1

2(1 − ν)

x2(x21 − x22 )

r4

]
+ b2

4π(1 − ν)

[
(1 − 2ν)

x1
r2

− 2x1x22
r4

]
,

u2,2 = b2
2π

[
x1
r2

− 1

2(1 − ν)

x1(x21 − x22 )

r4

]
− b1

4π(1 − ν)

[
(1 − 2ν)

x2
r2

− 2x21 x2
r4

]
,

u1,2 = b1
2π

[
x1
r2

+ 1

2(1 − ν)

x1(x21 − x22 )

r4

]
+ b2

4π(1 − ν)

[
(1 − 2ν)

x2
r2

+ 2x21 x2
r4

]
,

u2,1 = − b2
2π

[
x2
r2

− 1

2(1 − ν)

x2(x21 − x22 )

r4

]
− b1

4π(1 − ν)

[
(1 − 2ν)

x1
r2

+ 2x1x22
r4

]
.

(21)

3.1 Elastic fields along a small circle around dislocation b′

Along a small circle of radius r around the dislocation at O , the stress components from the dislocation itself
are obtained from (18) by taking x1 = rc and x2 = rs, where c = cos θ and s = sin θ . This gives

rσ ′
11 = −kb′

1s
(
3c2 + s2

) + kb′
2c

(
c2 − s2

)
,

rσ ′
22 = kb′

2c
(
3s2 + c2

) + kb′
1s

(
c2 − s2

)
,

rσ ′
12 = kb′

1c
(
c2 − s2

) + kb′
2s

(
c2 − s2

)
.

(22)

Similarly, from (21), the displacement gradients along a small circle around O are

ru′
1,1 = − b′

1

2π

[
s + 1

2(1 − ν)
s(c2 − s2)

]
+ b′

2

4π(1 − ν)

[
(1 − 2ν)c − 2cs2

]
,

ru′
2,2 = b′

2

2π

[
c − 1

2(1 − ν)
c(c2 − s2)

]
− b′

1

4π(1 − ν)

[
(1 − 2ν)s − 2c2s

]
,

ru′
1,2 = b′

1

2π

[
c + 1

2(1 − ν)
c(c2 − s2)

]
+ b′

2

4π(1 − ν)

[
(1 − 2ν)s + 2c2s

]
,

ru′
2,1 = − b′

2

2π

[
s − 1

2(1 − ν)
s(c2 − s2)

]
− b′

1

4π(1 − ν)

[
(1 − 2ν)c + 2cs2

]
.

(23)

If the radius of a small circle around the dislocation at O is much smaller than the distance from O to A
(r � d), the elastic fields along the small circle around O due to dislocation b′′ are obtained from (18) and
(21) by substituting x1 ≈ −d and x2 ≈ 0. This gives the non-singular fields

σ ′′
11 = σ ′′

22 = −k
b′′
2

d
, σ ′′

12 = σ ′′
21 = −k

b′′
1

d
, (24)

and

u′′
1,1 = − 1 − 2ν

4π(1 − ν)

b′′
2

d
= 1 − 2ν

2μ
σ ′′
11, u′′

2,2 = − 1 − 2ν

4π(1 − ν)

b′′
2

d
= 1 − 2ν

2μ
σ ′′
22,

u′′
1,2 = − 3 − 2ν

4π(1 − ν)

b′′
1

d
= 3 − 2ν

2μ
σ ′′
12, u′′

2,1 = 1 − 2ν

4π(1 − ν)

b′′
1

d
= −1 − 2ν

2μ
σ ′′
21.

(25)
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4 Configurational forces between two edge dislocations

The substitution of (22)–(25) into (17), followed by a straightforward integration, yields

J O
1 = σ ′′

21b
′
1 + σ ′′

22b
′
2, J O

2 = − (
σ ′′
11b

′
1 + σ ′′

12b
′
2

)
, (26)

which are the Peach–Koehler expressions for the force components on the edge dislocation b′ due to edge dislo-
cation b′′. When the stress components (24) are incorporated into (26), the horizontal and vertical components
of the force on the dislocation at O (Fig. 2a) become

FO
1 = J O

1 = − k

d

(
b′
1b

′′
1 + b′

2b
′′
2

)
, FO

2 = J O
2 = k

d

(
b′
1b

′′
2 + b′′

1b
′
2

)
. (27)

In terms of the magnitudes of the Burgers vectors (b′ and b′′) and their orientations (ϕ′ and ϕ′′), (27) can
be rewritten as

FO
1 = −kb′b′′

d
cos(ϕ′ − ϕ′′), FO

2 = kb′b′′

d
sin(ϕ′ + ϕ′′). (28)

The corresponding glide and climb components of the force (Fig. 2b) are

FO
g = FO

1 cosϕ′ + FO
2 sin ϕ′, FO

c = FO
2 cosϕ′ − FO

1 sin ϕ′, (29)

i.e., after the substitution of (28),

FO
g = −kb′b′′

d
cosϕ′′ cos 2ϕ′, FO

c = kb′b′′

d
(sin ϕ′′ + cosϕ′′ sin 2ϕ′). (30)

Since J O
β + J A

β = 0 for each β (because the translation of both dislocations together does not change the

strain energy in an infinite medium), we have F A
1 = −FO

1 and F A
2 = −FO

2 . Thus, from (27) and

F A
g = −FO

1 cosϕ′′ − FO
2 sin ϕ′′, F A

c = −FO
2 cosϕ′′ + FO

1 sin ϕ′′, (31)

the glide and climb components of the force on the dislocation at A are

F A
g = kb′b′′

d
cosϕ′ cos 2ϕ′′, F A

c = −kb′b′′

d
(sin ϕ′ + cosϕ′ sin 2ϕ′′). (32)

4.1 Examples

Expressions (31) and (32) are the general expressions for the forces between two edge dislocations, from
which some well-known cases follow directly. For example, two edge dislocations on two parallel slip planes,
the distance h = d sin α apart from each other, are shown in Fig. 3a. The product of the dislocation Burgers
vectors is b′b′′ = b2sign(b′b′′), where b is the magnitude of the Burgers vector of each dislocation. The glide
and climb forces on the dislocation at A are obtained from (32) by taking ϕ′ = ϕ′′ = −α, which gives

F A
g = kb′b′′

d
cosα cos 2α, F A

c = kb′b′′

d
sin α(2 + cos 2α). (33)

The variations of the glide and climb forces with the angle α ∈ [0, 180◦], keeping the distance d between
two dislocations fixed, are shown in Fig. 4a. The maximum climb force occurs at α = 45◦ and α = 135◦
and is equal to

√
2 times the maximum magnitude of the glide force (kb′b′′/d), which occurs at α = 0◦ and

α = 180◦. When rewritten in terms of a = d cosα and h = d sin α, the expressions (33) take the well-known
form [17,18]

F A
g = kb′b′′ a(a2 − h2)

(a2 + h2)2
, F A

c = kb′b′′ h(3a2 + h2)

(a2 + h2)2
. (34)

The variations of these forces with the horizontal distance a, at fixed h, are shown in Fig. 5a. The maximum
climb force Fmax

c = (9/8)kb′b′′/h occurs at a = √
3h/3 and is 4.5 times greater than the magnitude of the

maximum glide force Fmax
g = (1/4)kb′b′′/h, which occurs at a = ±√

2h and a = (−1 ± √
2)h. The
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Determination of interaction forces between parallel dislocations

(a) (b)

Fig. 3 a Two edge dislocations (b′ and b′′) on parallel slip planes, a distance h apart from each other. b Two edge dislocations on
orthogonal slip planes

(a) (b)

Fig. 4 a Variations of the glide and climb forces on the dislocation at A (Fig. 3a) with the angle α, at fixed distance d . The forces
are scaled by kb′b′′/d . b The same as in a, but for dislocations on orthogonal slip planes, shown in Fig. 3b

glide force vanishes at a = 0 and a = ±h. The corresponding climb force at all three of these locations is
Fc = kb′b′′/h.

If two edge dislocations are on orthogonal slip planes (Fig. 3b), then

F A
g = −kb′b′′

d
cosα cos 2α, F A

c = −kb′b′′

d
sin α cos 2α. (35)

The variations of the corresponding glide and climb forces acting on the dislocation at A with the angle α
are shown in Fig. 4b. The glide and climb forces both vanish at α = 45◦ and α = 135◦. When rewritten in
terms of a and h, (35) becomes

F A
g = kb′b′′ h(a2 − h2)

(a2 + h2)2
, F A

c = −kb′b′′ a(a2 − h2)

(a2 + h2)2
. (36)

Their variations with the horizontal distance a, at fixed h, are shown in Fig. 5b. The maximum magnitude
of the glide force Fmax

g = kb′b′′/h occurs at a = 0 and is 4 times greater than the maximum magnitude of the

climb force Fmax
c = (1/4)kb′b′′/h, which occurs at a = ±√

2h and a = (−1 ± √
2)h. The glide and climb

forces simultaneously vanish at a = ±h, so that two dislocations in these positions are in equilibrium with
respect to both glide and climb.

5 Interaction between two screw dislocations

The J integrals of the antiplane strain elasticity are defined by (2), with the energy momentum tensor given by

Pαβ = Wδαβ − σ3αu3,β = Wδαβ − 1

μ
σ3ασ3β, W = 1

2μ
σ3γ σ3γ , (37)
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(a) (b)

Fig. 5 a Variation of the glide and climb forces on the dislocation at A (Fig. 3a) with the horizontal distance a, at fixed h. The
forces are scaled by kb′b′′/h. b The same for the dislocations on orthogonal slip planes, shown in Fig. 3b

i.e.,

Pαβ = 1

2μ
(σ3γ σ3γ δαβ − 2σ3ασ3β). (38)

If the elastic stress field is expressed as the sum of the elastic fields from each dislocation alone (σ3α =
σ ′
3α + σ ′′

3α), the energy momentum tensor (38) becomes Pαβ = P ′
αβ + P ′′

αβ + P̂αβ , where

P ′
αβ = 1

2μ

(
σ ′
3γ σ ′

3γ δαβ − 2σ ′
3ασ ′

3β

)
, P ′′

αβ = 1

2μ

(
σ ′′
3γ σ ′′

3γ δαβ − 2σ ′′
3ασ ′′

3β

)
. (39)

The remaining coupling part of the energy momentum tensor is

P̂αβ = 1

μ

(
σ ′
3γ σ ′′

3γ δαβ − σ ′
3ασ ′′

3β − σ ′′
3ασ ′

3β

)
, (40)

which is a symmetric deviatoric two-dimensional tensor (P̂12 = P̂21, P̂γ γ = 0). The Jβ integrals are accord-
ingly expressed as Jβ = J ′

β + J ′′
β + Ĵβ , where J ′

β , J
′′
β , and Ĵβ are defined in terms of the corresponding energy

momentum tensors by expressions (15).

5.1 Configurational forces between two screw dislocations

To evaluate the configurational forces on the dislocation at O , exerted by the dislocation at A, the Jβ integrals
are evaluated along a small circle surrounding the center of the dislocation at O . The J ′

β integrals vanish
because the screw dislocation alone in an infinite medium does not exert any force on itself. The J ′′

β integrals
also vanish, because the elastic stress field ′′ from the dislocation at A is non-singular within a small circle
around the core of the dislocation at O . Thus, J ′

β = 0, J ′′
β = 0, and Jβ is again given by (16), with the

components of the energy momentum tensor

P̂11 = −P̂22 = 1

μ

(
σ ′
32σ

′′
32 − σ ′

31σ
′′
31

)
, P̂12 = P̂21 = − 1

μ

(
σ ′
31σ

′′
32 + σ ′

32σ
′′
31

)
. (41)

The stress components due to screw dislocation in an infinite isotropic medium are well known [17,18].
Along a small circle of radius r around the dislocation at O , they are

σ ′
31 = −μb′

3

2π

sin θ

r
, σ ′

32 = μb′
3

2π

cos θ

r
, (42)

where b′
3 is the Burgers vector of the screw dislocation. The corresponding displacement field is u′

3 = b′
3θ/2π .

If the radius of the circle around dislocation at O is much smaller than the distance d from O to A, the stresses

Author's personal copy



Determination of interaction forces between parallel dislocations

along this circle due to dislocation b′′
3 are nearly constant, and the substitution of (42) into (17), followed by

integration, yields

J O
1 = σ ′′

23b
′
3, J O

2 = −σ ′′
13b

′
3. (43)

These are the Peach–Koehler-type expressions for the force components on the screw dislocation at O .
Since

σ ′′
13 ≈ 0, σ ′′

23 ≈ − μb′′
3

2πd
, (44)

the expressions for J O
1 and J O

2 integrals in (43) and, thus, the horizontal and vertical components of the force
on the dislocation at O become

FO
1 = J O

1 = − μ

2π

b′
3b

′′
3

d
, FO

2 = J O
2 = 0. (45)

6 Straight dislocations of mixed edged-screw type

Since there is no interaction between screw and edge components of two parallel dislocations, the components
of the force on a straight dislocation at O due to a parallel dislocation at A are obtained by summing the
contributions (27) and (45). This gives

FO
1 = − k

d

[
b′
1b

′′
1 + b′

2b
′′
2 + (1 − ν)b′

3b
′′
3

]
, FO

2 = k

d

(
b′
1b

′′
2 + b′′

1b
′
2

)
. (46)

The corresponding glide and climb components of the force follow by substituting (46) into (29).
To illustrate the applications of the resulting formulas, consider four {111} slip planes of an FCC crystal,

as shown in Fig. 6a. Two straight dislocations along [11̄0] direction are shown in boldface, having their
Burgers vectors b′ = (a0/2)[101] and b′′ = (a0/2)[01̄1], both of magnitude a0/

√
2, where a0 is the lattice

parameter. The edge components of these dislocations are in the directions [1̄1̄2] and [112], with the magnitude
b′
e = b′′

e = (a0/
√
2) sin 60◦ = √

6a0/4. The screw component of both dislocations is (a0/4)[11̄0], with the
magnitude b′

s = b′′
s = √

2a0/4. The lattice section within the plane spanned by [110] and [001] directions
is shown in Fig. 6b. The edge components of the considered two dislocations are also shown. The screw
component of each dislocation is in the direction [11̄0], which is orthogonal to the lattice section shown in
Fig. 6b. The angle β between [110] and [112] directions is β = 54.7◦ (tan β = √

2). The objective is to
determine the glide and climb components of the force on the dislocation at O as it glides along [112] direction
from minus to plus infinity, assuming that the dislocation at A is pinned. An arbitrary configuration of two
dislocations is shown in Fig. 7a. By geometry, ϕ′ = β + γ and ϕ′′ = π + γ − β, where

sin γ = c

d
sin β, d2 = a2 + c2 − 2ac cosβ, (a = √

2a0), (47)

and

b′
1 = b′

e cosϕ′, b′
2 = b′

e sin ϕ′, b′
3 = b′

s,

b′′
1 = b′′

e cosϕ′′, b′′
2 = b′′

e sin ϕ′′, b′′
3 = b′′

s . (48)

The variations of the glide and climb components of the force on the dislocation at O with the distance c
are shown in Fig. 7b. They are determined by incorporating (46)–(48) into (29). The Poisson ratio is taken to be
ν = 1/3. For the considered geometry, as the distance between two dislocations increases, the climb component
of the force decays to zero slower than the glide component of the force. The glide force vanishes at c = 1.28a
and c = 2.71a. The maximum negative glide force is Fmax

g = −0.2167 ka, at c = 0.6a. The maximum
positive glide force is Fmax

g = 0.06 ka, at c = 1.73a. The maximum climb force is Fmax
c = 0.1822 ka, at

c = 0.9a. If a = n · √
2a0 (n > 1), the forces are (1/n) times the forces for n = 1.
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(a) (b)

Fig. 6 a Four {111} slip planes of an FCC crystal. The Burgers vectors of two straight dislocations parallel to [11̄0] direction are
(a0/2)[101] and (a0/2)[01̄1]. Their edge components are (a0/4)[112] and (a0/4)[1̄1̄2], respectively, while their screw component
is (a0/4)[11̄0]. b The mid-section of the lattice shown in part (a), spanned by [110] and [001] directions. The normal distance
between the two slip planes is d = (a0/

√
2) sinω = a0/

√
3, where tanω = √

2

(a) (b)

Fig. 7 a An arbitrary configuration of two dislocations, as the dislocation at O glides along its slip plane above the dislocation at
A. Indicated are the glide and climb components of the force at O . b The variation of the glide and climb forces with the distance
c. The forces are scaled by ka, where k = μ/[2π(1 − ν)] and a = √

2a0

7 Interactions among three dislocations

If there aremore than two dislocations, the dislocation force on each dislocation is obtained by the superposition
of its interactions with all other dislocations. For example, in the case of three screw dislocations along the
same line (Fig. 8b), it can be readily shown that

J O
1 = − μ

2π

(
b′
3b

′′
3

OA
+ b′

3b
′′′
3

OB

)
, J A

1 = μ

2π

(
b′′
3b

′
3

OA
− b′′

3b
′′′
3

AB

)
, J B

1 = μ

2π

(
b′′′
3 b

′
3

OB
+ b′′′

3 b
′′
3

AB

)
, (49)

which satisfy J O
1 + J A

1 + J B
1 = 0. The third expression in (49) yields the expression for the force on the

screw dislocation at the distance OB = c from the center of a circular void of radius a (Fig. 9b), created by
the displacement discontinuity b3 from the center of the dislocation to infinity [19], by taking OA = a2/c and
b′
3 = b′′′

3 = −b′′
3 = b3. The magnitude of the force is (a/c)2 times the magnitude of the force (μb23)/(2πd),

Author's personal copy



Determination of interaction forces between parallel dislocations

(a) (b)

Fig. 8 a Two screw dislocations in an infinite medium at points A and B. The Burgers vectors of dislocations are b′
3 and b′′

3 .
b Three screw dislocations in an infinite medium at points O , A, and B. The Burgers vectors of dislocations are b′

3, b
′′
3 , and b′′

3 ,
respectively

(a) (b)

Fig. 9 a A screw dislocation at distance c from the center of a circular void of radius a, created by imposing the displacement
discontinuity b3 from the surface of the void to the center B of the dislocation. The dislocation is attracted to the surface of the
void by the force F = μb23/(2πd). A negative image dislocation is placed at point A, at distance d = c − a2/c from the actual
dislocation. b A screw dislocation at point B created by the displacement discontinuity b3 from B to infinity. The dislocation
force is F = (a/c)2μb23/(2πd). A positive image dislocation is placed at the center O , and a negative image dislocation at the
conjugate point A

exerted by the surface of the void on the dislocation from Fig. 9a. The distance between the dislocation at B
and its image dislocation at A in Fig. 9a is d = AB = c− a2/c. The distinction between the two cases shown
in Fig. 9 was first pointed out in [20] and further discussed in [21,22]. A recent study of the interaction between
the eigenstrain inclusions and voids under plane strain and antiplane strain conditions has been reported in
[23,24].

8 Interactions between screw dislocations and concentrated line forces

Similar analysis can be performed to evaluate the interaction between dislocations and other defects or sin-
gularities. For example, the force on a screw dislocation b3 exerted by a concentrated line force f3 (per unit
length), at distance d from the dislocation (Fig. 10a), is obtained from (43) by substituting σ ′′

13 = f3/(2πd)

and σ ′′
23 = 0, which gives FO

1 = 0 and FO
2 = − f3b3/(2πd). In the case of two concentrated forces f ′

3 and f ′′
3

(Fig. 10b), the J integrals around the forces are J A
1 = −J O

1 = − f ′
3 f

′′
3 /(2πμd) and J A

2 = J O
2 = 0, which

are also the configurational forces on the line forces through O and A. While the configurational forces on
two screw dislocations of the same sign are repelling, the configurational forces on two line forces of the same
sign are attractive. This can be verified by an independent analysis, beginning with the energetic definition
of J A

1 = −∂�/∂d , where � is the potential energy. The latter is equal to the strain energy minus the load
potential,

� = 1

2
f ′
3(u

′ O
3 + u′′ O

3 ) + 1

2
f ′′
3 (u′ A

3 + u′′ A
3 ) −

[
f ′
3(u

′ O
3 + u′′ O

3 ) + f ′′
3 (u′ A

3 + u′′ A
3 )

]
, (50)

where u′ O
3 is the (singular) displacement at O due to f ′

3 and u
′′ O
3 is the (non-singular) displacement at O due

to f ′′
3 at A. Similar interpretations apply to u′′ A

3 and u′ A
3 . In view of the reciprocity relation of linear elasticity

f ′
3u

′′ O
3 = f ′′

3 u
′ A
3 , the expression (50) reduces to

� = −1

2

(
f ′
3u

′ O
3 + f ′′

3 u
′′ A
3

)
− f ′

3u
′′ O
3 . (51)
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(a) (b)

Fig. 10 a A concentrated line force f3 at the distance d from the screw dislocation b3. Their interaction forces (of the same
magnitude) are FO

2 and F A
2 . b Attractive configurational forces FO

1 and F A
1 (of the same magnitude) between two parallel line

forces f ′
3 and f ′′

3 of the same sign

Furthermore, since

u′′ O
3 = − f ′′

3

2πμ
ln

d

R
, (52)

where R is an arbitrary constant length, the potential energy (51) becomes

� = −1

2

(
f ′
3u

′ O
3 + f ′′

3 u
′′ A
3

)
+ f ′

3 f
′′
3

2πμ
ln

d

R
. (53)

The first two terms on the right-hand side (although singular)4 are independent of d , so that

J A
1 = −∂�

∂d
= − f ′

3 f
′′
3

2πμ

1

d
. (54)

Thus, if two line forces are of the same sign, the configurational forces on them are attractive, because the
potential energy is increased by the increase in the distance between such forces. For instance, the free surface
of a half-space exerts an attractive force on a nearby line force, because the image force of the same sign is
placed in an infinite medium at the mirror position across the surface to make this surface traction free.

If two parallel line forces ( f ′
3 and f ′′

3 ) are acting along the surface of a half-space (Fig. 11), at a distance d
from each other, they attract each otherwith the force f ′

3 f
′′
3 /(πμd), provided that they are in the same direction.

The repulsion of the same magnitude occurs if they are in the opposite directions. The results follows directly
from the previous analysis of the line forces in an infinite medium by recalling that the nonvanishing stress
component (in polar coordinates) due to the line force ( f3) along the surface of a half-space is σ3r = − f3/(πr),
with the coordinate origin at the location of the force [25].

In the case of plane strain, the use of line forces on the surface of a half-space has been used to model a
step on vicinal or corrugated surfaces [26–28]. There has also been a considerable activity devoted to edge
contact forces which appear in the framework of second gradient media [29–32]. Energetic interaction of such
forces may be a worthwhile topic of further investigation.

9 Conclusions and discussion

The expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite
isotropicmedium by another straight dislocation are derived by evaluating the plane or antiplane strain versions
of the J integrals. To circumvent tedious evaluation of the integrals using the total stress and displacement fields,

4 If ρ is a radius of small circle around each force, then the first term can be written as

−1

2

(
f ′
3u

′ O
3 + f ′′

3 u
′′ A
3

)
= 1

4π

(
f ′ 2 + f ′′ 2) ln

ρ

R
,

in the limit as ρ → 0. In the derivation, it is recalled that σ3r = − f3/(2πr) and u3 = −( f3/2πμ) ln(r/R).
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Fig. 11 Two parallel line forces f ′
3 and f ′′

3 along the surface of a half-space at the distance d from each other. Their interaction
forces F0

1 and F A
1 (attractive if f ′

3 and f ′′
3 are in the same direction) are defined such that the change in the potential energy of

the system, associated with the increase in the distance δd , is δ� = F A
1 δd

these are expressed as the sums of the elastic fields from each dislocation, which enabled the decomposition
of the energy momentum tensor into three parts. Only one part of them, involving mixed products from the
two dislocation fields, makes a nonvanishing contribution to the J integrals and the corresponding dislocation
forces. Three examples are used to illustrate the procedure, with the dislocations on parallel or intersecting
slip planes. The interaction between dislocations and a nearby circular void, as well as between parallel line
forces in an infinite or semi-infinite medium under antiplane strain conditions are also discussed.

Although the analysis in this paper was concerned with the evaluation of the configurational forces among
defects by the evaluation of the J integrals, the utilized decomposition of the energy momentum tensor also
facilitates the evaluation of the M integrals. For example, the M integral along a small circle around the screw
dislocation at A (Fig. 8a) is

MA
A =

∮
P ′

αβnαxβ dl = μb′ 2
3

4π
, (55)

because the contributions from P ′′
αβ and P̂αβ both vanish. In (55), the superscript A refers to M integral around

dislocation at A, while the subscript A indicates that the coordinate origin used in evaluating the M integral
was placed at A. As elaborated upon in [33,34], the M integral can be conveniently used to evaluate the J
integral indirectly. The M integral along a closed contour consisting of small circles around the center of
dislocations at A and B, and a remote circle of radius R → ∞, surrounding both dislocations, must vanish,
so that MA

A + MB
A − MR

A = 0. Here, MR
A denotes the M integral along a closed contour of large radius

R. Furthermore, from the well-known relationship between the M integrals evaluated with respect to two
coordinate origins [35], one can write for the M integral around the dislocation at B, MB

A = MB
B + d · J B

1 , so
that J B

1 = (MR
A − MA

A − MB
B )/d . Since

MB
B = μb′′ 2

3

4π
, MR

A = μ(b′
3 + b′′

3)
2

4π
, (56)

there follows

J B
1 = μb′

3b
′′
3

2πd
. (57)

As pointed out in Sect. 7, this expression delivers the expression for the force exerted by the surface of a
circular void on the dislocation emitted from that surface by taking d = c − a2/c and b′′

3 = −b′
3 = b3, where

a is the radius of the void and c is the distance between the dislocation and the center of the void (Fig. 9a).
The considerations in this paper were based on the Volterra dislocation model and linear elasticity. The

dislocations were assumed to be fully formed and therefore sufficiently away from each other or from other
defects, perhaps by at least two lengths of their Burgers vector. Otherwise, incomplete dislocations, dominated
by their heavily distorted cores, would be present, which requires another type of analysis, such as that based on
the Peierls dislocation model [36,37]. The energy momentum tensor has also been used for different problems
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in the range of finite elastic and inelastic deformations. The representative references include, inter alia, [38–
40]. The energy momentum and dual energy momentum tensors in problems of micropolar elasticity, with and
without body forces or body couples, were recently discussed in [41].
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