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MOHR’S CIRCLES FOR NON-SYMMETRIC

STRESSES AND COUPLE STRESSES

A b s t r a c t

Determination of the principal values of a non-symmetric stress
tensor in plane strain problems of couple stress theory based on Mohr’s
circle construction is presented. It is shown that the antisymmetric
component of the stress tensor affects the maximum shear stress, but
not the maximum normal stress. The analysis is then extended to
non-symmetric couple stresses under conditions of anti-plane strain.

MOHROVI KRUGOVI ZA NESIMETRIČNE

NAPONE I NAPONSKE SPREGOVE

I z v o d

U radu je prezentovana procedura za odredjivanje glavnih napona
nesimetricnog tenzora napona u ravnom problemu deformacije na bazi
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konstrukcije Mohrovog kruga. Pokazano je da antisimetrična kompo-
nenta tenzora napona utiče na maksimalni smičući napon, ali ne i na
maksimalni normalni napon. Analiza je proširena na slučaj nesimet-
ricnih naponskih spregova u uslovima antiravne deformacije.

1. INTRODUCTION

In a micropolar continuum the deformation is described by the
displacement vector and an independent rotation vector (Eringen,
1968,1999; Nowacki, 1986). In the couple stress theory, the rotation
vector ϕi is not independent of the displacement vector ui but subject
to the constraint

ϕi =
1
2

eijk ωjk =
1
2

eijk uk,j , ωij = eijk ϕk , (1.1)

as in classical continuum mechanics (Mindlin and Tiersten, 1962; Koi-
ter, 1964). The skew-symmetric alternating tensor is eijk, and ωij are
the rectangular components of the infinitesimal rotation tensor. The
comma designates the partial differentiation with respect to Carte-
sian coordinates xi. The gradient of the rotation is a non-symmetric
curvature tensor

κij = ϕj,i = −ejklεik,l . (1.2)

Since εij is symmetric and eijk is skew-symmetric, the curvature ten-
sor in couple stress theory is a deviatoric tensor (κkk = 0). A sur-
face element dS transmits a force vector Ti dS and a couple vector
Mi dS. The surface forces are in equilibrium with a non-symmetric
Cauchy stress tij , and the surface couples are in equilibrium with a
non-symmetric couple stress mij , such that

Ti = njtji , Mi = njmji , (1.3)

where nj are the components of the unit vector orthogonal to the
surface element under consideration. In the absence of body forces
and body couples, the differential equations of equilibrium are

tji,j = 0 , mji,j + eijk tjk = 0 . (1.4)



Mohr’s Circles for Couple Stresses 3

By decomposing the stress tensor into its symmetric and antisymmet-
ric part tij = σij + τij , it readily follows from the moment equilibrium
equation that

τij = −1
2
eijkmlk,l . (1.5)

If the gradient of the couple stress vanishes at some point, the stress
tensor is symmetric at that point.

The normal stress in the plane orthogonal to the direction n is

tn = σn = σijninj , (1.6)

because τijninj = 0 in view of the symmetry of ninj . Thus, the prin-
cipal stresses of the symmetric tensor σij are also the principal stresses
of the nonsymmetric tensor tij , although there are shear stresses in the
principal planes of tij due to antisymmetric shear stress components
τij (Lubarda, 2003). The magnitude of this shear stress is

τ2
n = ninjτikτjk = τ2

12 + τ2
23 + τ2

31 − (n1τ23 + n2τ31 + n3τ12)2 . (1.7)

Similarly, the couple stress component mn = mijninj is independent
of the antisymmetric part of mij .

In the case if isotropic linear elasticity,

σij = 2µ εij + λ εkk δij , (1.8)

mij = 4α κij + 4β κji . (1.9)

where µ, λ, α, and β are the Lamé-type constants of couple stress
elasticity. In this case, since κkk = 0, the couple stress is a deviatoric
tensor (mkk = 0).

2. MOHR’S CIRCLE FOR NON-SYMMETRIC STRESSES IN

PLANE STRAIN

For the plane strain problems, the displacement components are
u1 = u1(x1, x2), u2 = u2(x1, x2), and u3 = 0. The stress and couple
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Figure 1: (a) A rectangular material element under conditions of plane
strain; (b) an inclined plane at an angle ϕ supports the stresses tρρ

and tρϕ, and the couple stress mρ3.

stress tensors are accordingly

t =




t11 t12 0
t21 t22 0
0 0 t33


 , m =




0 0 m13

0 0 m23

m31 m32 0


 . (2.1)

Consider a material element with sides parallel to coordinates direc-
tions x1 and x2 (Fig. 1a). In an inclined plane whose normal ρ makes
an angle ϕ with the direction x1, the normal and shear stresses are tρρ

and tρϕ, and the couple stress is mρ3 (Fig. 1b). From the equilibrium
conditions of the triangular element it readily follows that

mρ3 = m13 cosϕ + m23 sinϕ , (2.2)

tρρ =
1
2

(t11 + t22) +
1
2

(t11 − t22) cos 2ϕ +
1
2

(t12 + t21) sin 2ϕ , (2.3)

tρϕ =
1
2

(t12 − t21) +
1
2

(t12 + t21) cos 2ϕ− 1
2

(t11 − t22) sin 2ϕ . (2.4)

The planes with the maximum magnitude of tρρ and tρϕ are defined
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by

tan 2ϕ1 =
t12 + t21

2t11
, tan 2ϕ2 = − 2t11

t12 + t21
, (2.5)

with the obvious connection ϕ2 = ϕ1 ± π/4. The corresponding ex-
treme values of the stresses are

tmax
ρρ =

1
2

(t11 + t22)± 1
2

[
(t11 − t22)2 + (t12 + t21)2

]1/2
, (2.6)

tmax
ρϕ =

1
2

(t12 − t21)± 1
2

[
(t11 − t22)2 + (t12 + t21)2

]1/2
. (2.7)

It is noted that tmax
ρρ depends only on the symmetric part of the stress

tensor tij . Indeed, if we decompose t into its symmetric and antisym-
metric parts,

σ =




σ11 σ12 0
σ12 σ22 0
0 0 σ33


 , τ =




0 τ12 0
−τ12 0 0

0 0 0


 , (2.8)

where σ11 = t11, σ22 = t22, σ33 = t33, and

σ12 =
1
2

(t12 + t21) , τ12 =
1
2

(t12 − t21) , (2.9)

we can write

tmax
ρρ = σmax

ρρ =
1
2

(σ11 + σ22)± 1
2

[
(σ11 − σ22)2 + 4σ2

12

]1/2
, (2.10)

tmax
ρϕ = τ12 ± σmax

ρϕ , σmax
ρϕ =

1
2

[
(σ11 − σ22)2 + 4σ2

12

]1/2
. (2.11)

The physical interpretation of Eq. (2.11) is facilitated by observing
that the shear stress on any inclined plane due to antisymmetric stress
component τ12 is also equal to τ12. This follows from the force equi-
librium condition for the triangular element shown in Fig. 2b. The
moment equilibrium is ensured by the non-uniform field of couple
stresses (not shown in Fig. 2).

Equations (2.3) and (2.4) can be combined to give
[
tρρ − 1

2
(t11 + t22)

]2

+
[
tρϕ − 1

2
(t12 − t21)

]2

=
1
4

[
(t11 − t22)2 + (t12 + t21)2

]
,

(2.12)
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Figure 2: (a) A rectangular material element carrying the antisym-
metric shear stress τ12; (b) the corresponding shear stress at an arbi-
trarily inclined plane is also τ12.

which defines Mohr’s circle for the non-symmetric stress components
under conditions of plane strain (Fig. 3). The normal stress tρρ =
(t11 + t22)/2 acts in the planes where tρϕ attains its maximum or
minimum value, while the shear stress tρϕ = (t12 − t21)/2 acts in the
planes where tρρ has its maximum or minimum value. If t12 = t21,
Eq. (2.12) defines the classical Mohr’s circle for a symmetric stress
tensor (Timoshenko and Goodier, 1970).

2.1. Eigenvalue Analysis

The extreme values of the stresses tρρ and tρϕ can also be deter-

mined by an eigenvalue analysis. If n = {n1, n2} is the unit vector

perpendicular to the plane which supports tρρ and tρϕ = (t12− t21)/2,

we can write

njtji = λni +
1
2

(t12 − t21) n̂i , (i, j = 1, 2) . (2.13)

The unit vector orthogonal to n is n̂ = {−n2, n1}. The system of
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Figure 3: Mohr’s circle for non-symmetric stresses in plane strain.
The center of the circle is at the point with the coordinates 1

2 [(t11 +
t22), (t12−t21)]. The radius of the circle is 1

2 [(t11−t22)2+(t12+t21)2]1/2.
The angles ϕ1, ϕ2, and ϕ0 specify the planes of tmax

ρρ , tmax
ρϕ , and tρϕ = 0.

equations (2.13) has a nontrivial solution for (n1, n2) if λ is given be

the right-hand side of Eq. (2.6). The corresponding planes are defined

by

tanϕ1 = − t11 − t22

t12 + t21
±

[
1 +

(
t11 − t22

t12 + t21

)2
]1/2

, (2.14)

in agreement with the first expression from Eq. (2.5).

Similarly, for the plane which supports the stresses tρϕ and tρρ =

(t11 + t22)/2, we have

njtji = λ n̂i +
1
2

(t11 + t22) ni , (i, j = 1, 2) . (2.15)

The system of equations (2.15) has a nontrivial solution for (n1, n2)

if λ is given by the right-hand side of Eq. (2.7). The corresponding
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planes are defined by

tanϕ2 =
t12 + t21

t11 − t22
±

[
1 +

(
t12 + t21

t11 − t22

)2
]1/2

, (2.16)

in agreement with the second expression from Eq. (2.5).

The planes with the vanishing tρϕ (if they exist) are found by

solving the eigenvalue problem

njtji = λni , (2.17)

which specifies

λ = tρρ =
1
2
(t11 + t22)± 1

2
[
(t11 − t22)2 + 4t12t21

]1/2
. (2.18)

The corresponding planes are defined by

tanϕ0 =
1

2t21

{
−(t11 − t22)±

[
(t11 − t22)2 + 4t12t21

]1/2
}

. (2.19)

There is one such plane if (t11− t22)2 = −4t12t21, and two such planes

if (t11 − t22)2 > −4t12t21.

The planes with the vanishing tρρ (if they exist) are found by

solving the eigenvalue problem

njtji = λ n̂i , (2.20)

which specifies

λ = tρϕ =
1
2
(t12 − t21)± 1

2
[
(t12 + t21)2 − 4t11t22

]1/2
. (2.21)

The corresponding planes are defined by

tan ϕ̄0 =
1

2t22

{
−(t12 + t21)±

[
(t12 + t21)2 − 4t11t22

]1/2
}

, (2.22)

provided that (t12 + t21)2 ≥ 4t11t22.
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3. MOHR’S CIRCLE FOR COUPLE STRESSES IN

ANTI-PLANE STRAIN

For the anti-plane strain problems, the displacement components

are u1 = u2 = 0, and u3 = u3(x1, x2). The stress and couple stress

tensors have the components

t =




0 0 t13

0 0 t23

t31 t32 0


 , m =




m11 m12 0
m21 m22 0
0 0 0


 . (3.1)

A material element under conditions of anti-plane strain is shown in

Fig. 4a. In an inclined plane whose normal ρ makes an angle ϕ with

the longitudinal direction x1, the shear stress is tρ3 and the couple

stresses are mρρ and mρϕ (Fig. 4b). From the equilibrium conditions

of the triangular element it readily follows that

tρ3 = t13 cosϕ + t23 sinϕ , (3.2)

mρρ =
1
2

(m11 + m22) +
1
2

(m11 −m22) cos 2ϕ +
1
2

(m12 + m21) sin 2ϕ ,

(3.3)

mρϕ =
1
2

(m12 −m21) +
1
2

(m12 + m21) cos 2ϕ− 1
2

(m11 −m22) sin 2ϕ .

(3.4)

The planes with the maximum magnitude of mρρ and mρϕ are

defined by

tan 2ϕ1 =
m12 + m21

2m11
, tan 2ϕ2 = − 2m11

m12 + m21
. (3.5)

The two angles are related by ϕ2 = ϕ1 ± π/4. The corresponding

extreme values of the couple stress components are

mmax
ρρ =

1
2

(m11 +m22)± 1
2

[
(m11 −m22)2 + (m12 + m21)2

]1/2
, (3.6)



10 V.A. Lubarda

rj
m

j

12m

11m
12m

13t13t

23t

23t

21
m

22m

11m

22m

21
m

12m

rrm

t

23t

r3
t

21
m

22m

11m

13

(a) (b)

Figure 4: (a) A rectangular material element under conditions of anti-
plane strain; (b) an inclined plane at an angle ϕ supports the shear
stress tρ3 and couple stresses mρρ and mρϕ.

mmax
ρϕ =

1
2

(m12−m21)± 1
2

[
(m11 −m22)2 + (m12 + m21)2

]1/2
. (3.7)

Again, it may be noted that mmax
ρρ does not depend on the anti-

symmetric part of the couple stress tensor, i.e., on the component

(m12 −m21)/2.

Equations (3.3) and (3.4) can be combined to give

[
mρρ − 1

2
(m11 + m22)

]2

+
[
mρϕ − 1

2
(m12 −m21)

]2

=
1
4

[
(m11 −m22)2 + (m12 + m21)2

]
.

(3.8)

This defines Mohr’s circle for the couple stresses in anti-plane strain

(Fig. 5). The couple stress component mρρ = (m11 + m22)/2 acts in

the planes where mρϕ attains its maximum or minimum value, while

mρϕ = (m12 −m21)/2 acts in the planes where mρρ has its maximum
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Figure 5: Mohr’s circle for couple stresses in anti-plane strain. The
center of the circle is at the point with the coordinates 1

2 [(m11 +
m22), (m12 − m21)]. The radius of the circle is 1

2 [(m11 − m22)2 +
(m12 + m21)2]1/2. The angles ϕ1, ϕ2, and ϕ0 specify the planes of
mmax

ρρ , mmax
ρϕ , and mρϕ = 0.

or minimum value.

The planes for which mρϕ = 0 are defined by

tanϕ0 =
1

2m21

{
−(m11 −m22)±

[
(m11 −m22)2 + 4m12m21

]1/2
}

.

(3.9)

There is one such plane if (m11 −m22)2 = −4m12m21, and two such

planes if (m11 −m22)2 > −4m12m21. The normal component of the

couple stress in these planes is

mρρ =
1
2
(m11 + m22)± 1

2
[
(m11 −m22)2 + 4m12m21

]1/2
. (3.10)

The planes for which mρρ = 0 are defined by
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Figure 6: Mohr’s circle for couple stresses in anti-plane strain in the
case when the couple stress is a deviatoric tensor. The center of the
circle is along the mρϕ axis at the distance 1

2(m12 − m21) from the
origin. The radius of the circle is mmax

ρρ = [m2
11 + 1

4(m12 + m21)2]1/2.

tan ϕ̄0 =
1

2m22

{
−(m12 + m21)±

[
(m12 + m21)2 − 4m11m22

]1/2
}

,

(3.11)

provided that (m12 + m21)2 ≥ 4m11m22. The non-vanishing couple

stress in these planes is

mρϕ =
1
2
(m12 −m21)± 1

2
[
(m12 + m21)2 − 4m11m22

]1/2
. (3.12)

The extreme values of the couple stresses mρρ and mρϕ can also

be determined by an eigenvalue analysis. The derivation is analogous

to that presented in section 2. The resulting formulas can be obtained

from Eqs. (2.13)–(2.22) by replacing the stress symbol t with the cou-

ple stress symbol m. In the case when the couple stress is a deviatoric

tensor (e.g., isotropic linear elasticity), the results simplify due to the
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condition m11 + m22 = 0. The corresponding Mohr’s circle is shown

in Fig. 6.
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