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Abstract Three fundamental three-dimensional axisymmetric problems of elasticity are revisited: the Kelvin
problem of a concentrated force in an infinite space, the Boussinesq problem of a vertical concentrated force
at the boundary of a half-space, and the Mindlin problem of a vertical concentrated force in the interior of
a half-space. New elements of the derivation of the solution to each of these problems are included to make
the presentation more appealing for the coverage of the topic in graduate courses of solid mechanics. Two
approaches are employed and compared, one based on the Galerkin method and Love’s potential function, and
the other based on the Papkovich–Neuber displacement representation and Boussinesq’s potential functions.
A historical perspective and a referral to more recent contributions in the field are also given.

1 Introduction

We review in this paper the determination of the stress and displacement fields in three fundamental three-
dimensional axisymmetric elasticity problems: the Kelvin problem of a concentrated force in the interior of
an infinite space, the Boussinesq problem of a concentrated force orthogonal to the boundary of a half-space,
and the Mindlin problem of a concentrated force in the interior of a half-space. Different procedures are used
to construct the solutions to each problem, which are related to each other, yet are conceptually appealing and
instructive on their own. Three derivations of the solution of the Boussinesq problem, and two derivations of
the solution of the Mindlin problem are presented. The simplification in the latter derivation is achieved by
requiring at the early stage of the analysis that the Mindlin problem reduces to the Boussinesq problem in
an appropriate limit. The presentation is made in as simple a way as possible, so as to make the exposition
appealing for the coverage of this important topic in an introductory graduate course of solid mechanics.
Thus, the referral to the more advanced framework of the theory of elasticity, based on the use of Green’s
formula or integral transform techniques, is omitted. Two approaches are adopted instead, one based on the
Galerkin method and Love’s potential function, and the other based on the Papkovich–Neuber displacement
representation and the Boussinesq’s potential functions. In the Papkovich–Neuber approach, two harmonic
functions play a prominent role, f = ln(ρ + z) and g = 1/ρ ≡ ∂ f/∂z, where ρ2 = r2 + z2 and (r, θ, z) are
the cylindrical coordinates. In the approach based on the use of Love’s potential, it is two biharmonic functions
that play a prominent role, ϕ = z f = z ln(ρ + z) and ψ = ρ2g = ρ.
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2 Governing equations of axisymmetric elasticity

The Cauchy equations of equilibrium for axisymmetric three-dimensional problems with body forces br and
bz (e.g., [1,2]) are

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σθθ

r
+ br = 0 ,

∂σzr

∂r
+ ∂σzz

∂z
+ σzr

r
+ bz = 0 . (2.1)

The stresses are related to strains by Hooke’s law,

σrr = 2μεrr + λe , σθθ = 2μεθθ + λe , σzz = 2μεzz + λe , σr z = 2μεr z , (2.2)

where λ and μ are Lamé’s constants, and e = εrr + εθθ + εzz is the volumetric strain. The strains are related
to displacements by

εrr = ∂ur
∂r

, εθθ = ur
r

, εzz = ∂uz
∂z

, εr z = 1

2

(
∂ur
∂z

+ ∂uz
∂r

)
. (2.3)

The three compatibility equations for strains [3,4] are

∂2εθθ

∂z2
+ 1

r

∂εzz

∂r
− 2

r

∂εzr

∂z
= 0 ,

∂2εrr

∂z2
+ ∂2εzz

∂r2
− 2

∂2εzr

∂r∂z
= 0 ,

r
∂εθθ

∂r
+ εθθ − εrr = 0 .

(2.4)

The corresponding compatibility equations in terms of stresses are

∇2σrr − 2

r2
(σrr − σθθ ) + 1

1 + ν

∂2σ

∂r2
= 0 ,

∇2σθθ + 2

r2
(σrr − σθθ ) + 1

1 + ν

1

r

∂σ

∂r
= 0 ,

∂σzr

∂z
− ∂σzz

∂r
+ 1

1 + ν

∂σ

∂r
= 0 ,

(2.5)

where σ = σrr + σθθ + σzz and σ = (2μ + 3λ)e.
The Navier equations of elasticity for three-dimensional axisymmetric problems read

μ
(
∇2ur − ur

r2

)
+ (λ + μ)

∂e

∂r
+ br = 0 ,

μ∇2uz + (λ + μ)
∂e

∂z
+ bz = 0 ,

(2.6)

which are subjected to boundary conditions of each specific problem. The utilized Laplacian operator is

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
. (2.7)
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3 Galerkin vector and Love’s potential

The general three-dimensional Navier equations of elasticity, written in vector form, are

μ∇2u + (λ + μ)∇(∇ · u) + b = 0 . (3.1)

If the displacement vector u is expressed in terms of the vector function � as

2μu = 2(1 − ν)∇2� − ∇(∇ · �) , (3.2)

it readily follows that (3.1) is identically satisfied, provided that � satisfies a non-homogeneous biharmonic
equation

∇4� = − b
1 − ν

(3.3)

where ν is Poisson’s ratio of the material. The vector function � is known as the Galerkin vector [5].
If only the z-component of the Galerkin vector is assumed to be nonzero, so that � = {0, 0,�} and,

correspondingly, b = {0, 0, b}, and if the problem is axisymmetric, � = �(r, z), then (3.2) gives

2μur = − ∂2�

∂r∂z
, 2μuz = 2(1 − ν)∇2� − ∂2�

∂z2
. (3.4)

It can be readily verified that (3.4) identically satisfies the axisymmetric Navier equations (2.6), provided that

∇4� = − b

1 − ν
. (3.5)

The potential function�was used by Love [6] in his study of axisymmetrically loaded solids of revolution.
The corresponding stress components can be expressed in terms of � as

σrr = ∂

∂z

(
ν∇2� − ∂2�

∂r2

)
, σθθ = ∂

∂z

(
ν∇2� − 1

r

∂�

∂r

)
,

σzz = ∂

∂z

[
(2 − ν)∇2� − ∂2�

∂z2

]
, σr z = ∂

∂r

[
(1 − ν)∇2� − ∂2�

∂z2

]
.

(3.6)

It can be easily verified that these stress expressions identically satisfy the first of the Cauchy equilibrium
equations in (2.1) when br = 0, while the second equilibrium equation requires that � satisfies (3.5). The
function � is commonly referred to as Love’s potential. In the absence of body forces (br = bz = 0), Love’s
potential satisfies the biharmonic equation ∇4� = 0.

The sum of three normal stresses is

σrr + σθθ + σzz = (1 + ν)
∂

∂z

(∇2�
)
, ∇2(σrr + σθθ + σzz) = 0 . (3.7)

Thus, if � turns out in a specific problem to be harmonic (∇2� = 0), the stress state in that problem is
deviatoric. Also, in the case when � is harmonic, displacement and stress components can be derived from
the harmonic potential ω = −∂�/∂z, because then (3.4) and (3.6) simplify to

2μur = ∂ω

∂r
, 2μuz = ∂ω

∂z
, (3.8)

and

σrr = ∂2ω

∂r2
, σθθ = 1

r

∂ω

∂r
, σzz = ∂2ω

∂z2
, σr z = ∂2ω

∂r∂z
. (3.9)

The function ω is referred to as Lamé’s potential, because Lamé used it in his study of the pressurized hollow
cylinders and spheres.
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4 Papkovich–Neuber representation and Boussinesq’s potentials

Papkovich [7] and Neuber [8] independently constructed an appealing expression for the displacement vector
u which satisfies the general three-dimensional Navier equations (3.1). In this expression, the displacement
vector u is given in terms of one vector potential (B) and one scalar potential (β), such that [9–11]

2μu = B − ∇
[

1

4(1 − ν)
B · ρ + β

]
(4.1)

where B and β are the solutions to Poisson’s equations

∇2B = −2b , ∇2β = ρ · b
2(1 − ν)

. (4.2)

The spherical radius vector ρ = rer + zez , where (r, θ, z) are cylindrical coordinates (see Fig. 1a), and er and
ez are the unit vectors in the r and z directions. In general, since there are three displacement components,
only two of the three components of the vector potential B are independent. The scalar potential β in (4.2) can
be scaled by 4(1− ν), as is often done in the literature [12–16], in which case the coefficient 1/[4(1− ν)] can
be pulled out in front of the ∇ operator, while the second Poisson’s equation in (4.2) becomes ∇2β = 2ρ · b.
See also [17] for yet another scaling of potentials B and β. A scalar potential φ, related to β in (4.1) by
φ = −4(1 − ν)β, has been used in [18].

Certain axisymmetric problems can be solved by assuming that the vector potential B has only a z-
component, B = {0, 0, B}, with B = B(r, z). If the body force is b = {0, 0, b}, then the potential functions B
and β are the solutions to Poisson’s equations

∇2B = −2b , ∇2β = zb

2(1 − ν)
. (4.3)

The corresponding nonvanishing displacement components can then be expressed, from (4.1), as

2μur = −∂A

∂r
, 2μuz = B − ∂A

∂z
(4.4)

where, conveniently, we have introduced the function

A = β + zB

4(1 − ν)
. (4.5)

The functions B and β are known as Boussinesq’s potentials. In the absence of body force, they are harmonic
functions (∇2B = 0 and ∇2β = 0). The function A itself is biharmonic, because zB is biharmonic.

The stresses are obtained fromHooke’s law (2.2) by using (4.4) and the strain–displacement relations (2.3).
The resulting expressions are

σrr = −∂2A

∂r2
+ ν

2(1 − ν)

∂B

∂z
, (4.6.1)

σθθ = −1

r

∂A

∂r
+ ν

2(1 − ν)

∂B

∂z
, (4.6.2)

σzz = −∂2A

∂z2
+ 2 − ν

2(1 − ν)

∂B

∂z
, (4.6.3)

σzr = 1

2

∂B

∂r
− ∂2A

∂r∂z
. (4.6.4)

It is noted that

σrr + σθθ + σzz = 1 + ν

2(1 − ν)

∂B

∂z
, (4.7)

and

∇2A = ∇2β + ∇2(zB)

4(1 − ν)
= 1

2(1 − ν)

∂B

∂z
, (4.8)

which holds with or without the presence of the body force b.
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4.1 Boussinesq’s potentials versus Love’s potential

By comparing the displacement expressions (3.4) and (4.4), it follows that Boussinesq’s potentials B and β
can be expressed in terms of Love’s potential � by

B = 2(1 − ν)∇2�, β = ∂�

∂z
− 1

2
z∇2� . (4.9)

Also, we have

A = ∂�

∂z
⇒ � =

∫
A dz , (4.10)

which can be used to determine the expression for �, if the expressions for B and β have already been
determined.

4.2 Special cases

If the plane z = 0 is free from shear traction, from Eq. (4.6.4) and expression (4.5), we can write

σzr (r, z = 0)=
[

∂

∂r

(
1

2
B − ∂A

∂z

)]
z=0

= ∂

∂r

[
1 − 2ν

4(1 − ν)
B − ∂β

∂z
− z

4(1 − ν)

∂B

∂z

]
z=0

= 0. (4.11)

Some problems in which σzr (r, z = 0) = 0 can be solved by assuming that

1 − 2ν

4(1 − ν)
B − ∂β

∂z
= 0 ⇒ B = 4(1 − ν)

1 − 2ν

∂β

∂z
(4.12)

everywhere in the medium, because then the condition σzr (r, z = 0) = 0 in (4.11) is automatically satisfied.
For this type of problems (e.g., Boussinesq problem in Sect. 7), the shear stress is specified by

σzr = − z

1 − 2ν

∂3β

∂r∂z2
. (4.13)

The corresponding displacement components are obtained by substituting (4.12) into (4.4), which gives

2μur = −∂A

∂r
, 2μuz = ∂

∂z

[
4(1 − ν)

1 − 2ν
β − A

]
(4.14)

where

A = β + z

1 − 2ν

∂β

∂z
. (4.15)

The normal stresses follow from (4.6), (4.12), and (4.15) and are given by

σrr = − 1

1 − 2ν

[
2ν

1

r

∂β

∂r
+ ∂

∂z

(
z

∂2β

∂r2

)]
,

σθθ = − 1

1 − 2ν

[
2ν

∂2β

∂r2
+ 1

r

∂

∂z

(
z

∂β

∂r

)]
,

σzz = 1

1 − 2ν

(
∂2β

∂z2
− z

∂3β

∂z3

)
.

(4.16)

Therefore, if (4.12) holds, all displacement and stress components are expressed in terms of the single function
β = β(r, z). See also a related analysis in [17,19].

In a few problems (e.g, a center of dilatation, a doublet of dilatation/compression centers, a line of dilatation
centers), Love’s potential turns out to be harmonic (∇2� = 0). In this case, from (4.9) and (4.10), it follows
that B = 0 and β = A = ∂�/∂z, while the displacement and stress expressions (4.4) and (4.5) simplify to
(3.8) and (3.9) of Sect. 3, with ω = −β (Lamé’s potential).
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4.3 Tabular summary of potentials for axisymmetric 3D elasticity with bz = b

To ease the subsequent developments and the comparison of the derived results, we tabulate in this Section the
definitions of the utilized potentials for the three-dimensional axisymmetric elasticity problems in the presence
of body force bz = b, and the corresponding displacement and stress expressions.

Love’s potential: � = �(r, z)

∇4� = − b

1 − ν

2μur = − ∂2�

∂r∂z
, 2μuz = 2(1 − ν)∇2� − ∂2�

∂z2

σrr = ∂

∂z

(
ν∇2� − ∂2�

∂r2

)
, σθθ = ∂

∂z

(
ν∇2� − 1

r

∂�

∂r

)

σzz = ∂

∂z

[
(2 − ν)∇2� − ∂2�

∂z2

]
, σr z = ∂

∂r

[
(1 − ν)∇2� − ∂2�

∂z2

]

(4.17)

Boussinesq’s potentials: B = B(r, z) and β = β(r, z)

∇2B = −2b , ∇2β = − zb

2(1 − ν)

2μur = −∂A

∂r
, 2μuz = B − ∂A

∂z

σrr = −∂2A

∂r2
+ ν

2(1 − ν)

∂B

∂z

σθθ = −1

r

∂A

∂r
+ ν

2(1 − ν)

∂B

∂z

σzz = −∂2A

∂z2
+ 2 − ν

2(1 − ν)

∂B

∂z

σzr = 1

2

∂B

∂r
− ∂2A

∂r∂z
, A = β + zB

4(1 − ν)

(4.18)

5 Kelvin problem: concentrated force in an infinite space

Figure 1a shows the concentrated force P in the interior of an infinitely extended solid. The resulting stress
and displacement fields were originally determined by Lord Kelvin [20]. The problem is of great importance
because its solution provides the influence functions (Green’s functions) for the three-dimensional Navier
equations of elasticity and the stress and displacement fields in an infinite medium under other types of loading
[21].

By placing the coordinate origin at the point of application of the force, Love’s potential� can be assumed
to be of the form

� = cρ ,
(∇2� = 2c/ρ , ∇4� = 0

)
, (5.1)

where c is a constant to be determined in the sequel, and ρ2 = r2 + z2. By substitution of (5.1) into (3.6), the
stress components are found to be

σrr = c

[
(1 − 2ν)

z

ρ3 − 3
r2z

ρ5

]
, σθθ = c(1 − 2ν)

z

ρ3 ,

σzz = −c

[
(1 − 2ν)

z

ρ3 + 3
z3

ρ5

]
, σzr = −c

[
(1 − 2ν)

r

ρ3 + 3
r z2

ρ5

]
.

(5.2)

The corresponding displacement components are, from (3.4),

ur = c

2μ

r z

ρ3 , uz = c

2μ

[
4(1 − ν)

1

ρ
− r2

ρ3

]
. (5.3)
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(b)(a)

Fig. 1 a A concentrated force P along the z axis in the interior of an infinitely extended solid. Shown are the rectangular (x, y, z)
and cylindrical (r, θ, z) coordinates. The spherical radius ρ = (r2 + z2)1/2 is at an angle φ from the cylindrical radius r . b A
lower portion of the infinite solid from part (a). The boundary z = 0 is under the concentrated force P/2 and the shear stress
distribution σzr ∼ 1/r2

The constant c can be determined by imposing the integral equilibrium condition∫ ∞

0
σzz(r, z > 0)2πr dr = − P

2
, (5.4)

which follows because the two halves of the space (z ≥ 0 and z ≤ 0) each carry one-half of the total force P .
The substitution of the expression for σzz(r, z) from (5.2) into (5.4) and integration gives

c = P

8π(1 − ν)
. (5.5)

The traction components in the mid-plane z = 0 (Fig. 1b) are

σzr (r, z = 0) = − (1 − 2ν)P

8π(1 − ν)

1

r2
= −c∗

2

1

r2
, σzz(r 
= 0, z = 0) = 0 , (5.6)

where

c∗ = (1 − 2ν)P

4π(1 − ν)
= 2(1 − 2ν)c . (5.7)

5.1 Treating P as a body force

If P is considered to be a concentrated body force, then by using the Dirac delta function one can write
b = Pδ(z), and the governing equation (3.5) for Love’s potential becomes

∇4� = − P

1 − ν
δ(z) . (5.8)

The fundamental (particular) solution to this non-homogeneous biharmonic equation is

� = P

1 − ν

ρ

8π
. (5.9)

This follows because the fundamental solution to Poisson’s equation ∇2g = −δ(ρ) is g = 1/(4πρ), e.g.,
[22,23]. Thus, by writing g = ∇2 f , so that ∇4 f = ∇2g = −δ(ρ), it follows by integration that f = ρ/(8π).
Indeed,

∇2 f = ∂2 f

∂ρ2 + 2

ρ

∂ f

∂ρ
= 1

4πρ
⇒ f = ρ

8π
. (5.10)
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In the derivation, we have assumed a spherical symmetry of f = f (ρ), based on the rotation invariance of
the Laplacian operator. Expression (5.9), with P = 1, defines the influence function (Green’s function) for the
biharmonic equation (3.5).

5.2 Solution of the Kelvin problem by using Boussinesq’s potentials

The Boussinesq’s potentials for the Kelvin problem can be deduced by substituting (5.1) into (4.9), and are
given by

B = P

2π

1

ρ
, β = 0 . (5.11)

The expression for B also follows as a fundamental solution to Poisson’s equation for B listed in (4.3), if the
body force is taken to be b = Pδ(z), i.e.,

∇2B = −2Pδ(z) ⇒ B = 2P
1

4πρ
. (5.12)

If the coordinate origin is not at the point of the application of the force P , but at a distance h above it,
then

� = cρ1 , B = 4(1 − ν)c
1

ρ1
, β = −c

h

ρ1
(5.13)

where ρ2
1 = r2 + (z − h)2 and c = P/[8π(1 − ν)]. Expressions (5.13) will be used in Sect. 8.1 to determine

Boussinesq’s potentials for the Mindlin problem of the concentrated force in the interior of a half-space.

6 Doublet of forces, center of dilatation, doublet of dilatation–compression centers, and a line of
centers of dilatation

In this Section, we review the solutions for the elastic fields in an infinite solid produced by a doublet of forces,
a center of dilatation, a doublet of dilatation–compression centers, and a line of centers of dilatation. These
elastic fields are used in the derivation of the solutions to the Boussinesq’s and Mindlin problems, considered
in the subsequent Sects. 7 and 8.

6.1 Doublet of forces

Figure 2a shows a doublet of opposite forces P along the z axis at a small distance d from each other [1,6].
The corresponding potential function can be generated from

�(r, z) = �K(r, z − d/2) − �K(r, z + d/2) = −∂�K

∂z
d , �K(r, z) = cρ (6.1)

where �K is the potential function of the Kelvin problem. This gives

�(r, z) = −cd
z

ρ
, c = P

8π(1 − ν)
. (6.2)

The product cd is referred to as the strength of the doublet. The corresponding stresses are obtained by
substituting (6.2) into (3.6),

σrr = cd

[
(1 + ν)

2

ρ3 − 6ν
z2

ρ5
− 15

r2z2

ρ7

]
,

σθθ = (1 − 2ν)cd

(
2

ρ3 − 3
r2

ρ5

)
,

σzz = cd

[
(1 − 2ν)

1

ρ3 + 6(1 + ν)
z2

ρ5
− 15

z4

ρ7

]
,

σzr = 3cd

[
(1 + 2ν)

r z

ρ5
− 5

r z3

ρ7

]
.

(6.3)
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(b)(a)

Fig. 2 a A doublet of opposite forces P at a small distance d along the z axis in the interior of an infinitely extended solid. b A
center of dilatation in the interior of an infinitely extended solid made by three orthogonal doublets of forces P at a small distance
d from each other

The displacement expressions are obtained by substituting (6.2) into (3.4),

ur = − cd

2μ

r

ρ3

(
1 − 3

z2

ρ2

)
= cd

2μ

r

ρ3

(
2 − 3

r2

ρ2

)
,

uz = cd

2μ

z

ρ3

(
1 − 4ν + 3

z2

ρ2

)
= cd

2μ

z

ρ3

[
4(1 − ν) − 3

r2

ρ2

]
.

(6.4)

The Boussinesq’s potentials for a doublet of forces are readily found from (4.9) to be

B = 4(1 − ν)cd
z

ρ3 , β = −cd
1

ρ
. (6.5)

6.2 Center of dilatation: three orthogonal doublets of forces

Figure 2b shows a center of dilatation made by three orthogonal doublets of opposite forces P separated at
some small distance d from each other [1,6]. By linearity and symmetry, we conclude from (6.5) that the
corresponding potentials B and β are of the form

B = 4(1 − ν)cd
ρ

ρ3 , β = −3cd
1

ρ
. (6.6)

By substituting (6.6) into the Papkovich–Neuber representation (4.1), the following displacement expression
is obtained:

2μu = c∗d
ρ

ρ3 , c∗ = 2(1 − 2ν)c . (6.7)

The displacement expression in (6.7) can be rewritten as

2μu = −k∗ ∇
(
1

ρ

)
, k∗ = c∗d . (6.8)

If this is compared with (4.1), we recognize an alternative representation of the Papkovich–Neuber potentials,
which is

B = 0 , β = k∗
1

ρ
. (6.9)
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Fig. 3 A doublet of dilatation/compression centers in the interior of an infinitely extended solid at a small distance w above each
other

The product k∗ = c∗d is referred to as the strength of the dilatation center. Thus, in this case the potential β
alone serves as the stress potential, such that

σrr = −∂2β

∂r2
, σθθ = −1

r

∂β

∂r
, σzz = −∂2β

∂z2
, σr z = − ∂2β

∂r∂z
(6.10)

which follows from (4.6), because A = β and ∇2β = 0. The stresses are, therefore,

σrr = k∗
(

1

ρ3 − 3
r2

ρ5

)
, σθθ = k∗

1

ρ3 ,

σzz = k∗
(

1

ρ3 − 3
z2

ρ5

)
, σzr = −3k∗

r z

ρ5
.

(6.11)

This is a purely deviatoric state of stress, because σrr +σθθ +σzz = 0. Thus, interestingly, there is no volumetric
strain at any point in the infinite medium caused by the dilatation center.

Since A = β, we obtain from (4.10) by integration the expression for Love’s potential,

� = k∗ ln(ρ + z) . (6.12)

Thus, in the case of a center of dilatation, the potential � is a harmonic function (∇2� = 0).

6.3 Doublet of dilatation–compression centers

Figure 3 shows a doublet made by a dilatation center at a point (0, w/2) and an opposite compression center,
at a small distance w above the dilatation center [24]. The corresponding Love’s potential can be generated
from

�(r, z) = �DC(r, z − w/2) − �DC(r, z + w/2) = −∂�DC

∂z
w (6.13)

where �DC(r, z) = k∗ ln(ρ + z) denotes the potential function of a single dilatation center, as defined by
(6.12). This gives

�(r, z) = −k
1

ρ
, k = k∗w . (6.14)
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Fig. 4 A line of centers of dilatation of intensity c∗ (per unit length), uniformly distributed in an infinitely extended solid along
the z axis from z = −b to z = a. An arbitrary center of dilatation from the line is specified by the coordinate ζ , while (r, z) are
the coordinates of an arbitrary point of the infinite solid, which is at the distance ρ0 from the considered center of dilatation

The product k = k∗w is the strength of the doublet of dilatation–compression centers. The corresponding
stresses are

σrr = 3k

(
z

ρ5
− 5

zr2

ρ7

)
, σθθ = 3k

z

ρ5
,

σzz = 3k

(
3

z

ρ5
− 5

z3

ρ7

)
, σzr = 3k

(
r

ρ5
− 5

r z2

ρ7

)
.

(6.15)

The stress state is deviatoric, because σrr +σθθ +σzz = 0. Over the plane z = 0, the normal stress σzz vanishes,
while the shear stress is

σzr (r, z = 0) = 3k
1

r4
. (6.16)

Since � in (6.14) is harmonic (∇2� = 0), it follows from (4.9) that the Boussinesq’s potentials are given
by

B = 0 , β = k
z

ρ3 . (6.17)

6.4 A line of centers of dilatation

The lines of centers of dilatation or compression are useful building blocks in the construction of solutions to
other three-dimensional elasticity problems. Figure 4 shows a line of centers of dilatation of specific strength
(intensity) c∗ per unit length. The centers of dilatation are uniformly distributed along the z axis from z = − b
to z = a. The potential function for a center of dilatation of intensity P at the location z = ζ is, by (6.12),

�0(ζ ) = c∗ ln(ρ0 + z − ζ ) , ρ0 =
√
r2 + (z − ζ )2 . (6.18)

The potential function for the entire line of centers of dilatation is obtained by integration,

� =
∫ a

−b
�0(ζ ) dζ = c∗

∫ a

−b
ln

[√
r2 + (z − ζ )2 + z − ζ

]
dζ , (6.19)
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(b)(a)

Fig. 5 a The line of centers of dilatation of intensity c∗ (per unit length), uniformly distributed in an infinitely extended solid
along the z axis from z = −∞ to z = 0. b The lower portion of the solid from part (a). The boundary z = 0 is under the
concentrated force P∗, specified by (6.26), and the shear stress distribution σ

c∗
zr , specified by (6.27)

i.e., upon introducing the integration variable w = z − ζ ,

� = c∗
∫ z+b

z−a
ln

[√
r2 + w2 + w

]
dw = c∗

[
w ln

(√
r2 + w2 + w

)
−

√
r2 + w2

]z+b

z−a
. (6.20)

This gives

�

c∗
= z ln

√
r2 + (z + b)2 + (z + b)

r
+ z ln

√
r2 + (z − a)2 − (z − a)

r

+ b ln
[√

r2 + (z + b)2 + (z + b)
]

+ a ln
[√

r2 + (z − a)2 + (z − a)
]

+
√
r2 + (z − a)2 −

√
r2 + (z + b)2 .

(6.21)

If a = 0 and b → ∞, we obtain the line of centers of dilatations along the negative z axis (Fig. 5a), and,
apart from an immaterial constant term, (6.21) simplifies to [1,25]

� = c∗ [ρ − z ln(ρ + z)] , ρ =
√
r2 + z2 . (6.22)

Note that this form of � is harmonic, i.e., ∇2� = 0. The corresponding stresses are, from (3.6),

σrr = c∗
(

z

ρ3 + z

r2ρ
− 1

r2

)
, σθθ = c∗

(
− z

r2ρ
+ 1

r2

)
,

σzz = −c∗
z

ρ3 , σzr = −c∗
r

ρ3 .

(6.23)

As expected the stress state is purely deviatoric, because σrr + σθθ + σzz = 0.
The presented solution for this line of continuously distributed centers of dilatation will be used in Sect.

7.2 to derive the solution to the Boussinesq problem of the concentrated force orthogonal to the boundary of a
half-space, and in Sect. 8 for theMindlin problem of a vertical concentrated force in the interior of a half-space.
By substituting expression (6.22) for Love’s potential � into (4.9), we obtain the Boussinesq’s potentials for
the line of dislocation centers along the negative z axis,

B = 0 , β = −c∗ ln(ρ + z) , A = β . (6.24)

From (6.23), it follows that σ(r 
= 0, z = 0) = 0, and∫ ∞

0
σzz(r, z ≥ 0)2πr dr = −2πc∗z

∫ ∞

0

r dr

(r2 + z2)3/2
= −2πc∗ . (6.25)
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Thus, if we consider a free-body diagram of the lower half (z ≥ 0) of the entire space with the line of centers
of dilatation along the negative z axis, the boundary of the so-obtained half-space (z = 0, Fig. 5b) is under a
compressive point force of magnitude

P∗ = 2πc∗ , (6.26)

and the shear stress distribution is

σzr (r, z = 0) = −c∗
1

r2
. (6.27)

Expressions (6.26) and (6.27) will be used in Sect. 7.2 to derive the solution to the Boussinesq problem of a
vertical concentrated force at the boundary of a half-space by an appropriate superposition method.

If a → ∞ and b → ∞, we obtain the line of centers of dilatations all along the entire z axis. In this case,
(6.21) gives

� = −2c∗z ln r . (6.28)

The corresponding stresses are

σrr = −2c∗
r2

, σθθ = 2c∗
r2

, σzz = σzr = 0 , (6.29)

while the displacements are ur = (c∗/μ)r−1 and uz = 0.
It turns out that the solution for a pressurized circular cylindrical hole in an infinite medium (or in a half-

space, because σzz = σzr = 0) can be deduced from the derived solution for an infinitely long line of centers
of dilatation by replacing the constant 2c∗ with another constant, say k. This constant can be determined from
the boundary condition σrr (r = a) = −p, where p is the applied pressure over the surface of the hole of
radius a. This gives k = pa2, and thus, σrr = −pa2/r2. The corresponding hoop stress is tensile and equal
to σθθ = pa2/r2. Both stresses vanish as r → ∞.

7 Boussinesq problem: vertical concentrated force at the boundary of a half-space

Figure 6 shows a half-space z ≥ 0 under the concentrated compressive force P orthogonal to the free surface
z = 0. This problem is of engineering importance in the analysis of contact and foundation problems [26–30].
The determination of the corresponding stress and displacement fields was originally made by Boussinesq
[31]. The problem with the concentrated force tangential to the boundary of a half-space was solved by Cerruti
[32], but since this is not an axially symmetric problem, it is not discussed in this review (see, for example,
[18]).

Love’s potential function for the three-dimensional Boussinesq problem is assumed, by inspection, to be
of the form

� = c1ρ + c2z ln(ρ + z) , (7.1)

where c1 and c2 are constants to be determined. This form of � is biharmonic, because ∇2� is harmonic, i.e.,

∇2� = 2(c1 + c2)
1

ρ
, ∇4� = 0 . (7.2)

By substituting (7.1) into (3.6), the stress components are found to be

σrr = [(1 − 2ν)c1 − 2νc2]
z

ρ3 − 3(c1 + c2)
r2z

ρ5
+ c2

ρ − z

r2ρ
,

σθθ = (1 − 2ν)(c1 + c2)
z

ρ3 − c2
ρ − z

r2ρ
,

σzz = − [(1 − 2ν)c1 − 2νc2]
z

ρ3 − 3(c1 + c2)
z3

ρ5
,

σzr = − [(1 − 2ν)c1 − 2νc2]
r

ρ3 − 3(c1 + c2)
r z2

ρ5
.

(7.3)
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Fig. 6 A compressive concentrated force P orthogonal to the boundary z = 0 of a half-space

To determine the constants c1 and c2, the conditions are imposed that the shear stress σzr over the boundary of
the half-space (z = 0, ρ = r ) must vanish and that the integral of the normal stress σzz must be equal to −P .
The normal stress σzz in (7.3) clearly vanishes for z = 0, except at the point of the application of the force,
where it is singular.

The vanishing shear stress condition gives

(1 − 2ν)c1 − 2νc2 = 0 . (7.4)

The integral condition for the normal stress is
∫ ∞

0
σzz(r, z ≥ 0)2πr dr = −P . (7.5)

Upon substituting the expression for σzz from (7.3) into (7.5) and integrating, we obtain

2(1 − ν)c1 + (1 − 2ν)c2 = P

2π
. (7.6)

By solving (7.4) and (7.6) for c1 and c2, it follows that

c1 = ν
P

π
, c2 = (1 − 2ν)

P

2π
, c1 + c2 = P

2π
. (7.7)

With the so-determined constants c1 and c2, the potential function � in (7.1) becomes

� = P

2π
[2νρ + (1 − 2ν)z ln(ρ + z)] . (7.8)

The corresponding stress components, from (3.6), are (e.g., [1,2])

σrr = P

2π

[
(1 − 2ν)

ρ − z

r2ρ
− 3

r2z

ρ5

]
, σθθ = P

2π
(1 − 2ν)

(
z

ρ3 − ρ − z

r2ρ

)
,

σzz = −3P

2π

z3

ρ5
, σzr = −3P

2π

r z2

ρ5
.

(7.9)

The displacement components are obtained by substituting (7.8) into (3.4). The results are

ur = P

4πμ

[
r z

ρ3 − (1 − 2ν)
ρ − z

rρ

]
, uz = P

4πμ

[
2(1 − ν)

1

ρ
+ z2

ρ3

]
. (7.10)

The two-dimensional version of the problem was solved by Flamant [33]. The plane strain version of
Flamant’s solution can be deduced by integration using Boussinesq’s solution as the Green’s function, while
the plane stress solution follows from the plane strain solution by the usual change of elastic constants ν →
ν/(1 + ν) and μ → μ.
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7.1 Solution by using Boussinesq’s potentials

Having the expression (7.8) for�, the expressions for Boussinesq’s potentials B and β can be deduced directly
from (4.9), but it is appealing to establish them independently of �. To do so, one could proceed by assuming
from the outset that the harmonic functions B and β are of the form

B = k1
ρ

, β = k2 ln(ρ + z) , (7.11)

and then determine the constants k1 and k2 from the boundary and the integral equilibrium conditions

σzr (r, z = 0) = 0 ,

∫ ∞

0
σzz(r, z ≥ 0)2πr dr = −P . (7.12)

This would give

k1 = 2(1 − ν)P

π
, k2 = (1 − 2ν)P

2π
. (7.13)

However, we choose to take an alternative route, by using the results from Sect. 4.2. Since the boundary
z = 0 is free from shear traction, σzr (r, z = 0) = 0, we adopt the assumption (4.12), i.e.,

B = 4(1 − ν)

1 − 2ν

∂β

∂z
, (7.14)

and express all displacement and stress components in terms of the single harmonic function β = β(r, z). If
this function is taken to be

β = k ln(ρ + z) , (7.15)

the normal stress σzz , from (4.16), becomes

σzz = − 3k

1 − 2ν

z3

ρ5
. (7.16)

By substituting (7.16) into the integral equilibrium condition in (7.12), it follows that

k = (1 − 2ν)P

2π
, (7.17)

which completes the solution. See also the derivations in [34,35].

7.2 Boussinesq problem as superposition of Kelvin problem and a line of CD

Another approach to derive the solution to the Boussinesq problem is to use the superposition of the solutions
to the Kelvin problem and the problem of a line of centers of dilatation (CD) in an infinite medium (e.g.,
[1,25]). In this Section, we review this derivation by taking a slightly different path from that followed in
[1,25].

Figure 7a shows an infinite medium with the concentrated force Q at the coordinate origin. The free-body
diagram of the lower half of this infinite medium is shown in Fig. 7b. The plane z = 0 is under the concentrated
force Q/2 and the shear stress distribution

σ Q
zr (r, z = 0) = − (1 − 2ν)Q

8π(1 − ν)

1

r2
. (7.18)

This follows from the Kelvin problem analysis in Sect. 5 and expression (5.6).
Figure 7c shows an infinite space under uniformly distributed centers of dilatation of intensity q∗ along

the negative z axis. The free-body diagram of the lower half of this space (z ≥ 0) is shown in Fig. 7d. The
boundary z = 0 is under the concentrated force Q∗ and the shear stress distribution σ

q∗
zr , given by

Q∗ = 2πq∗ , σ
q∗
zr (r, z = 0) = −q∗

1

r2
, (7.19)
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(b)(a)

(d)(c)

Fig. 7 a The concentrated force Q in the interior of an infinitely extended solid. b The lower portion of the solid from part (a).
The boundary z = 0 is under the concentrated force Q/2 and the shear stress distribution σ

Q
zr ∼ 1/r2. c The line of centers of

dilatation of intensity q∗ (per unit length), uniformly distributed in an infinitely extended solid along the z axis from z = −∞ to
z = 0. d A lower portion of the infinite solid from part (c). The boundary z = 0 is under the concentrated force Q∗ = 2πq∗ and
the shear stress distribution σ

q∗
zr specified by (7.19). The sum of problems in parts (b, d) provides the solution to the Boussinesq

problem with the concentrated force P , provided that Q∗ + Q/2 = P and σ
Q
zr (r, 0) + σ

q∗
zr (r, 0) = 0

as shown in Sect. 6.4; see expressions (6.26) and (6.27).
To solve the Boussinesq problem, we determine Z and Q in such a way that the total shear stress over the

plane z = 0 vanishes, i.e.,

σzr (r, 0) = σ Q
zr (r, 0) + σ

q∗
zr (r, 0) = 0 ⇒ (1 − 2ν)Q

8π(1 − ν)
+ q∗ = 0 , (7.20)

and that the total concentrated force over the boundary (z = 0) of the half-space is equal to P , i.e.,

Q

2
+ Q∗ = P , Q∗ = 2πq∗ . (7.21)

By solving the algebraic equations (7.20) and (7.21) for Q and q∗, we obtain

Q = 4(1 − ν)P , q∗ = − (1 − 2ν)P

2π
. (7.22)

The value of q∗ is negative, which means that the dilatation centers are actually the centers of compression. It
also follows that Q∗ = −(1 − 2ν)P .
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(b)(a)

Fig. 8 a The vertical concentrated force P applied in the interior of a semi-infinite solid (z ≥ 0), at a distance h beneath the
free surface z = 0. b The potential function for the problem in part (a) can be obtained as the sum of the potential function for
the force P at a point (0, h) in an infinite solid, the potential function corresponding to the line of centers of compression of
an appropriate intensity extending along the negative z axis from the image point (0, − h) to negative infinity, and the potential
functions corresponding to four additional sources of strain located at the image point (0, − h): the concentrated force, the tensile
doublet of forces, the center of compression, and the compression/dilatation doublet. The strengths of these nuclei of strain are
specified in the text

8 Mindlin problem: force at a point in the interior of a half-space

Figure 8a shows a half-space loaded in is interior by the concentrated force P orthogonal to the traction-free
surface z = 0, at a distance h below it. The stress and displacement fields for this problem were originally
determined by Mindlin [36]. They are of importance because they represent Green’s functions for the stress
and displacement fields in semi-infinite media under other types of loadings [21]. To satisfy the traction-free
boundary condition at z = 0 and the condition of vanishing stresses at z → ∞, Mindlin recognized by
inspection that the potential � for the problem in Fig. 8a can be obtained as the sum of Love’s potential (cρ1)
for the force P at point (0, h) in an infinite medium (Kelvin problem), Love’s potential corresponding to the
line of centers of compression of an appropriate strength (k2) extending along the negative z axis from the
image point (0,− h) to negative infinity, and the potential functions corresponding to four additional sources
(nuclei) of strain in the infinite medium, located at the same image point (Fig. 8b): a concentrated force (whose
potential is k1ρ2), a center of compression of strength k3h, a tensile doublet of forces of strength k4h, and a
compression/dilatation doublet of strength k5h2 (see Sect. 6), where the constants k1 to k5 are appropriately
determined, as described below. Thus, it is assumed that

� = k0ρ1 + k1ρ2 − k2[ρ2 − (z + h) ln(ρ2 + z + h)] − k3h ln(ρ2 + z + h)

− k4h
z + h

ρ2
+ k5h

2 1

ρ2
, k0 = c = P

8π(1 − ν)

(8.1)

where

ρ2
1 = r2 + (z − h)2 , ρ2

2 = r2 + (z + h)2 . (8.2)

The constant k0 = c is as specified in (8.1), because in the limit h → ∞ the potential function in (8.1) must
reduce to the potential function of the Kelvin problem (� = cρ1). The potential function � = cρ1 can also be
interpreted as a particular solution to the partial differential equation ∇4� = −Pδ(z − h)/(1 − ν), in which
the body force is taken to be b = Pδ(z − h).

To determine the constants k1 to k5, we choose a somewhat shorter path than that used by Mindlin [36],
and specify the constants k1 and k2 first, by requiring that (8.1) reduces to Love’s potential function of the
Boussinesq problem in the limit h → 0, i.e.,

cρ + k1ρ + k2[z ln(ρ2 + z) − ρ] = P

2π
[2νρ + (1 − 2ν)z ln(ρ + z)] . (8.3)
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This gives

k1 = (3 − 4ν)c , k2 = 4(1 − ν)(1 − 2ν)c . (8.4)

The remaining constants k3, k4, and k5 are then determined from the conditions that the boundary of the
half-space is traction-free,

σzr (r, z = 0) = 0 , σzz(r, z = 0) = 0 , (8.5)

which yields the needed algebraic equations for k3, k4, and k5, as shown below. The integral condition of
equilibrium,

∫ ∞

0
σzz(r, z > h)2πr dr = −P , (8.6)

is identically satisfied, because we have already imposed the condition that the problem reduces to the Boussi-
nesq problem in the limit h → 0.

By using the stress expressions from Sect. 6, the traction components over the plane z = 0, corresponding
to (8.1), are obtained from

h2σzr = −(k0 + k1)r̄

[
(1 − 2ν)

1

ρ̄3
0

+ 3
1

ρ̄5
0

]
+ k2r̄

1

ρ̄3
0

+ 3k3r̄
1

ρ̄5
0

+ 3k4r̄

[
(1 + 2ν)

1

ρ̄5
0

− 5
1

ρ̄7
0

]
− 3k5r̄

(
1

ρ̄5
0

− 5
1

ρ̄7
0

)
, (8.7)

h2σzz = (k0 − k1)

[
(1 − 2ν)

1

ρ̄3
0

+ 3
1

ρ̄5
0

]
+ k2

1

ρ̄3
0

− k3

(
1

ρ̄3
0

− 3
1

ρ̄5
0

)

+ k4

[
(1 − 2ν)

1

ρ̄3
0

+ 6(1 + ν)
1

ρ̄5
0

− 15
1

ρ̄7
0

]
− 3k5

(
3

1

ρ̄5
0

− 5
1

ρ̄7
0

)
(8.8)

where r̄ = r/h and ρ̄2
0 = 1 + r̄2 are conveniently introduced non-dimensional quantities. By using (8.7) and

(8.8) to cast the conditions (8.5), and upon making the coefficients in front of the terms of the order of 1/ρ̄3
0 ,

1/ρ̄5
0 , and 1/ρ̄

7
0 equal to zero, the following equations are obtained:

(1 − 2ν)k1 − k2 = −(1 − 2ν)c ,

k1 − k3 − (1 + 2ν)k4 + k5 = −c ,

(1 − 2ν)k1 − k2 + k3 − (1 − 2ν)k4 = (1 − 2ν)c ,

k1 − k3 − 2(1 + ν)k4 + 3k5 = c ,

k4 − k5 = 0 .

(8.9)

These are five linear algebraic equations for the five unknowns k1 to k5. When expressions (8.4) for k1 and k2
are substituted into (8.9), these equations reduce to k5 = k4, and

k3 + 2νk4 = 4(1 − ν)c ,

k3 − (1 − 2ν)k4 = 2(1 − 2ν)c .
(8.10)

Solving the system of algebraic equations (8.10), we find the remaining unknown constants to be

k3 = 4(1 − 2ν)c , k4 = 2c , k5 = 2c . (8.11)

Consequently, Love’s potential (8.1) becomes

� = c

{
ρ1 + [8ν(1 − ν) − 1]ρ2 + 4(1 − 2ν)[(1 − ν)z − νh] ln(ρ2 + z + h) − 2h

z

ρ2

}
, (8.12)



On the Kelvin, Boussinesq, and Mindlin problems 173

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

k0
k1
k2
k3
k4
k5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
-15
-12
-9
-6
-3
0
3
6
9

12
15

k0
k1
k2
k3
k4
k5

(b)(a)

Fig. 9 The variation of the a normalized shear stress σ̄
(i)
zr (r, 0) and b normalized normal stress σ̄

(i)
zz (r, 0) with r̄ = r/h along the

plane z = 0 for each of the nuclei of strain (i = 0, 1, 2, . . . , 5) used in (8.1). The stresses are normalized by c/h2. The utilized
value of Poisson’s ratio is ν = 1/3. The sums of the six shown shear stresses and the six shown normal stresses identically vanish
(traction-free boundary z = 0)

which is Mindlin’s [36] expression (8). The complete stress and displacement expressions are also listed in
Mindlin’s paper. Their representations in the coordinate system with the origin at the image point, at a distance
h above the free surface, are listed in [27].

In retrospect, it may be noted that Mindlin’s construction of the superposition of the nuclei of strain in
(8.1) was guided by the physical intuition and by the observation that the traction components σzr and σzz
over the plane z = 0 for each utilized nucleus of strain in (8.1) are linear combinations of some or all of the
terms proportional to 1/ρ3

0 , 1/ρ
5
0 and 1/ρ7

0 , where ρ2
0 = r2 + h2 (see expressions (8.7) and (8.8), and Fig. 9).

Thus, making the coefficients in front of these terms equal to zero in the expressions for σzr (r, 0) and σzz(r, 0)
provides enough equations to determine the needed constants appearing in (8.1).

The two-dimensional version of Mindln’s problem was solved by Melan [37]. As pointed out by Mindlin,
the plane strain version of Melan’s solution can be deduced by integration using Mindlin’s solution as Green’s
function, while the plane stress solution follows from the plane strain solution by the usual change of elastic
constants. Mindlin [36] also determined the displacement and stress fields in the case of the concentrated force
parallel to the traction-free boundary of the half-space, thereby extending the Cerruti [32] solution for the
concentrated force tangential to the boundary of a half-space.

Figure 9 shows the variation of the normalized shear and normal stress components σ̄
(i)
zr (r, 0) and σ̄

(i)
zz (r, 0)

with r̄ = r/h along the plane z = 0 for each of the nuclei of strain (i = 0, 1, 2, . . . , 5) embedded in (8.1);
their sums are equal to zero (traction-free boundary z = 0). The stresses are normalized by c/h2, and the value
of Poisson’s ratio was taken to be ν = 1/3. These plots are obtained by using expressions (8.7) and (8.8).
Figure 10 shows the variation of the corresponding normalized normal stresses σ̄rr (r, 0) and σ̄θθ (r, 0) along
the traction-free boundary in the case ν = 1/3 and ν = 1/2 . The latter plots are obtained from the following
expressions:

h2σrr = (k1 − k0)

[
(1 − 2ν)

1

ρ̄3
0

− 3
r̄2

ρ̄5
0

]
− k2

(
1

ρ̄3
0

+ 1

r̄2ρ̄0
− 1

r̄2

)
− k3

(
1

ρ̄3
0

− 3
r̄2

ρ̄5
0

)

+ k4

[
(1 + ν)

2

ρ̄3
0

− 6ν
1

ρ̄5
0

− 15
r̄2

ρ̄7
0

]
− 3k5

(
1

ρ̄5
0

− 5
r̄2

ρ̄7
0

)
, (8.13)

h2σθθ = (k1 − k0)(1 − 2ν)
1

ρ̄3
0

− k2

(
1

r̄2
− 1

r̄2ρ̄0

)
− k3

1

ρ̄3
0

+ k4(1 − 2ν)

(
2

ρ̄3
0

− 3
r̄2

ρ̄5
0

)
− 3k5

1

ρ̄5
0

. (8.14)

For incompressible materials (ν = 1/2), the constants are k1 = c, k2 = k3 = 0, k4 = k5 = 2c. Thus, in
this case the solution is obtained by the superposition of the infinite-medium solutions for the force P at the
points (0,± h), the doublet of tensile forces of strength 2ch at the image point (0,− h), and the doublet of
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Fig. 10 The variations of the normalized radial stress σ̄rr (r, 0) and the normalized hoop stress σ̄θθ (r, 0) with r̄ = r/h along the
traction-free plane z = 0, according to (8.13) and (8.14). The normalizing stress factor is c/h2. The value of Poisson’s ratio used
in part (a) is ν = 1/3, and in part (b) ν = 1/2

compression/dilatation centers of strength 2ch2 at the image point (0, − h). The potential function in (8.12)
accordingly simplifies to

� = c

(
ρ1 + ρ2 − 2hz

ρ2

)
. (8.15)

The corresponding normal stress σzz along the z axis (r = 0) is

σzz(0, z) = −3c

[
sign(z − h)

(z − h)2
+ 1

(z + h)2
+ 4hz

(z + h)4

]
. (8.16)

8.1 Solution of the Mindlin problem by using Boussinesq’s potentials

If the concentrated force is treated as the body force, the governing equations for the Boussinesq’s potentials
are

∇2B = −2Pδ(z − h) , ∇2β = P

2(1 − ν)
zδ(z − h) . (8.17)

The solutions to these equations can be sought as the sum of their particular and complementary parts. The
particular solutions to Poisson-type partial differential equations in (8.17) are the well-known fundamental
solutions

Bp = 2P
1

4πρ1
, βp = − P

2(1 − ν)

h

4πρ1
. (8.18)

The expressions in (8.18) can be physically interpreted as the Boussinesq’s potentials for the Kelvin problem
of a force in an infinite solid, expressed in the coordinate system with the origin at a distance h above the point
of the application of the force; see (5.13).

The complementary solutions are constructed by using two basic harmonic functions ( f and g), which
give rise to stresses and displacements that vanish at infinity, i.e.,

∇2Bh = 0 : Bh = c1g + c2h
∂g

∂z
, g = 1

ρ2
≡ ∂ f

∂z
,

∇2βh = 0 : βh = c3 f + c4h
∂ f

∂z
, f = ln(ρ2 + z + h) .

(8.19)
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Thus, the complete solutions of equations (8.17) are sought in the form

B = P

2π

1

ρ1
+ c1

1

ρ2
− c2h

z + h

ρ3
2

,

β = − P

8π(1 − ν)

h

ρ1
+ c3 ln(ρ2 + z + h) + c4h

1

ρ2
,

(8.20)

provided that the constants c1, c2, c3, and c4 can be determined to satisfy the traction-free boundary conditions
at z = 0.

By using expressions (4.6.1) for the stress components, we can write

σzr = 1 − 2ν

4(1 − ν)

∂B

∂r
− ∂2β

∂r∂z
− z

4(1 − ν)

∂2B

∂r∂z
,

σzz = −∂2β

∂z2
+ 1

2

∂B

∂z
− z

4(1 − ν)

∂2B

∂z2
.

(8.21)

Upon substituting (8.20) into (8.21), the condition σzr (r, z = 0) = 0 gives

c3 − 1 − 2ν

4(1 − ν)
c1 = (1 − 2ν)P

8π(1 − ν)
, c4 − 1 − 2ν

4(1 − ν)
c2 = − P

8π(1 − ν)
. (8.22)

Similarly, the boundary condition σzz(r, z = 0) = 0 gives

c4 − 1

2
c2 = P

8π(1 − ν)
, c3 − 1

2
c1 = − P

4π
. (8.23)

After solving the system of four algebraic equations (8.22) and (8.23), the required constants are found to be

c1 = (3 − 4ν)P

2π
, c2 = − P

π
, c3 = 2(1 − 2ν)P

4π
, c4 = − (3 − 4ν)P

8π(1 − ν)
. (8.24)

Thus, the Boussinesq’s potentials (8.20) take the form

B = P

2π

[
1

ρ1
+ (3 − 4ν)

1

ρ2
+ 2h

z + h

ρ3
2

]
,

β = − P

8π(1 − ν)

[
h

ρ1
+ (3 − 4ν)

h

ρ2
− 4(1 − ν)(1 − 2ν) ln(ρ2 + z + h)

]
.

(8.25)

These expressions are equivalent toMindlin’s [13] expressions (39) and (40),who derived themmore rigorously
by using the Papkovich–Neuber potentials and by exploring the boundary conditions in conjunction with
Green’s integral formula. In the limit h → 0, expressions (8.16) reduce to (7.11) and (7.13) for the Boussinesq
problem of the concentrated force at the boundary of a half-space. We also note that the constants c1 to c4 are
related to constants k1 to k4, appearing in (8.1), by

c1 = 4(1 − ν)k1 , c2 = −4(1 − ν)k4 , c3 = k2 , c4 = k1 + k2 − k3 . (8.26)

Alternative derivations of (8.25) were constructed in [38,39]. The solution by using Fourier transforms
was presented in [40].
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(b)(a)

Fig. 11 a The center of dilatation of strength at a point (0, h) beneath the free surface of a half-space, whose elastic constants
are (μ, ν). b A pressurized spherical hole beneath the free surface of a half-space. The radius of the hole is a and its center is at
the distance h from the free surface z = 0. The applied pressure is p

8.2 Center of dilatation at a point in the interior of half-space

The structures of Love’s potential for a doublet of forces, a dilatation center, and other nuclei of strain beneath
the free surface of a half-space were listed in [24]. For example, Love’s potential for the center of dilatation
of strength k∗ at a point (0, h) (Fig. 11a) is

� = k∗
[
ln(ρ1 + z − h) + (1 − 4ν) ln(ρ2 + z + h) + 2z

ρ2

]
, k∗ = (1 − 2ν)Pd

4π(1 − ν)
. (8.27)

The corresponding Boussinesq’s potentials are

B = −8(1 − ν)k∗
z + h

ρ3
2

, β = k∗
[
1

ρ1
+ (3 − 4ν)

1

ρ2

]
. (8.28)

The displacements and stresses associated with (8.27) or (8.28) follow from (4.4) and (4.6). For example, the
displacement components are

ur = k∗
2μ

[
r

ρ3
1

+ (3 − 4ν)
r

ρ3
2

− 6
r z(z + h)

ρ5
2

]
,

uz = k∗
2μ

[
z − h

ρ3
1

− (1 − 4ν)z + (3 − 4ν)h

ρ3
2

− 6
z(z + h)2

ρ5
2

]
.

(8.29)

Expressions analogous to (8.29) were used in [41] to analyze the displacement and stress fields around
a spherical inclusion beneath the free surface of a half-space; see their expression preceding Fig. 3 on page
932, and also [42]. The determination of the displacement and stress fields around a pressurized spherical
hole beneath the free surface of the half-space (Fig. 11b), which is of importance for example in geome-
chanics (magma-chamber problem), requires the use of infinite series or numerical methods [43–45]]. The
two-dimensional version of a pressurized cylindrical hole beneath the free surface was solved by Jefferey [46].
The stress and displacement fields around a cylindrical hole beneath the free surface of a half-space under
the gravity load (the so-called tunnel problem) were originally derived by Mindlin [47], and have found since
many important applications in rock mechanics and geomechanics [27–29].

9 Conclusions

We have reviewed in this paper the derivation of the solutions to three fundamental three-dimensional axisym-
metric elasticity problems: the Kelvin problem of a concentrated force in an infinite space, the Boussinesq
problem of a concentrated force orthogonal to the boundary of a half-space, and the Mindlin problem of a
vertical concentrated force in the interior of a half-space. Two approaches were used in the derivations, one
based on the Galerkin method and Love’s potential function, and the other based on the Papkovich–Neuber
displacement representation and Boussinesq’s potential functions. Three different procedures were used to
construct the solution to the Boussinesq problem, which are related to each other, yet are each conceptually
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appealing on their own. In the construction of the solution of the Mindlin problem, the solutions of the gov-
erning differential equations for the utilized potential functions are expressed as the sums of their particular
and complementary parts. The particular parts follow from the solution of the Kelvin problem. The derivation
of the complementary parts is simplified by imposing at the early stage of the analysis that the solution of the
Mindlin problemmust reduce to the solution of the Boussinesq problem in an appropriate limit. The introduced
simplifications in the derivations may be appealing for the coverage of this important topic in an introductory
graduate course of solid mechanics.

Acknowledgements Helpful comments and suggestions by two anonymous reviewers are gratefully acknowledged.

References

1. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)
2. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)
3. Lubarda, M.V., Lubarda, V.A.: On the compatibility equations for three-dimensional axisymmetric problems. Math. Mech.

Solids, accepted (2019)
4. Lubarda, M.V., Lubarda, V.A.: Intermediate Solid Mechanics. Cambridge University Press, New York (2020, in press)
5. Galerkin, B.: Contribution à la solution générale du probléme de la théorie de l’élasticité dans le cas de trois dimensions.

Comptes Rend. Acad. Sci. Paris 190, 1047–1048 (1930)
6. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)
7. Papkovich, P.F.: An expression for a general integral of the equations of the theory of elasticity in terms of harmonic functions.

Izvest. Akad. Nauk SSSR Phys. Math. Ser. 10, 1425–1435 (1932)
8. Neuber, H.: Kerbspannungslehre. Springer, Berlin (1937); also: ZAMM 14, 203 (1934)
9. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)

10. Saada, A.S.: Elasticity: Theory and Applications. Pergamon Press, New York (1974)
11. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Academic Press, Amsterdam (2014)
12. Mindlin, R.D.: Note on the Galerkin and Papkovitch stress functions. Bull. Am. Math. Soc. 42, 373–376 (1936)
13. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. In: Proceedings of the First Midwestern Conference

on Solid Mechanics. Urbana, Illinois, pp. 56–59 (1953)
14. Lurie, A.I.: Three-Dimensional Problems of the Theory of Elasticity (translated from Russian edition by D.B. McVean).

Interscience Publishers, New York (1964)
15. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Upper Saddle River (1969)
16. Hetnarski, R.B., Ignaczak, J.: The Mathematical Theory of Elasticity, 2nd edn. CRC Press, Boca Raton (2011)
17. Barber, J.R.: Elasticity, 3 rev. edn. Springer, Dordrecht (2010)
18. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2010)
19. Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, London (1954)
20. Thompson,W.: (Lord Kelvin): Note on the integration of the equations of equilibrium of an elastic solid. Cambr. Dubl. Math.

J. 3, 87–89 (1848)
21. Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer Academic Publishers, Dordrecht (2003)
22. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon Press, New York (1986)
23. Weber, H.J., Arfken, G.B.: Essential Mathematical Methods for Physicists. Elsevier Academic Press, Amsterdam (2004)
24. Mindlin, R.D., Cheng, D.H.: Nuclei of strain in the semi-infinite solid. J. Appl. Phys. 21, 926–930 (1950)
25. Little, R.W.: Elasticity. Prentice-Hall, Englewood Cliffs (1973)
26. Johnson, K.L.: Contact Mechanics. Dover, New York (1985)
27. Davis, R.O., Selvadurai, A.P.S.: Elasticity and Geomechanics. Cambridge University Press, Cambridge (1996)
28. Asaro, R.J., Lubarda, V.A.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006)
29. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics, 4th edn. Blackwell Publishing, Malden

(2007)
30. Podio-Guidugli, P., Favata, A.: Elasticity for Geotechnicians : AModern Exposition of Kelvin, Boussinesq, Flamant, Cerruti,

Melan, and Mindlin Problems. Springer, Cham (2013)
31. Boussinesq, J.: Application des Potentials a ’lEtude de l’Equilibre et duMouvement des Solides Elastiques. Gauthier-Villars,

Paris (1855)
32. Cerruti, V.: Ricerche intorno all’equilibrio de’ corpi elastici isotropi. Rend Accad Lincei 3(13), 81–122 (1882)
33. Flamant, A.: Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. Comptes Rendus Acad.

Sci. 114, 1465–1468 (1892)
34. Selvadurai, A.P.S.: On Boussinesq’s problem. Int. J. Eng. Sci. 39, 37–322 (2011)
35. Nwoji, C.U., Onah, H.N., Mama, B.O., Ike, C.C.: Solution of the Boussinesq problem of half space using Green and Zerna

displacement potential function method. Electron. J. Geotech. Eng. 22, 4305–4314 (2017)
36. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. Physics 7, 195–202 (1936)
37. Melan, E.: Der Spannungszustand der durch eine Einzelkraft im Innern beanspruchten Halbscheibe. Z. Angew. Math. Mech.

12, 343–346 (1932)
38. Sanders, J.L.: Note on the Mindlin problem. In: Dvorak, G.J., Shield, R.T. (eds.) Mechanics of Material Behavior—The

Daniel C. Drucker Anniversary Volume, Studies in Applied Mechanics, vol. 6, pp. 443–449. Elsevier, Amsterdam (1984)
39. Storåkers, B.: A note on superposition in Mindlin’s problem. J. Appl. Math. Phys. 36, 927–932 (1985)



178 V. A. Lubarda, M. V. Lubarda

40. Apostol, B.F.: Elastic equilibrium of the half-space revisited. Mindlin and Boussinesq problems. J. Elast. 125, 139–148
(2016)

41. Mindlin, R.D., Cheng, D.H.: Thermoelastic stress in the semi-infinite solid. J. Appl. Phys. 21, 931–933 (1950)
42. Mura, T.: Micromechanics of Defects in Solids. Springer, Dordrecht (1987)
43. Mitchell, T.P., Weese, J.A.: Stress distributions analyzed in bispherical co-ordinates. Trans. ASME 27, 726–732 (1960)
44. Tsuchida, E., Nakahara, I.: Stresses in a semi-infinite body subjected to uniform pressure on the surface of a cavity and the

plane boundary. Bull. JSME 15, 1–10 (1972)
45. Zhong,X.,Dabrowski,M., Jamtveit, B.:Analytical solution for the stress field in elastic half-spacewith a spherical pressurized

cavity or inclusion containing eigenstrain. Geophys. J. Int. 216, 1100–1115 (2019)
46. Jefferey, G.B.: Plane stress and plane strain in bipolar coordinates. Philos. Trans. R. Soc. Lond. A 221, 265–293 (1921)
47. Mindlin, R.D.: Stress distribution around a tunnel. Trans. ASCE 105, 1117–1153 (1940)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	On the Kelvin, Boussinesq, and Mindlin problems
	Abstract
	1 Introduction
	2 Governing equations of axisymmetric elasticity
	3 Galerkin vector and Love's potential
	4 Papkovich–Neuber representation and Boussinesq's potentials
	4.1 Boussinesq's potentials versus Love's potential
	4.2 Special cases
	4.3 Tabular summary of potentials for axisymmetric 3D elasticity with bz=b

	5 Kelvin problem: concentrated force in an infinite space
	5.1 Treating P as a body force
	5.2 Solution of the Kelvin problem by using Boussinesq's potentials

	6 Doublet of forces, center of dilatation, doublet of dilatation–compression centers, and a line of centers of dilatation
	6.1 Doublet of forces
	6.2 Center of dilatation: three orthogonal doublets of forces
	6.3 Doublet of dilatation–compression centers
	6.4 A line of centers of dilatation

	7 Boussinesq problem: vertical concentrated force at the boundary of a half-space
	7.1 Solution by using Boussinesq's potentials
	7.2 Boussinesq problem as superposition of Kelvin problem and a line of CD

	8 Mindlin problem: force at a point in the interior of a half-space
	8.1 Solution of the Mindlin problem by using Boussinesq's potentials
	8.2 Center of dilatation at a point in the interior of half-space

	9 Conclusions
	Acknowledgements
	References




