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Abstract The solutions to classical problems of perfectly bonded and sliding circular inhomogeneities in
a remotely loaded infinite matrix are constructed by using an appealing choice of dimensionless material
parameters that represent the in-plane average normal stress and the maximum shear stress at the center of the
inhomogeneity, scaled by the corresponding measures of remote stress. The ovalization of the inhomogeneity
and the effects of material parameters on stress concentration are discussed. The range of material parameters
is specified for which the inhomogeneity with a perfectly bonded interface can expand in vertical direction
under horizontal remote loading. For some combination of material properties, the maximum compressive
hoop stress in the matrix along the interface can be larger than the maximum hoop stress around a circular
void under tensile remote loading. The strain energies stored in perfectly bonded and sliding inhomogeneities
are evaluated and discussed.

1 Introduction

The stress and displacement fields within and outside of a circular inhomogeneity in an infinitely extended
matrix under remote uniform loading are well known [1]. They are of fundamental importance for the mechanics
of heterogeneous media and for the study of the mechanical behavior of composite materials [2,3]. If the
inhomogeneity is a void, the problem reduces to a famous Kirsch problem [4,5], which is of fundamental
importance for the study of stress concentration, plastic deformation, and material failure under tensile and
compressive loadings [6—8]. Both perfectly bonded and sliding interfaces were considered, as well as imperfect
interfaces which cannot support shear and tensile traction [9,10], or imperfect interfaces with a prescribed
relationship between the interface traction and displacement [11,12]. Various approaches were employed in
the derivation of elastic fields, most of which are based on the use of functions of complex variables [1,13], or
the use of the Airy stress function or the Papkovich—Neuber displacement potentials [14—19]. Sliding circular
inclusions in an elastic half-space were considered in [20]. A number of papers was also devoted to elliptical
inhomogeneities and inclusions [21-26], after a seminal paper on ellipsoidal inclusions by Eshelby [27].

We present in this paper an appealing derivation of a solution to perfectly bonded and a sliding inhomo-
geneity in a remotely loaded infinite matrix by introducing and employing a new set of material parameters,
which have simple physical interpretation in terms of stresses at the center of the inhomogeneity. In the case
of a perfectly bonded interface, we begin the analysis in the spirit of a semi-inverse method of elasticity by
making the assumption that under a uniform remote loading of the matrix the circular inhomogeneity deforms
into an elliptical shape. Such deformation necessarily implies that the inhomogeneity is in the state of uniform
strain and stress, because only the displacement field linear in the Cartesian coordinates x and y transforms a
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circle into an ellipse.! Furthermore, the symmetry requires that the material line elements along the x and y
directions, emanating from the center of a circular inhomogeneity (Fig. 1), remain along these directions upon
the application of remote loading in the horizontal direction (p), or remote biaxial loading (p, ¢). This means
that the shear strain €}, and thus the shear stress oy, both vanish within the inhomogeneity, so that its state

of stress is a uniform biaxial state of stress (o'l ayiy). We then show that the average in-plane normal stress

X
and the maximum in-plane shear stress in the inhomogeneity, o' = (G}C .t a;,y) /2and 7! = (a}C .= O'}i,y) /2,
normalized by the corresponding measures of remote stress (p+¢)/2 and (p —q) /2, specify the dimensionless
material parameters
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which appear in all expressions for the stress and displacement fields in the matrix and the inhomogeneity. The
ratio of the shear moduli of the matrix to the inhomogeneity is I' = /12, and k1 and k3 are the corresponding
Kolosov’s constants, dependent on Poisson’s ratios of two materials. It is noted that a reciprocal definition
(I' = 2/ 1) has been more frequently used in the literature, which implies a void when I = 0, but we adopted
the definition I' = w1 /u2 because it has led to a somewhat more compact representation of the expressions
for the normalized average normal stress and the maximum shear stress at the center of the inhomogeneity.
In the case of an inhomogeneity with a sliding interface, incapable of supporting shear traction, the radial
traction is given by the same expression as in the case of a perfectly bonded interface, f, = o} + 7, cos 26,
except that o! and 7! now represent the average normal stress and the maximum shear stress at the center
of the inhomogeneity. In the absence of the interface shear traction, the inhomogeneity is deformed into an
oval rather than an elliptical shape, and is, therefore, nonuniformly stressed and strained. The dimensionless
material parameters which define the elastic fields in the matrix and the inhomogeneity are in this case

(1.1)
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In terms of these parameters, we discuss the features of the mechanical response related to the ovalization of
bonded and sliding inhomogeneities and the stress concentration around their interface with the matrix.

2 Circular inhomogeneity in an infinitely extended stretched matrix

Figure 1 shows a perfectly bonded circular inhomogeneity of radius « in an infinitely extended matrix under
uniform remote stress O’Bx = p. The elastic properties of the isotropic matrix are (u1, v1), and those of the
isotropic inhomogeneity are (7, v2), where u is the shear modulus, and v is Poisson’s ratio. The objective is
to find the stress and displacement fields in the inhomogeneity and the matrix, for both plane strain and plain
stress conditions. In the spirit of a semi-inverse method of elasticity, we assume that a circular inhomogeneity
will deform into an elliptical shape. Since only a linear mapping (displacement components given by linear
functions of x and y) transforms a circle into an ellipse, the state of strain and thus stress in the inhomogeneity
is uniform. The symmetry requires that the shear stress a)‘cy vanishes, so that the state of stress within the
inhomogeneity is a uniform biaxial state of stress (cr)icx, ayi.y). To determine these stresses, we consider in
Figs. 2 and 3 the free-body diagrams of the inhomogeneity and the matrix alone. In Fig. 2, the boundary r = a

of the inhomogeneity is under the interface traction components
t* =o' +1icos20, 1 =—r'sin20 (2.1)
where
ai—l(ai +ol) ri—l(ai —ol) (2.2)
- 2 xx yy/? - 2 XX yy :

are the in-plane average normal stress and the maximum shear stress in the inhomogeneity. It will be shown
in the paper that the normalized version of these stresses, 6; = 20"/ p and 7; = 2t'/p, represent the material

! This uniformity of stress within the inhomogeneity was proven in a more general context of three-dimensional ellipsoidal
inhomogeneities by Eshelby [27], whose work played a prominent role in the development of micromechanics and mechanics of
composites [2,3,28-30].
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Fig. 1 A circular inhomogeneity within an infinitely extended matrix under a remote uniform stress p. In the case of a perfectly
bonded interface, a circular inhomogeneity deforms into an elliptical shape and is thus uniformly strained and stressed

Fig. 2 A free-body diagram of a circular inhomogeneity of radius a taken out of the matrix. The interface traction components
over the boundary r = a are £ and ¢, given by (2.1)

parameters of the problem that play a prominent role and naturally appear in all expressions for the stress and
displacement fields in the matrix and the inhomogeneity. The uniform state of stress within the inhomogeneity,
expressed in polar coordinates, is

o,,=0'+1'cos20, opy=0'—1'cos20, o,y =—1'sin26. (2.3)

The corresponding radial and circumferential displacement components are

w1 Kz_lai—i—ticosZ@ uh = ——— £igin20 (24)
T\ 2 P '
where
. 3 — 4y, for plane strain (1 <« < 3), 2.5)

(3—v)/(14+v), forplanestress (5/3 <« <3).

Figure 3 shows the free-body diagram of the matrix, with the interface traction applied to the inner circle
r = a, and the remote tension o at infinity. The Airy stress function for this problem can be easily constructed
by superposition of two problems, a uniformly stressed matrix and the matrix loaded by properly adjusted

traction over the inner surface of the hole, 7, = & + T cos26 and fy = — 7 sin 26, where
6=0-L s=7_2 (2.6)
2 2
This gives

1 2
o™ =2 (1 —cos20) + 62" —2a% (1= =L ) cos26. 2.7)
4 a 2 72
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Fig. 3 A free-body diagram of a remotely loaded matrix with the inhomogeneity taken out and replaced by the interface tractions

t¥ and 1; over the boundary of the inner circle r = a, which are opposite to those shown in Fig. 2

The stresses in the matrix are then

2 2 4
. a N a a
ar“rlz§+or—2+|:§+r<4r—2—37>]c0520,
2 4
oené—g—&j—z—<§—3fr—4>cos29,
2 4
om |:—§+7?(2j—2—3f—4 :|sin29

The corresponding displacement components are obtained by integration from strains,

1 3 — ki
=5 [ggﬂ_ Sy +a;;)aaﬁ], (@ =106),

where 844 stands for the Kronecker delta. This gives
2 2 4
2u™ =2~ E [ (L — L) |cos 26,
4 r 2 rooor

2 4
2piuy = — I:% -7 ((/q - l)aT + [;—3)} sin 26.

2.1 Interface continuity conditions
The continuity conditions along the perfectly bonded interface are
up(a,0) = ua.0), uy(a,0)=ug\(a.0)

where, from expressions (2.4) and (2.10),

. -1 . . . .
u,(a,0) = 4 (KZ o'+ r‘cos29> . Uy = _ZL 7'sin 20,

) 2 n2
and
u(a,0) = 2_Ml [g (1 +xy) — ol + (% (14 «k1) — /qri> cos29] ,
uMa, 0) = ——— [3 (1 +x1) — ,qri] sin 26
o3 21 L2

2.8)

(2.9)

(2.10)

2.11)

2.12)

2.13)
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The continuity conditions (2.11) then give

i p(+k1) i p(I+x1)

o = m, T = m, (' = pi/12). (2.14)

Thus, we identify the dimensionless (necessarily positive) material parameters

. 20! 1 o271
P A e W DL el (2.15)
P 24T (k2 —1) )4 I' + k1

which represent the in-plane average normal stress and the maximum shear stress in the inhomogeneity, scaled
by the corresponding measures of the remotely applied stress.

2.2 Final expressions for the stress and displacement fields

By using (2.14) and (2.6), the normalized stress components in the matrix (2.8) can be expressed as

m . a2 . a2 Cl4
2 =14 G -+ [1 +@ -1 (4—2 —3—4”00829’
p r r r

m ) 2 ) 4
2200 1 _(5i— 1)"_2 — [1 -3 — 1)‘1—4} cos 26, (2.16)
P r r
m . 2 4
270 — |1 G (29 239 )| sin2e.
p 72 74

Honein and Herrmann [13] derived the equivalent expressions to (2.15) by using their heterogenization proce-
dure within the formalism of the functions of complex variables, reproducing the results previously reported
by Muskhelishvili [1]. Their coefficients y and 8 are related to6' and 7' by y =1 —g'and 8 =1 — 7', s0
that, in (2.6), 6 = — yp/2 and T = — Bp/2. Other combinations of material parameters have also been used
[15]. If the inhomogeneity is a void (I" = 00), then &1 = 71 = 0, and relations (2.15) reduce to well-known
Kirsch expressions [5,6].

The normalized displacement components in the matrix are

u ok —1r i a r i a a
— = —— (@ -D—-—4+|-—G@CT -D(A+«1)———=||cos20,
um 2 a r a roor
m 3 2.17)
Me r —i a a .
—=—|-=FT =Dk =1)—+ — ) |sin26
um a roor3
where the normalizing displacement factor is u™ = (pa)/(4u1).
The polar components of normalized stresses within the inhomogeneity are
gi . . o‘i . . ai .
20 =5t 4 Ficos20, 2-2 =51 —Ficos20, 2% = —7isin26, (2.18)
p p p
with the corresponding Cartesian components
ol =L@ ey ol =L (2.19)
xx - 2 p’ yy — 2 P .

i
. }7y
negative (tensile or compressive), depending whether ' is larger or smaller than T'. If k| = k = 2 (which
happens in plane strain for v; = v, = 1/4, and in plane stress for v| = v, = 1/3),theno' = 7' =32+ !
for any value of the shear modulus ratio I' = 11 /2, and in this case o;y =0.

Since ¢! and 7' are both positive, o}, is necessarily positive for p > 0, while o}, can be either positive or
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2.3 Ovalization

The normalized radial and circumferential displacement components within the inhomogeneity are

i -1 _. . ul i
Lo (o5t dicos20 ) D, 20 = —(#sin20) - (2.20)
u! 2 a u a
where u' = (pa)/(4u3). The corresponding Cartesian components are
i -1 . . ul -1 _. .
e (g gt Do (BT i g) Y 2.21)
u! 2 a ul 2 a

The horizontal diameter of the inhomogeneity is always increased by the application of stress p > 0 (unless
the inhomogeneity is rigid), while its vertical diameter can increase or decrease, depending on the combination
of material properties. It can be readily verified that €}, > 0 if (k; — I')(kp — 1) > 4, but this inequality
is satisfied only in some extreme cases of low values of I and high values of x| and x> (i.e., low values of
Poisson’s ratios vy and v;). For example, if k| = k2 = 2.6, the vertical diameter of the inhomogeneity will
slightly increase (e}, > 0)if 0 < I' < 0.1. Figure 4 shows the deformed elliptical shape of the inhomogeneity
for I' = 0.1 in two cases: k1 = kp = 2 (vertical diameter decreases), and k| = kp = 2.8 (vertical diameter
increases). _

In the case of void, its horizontal diameter increases by 2u’ (a) = 3(1 + «1)(pa)/(4j1), while its vertical
diameter decreases by (1/3) of that amount. This can be compared with the case of identical properties
of the inhomogeneity and the matrix, when the horizontal diameter of the circle of radius a increases by
(k1 + D)(pa)/(4w1), while its vertical diameter decreases by (3 — k1)(pa)/(4u1). In general, the ovalization
of a circular inhomogeneity, i.e., its degree of the ellipsoidalization (e), can be defined as

_ l+e_lvy

i p
e = n
I+€l,

~l4el, —e,=1- o o (2.22)

which is, as expected, independent of the parameter &', associated with the average in-plane normal stress in
the inhomogeneity.

By calculating the work of the interface tractions on the corresponding displacements, the strain energy
(per unit thickness) stored in the inhomogeneity is

. pldinm
Es =5
142

[(k2 — D(EH? +2(7)7]. (2.23)

The plot of E]i3 versus I' is shown in Fig. 7 for several values of parameters x| and «;. The plot also shows

the variation of the strain energy E ls corresponding to an inhomogeneity with a sliding interface, considered
in Sect. 3.

(@) 2y
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Fig. 4 The deformed elliptical shape of an originally circular inhomogeneity with I' = 0.1 in the case: a x| = x» = 2 (vertical
diameter decreases), and b k1 = x = 2.8 (vertical diameter increases). The shown displacements are magnified by the ratio

u2/p
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2.4 Stress concentration

The hoop stress along the interface on the matrix side is

ogpla, 0) =

(SN fas}

[2-6"— 4 —37")cos20]. (2.24)
In view of (2.24) and (2.19), the discontinuity of the hoop stress along the interface is

(048 — 049),_, = P[1 — 6" —2(1 — ) cos 20]. (2.25)
The stress concentration factor at 6 = 7 /2 is

ogpla, m/2) _

1. .
3— - (6" +31hH, (2.26)
p 2

which is always lower than the stress concentration factor of 3 corresponding to a circular hole. However,

M(a,0 1 . .
_“09(;’ bo 1) 2.27)

can be either larger or smaller than the value of — 1 corresponding to a circular hole. It is smaller than — 1 if
o' > 37!, which can be satisfied only in the case of plane strain, provided that

6 — K]

r-——,
4 — 3k

k2 < 4/3. (2.28)

For example, if k| = 2,2 = 7/6,and I" = 20, it follows that o (a, 0) = —1.077 p. As in the Kirsch problem,
of particular interest are the normal stress o (0, y) along the y-axis and oy“; (x, 0) along the x-axis, which are

. a? 44
ayy(x, 0) = § [ﬂ - 6‘)% =31 -1 %} ,
(2.29)

2 4
p _..a _..a
om0, y==24+0-6"—= +31-7"H—|.
(0. ) 2[ (=575 + 3 )y4]
The variations of O’;T;, (x,0) and 07 (0, y) along the x and y axes are shown in Figs. 5a and 6a in the case
k1 = k2 = 2 and selected values of the shear modulus ratio I' = wi/p2. ForI' = 1, 05(0, y) = p and
ay“; (x,0) = 0. The effect of x; and kp on the decrease of the stress concentration, relative to the stress
concentration of 3 in the case of a circular void, can be examined similarly.

(a) 3¢ (b) 3¢
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Fig.5 The variation of 0"} / p along the y-axis in the case k1 = k> = 2 and indicated values of the shear modulus ratioI" = 1/ u>.
Part a is for the perfectly bonded interface, and part b for the sliding interface between a circular inhomogeneity and the matrix
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Fig. 6 a The variation of a{{‘v/ p along the x-axis in the case k] = k2 = 2 and indicated values of the shear modulus ratio

' = p1/po. Part a is for the perfectly bonded interface, and part b for the sliding interface between a circular inhomogeneity
and the matrix

3 Sliding inhomogeneity in an infinite matrix

As discussed in [15], the sliding or slipping interface may be a realistic model of a grain boundary at higher
temperatures. If the interface between the inhomogeneity and the matrix in Fig. 1 cannot support the shear
stress, the interface traction is in the radial direction,

* = ol +1icos20, 1 =0. (3.1)

The simplest cos 26 angle dependence, symmetric about the horizontal and vertical diameter of the inhomo-
geneity, as in the case of a perfectly bonded interface, was assumed, which will be confirmed by the solution.
However, due to the absence of shear stress along the interface, the inhomogeneity is under an inhomogeneous
state of stress. The parameters o) and 7, represent the in-plane average normal stress and the maximum shear
stress at the center of the 1nh0mogene1ty, as shown in the sequel. The Airy stress function associated with (3.1)
is

o 1
P = 3 olr? — 3 T, <r2 -3 r_2> cos 26, (3.2)

with the corresponding stresses . _ _
o), =0, + 1, 0820,

i i i r’
Opg =0, —T, (1 -2 a_2> cos 20, (3.3)

r2
i .
o (1 - a_2> sin 26.

The stress state along the circumference r = a is an equal biaxial state of stress a,ir (a,0) = a(;g (a,0) =
o, + 7, cos 20. The normalized displacement components are

ul rley—1_; _ 3—ky r?
u—ri 5[ 5 aé—%—r(l,(l— c 2 cos 26 |,

) 34)
uy ro_; 34k 12\ .
4= _"7(1- 2—2 sin 26
u! a 6 a
where u' = pa/(4u2). The normalized stress quantities are also introduced
200 _. 27
; = 9 s ‘[; = —0 (35)
p p
At the center of the inhomogeneity, the Cartesian stress components are
ol =0l +1l, ol =0l olf=0, (3.6)
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so that | |
o) = 3 <G)‘C’; + a}‘;yo) . Ty = 3 (G)‘Cf - a}‘,‘y(.)) , (3.7

confirming that aoi and roi are indeed the in-plane average normal stress and the maximum shear stress at the
center of the inhomogeneity, while 6; and f,i] represent their values normalized by p/2.

By the mean-value property of the harmonic function (0}6 .t a;y), satisfying the compatibility equation
Vv? (o; +t ayiy) = 0, it follows that a(i) is also equal to the spatial average of the in-plane mean normal stress in
the inhomogeneity. The maximum in-plane shear stress within the inhomogeneity at the radius r is independent

of 6 and given by
2

1 . ) . 07l/2 . r
Tmax () = 5 [(Urlr - 0019) +4 (arle) ] =1, <1 — c?) . (3.8)
Not being a harmonic function, the average value of Tmax () is only one-half of the maximum shear stress at
the center of the inhomogeneity, Tmax = 7,/2.
The Airy stress function for the matrix material is

4
oM = g [},2 24’ — (},2 —2a% + a_2> 00529}
r

a (3.9)
a
—2) cos 260.

+oaln———-1)|a"— =

¢ a 2° ( 3
The first term, proportional to p/4, is the part of the Airy stress function of the Kirsch problem (tractlon free
hole), while the remaining two terms represent the contribution from the radial traction ¢ = o, + 7 cos 20

acting along the boundary of the hole. The stresses associated with (3.9) are

2 2 4
0,”,‘:%[1—%%—(1—4%4—3?—4)(:0529}

o . (3.10)
+0‘—2+ <2——r—4)cos2¢9,

aeng)z£|:1+a—2—(1+3£>00829]—aiﬁ—l—rifcosw 3.11)
2 r2 r4 o y2 o y4 ’

om=-L (1+2ﬁ—3f> §in 20 + 7/ (f—f) sin 26, (3.12)

" 2 r2 ré °\rz st

For convenience, the stress contributions from the Kirsch solution and from the radial traction ¥ are shown
separately. The corresponding normalized displacement components are

u  kp—1r r a a
— = —+ + —-|-(1+/<1)——— cos 26
um 2 roor
(3.13)
_ja i 1+/<1a 1 a’ cos 26,
_O"__ —_—— -

op e\ 2 5 313
“o a3 +3 i(Lad o a\T G o (3.14)
—= = K| — — - — ] | sin .
um ! 373 2 r

where u™ = pa/(4y,1)
The parameters &, and 7, r are determined from the continuity condition for the radial displacement along
the interface, ,
uy(a,0) =u)(a,o), (3.15)

which, in view of (3.4) and (3.13), gives

i I+ i 6(1 +«1)

e . S . 3.16
T 3 T—1" 1436 +TG+x) (3-16)
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(a) 8

(B, EY)

Fig. 7 The strain energy stored in a circular inhomogeneity with a perfectly bonded (solid line) and sliding interface (dashed
line) versus I" for several combinations of constants x; and k»

The expression for 6}, is the same as in the case of a perfectly bonded inhomogeneity, so that the average
in-plane normal stress at the center of the inhomogeneity is the same in both cases. In particular, from (3.16)
it follows that

0, O, I' = o0,

o I+« 6(14+«1)
Ghiy=1"72 " 43" (3.17)

1 +x1 6(1 +«1) r—1

L4k 443+ -
Different combinations of material parameters have been used by Dundurs [15], see equations (37) and (44)
of his paper. His parameters § and n are not directly related to a specific state of stress, but his constants D, E,
and F can be expressed in terms of 6} and T, by D = 0,, E = —7),and F = 7, /3.

The strain energy (per unit thickness) stored in the inhomogeneity is

2.2

. pTam _iv2 3tk o

Es = iy — D@D+ —= (@) |. 3.18

5= Tom [(2 )(0,) 3 (75) (3.18)
The plot of E‘S versus [" is shown in Fig. 7 for several combinations of the bounding values of parameters x|
and «3. In the extreme case of k] = k» = 1 (i.e., vi = vy = 0), and the assumed plane strain conditions, the
strain energy stored in the inhomogeneity with a sliding interface is always smaller than in the inhomogeneity
with a bonded interface, but for other combinations of x| and «» this is not the case.

3.1 Stress concentration
The hoop stress within the matrix around the void is

ofya.0) = 5 [2— 6} — (4— 7) cos 2] (3.19)
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The discontinuity of the hoop stress across the interface is
(o5 — 04g),_, = P[1 — G} —2cos26]. (3.20)
The stress concentration factor in the matrix at 6 = m /2 is

m(a, /2 1.
%@ 7/ _ 4 5 (Gi+15). (3.21)
p

which is always lower than the stress concentration factor of 3 corresponding to a circular hole. However,

o (a,0) 1 . _
%T =—1- 5 (5)—1)) (3.22)

can be either larger or smaller than the value of — 1 corresponding to a circular hole. It is smaller than — 1 if
o, > T,, which can be satisfied provided that

11-3
rs_——2" <9 (3.23)
9 — 51>

The normal stress o} (0, y) along the y-axis and a;ny (x, 0) along the x-axis are

. a2 I a4
onx.0) = 2 [(1 —3)5-(3-1%) ;]
(3.24)

-a2 i a4
ag(o,y)=§[2+(1—51)F+(3—f;) —]

<

The variations of o*vn; (0, x) and 0,5 (0, y) along the x and y axes are shown in Figs. 5b and 6b in the case

k1 = k3 = 2 and selected values of the shear modulus ratio I' = /2. These plots can be compared with the
corresponding plots shown in Figs. 5a and 6a for the perfectly bonded inhomogeneity. For finite values of T,
the stress concentration at y = a is larger in the case of a sliding interface. For example, for a perfectly bonded
rigid inhomogeneity o> (0, a) = 0, while in the case of a sliding interface o3 (0, a) = 0.964 p (Fig. 5a, b).
Furthermore, the stress oy“; (a, 0) is compressive in the case of a sliding interface for all values of I', while it
changes from compressive to tensile as I' decreases from oo to 0 in the case of a perfectly bonded interface
(Fig. 6a, b).

3.2 Ovalization

The deformed shape of the inhomogeneity is specified by the displacement components along its boundary
r = a. From (3.4), these are

. -1_. 3 .
u,(a,d) = ﬁ (K22 5, + —EKZ f;) a cos 20,

p 3—«k
4y 6

(3.25)

uh(a, 0) = — 2 7 g sin26.

The ovalized shape of the deformed inhomogeneity is shown in Fig. 8 for several selected values of I'. In
each case, the parameters x| and k> are chosen to be equal to 2. The nonelliptical ovalization is particularly
pronounced for smaller values of I'. For comparison, the dashed lines show the elliptical deformed shape
of the circular inhomogeneity with a perfectly bonded interface. For large values of I', the deformed shapes
are almost identical for both interfaces, and identical in the limit of a void (I" — o0). In each considered
case, the increase in the horizontal diameter and a decrease in the vertical diameter was larger for a sliding
inhomogeneity, except in the plane strain incompressible limit, when they were equal for both interfaces.
There is no combination of material properties for which the vertical diameter of a sliding inhomogeneity can
increase under the horizontal remote loading.
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I'=1/2 I'=1
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Fig. 8 The deformed shape of a circular inhomogeneity with a sliding (solid line) and perfectly bonded interface (dotted line) for
several selected values of I" and x| = k> = 2. The shown displacements are magnified by the ratio p>/p

4 Conclusions

The solutions to classical problems of perfectly bonded and sliding circular inhomogeneities in a remotely
loaded infinite matrix are presented by using an appealing choice of dimensionless material parameters that
represent the in-plane average normal stress and the maximum shear stress at the center of the inhomogeneity,
scaled by the corresponding measures of remote stress. These parameters were used to evaluate and discuss the
elliptical and nonelliptical ovalization of perfectly bonded and sliding inhomogeneities, and the corresponding
stress concentrations around the interface. For finite values of the shear modulus ratio I' = w;/u> and
considered values of the Poisson’s ratios v; and v,, the stress concentration under uniaxial loading in the case
of a sliding interface is larger than in the case of a perfectly bonded interface. The hoop stress at (a, 0) is
compressive in the case of a sliding interface for all values of I', while it changes from compressive to tensile
as I' decreases in the case of a perfectly bonded interface. For some combinations of material properties,
the maximum compressive hoop stress in the matrix along the interface can be larger than the maximum
hoop stress around a circular void, for both perfectly bonded and sliding interfaces. The range of material
parameters is specified for which a circular inhomogeneity with a perfectly bonded interface can expand in
the vertical direction under horizontal remote loading, which can never occur in the case of a sliding interface.
The nonelliptical ovalization of a circular inhomogeneity with sliding interface is particularly pronounced for
smaller values of I". The strain energies stored in the bonded and sliding inhomogeneities are evaluated and
discussed. In the limiting case of x| = k2 = 1, under plane strain conditions, the strain energy stored in the
inhomogeneity with a sliding interface is always smaller than in the inhomogeneity with a bonded interface,
but for other combinations of 1 and k> this is not the case. Stress and displacement fields for biaxial loading
of bonded and sliding inhomogeneities are listed in the appendices of the paper. The obtained results may be
of interest for structural design and analysis of mechanical strength and failure of heterogeneous materials
under tensile and compressive loadings.
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Appendix A: Biaxial loading: bonded inhomogeneity

Figure 9 shows a circular inhomogeneity in an infinitely extended matrix under remote biaxial uniform loading
(p, ). The dimensionless material parameters are related to the in-plane average normal and maximum shear
stress o' and 7! within the inhomogeneity by

i 14k 20! 14k 27

T 24Tk —1) pH4gq’ T4+« p—gq

In terms of these parameters, the Cartesian components of stress and displacement in the inhomogeneity are

1

. . 1 _. _ 1 _.
o =50 P+ + ST (P —q), oy = (p+q) - ST (P —a),

S | = | =

ul 1 [ —1_ ul 1 [ky— y
= =— Gp+a)+7T(p—q) 2L =— Fp+q) -t (p—q)|=
a 4o 2 a 4un 2 a’
The polar stress components in the matrix are
2 4
p+q a a
ol ="——+ 5 |:1+(1—1)—:| |: +(r—1)( —2—3r—4>i|00529,
p+q at
agng)zT[l—(a -1 21| |:1—3(r —1)—41|cos29,
m_ P—4 i, a>  a*\].
O =" 11— =1) —2—3—4 sin 26,

with the corresponding displacements

u!  ptglki—1r ; p—qlr i a a
I i e
m _ . 3
o _ _P—4 [ﬁ —GF -1 ((/q 4 a—3>]sin29.
a 4y |a ror

IR R L R N N

R
q

Fig. 9 A circular inhomogeneity within an infinitely extended matrix under remote uniform biaxial stress (p, q)
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Appendix B: Biaxial loading: sliding inhomogeneity

If the interface of the inhomogeneity in Fig. 9 is incapable to support shear stress, the dimensionless material
parameters are related to the in-plane average normal and maximum shear stress o, and 7, at the center of the
inhomogeneity by
20} 1+« L 21l 6(1 + k1)
— = . T = = .
ptqg 2+4Twka—-1" 7 p—qg 14+3k+TCB+«2)

The polar stress components within the inhomogeneity are

i Ptq_; pP—4

O = "5 o, + 5 tcosZ@
' , 2
Ohy = p-2|-q6;_p2q_l (1—2—)(:0529,

2
i _pP—aq ‘]- r .
0';0 = 2 ! (1 — p) sm29,

while the normalized displacement components are

i _ _ 3
u—’=p+q"‘(2—1)— P 2——3 2 cos 20,
a 812 a 812 a 3 a3

i —q 3
Yy _ P qf;(zc_ﬂ;)sinze.

a 8z a 3 a

The polar stress components in the matrix are

2 at
m_ P +4q i a P -
Oy = ——— 2 1-|—( l)r_2 2 1—4 - 2‘[)—+(3—‘L’) 4 cos 20,
2 at
m_ P +4q —i a p—q
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2 2 4\ 7
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with the corresponding displacements
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