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Abstract The stress and displacement fields are determined inside and outside a circular inclusion located in
the vicinity of a circular void in an infinite elastic solid, within a circular cylinder, or near the free surface of a
half-space, in the case when the inclusion is characterized by a uniform eigenstrain of the antiplane shear type.
The fields are obtained as the sum of their infinite-medium stress fields and the calculated auxiliary fields. It is
shown that the fields outside the inclusion follow directly from the extended Milne-Thomson circle theorem,
but not the fields inside the inclusion. The overall fields are interpreted as the superposition of the infinite-
medium fields from the actual and the image inclusion of the appropriate location, radius, and eigenstrains. The
stress amplification is evaluated for the inclusion approaching the boundary of the void, cylinder, or half-space.
The configurational forces are then evaluated, associated with a relative translation of the void and inclusion,
or the expansion of the void or inclusion. The J and M integrals along the boundary of the void are evaluated
without using the solution of the entire boundary-value problem, but only the stress field for an inclusion in
an unvoided infinite medium. This is accomplished by incorporating the result that the circumferential shear
stress along the boundary of a traction-free circular void in an infinite isotropic solid under antiplane shear is
twice the circumferential shear stress along the corresponding circle in an infinite solid without a void, under
the same loading conditions. The energy release rate associated with a self-similar expansion of the inclusion
is calculated from the determined elastic field around the inclusion and from the evaluated total strain energy
of the system. The configurational forces on the inclusion in a circular cylinder and near the free surface of a
half-space are also determined and discussed.

1 Introduction

This paper is devoted to the analysis of elastic fields around a circular inclusion in the vicinity of a circular void
in an infinite isotropic solid, inside a circular cylinder, and near the free surface of a half-space, under antiplane
strain conditions. The analysis is of interest for the study of displacive/martensitic and stress-induced phase
transformations, twinning in ceramic and crystalline materials, interactions between precipitates and voids,
and the analysis of piezoelectric fibers embedded in a matrix material. Previously, the antiplane eigenstrain
problem of a circular or ellipsoidal inclusion was addressed mostly for the inclusion in an infinite or semi-infinite
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medium, albeit with the included elastic anisotropy [1–4], or with the more involved material models, such
as those of nonlocal elasticity [5], couple-stress elasticity [6,7], piezoelectric materials [8–10], functionally
graded materials [11], or nonlinear elasticity [12]. A related problem, of interest for the mechanics of composite
materials, is the problem of a circular inhomogeneity near a void or another inhomogeneity, under remote
loading. This was analyzed in great detail in [13,14] by the procedure referred to as heterogenization. Circular
inclusions with imperfect interfaces were considered in [15,16]. The evaluation of the stress and displacement
fields due to internal sources of stress is of great importance for the study of various problems in materials
science [17–20]. For example, the evaluation of the attraction exerted on the dislocation by the free surface
of void plays a prominent role in the study of a void growth by dislocation emission [21–25]. The interaction
between a screw dislocation and an elliptical inclusion was considered in [26]. A curved mode III crack in a
circular cylinder or near the free surface of a half-space was studied in [27]. A comprehensive review of recent
works on inclusions can be found in [28].

In the present paper, we derive the stress and displacement fields in an infinite isotropic elastic solid
weakened by a circular cylindrical void, due to a nearby circular inclusion characterized by uniform eigenstrain
of the antiplane shear type. The fields are obtained as the sum of their infinite-medium stress fields and the
calculated auxiliary fields. The fields outside the inclusion follow directly from the extended Milne–Thomson
circle theorem [29–32], but not the fields inside the inclusion. It is shown that the overall fields represent the
superposition of the infinite-medium fields of the actual and the image inclusion having appropriately specified
location, radius, and eigenstrains. The obtained results complement classical results for a screw dislocation
and a concentrated line force near the free surface of a void or a half-space [33–35]. The analysis also delivers
the results for the inclusion within a circular cylinder and near the free surface of a half-space. The stress
amplification is evaluated for the inclusion approaching and, in the limiting case, becoming tangent to the
boundary of the void, cylinder, or half-space.

The second objective of the paper is the determination of the configurational forces acting on the void
or inclusion in the framework of configurational mechanics. The evaluation of material forces on defects by
using the J and M conservation integrals is particularly effective in cases when they can be evaluated without
solving the entire boundary-value problem under consideration. A number of such cases were considered in
the past, such as the evaluation of the energy release rate for an edge crack or the plane version of conical
crack [36], semi-infinite and finite crack under concentrated load, ligament between two semi-infinite cracks,
or a wedged open crack [37], and the attraction of a dislocation to a notch tip and bicrystal interface [38]. The
configurational force between an edge dislocation and circular void by evaluating the J and M integrals around
the boundary of the void was determined in [39], and on a screw dislocation near a circular elastic inhomogeneity
in [40]. The expression for the configurational force between two inhomogeneities in an infinite matrix under
remote loading was derived in [41]. In the present paper, we determine the configurational force exerted by
the free surface of a circular void on a circular inclusion with uniform eigenstrain. The configurational force
is calculated by evaluating the J integral along the boundary of the void, without resource to the solution of
the entire boundary-value problem. This is accomplished by using the result from [32] that the circumferential
shear stress along the boundary of a circular void in an infinite isotropic elastic solid under antiplane shear is
twice the circumferential shear stress along the corresponding circle in an infinite solid without a void, under
the same loading conditions. It is shown that this force depends on the magnitude of total eigenstrain, but not
on the ratio of the eigenstrain components. The M integrals around the void and inclusion are also evaluated
by using only the infinite-medium stress field. The energy release rate associated with a uniform expansion
of the inclusion is then calculated and related to the M integral around the inclusion, which differs from this
energy rate. The configurational forces on the inclusion in a circular cylinder and near the free surface of a
half-space are lastly determined.

2 Circular inclusion near a void

Consider a circular cylindrical void of radius a in an infinitely extended isotropic elastic solid, and a circular
cylindrical inclusion with its center at point C , at distance d from the center O of the void, Fig. 1a. The radius
of the inclusion is b ≤ (d − a), so that the entire inclusion is outside the void. The bonding between the
inclusion and the surroundings is assumed to be perfect. The prescribed uniform eigenstrain in the inclusion
is of the antiplane shear type, with the components (ε•

zx , ε
•
zy). The corresponding out-of-plane displacement

is w• = 2ρ(ε•
zx cos ϕ + ε•

zy sin ϕ), where (ρ, ϕ) are the polar coordinates with respect to the center C of the
inclusion. When the inclusion is inserted into the solid nearby the void, the stress field around the void can
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(a) (b)

Fig. 1 a Circular inclusion of radius b in an infinite medium near the void of radius a. The eigenstrain of the inclusion is (ε•
zx , ε

•
zy).

The centers of the inclusion and void are at distance d . The distance from C to an arbitrary point on the boundary of the void
is ρa . b Inclusion in an infinite medium without the void. The dashed-line circle coincides with the boundary of the void in a
voided infinite medium from part (a)

Fig. 2 The auxiliary problem in which the void in an infinite medium is loaded over its boundary r = a with self-equilibrating
traction σ̂zr (a, θ) = −σ 0

zr (a, θ), where σ 0
zr (a, θ) is the radial shear stress component along the circle r = a in an unvoided

infinite medium from Fig. 1b

be determined by superposition. First, the stress distribution is found due to the inclusion in an infinite solid
without the void (Fig. 1b). Denote the polar components of this stress field by σ 0

zr (r, θ) and σ 0
zθ (r, θ), where

(r, θ) are the polar coordinates with respect to the center of the void, as indicated in Fig. 1. Second, the auxiliary
problem is solved for the void in an infinite medium, loaded on its surface r = a by the self-equilibrating
(image) traction σ̂zr (a, θ) = −σ 0

zr (a, θ), as sketched in Fig. 2. The stress distribution of the original problem
from Fig. 1a is the sum of the stress distributions for problems from Figs. 1b and 2, i.e.,

σzr (r, θ) = σ 0
zr (r, θ) + σ̂zr (r, θ), σzθ (r, θ) = σ 0

zθ (r, θ) + σ̂zθ (r, θ). (1)

Likewise, for the displacement field,

w(r, θ) = w0(r, θ) + ŵ(r, θ). (2)

2.1 Circular inclusion in an infinite medium

The stress field for a circular inclusion in an infinite solid is well known [34]. Expressed in polar coordinates
(ρ, ϕ) with respect to the center of the inclusion (Fig. 1b), it can be written as

σ 0,in
zρ = −με•

zρ, σ 0,in
zϕ = −με•

zϕ,

σ 0,out
zρ = −μ(b2/ρ2)ε•

zρ, σ 0,out
zϕ = μ(b2/ρ2)ε•

zϕ

(3)
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where ε•
zρ = ε•

zx cos ϕ +ε•
zy sin ϕ and ε•

zϕ = ε•
zy cos ϕ −ε•

zx sin ϕ. The shear modulus is μ, and the superscripts
“in” and “out” designate the inside and outside inclusion fields. The displacements are

w0,in = ρε•
zρ, w0,out = (b2/ρ)ε•

zρ. (4)

The rigid body displacement is chosen such that w0,in = 0 at the center of the inclusion. The stress discontinuity
across the boundary of the inclusion is �σzϕ(b, ϕ) = −2με•

zϕ .
When rewritten in terms of the polar coordinates (r, θ), the outside stress field takes the form

σ 0,out
zr (r, θ) = − μb2

ρ4

{[
(d2 + r2) cos θ − 2dr

]
ε•

zx − [
(d2 − r2) sin θ

]
ε•

zy

}
,

σ
0,out
zθ (r, θ) =μb2

ρ4

{[
(d2 − r2) sin θ

]
ε•

zx + [
(d2 + r2) cos θ − 2dr

]
ε•

zy

} (5)

where

ρ2 = d2 − 2dr cos θ + r2. (6)

The corresponding displacement field is

w0,out(r, θ) = b2

ρ2

[
(r cos θ − d)ε•

zx + (r sin θ)ε•
zy

]
. (7)

Along the circle r = a, the radial and circumferential shear stresses (omitting the superscript “out”) are

σ 0
zr (a, θ) = −μb2

ρ4
a

{[(
d2 + a2) cos θ − 2da

]
ε•

zx − [
(d2 − a2) sin θ

]
ε•

zy

}
,

σ 0
zθ (a, θ) = μb2

ρ4
a

{[
(d2 − a2) sin θ

]
ε•

zx + [
(d2 + a2) cos θ − 2da

]
ε•

zy

} (8)

in which ρ2
a = d2 − 2da cos θ +a2 is the square of the distance from the center of the inclusion to an arbitrary

point on the boundary of the void.
The inside stress and displacement fields are

σ 0,in
zr = −με•

zr , ε•
zr = ε•

zx cos θ + ε•
zy sin θ,

σ
0,in
zθ = −με•

zθ , ε•
zθ = ε•

zy cos θ − ε•
zx sin θ,

(9)

and

w0,in(r, θ) = (r cos θ − d)ε•
zx + (r sin θ)ε•

zy . (10)

The total strain energy (per unit thickness) is the sum of the strain energy inside and outside the inclusion. For
inclusion in an infinite medium without void, this is

E0
T = 1

2μ

[∫ 2π

0

∫ b

0

(
σ 0,in 2

zρ + σ 0,in 2
zϕ

)
ρ dρ dϕ +

∫ 2π

0

∫ ∞

b

(
σ 0,out 2

zρ + σ 0,out 2
zϕ

)
ρ dρ dϕ

]
. (11)

Upon substitution of stress expressions and integration, it follows that the same amount of energy is stored
within the inclusion as it is outside of it. The total energy is

E0
T = μ

(
ε• 2

zx + ε• 2
zy

)
b2π. (12)
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2.2 Auxiliary fields

If σ 0
zr (r, θ) and σ 0

zθ (r, θ) are stress components in the infinite medium outside the circle r = a (Fig. 1b), the
auxiliary stress components σ̂zr (r, θ) and σ̂zθ (r, θ) for the problem in Fig. 2 can be determined from

σ̂zr (r, θ) = −a2

r2 σ 0
zr

(
a2/r, θ

)
, σ̂zθ (r, θ) = a2

r2 σ 0
zθ

(
a2/r, θ

)
. (13)

This follows from the circle theorem [29,30], extended to antiplane strain elasticity in [31] and [32]. By using
the infinite-medium stress expressions (5), the auxiliary stress components (13) become

σ̂zr (r, θ) =μb2

ρ̂4

{[
(a2 + d2r2/a2) cos θ − 2dr)

]
ε•

zx + [
(a2 − d2r2/a2) sin θ

]
ε•

zy

}
,

σ̂zθ (r, θ) =μb2

ρ̂4

{
− [

(a2 − d2r2/a2) sin θ
]
ε•

zx + [
(a2 + d2r2/a2) cos θ − 2dr

]
ε•

zy

}
,

(14)

with

ρ̂2 = a2 − 2dr cos θ + d2

a2 r2. (15)

The corresponding displacement field is obtained from (7) by replacing there r with a2/r and ρ̂2 with
(a2/r2)ρ̂2. This gives

ŵ(r, θ) = r2b2

a2ρ̂2

[(
a2

r
cos θ − d

)
ε•

zx +
(

a2

r
sin θ

)
ε•

zy

]
+ C1 (16)

where C1 is an arbitrary constant. The auxiliary fields are derived by using the Fourier series method, without
invoking the extended circle theorem, in “Appendix A”.

3 Image inclusion

The auxiliary stress field (14) can be rewritten as

σ̂zr (r, θ) = −μb2∗
ρ4∗

{[(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zx − [(
d2∗ − r2) sin θ

]
ε∗

zy

}
,

σ̂zθ (r, θ) = μb2∗
ρ4∗

{[(
d2∗ − r2) sin θ

]
ε∗

zx + [(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zy

} (17)

where

d∗ = a2

d
, b∗ = a

d
b,

(
ε∗

zx , ε
∗
zy

)
=

(
−ε•

zx , ε
•
zy

)
(18)

and

ρ2∗ = d2∗ − 2d∗r cos θ + r2 = a2

d2 ρ̂2. (19)

The corresponding expression for the displacement is

ŵ(r, θ) = b2∗
ρ2∗

[
(r cos θ − d∗)ε∗

zx + (r sin θ)ε∗
zy

]
+ C2 (20)

where C2 is an arbitrary constant, related to C1 from (16) by C2 = C1 − (b2/d)ε•
zx .

If (20) is compared with (7), and (17) with (5), it is recognized that the stress and displacement fields of
the auxiliary problem can be interpreted as the infinite-medium fields corresponding to an image inclusion of
radius b∗ = (a/d)b and eigenstrain (ε∗

zx , ε
∗
zy) = (−ε•

zx , ε
•
zy), with its center placed at the distance d∗ = a2/d

from point O (Fig. 3). The radius of the image inclusion is constrained by the condition b∗ ≤ (a −d∗), because
d ≥ (a + b). These results, not previously noted in the literature, complement the classical results for a screw
dislocation near the free surface of a void or a half-space, where the opposite image dislocation is placed at the
mirror position, and a concentrated line force near the free surface of a void or a half-space, where the image
line force of the same sign (same direction as the actual force) is placed at the mirror position across the free
surface [33–35,42,43].
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Fig. 3 A circular cylinder of radius a with the inserted inclusion of radius b and eigenstrains (ε•
zx , ε

•
zy). The center of the image

inclusion of radius b∗ = (a/d)b and eigenstrains (−ε•
zx , ε

•
zy) is at the distance d∗ = a2/d from the center of the cylinder, where

d specifies the center of the actual inclusion. The radii r , ρ and ρ∗ specify the position of an arbitrary point of the cylinder relative
to O , C and the center of the image inclusion

4 Total stress and displacement fields

The total stresses are obtained as the sum of the infinite-medium and auxiliary stress fields, according to (1).
Outside the inclusion, from (5) and (17), it follows that

σ out
zr (r, θ) = − μb2

ρ4

{[(
d2 + r2) cos θ − 2dr

]
ε•

zx − [(
d2 − r2) sin θ

]
ε•

zy

}

− μb2∗
ρ4∗

{[(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zx − [(
d2∗ − r2) sin θ

]
ε∗

zy

}
,

σ out
zθ (r, θ) = μb2

ρ4

{[(
d2 − r2) sin θ

]
ε•

zx + [(
d2 + r2) cos θ − 2dr

]
ε•

zy

}

+ μb2∗
ρ4∗

{[(
d2∗ − r2) sin θ

]
ε∗

zx + [(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zy

}
.

(21)

In particular, the circumferential shear stress along the boundary of the void is

σ out
zθ (a, θ) = 2μb2

ρ4
a

{[
(d2 − a2) sin θ

]
ε•

zx + [
(d2 + a2) cos θ − 2ad

]
ε•

zy

}
(22)

where ρ2
a = a2 + d2 − 2ad cos θ , which is twice the circumferential shear stress along the corresponding

circle in an infinite medium without the void, in accord with the general result of the antiplane strain elasticity
established in [32]. The corresponding result for the plane strain elasticity was previously derived in [44].

Figure 4 shows the variation of the shear stress σ out
zθ (a, θ) around the void in the case when the inclusion

(of the same radius as the void) is away from the void (d = 3a) and when it is touching the void (d = 2a). In
both cases, the inclusion is characterized by equal eigenstrain components ε•

zx = ε•
zy . The pronounced stress

amplification occurs as the inclusion approaches the void.
Inside the inclusion, from (9) and (17), the stresses are

σ in
zr (r, θ) = −μ(ε•

zx cos θ + ε•
zy sin θ)

− μb2∗
ρ4∗

{[(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zx − [(
d2∗ − r2) sin θ

]
ε∗

zy

}
,

σ in
zθ (r, θ) = −μ(ε•

zy cos θ − ε•
zx sin θ)

+ μb2∗
ρ4∗

{[(
d2∗ − r2) sin θ

]
ε∗

zx + [(
d2∗ + r2) cos θ − 2d∗r

]
ε∗

zy

}
.

(23)
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Fig. 4 The variation of stress σzθ (a, θ) along the free surface of the void of radius a due to an inclusion of radius b = a with its
center at: a d = 3a, and b d = 2a (inclusion tangent to the void). The plots correspond to ε•

zx = ε•
zy = ε•

(b)(a)

Fig. 5 a The variation of the stress components along the x-axis in the cases d = 3a. The radii of the void and inclusion are equal
to each other (b = a), ε•

zy = 2ε•, and ε•
zx = ε•. b The variation of the corresponding displacement

The corresponding displacements are obtained by substituting (7), (10), and (20) into (2). The result is

wout(r, θ) = b2

ρ2

[
(r cos θ − d)ε•

zx + (r sin θ)ε•
zy

]
+ b2∗

ρ2∗

[
(r cos θ − d∗)ε∗

zx + (r sin θ)ε∗
zy

]
+ C2,

win(r, θ) = (r cos θ − d)ε•
zx + (r sin θ)ε•

zy + b2∗
ρ2∗

[
(r cos θ − d∗)ε∗

zx + (r sin θ)ε∗
zy

]
+ C2.

(24)

The angle θ for the field inside the inclusion is in the range |θ | ≤ arcsin(b/d). If the condition is imposed that
the displacement vanishes at infinity, the constant C2 = 0. Figures 5a and 6a show the variation of the stress
components σzr = σzx and σzθ = σzy along the x-axis in the cases d = 3a and d = 2a, if the radii of the void
and inclusion are equal to each other (b = a) and ε•

zy = 2ε•
zx . In the latter case (d = 2a), the inclusion touches

the void at x = a. The shear stresses σzx and σzy both relax to zero at the contact point and vary within the
inclusion in a strongly nonlinear manner, in contrast to their almost linear variation with x in the case d = 3a.
A similar observation is made for the displacement variation within the inclusion, shown in Figs. 5b and 6b.
The stress discontinuity of σzy at x = d ± b is of magnitude 2με•

zy .

4.1 Inclusion in a circular cylinder

The preceding analysis also delivers the solution for an inclusion within a circular cylinder, whose boundary
r = a is traction-free (Fig. 7). The stresses and displacements inside and outside the inclusion are again given
by expressions (21)–(24), with the geometric parameters as indicated in Fig. 7. The circumferential shear stress
along the boundary of the cylinder is σzθ (a, θ) = 2σ 0

zθ (a, θ), where σ 0
zθ (a, θ) is the circumferential shear stress

along r = a corresponding to the inclusion in an infinite medium. The plots of the shear stress σzθ (a, θ), for
the configurations from Fig. 8, are shown in Fig. 9. The stress amplification increases as the inclusion moves
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(a) (b)

Fig. 6 a The variation of the stress components along the x-axis in the cases d = 2a, so that the inclusion touches the void. The
radii of the void and inclusion are equal to each other (b = a), ε•

zy = 2ε•, and ε•
zx = ε•. b The variation of the corresponding

displacement

Fig. 7 Circular cylinder of radius a with the inserted inclusion of radius b and eigenstrains (ε•
zx , ε

•
zy). The center of image inclusion

of radius b∗ = (a/d)b and eigenstrains (−ε•
zx , ε

•
zy) is at distance d∗ = a2/d from the center of the cylinder, where d specifies

the center of the actual inclusion. The radii r , ρ and ρ∗ specify the position of an arbitrary point of the cylinder relative to O , C
and the center of image inclusion

(a) (b)

Fig. 8 Circular cylinder of radius a with the inserted inclusion of radius b = a/3 and eigenstrains ε•
zx = ε•

zy = ε•. The center of
the inclusion is at the distance: a d = 0, b d = a/3, and d = 2a/3 from the center of the cylinder

away from the center of the cylinder. Figure 9b shows the most pronounced stress amplification in the case
when the inclusion is tangent to the cylinder. The stress amplification is localized in the region around θ = 0.
The circumferential shear stress at θ = 0 is

σ out
zθ (a, 0) = 2με•

zθ
b2

(a − d)2 . (25)
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(a) (b)

Fig. 9 The variation of stress σzθ (a, θ) along the free surface of the cylinder with the inserted inclusion of radius b = a with its
center at: a d = 0 and d = a/3, and b d = 2a/3, as shown in Fig. 8. The plots correspond to ε•

zx = ε•
zy = ε•

In the case d = 0 (inclusion concentric with the cylinder), the stress expressions (21) and (23) simplify to

σ out
zr (r, θ) = με•

zr

(
b2

a2 − b2

r2

)
, σ out

zθ (r, θ) = με•
zθ

(
b2

a2 + b2

r2

)
, (26)

σ in
zr (r, θ) = με•

zr

(
b2

a2 − 1

)
, σ in

zθ (r, θ) = με•
zθ

(
b2

a2 − 1

)
(27)

where ε•
zr = ε•

zx cos θ + ε•
zy sin θ and ε•

zθ = ε•
zy cos θ − ε•

zx sin θ . The displacement expressions (24) simplify
to

wout(r, θ) = b2

r
ε•

zx cos θ +
(

b2

a2 + b2

r2

)
rε•

zy sin θ,

win(r, θ) = rε•
zx cos θ +

(
b2

a2 + 1

)
rε•

zy sin θ.

(28)

The displacement is imposed to be zero at the center of the inclusion (r = 0). If δ = a − b � b, the dominant
stress is σ out

zθ ≈ 2με•
zθ . The stresses inside the inclusion are σ in

zr ≈ −2(δ/a)με•
zr and σ in

zθ ≈ −2(δ/a)με•
zθ .

5 Complex potentials

The complex potential for the infinite-medium displacement field inside the inclusion, considered in Sect. 2.1,
is Φ0,in(z) = μ(z − d)ε•, where z = x + iy and ε• = ε•

zy + iε•
zx is the complex state of eigenstrain. The

potential Φ0,in(z) is defined so that, relative to the initial state before the stress-free eigenstrain transformation
took place, the displacement w0,in = (1/μ)�[Φ0,in(z)], where � denoted the imaginary part. The stresses
follow from σ

0,in
zy + iσ 0,in

zx = d[Φ0,in(z) − Φ•(z)]/dz, with Φ•(z) = 2μ(z − d)ε• as the potential for
the eigenstrain displacement w•(z) = (1/μ)�[Φ•(z)]. The complex potential for the infinite-medium field
outside the inclusion is Φ0,out(z) = −μb2ε•/(z − d), where the overline denotes the complex conjugate.
The displacement is w0,out = (1/μ)�[Φ0,out(z)], while the stress components follow from σ

0,out
zy + iσ 0,out

zx =
dΦ0,out(z)/dz. Its polar components are deduced from σ

0,out
zθ + iσ 0,out

zr = (σ
0,out
zy + iσ 0,out

zx ) exp(iθ). In the

above derivation, it may be noted that, by the circle theorem, Φ0,out(ζ ) = −Φ
0,in

(b2/ζ ), where ζ = z − d .

The complex potential for the auxiliary field can be determined from Φ̂(z) = −Φ
0,out

(a2/z), which gives

Φ̂(z) = μb2 zε•

a2 − dz
= −μb2∗

ε∗

z − d∗
− μ

b2

d
ε•, ε∗ = ε•. (29)

The complex potential for the overall field outside the inclusion is Φout(z) = Φ0,out(z) + Φ̂(z), i.e.,

Φout(z) = μb2
(

− ε•

z − d
+ zε•

a2 − dz

)
= −μb2 ε•

z − d
− μb2∗

ε∗

z − d∗
− μ

b2

d
ε•. (30)
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The stress components follow from σ out
zy + iσ out

zx = dΦout(z)/dz, while the displacement is wout =
(1/μ)�[Φout(z)], up to an arbitrary constant.

The complex potential for the overall field inside the inclusion is Φ in(z) = Φ0,in(z) + Φ̂(z). This gives

Φ in(z) = μ(z − d)ε• + μb2 zε•

a2 − dz
= μ(z − d)ε• − μb2∗

ε∗

z − d∗
− μ

b2

d
ε•. (31)

The displacement is win = (1/μ)�[Φ in(z)], up to the same constant as in the expression for wout, in order to
preserve the continuity of displacement across the boundary of the inclusion. The stresses within the inclusion
follow from σ in

zy + iσ in
zx = d[Φ in(z) − Φ•(z)]/dz.

5.1 Remarks on the extended circle theorem

The Milne–Thomson circle theorem for irrotational two-dimensional flow of incompressible inviscid fluid
[29,30] has been first applied to solid mechanics problems by Smith [31] in his study of the interaction between
screw dislocations and circular inhomogeneities, and by Lin et al. [32] in their study of elastic materials with
damage zones. In particular, the latter authors list the following formulas for the stress components in the
matrix, outside the circular inhomogeneity in an infinite medium, due to the source of stress, which is outside
the inhomogeneity:

σM
zr (r, θ) = σ 0

zr (r, θ) + λ
a2

r2 σ 0
zr

(
a2/r, θ

)
, σM

zθ (r, θ) = σ 0
zθ (r, θ) − λ

a2

r2 σ 0
zθ

(
a2/r, θ

)
. (32)

The superposed 0 designates the stress field in a homogeneous infinite medium, λ = (μI −μM)/(μI+μM), and
(μI, μM) are the shear moduli of the inhomogeneity and the matrix, respectively. The stress components (32)
follow from the circle theorem: The complex potentials for the stress field inside and outside the inhomogeneity

are ΦI(z) = (1 + λ)Φ0(z) and ΦM(z) = Φ0(z) + λΦ
0
(a2/z), where Φ0(z) is the complex potential of the

homogeneous problem. Referring to relations (32), it is stated in [32] that “the relations are universal in the sense
of being independent of any particular loading.” While this statement is fully applicable to many problems,
such as those of screw dislocation or concentrated line force near an inhomogeneity, or an inhomogeneity in
an infinite medium under remote loading, it does not apply to the problem of an eigenstrain inclusion near an
inhomogeneity, because the relations (32) deliver correctly only the stresses outside but not inside the inclusion.
Indeed, if the inhomogeneity is a void (λ = −1), they yield within the inclusion the incorrect field

σ in
zr (r, θ) = −με•

zr

(
1 − a2

r2

)
, σ in

zθ (r, θ) = −με•
zθ

(
1 + a2

r2

)
, (33)

rather than the correct field specified by the expressions (23) from Sect. 4.
The remark made in this section is cautionary, relevant for the case when the cause of stress is an eigenstrain

inclusion. The wide applicability of the extended circle theorem to other antiplane strain elasticity problems
is remarkable, as demonstrated by Honein et al. [13,14] in their comprehensive analysis of two or more
inhomogeneities under remote or other type of loadings by the procedure they refer to as the heterogenization.

6 Inclusion in a half-space

If the inclusion is near the free surface of a half-space (Fig. 10a), the image inclusion is positioned symmetrically
with respect to the boundary of a half-space, its radius is equal to the radius of actual inclusion (b), and its
eigenstrain is (ε∗

zx , ε
∗
zy) = (−ε•

zx , ε
•
zy). This can be compared with the well-known cases of screw dislocation

near the free surface of a half-space, where the opposite image screw dislocation is placed at the mirror position
across the free surface, and a concentrated line force near the free surface of a half-space, where the image
line force of the same sign is placed at the mirror position across the free surface [33–35]. The displacements
inside and outside the inclusion are

win =
[
(x − c)ε•

zx + yε•
zy

]
+ b2

ρ2∗

[
(x + c)ε∗

zx + yε∗
zy

]
, (34)

wout = b2

ρ2

[
(x − c)ε•

zx + yε•
zy

]
+ b2

ρ2∗

[
(x + c)ε∗

zx + yε∗
zy

]
(35)
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(a) (b)

Fig. 10 A circular inclusion of radius b with its center at distance c from the free surface x = 0 of a half-space. The image
inclusion of the same radius is at the mirror image location, characterized by the eigenstrain (ε∗

zx , ε
∗
zy) = (−ε•

zx , ε
•
zy)

(a) (b)

Fig. 11 The variation of stress σzy(0, y) along the free surface of a half-space due to inclusion of radius b with its center at: a
c = 2b, and b c = b. The plots correspond to three selected ratios of ε•

zx and ε•
zy

where ρ2 = (x − c)2 + y2 and ρ2∗ = (x + c)2 + y2. The corresponding complex potentials are

Φ in(z) = με•
(

z − c − b2

z + c

)
, Φout(z) = − μb2

z − c
ε̄• − μb2

z + c
ε•. (36)

The complex potential for the eigenstrain displacement is Φ•(z) = 2μ(z − c)ε•, such that σ in
zy + iσ in

zx =
d[Φ in(z) − Φ•(z)]/dz, while win = (1/μ)�[Φ in(z)].

In particular, the nonvanishing shear stress along the free surface is

σzy(0, y) = 2σ 0
zy(0, y) = 2μb2

(c2 + y2)2

[
2cyε•

zx + (c2 − y2)ε•
zy

]
. (37)

This is plotted in Fig. 11 in the cases c = 2b and c = b, for various ratios of ε•
zx and ε•

zy . In the case c = b,
the inclusion touches the free surface at x = 0. In this case, there is a significant buildup of stress near y = 0,
albeit the stress diminishes with y more rapidly than for c > b. Also, for ε•

zx = 0 and ε•
zy > 0, there is a

buildup of negative σzy within |y| < c, reaching the maximum magnitude μ(b/2c)2 at y = ±√
3c. In general,

the curves are symmetric with respect to y = 0 in the case ε•
zx = 0, antisymmetric in the case ε•

zy = 0, and
asymmetric in the case when both ε•

zx and ε•
zy are nonzero.

The variation of the corresponding surface displacement, determined from

w(0, y) = 2b2

c2 + y2 (yε•
zy − cε•

zx ), (38)
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(a) (b)

Fig. 12 The variation of the displacement w(0, y) along the free surface of a half-space due to an inclusion of radius b with its
center at: a c = 2b, and b c = b. The plots correspond to three selected ratios of ε•

zx and ε•
zy

(a) (b)

Fig. 13 a The variation of stress components along the x-axis in the cases c = 2b, ε•
zx = 2ε•, and ε•

zy = ε•. b The corresponding
displacement variation

(a) (b)

Fig. 14 a The variation of stress components along the x-axis in the cases c = b, ε•
zx = 2ε•, and ε•

zy = ε•. b The corresponding
displacement variation

is shown in Fig. 12. Both the stress components and the displacement are proportional to (b/c)2, so that
doubling the radius of the inclusion at fixed c quadruples their values.

Figures 13a and 14a show the variation of the stress components and the displacement along the x-axis
in the cases c = 2b and c = b, if ε•

zx = 2ε•
zy . The stress discontinuity of σzy at x = c ± b is of magnitude

2με•
zy , as in the infinite medium. The corresponding displacement variations are shown in Figs. 13b and 14b.

The displacement vanishes as x → ±∞, while at x = 0 the displacement is −(2b2/c)ε•
zx .



Circular inclusion near a circular void 655

7 Configurational forces between a circular inclusion and a void

We next evaluate the configurational forces on the void and inclusion due to changes in their relative position
or their radii, caused by diffusional or diffusionless processes and transformations within the material, without
explicitly accounting for the origin and details of such physical changes. The Jx integral for the antiplane strain
infinitesimal deformations is defined in terms of the Eshelby stress tensor Pαx by [45]

Jx =
∮

(Pxx nx + Pyx ny) dl, Pαx = Wδαx − σzαuz,x , (α = x, y), (39)

where δαβ denotes the Kronecker delta, and dl is an infinitesimal arc length. For linear elasticity, the strain
energy density is W = (σ 2

zx + σ 2
zy)/(2μ). Expressed in cylindrical coordinates, (39) can be cast in the form

Jx = r

2μ

∮ [(
σ 2

zθ − σ 2
zr

)
cos θ + 2σzrσzθ

]
dθ. (40)

When evaluated over a closed contour which does not embrace a singularity or a defect, the integral in (40)
vanishes. Such contour is a closed contour around the void and inclusion, along the positive x axis, and around
a remote circle of large radius R � (a, b, d), as shown in Fig. 15. The contributions to Jx along the lines just
above and below the x-axis cancel each other, and the contribution from the remote circle vanishes because
stresses fall off as 1/R2 in the limit R → ∞, as in an unvoided infinite medium (at large R, the stress field is
increasingly unaware of the presence of a void near the inclusion). Thus, Jx = J void

x + J incl
x = 0, i.e.,

J incl
x = −J void

x . (41)

The Jx integral along the boundary of the void is

J void
x = a

2μ

∫ 2π

0
σ 2

zθ (a, θ) cos θ dθ, (42)

because σzr (a, θ) = 0 in (40) along the circumference of the void. By incorporating the stress expression (6)
into (42), there follows

J void
x = 4μab4

{ [
(d2 − a2)2 I1

]
ε• 2

zx

+ [
4d2a2 I2 − 4da(d2 + a2)I3 + (d2 + a2)2 I4

]
ε• 2

zy

}
.

(43)

Fig. 15 The closed contour around the void of radius a with its center at O , and the inclusion of radius b with its center at C ,
used to evaluate the J and M integrals. The radius of the remote circle R → ∞
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Fig. 16 The variation of the configurational force J void
x with d/a for indicated values of the ratio b/a. The scaling force parameter

is J̄x = 4πμa
(
ε• 2

zx + ε• 2
zy

)
. At far distances from the void, the configurational force J void

x tends to zero as (d/a)−1. The left
endpoints of the curves (d/a = 1 + b/a) specify the maximum configurational force corresponding to a selected value of ratio
b/a, which is given by (45)

The integrals appearing in (43) are specified and evaluated in “Appendix B” of the paper. The coefficients in
front of ε• 2

zx and ε• 2
zy are equal to each other, so that (43) becomes

J void
x = 4πμ(b/a)4 d

[(d/a)2 − 1]3

(
ε• 2

zx + ε• 2
zy

)
, d ≥ (a + b). (44)

This represents the energy release rate associated with an imagined void translation within the material toward
the inclusion (by diffusion or otherwise), keeping the position of the inclusion fixed, i.e., the material or
configurational force on the void exerted by the inclusion. An interesting outcome of the analysis is that the
configurational force between the void and inclusion depends only on the magnitude of total eigenstrain, and
not on the ratio of the eigenstrain components. Thus, the force is the same if a given amount of eigenstrain is
applied as either ε•

zx or ε•
zy . The force on the inclusion exerted by the void is equal in magnitude and opposite

in direction. The maximum value of the force on the void is reached at the minimum distance (dmin = a + b)
between the centers of the inclusion and void for which the presented analysis applies. This force is

J void
x,max = 4πμb

1 + b/a

(2 + b/a)3

(
ε• 2

zx + ε• 2
zy

)
. (45)

The variation of J void
x with d/a for several values of b/a is shown in Fig. 16.

7.1 Total strain energy

The total strain energy in the medium with the inserted inclusion near a traction-free void is the sum of the
strain energy term corresponding to an inclusion inserted in an infinite medium far away from the void, which
is given by (4), and the term dependent on d , which accounts for the interaction between the void and inclusion,

ET = πμb2
(
ε• 2

zx + ε• 2
zy

)
+ ÊT (d, b). (46)

The energy ÊT can be conveniently determined by noting that its negative gradient with respect to the distance
between the inclusion and the (fixed) void must be equal to the configurational force on the inclusion, i.e., in
view of (41) and (44),

∂ ÊT

∂d
= 4πμ

(
ε• 2

zx + ε• 2
zy

) adb4

(d2 − a2)3 . (47)

Upon integration, this gives

ÊT = −πμ
(
ε• 2

zx + ε• 2
zy

) a2b4

(d2 − a2)2 , (48)
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up to an immaterial constant term. Consequently, by substituting (48) into (46), the total strain energy becomes

ET = πμb2
(
ε• 2

zx + ε• 2
zy

) [
1 − a2b2

(d2 − a2)2

]
. (49)

The following quantities are also evaluated from (49):

−a
∂ ET

∂a
= 2πμa2

(
ε• 2

zx + ε• 2
zy

)(
b

a

)4
(d/a)2 + 1

[(d/a)2 − 1]3 , (50)

−b
∂ ET

∂b
= 2πμa2

(
ε• 2

zx + ε• 2
zy

)[
−

(
b

a

)2

+
(

b

a

)4 2

[(d/a)2 − 1]2

]
, (51)

which will be compared with the M integrals evaluated in the next section.

8 M integral evaluation

From the general expressions given in [46,47], the MO integral of antiplane shear, with respect to the coordinate
origin at O , can be expressed as

MO =
∮

(Pαx nαx + Pαynα y) dl, Pαβ = Wδαβ − σzαuz,β , (α, β = x, y), (52)

with the sum on repeated α. Expressed in cylindrical coordinates, (52) becomes

MO = r2

2μ

∮ (
σ 2

zθ − σ 2
zr

)
dθ. (53)

By using the same closed contour from Fig. 15 as in the evaluation of the Jx integral, the contribution from
the remote circle M R

O → 0 as R → ∞, because stresses decay as 1/R2 far away from the inclusion. Thus,
Mvoid

O + M incl
O = 0, where

Mvoid
O = a2

2μ

∫ 2π

0
σ 2

zθ (a, θ) dθ. (54)

Upon using the circumferential shear stress expression (6), the integration in (54) gives

Mvoid
O = 4μa2b4

{
[(d2 − a2)2 I5] ε• 2

zx

+ [
4d2a2 I6 − 4da(d2 + a2)I2 + (d2 + a2)2 I3

]
ε• 2

zy

}
.

(55)

The integrals appearing in (55) are defined and evaluated in “Appendix B”. Their substitution into (55) yields

Mvoid
O = 2πμa2(b/a)4 (d/a)2 + 1

[(d/a)2 − 1]3

(
ε• 2

zx + ε• 2
zy

)
. (56)

Physically, the ratio Mvoid
O /a represents the energy release rate associated with isotropic void growth (by

material absorbtion over the surface of the void), keeping the position of the inclusion fixed relative to the
center of the void. Indeed, the comparison of (56) with (50) shows that Mvoid

O = −a(∂ ET /∂a).
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(a) (b)

Fig. 17 The variation of a Mvoid
O and b Mvoid

C with d/a for indicated values of the ratio b/a. The scaling parameters for both plots
are M̄O = M̄C = 2πμa2

(
ε• 2

zx + ε• 2
zy

)
. At far distances from the void, Mvoid

O and Mvoid
C approach zero as (d/a)−4 and (d/a)−2,

respectively

8.1 M integral around inclusion

By using the well-known relationship between the M integrals relative to coordinate origins at O and C , one
can write

M incl
O = M incl

C + d · J incl
x , (57)

and from the relationship Mvoid
O + M incl

O = 0, there follows

M incl
C = − (

Mvoid
O + d · J incl

x

)
. (58)

Thus, by substituting (56) and J incl
x = −J void

x from (44), the MC integral around the inclusion is found to be

M incl
C = 2πμa2(b/a)4 1

[(d/a)2 − 1]2

(
ε• 2

zx + ε• 2
zy

)
. (59)

If d � a, M incl
C approaches zero, as if the inclusion was in an infinite medium without void. The variation of

Mvoid
O and Mvoid

C with d/a for several values of ratio b/a is shown in Fig. 17. In the limiting case d = a + b,
the two integrals are M incl

C,max = 2πμ(ε• 2
zx + ε• 2

zy )b2/(2 + b/a)2 and Mvoid
O,max = −M incl

C,max + (a + b) · J void
x,max.

8.2 Expansion of the inclusion

The M incl
C /b is not proportional to the energy rate associated with isotropic growth (expansion) of the inclusion

(∂ ET /∂b), which is given in (51). If the specific configurational force ( f ) is introduced, the rate of total strain
energy associated with uniform expansion of the inclusion can be expressed as [48]

∂ ET

∂b
= −

∫ 2π

0
f (b, ϕ)b dϕ, f =

[
1

2

(
σ

0,in
i j + σ

0,out
i j

)
ρ=b

+ σ̂i j (b, ϕ)

]
ε•

i j (60)

where σ̂i j (b, ϕ) are the stress components of the auxiliary problem along the circumference of the inclusion
(ρ = b). The specific configurational force is thus

f = (
σ 0,in

zx + σ 0,out
zx

)
ρ=b ε•

zx +
(
σ 0,in

zy + σ 0,out
zy

)
ρ=b

ε•
zy + 2

(
σ̂zxε

•
zx + σ̂zyε

•
zy

)
ρ=b

. (61)

From the infinite-medium stress expressions listed in Sect. 2.1, it follows that the first two terms in (61) are

(
σ 0,in

zx + σ 0,out
zx

)
ρ=b ε•

zx +
(
σ 0,in

zy + σ 0,out
zy

)
ρ=b

ε•
zy

= −μ
[
ε• 2

zx + ε• 2
zy +

(
ε• 2

zx − ε• 2
zy

)
cos 2ϕ + 2ε•

zxε
•
zy sin 2ϕ

]
.

(62)
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Incorporating the expressions for the auxiliary stresses from Sect. 2.2, the third term on the right-hand side of
(61) is found to be

2
(
σ̂zxε

•
zx + σ̂zyε

•
zy

)
ρ=b

= 2μb2∗
(
ε• 2

zx + ε• 2
zy

) (
1

ρ2
b

− 2b2 sin2 ϕ

ρ4
b

)
(63)

where ρ2
b = (d − d∗)2 + 2(d − d∗)b cos ϕ + b2, d∗ = a2/d , and b∗ = ab/d . Thus, the local specific

configurational force, orthogonal at each point to the circumference of the inclusion, is

f = −μ
[
ε• 2

zx + ε• 2
zy +

(
ε• 2

zx − ε• 2
zy

)
cos 2ϕ + 2ε•

zxε
•
zy sin 2ϕ

]

+ 2μb2∗
(
ε• 2

zx + ε• 2
zy

)(
1

ρ2
b

− 2b2 sin2 ϕ

ρ4
b

)
.

(64)

The substitution of (64) into (60) and integration give the expression for the rate of energy associated with a
uniform expansion of the inclusion,

∂ ET

∂b
= 2πμb

(
ε• 2

zx + ε• 2
zy

)
− 4πμb

(
ε• 2

zx + ε• 2
zy

) a2b2

(d2 − a2)2 , (65)

in agreement with (51). The second part of the above expression is recognized to be δ ÊT /δb, where ÊT was
defined by (48). The comparison of (65) with the M integral around the inclusion (59) shows that

−∂ ET

∂b
= −2πμb

(
ε• 2

zx + ε• 2
zy

)
+ 2

M incl
C

b
. (66)

Thus, the energy release rate for a self-similarly expanding inclusion is not equal to the MC/b ratio around the
inclusion; cf. [8] where this distinction was not made.

9 Configurational forces on the inclusion in a circular cylinder and in a half-space

The preceding analysis delivers the expression for the configurational force on the inclusion within a circular
cylinder whose boundary r = a is traction-free (Fig. 7). This follows from (44) by replacing b with ab/d , and
d with a2/d . The result is

J incl
x = 4πμ(b/a)4 d

[1 − (d/a)2]3

(
ε• 2

zx + ε• 2
zy

)
, d ≤ (a − b). (67)

The rate of strain energy associated with a uniform expansion of the inclusion is given by (65). In the case of
a concentric inclusion within a cylinder, the total strain energy is obtained from (49) by taking d = 0, which
gives

ET = πμb2
(

1 − b2

a2

) (
ε• 2

zx + ε• 2
zy

)
. (68)

This can also be independently derived by integration from

ET = 1

2μ

[∫ 2π

0

∫ b

0

(
σ 0,in 2

zρ + σ 0,in 2
zϕ

)
ρ dρ dϕ +

∫ 2π

0

∫ a

b

(
σ 0,out 2

zρ + σ 0,out 2
zϕ

)
ρ dρ dϕ

]
(69)

where the stresses are specified by (26) and (27). The M integral around the concentric inclusion is M incl
C =

2πμ(b2/a)2
(
ε• 2

zx + ε• 2
zy

)
, while the specific configurational force and the energy release rate are

f = −μ

(
1 − 2

b2

a2

)(
ε• 2

zx + ε• 2
zy

)
, −∂ ET

∂b
= 2πb f, b ≤ a. (70)
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(a) (b)

Fig. 18 a The variation of the strain energy ET (normalized by Emax
T = πμa2ε• 2/4) with b/a, according to (68), where

ε• 2 = ε• 2
zx + ε• 2

zy . b The corresponding variations of −∂ ET /∂b and M incl
C /b (normalized by 2πμaε• 2)

The plot of ET (normalized by Emax
T ) is shown in Fig. 18a. Of all inclusions of radius b ≤ a, characterized

by the same uniform eigenstrain and inserted into a concentric cylinder of radius a, the largest strain energy
corresponds to the case b = a/

√
2. The plots of −∂ ET /∂b and M incl

C /b are shown in Fig. 18b.
If (a, d) → ∞, while a − d = c, (67) gives the expression for the force on the inclusion whose center is at

distance c from the free surface of a half-space (Fig. 10). Alternatively, this expression can be obtained from
the expression (37) for the shear stress along the free surface, by performing the integration

J incl
x = − 1

2μ

∫ ∞

−∞
σ 2

zy(0, y) dy = −πμ
b4

2c3

(
ε• 2

zx + ε• 2
zy

)
. (71)

The M integral around the inclusion and the energy release rate associated with the expansion of the inclusion
in this case are

M incl
C = πμ

b4

2c2

(
ε• 2

zx + ε• 2
zy

)
, −∂ ET

∂b
= −πμb

(
2 − b2

c2

)(
ε• 2

zx + ε• 2
zy

)
, c ≥ b, (72)

the total strain energy being ET = E0
T [1 − b2/(4c2)], with E0

T = πμb2
(
ε• 2

zx + ε• 2
zy

)
.

10 Conclusions

We have derived in this paper the expressions for the stress and displacement fields in an infinite isotropic elastic
solid, weakened by a circular cylindrical void, due to a nearby circular inclusion characterized by uniform
eigenstrain of the antiplane shear type. The fields are obtained as the sum of their infinite-medium stress
fields and the calculated auxiliary fields. The fields outside the inclusion follow directly from the extended
Milne–Thomson circle theorem, but not the fields inside the inclusion. It is shown that the overall fields
(21)–(24) represent the superposition of the infinite-medium fields of the actual and the image inclusion. If
the eigenstrain components of the actual inclusion are (ε•

zx , ε
•
zy), the eigenstrain components of the image

inclusion are (ε∗
zx , ε

∗
zy) = (−ε•

zx , ε
•
zy). The radius of the image inclusion is b∗ = (a2/d)b, where a is the

radius of the void, b is the radius of the actual inclusion, and d is the distance between the centers O and C of
the void and inclusion. The center of the image inclusion is at the distance d∗ = a2/d from the center of the
void. The analysis also delivers the results for the inclusion within a circular cylinder and near the free surface
of a half-space. The stress amplification is evaluated for the inclusion approaching the boundary of the void,
cylinder, and half-space, being tangent to them in the limiting case.

The second part of the paper is devoted to the determination of configurational forces acting on the void
and inclusion. The configurational force associated with a translation of the void is calculated by evaluating
the J integral along the boundary of the void, without using the solution of the entire boundary-value problem.
This is accomplished by incorporating the result that the circumferential shear stress along the boundary of
a circular void in an infinite isotropic elastic solid under antiplane shear is twice the circumferential shear
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stress along the corresponding circle in an infinite solid without a void, under the same loading conditions.
The configurational force, given by (44), depends on the magnitude of total eigenstrain, but not on the ratio of
the eigenstrain components. The force on the inclusion exerted by the void is equal in magnitude and opposite
in direction. The maximum value of this force is reached at the minimum distance between the centers of
the inclusion and void for which the presented analysis applies, which is when the inclusion is tangent to the
void. The interaction energy between the inclusion and void and the total energy (ET ) of the system are then
evaluated. The MO integral around the void is calculated by using only the infinite-medium stress field. The
derived expression (56) is shown to be equal to −a(∂ ET /∂a), if the surface of the void is traction-free. The
MC integral around the inclusion is given by (59) and is related to the energy release rate −(∂ ET /∂b) by (66).
The specific configurational force ( f ) per unit circumference of the boundary of the inclusion is given by (65).
The configurational forces on the inclusion in a circular cylinder are evaluated in Sect. 9. If the inclusion of
radius b and a prescribed eigenstrain are concentrically inserted in a circular cylinder of radius a, the largest
strain energy corresponds to the case b = a/

√
2. The expressions for the J and M integrals for the inclusion

near the free surface of a half-space are specified by (71) and (72).
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Appendix A: Auxiliary problem by the Fourier series

Since stresses must decay to zero away from the void as r → ∞, the appropriate stress function for the
auxiliary problem is

Ψ̂ (r, θ) = μŵ(r, θ) =
∞∑

n=1

1

rn

(
Ân cos nθ + B̂n sin nθ

)
. (A.1)

The corresponding radial shear stress is

σ̂zr (r, θ) = ∂Ψ̂

∂r
= −

∞∑
n=1

n

rn+1

(
Ân cos nθ + B̂n sin nθ

)
. (A.2)

The constants Ân and B̂n are specified by imposing the boundary condition σ̂zr (a, θ) = −σ 0
zr (a, θ), where

σ 0
zr (a, θ) is, from (5), given by

σ 0
zr (a, θ) = −μb2

ρ4
a

{[(
d2 + a2) cos θ − 2da

]
ε•

zx − [
(d2 − a2) sin θ

]
ε•

zy

}
. (A.3)

Here, ρ2
a = d2 − 2da cos θ + a2 is the square of the distance from the center of the inclusion to an arbitrary

point on the boundary of the void (Fig. 1a). By applying the Fourier series analysis, there follows

Ân = −μb2

d
d n∗ ε•

zx , B̂n = μb2

d
d n∗ ε•

zy, (A.4)

with d∗ = a2/d . Thus, by substituting (A.4) into (A.1), the stress function of the auxiliary problem becomes

Ψ̂ (r, θ) = −μb2

d

∞∑
n=1

1

(r/d∗)n

(
ε•

zx cos nθ − ε•
zy sin nθ

)
. (A.5)

Recalling the Laurent series of the function of the complex variable z = (r/d∗)eiθ [49],

1

1 − z
= −

∞∑
n=1

1

zn
, |z| > 1, (A.6)
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by taking the real and imaginary parts of (A.6) it follows that

∞∑
n=1

cos nθ

(r/d∗)n
= (r/d∗) cos θ − 1

1 − 2(r/d∗) cos θ + (r/d∗)2 ,

∞∑
n=1

sin nθ

(r/d∗)n
= (r/d∗) sin θ

1 − 2(r/d∗) cos θ + (r/d∗)2 .

(A.7)

Upon substitution of (A.7) into (A.5), the stress function takes the form

Ψ̂ (r, θ) = μb2∗
ρ2∗

[
(r cos θ − d∗)ε∗

zx + (r sin θ)ε∗
zy

]
, (A.8)

where b∗ = ab/d ,
(
ε∗

zx , ε
∗
zy

)
=

(
−ε•

zx , ε
•
zy

)
, and ρ2∗ = d2∗ −2d∗r cos θ +r2. The corresponding displacement

is ŵ = Ψ̂ /μ, while the stress components are σ̂zr (r, θ) = ∂Ψ̂ /∂r and σ̂zθ (r, θ) = r−1∂Ψ̂ /∂θ , which
reproduces (17) and (20). In particular, σ̂zθ (a, θ) = σ 0

zθ (a, θ).

Appendix B: Integrals used to evaluate J and M integrals

The following integrals were used in the derivation of the J and M integrals in Sects. 7 and 8:

I1 =
∫ π

0

sin2 θ cos θ dθ

ρ8 = π

a8

d/a

[(d/a)2 − 1]5
= I2 − I4,

I2 =
∫ π

0

cos θ dθ

ρ8 = 4π

a8

d/a

[(d/a)2 − 1]7

[(
d2

a2 + 1

)2

+ d2

a2

]
,

I3 =
∫ π

0

cos2 θ dθ

ρ8 = π

2a8

(d/a)2 + 1

[(d/a)2 − 1]7

[(
d2

a2 + 1

)2

+ 16
d2

a2

]
,

I4 =
∫ π

0

cos3 θ dθ

ρ8 = π

a8

d/a

[(d/a)2 − 1]7

[
3

(
d2

a2 + 1

)2

+ 8
d2

a2

]
,

I5 =
∫ π

0

sin2 θ dθ

ρ8 = π

2a8

(d/a)2 + 1

[(d/a)2 − 1]5
= I6 − I3,

I6 =
∫ π

0

dθ

ρ8 = π

a8

(d/a)2 + 1

[(d/a)2 − 1]7

[(
d2

a2 + 1

)2

+ 6
d2

a2

]

where ρ2 = d2 − 2ad cos θ + a2. These expressions were derived by using the formulas listed in [50], pages
148–149, in conjunction with appropriate integration by parts. The expressions were also verified by Matlab
evaluation of integrals.
The integrals used in the evaluation of the Fourier coefficients of the auxiliary problem are:

∫ π

0

sin θ sin nθ dθ

ρ2 = π

2a2

(a

d

)n+1
, n ≥ 1,

∫ π

0

cos θ cos nθ dθ

ρ2 = π

2a2

d2 + a2

d2 − a2

(a

d

)n+1
,

∫ π

0

sin θ sin nθ dθ

ρ4 = nπ

2ad

(a/d)n

d2 − a2 ,

∫ π

0

cos θ cos nθ dθ

ρ4 = π

2ad

(a/d)n

(d2 − a2)3 [4a2d2 + n(d4 − a4)].
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