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Abstract The problem of the stability of a liquid bridge stretched between parallel plates with a wetting contact
angle of 90◦ is revisited. A closed form expression is derived for the height of the bridge, in terms of its volume,
within which a cylindrical and various types of unduloidal equilibrium configurations can exist. For a given
volume of the liquid and specified height of the bridge, the lateral surface of a uniform cylindrical bridge is
smaller than the surface area of any unduloidal equilibrium shape. The lateral surface of the unduloidal shapes
increases with the increase in the number of their inflection points. The force required to keep the bridge in
equilibrium is evaluated in each case. All unduloidal equilibrium configurations are unstable, the only stable
configuration being that of a cylindrical bridge whose height is less than one-half of its circumference. A lower
bound estimate is also derived based on a simple energy consideration. The stretching force required for the
equilibrium at the onset of instability is compared with its upper bound estimate. For a given height of the
bridge, the force required to keep a cylindrical bridge in equilibrium is greater than the force required for
equilibrium of any unduloidal configuration of the same height. The opposite is true for the capillary pressure.

1 Introduction

Liquid bridges form in many cases of technological importance, which include tribological problems, coating,
metallic melts and crystal growth, mechanics of porous media, powder technology, cree rapture, and various
problems of bio- and nanomechanics. For example, a liquid bridge can form from a liquid condensate at the
interface between two spherical particles, between a spherical particle and a flat substrate, between a solid
body and a liquid surface, between grain boundaries, between crack faces, and between the tip of an atomic
force microscope and a substrate. Consequently, considerable amount of research was devoted to analytical and
experimental determination of the capillary binding forces due to liquid bridges at the solid/solid or solid/liquid
interfaces, e.g., [1–3]. The stability of liquid bridges between coaxial parallel disks, with or without gravity
effects, for which the contact angle between liquid and disks may vary freely within the interval specified
by the contact angles with the two sides of each disk (canthotaxis effect). In the stability analysis of liquid
bridges between parallel plates, on the other hand, the contact angle between liquid and supporting plates is
fixed (Neumann-type boundary condition), but the contact boundary can vary. This has been studied in great
detail for arbitrary, either equal or different contact angles, by many researchers [4–13]. The critical height of
the cylindrical bridge, with the contact angle of 90◦, was first established by Vogel [4] and Athanassenas [5],
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who also proved that all unduloidal bridge configurations with 90◦ contact angle are unstable. Liquid bridges
between balls, liquid ridges, doubly connected liquid surfaces in cylindrical containers, and the rotating liquid
bridges which can develop an amphora or a skipping rope instability have also been studied; the representative
references include [14–20]. The effect of the axial acceleration or the axial magnetic field on the stability of
the bridge have been examined in [21,22]. For a related topic of the equilibrium and stability of sessile and
pendant drops, the references [23–27] can be consulted.

The objective of this paper is to provide a physically motivated, conceptually simple analysis of the onset
of instability of a cylindrical liquid bridge between two parallel flat plates, as the bridge is slowly stretched by
pulling the plates apart. This instability onset was originally established by variational analysis from a rigorous
mathematical point of view by Vogel [4] and Athanassenas [5]. The expressions are derived for the heights of
the bridge within which either cylindrical or various unduloidal equilibrium configurations represent possible
equilibrium configurations. It is shown that, for a given volume of the liquid and specified height of the bridge,
the lateral surface of a uniform cylindrical bridge is smaller than the surface area of any unduloidal equilibrium
configuration. A simple proof is constructed to show that all unduloidal equilibrium bridge configurations are
unstable and that the only stable equilibrium configuration is that of a cylindrical bridge whose height is less
than one-half of its circumference [4,5]. A lower bound estimate of the critical aspect ratio is then derived
based on a simple energy consideration. The stretching force required to keep the bridge in equilibrium at the
onset of instability is compared with its upper bound estimate.

2 Cylindrical liquid bridge

Figure 1a shows the equilibrium configuration of a liquid drop resting on a solid substrate (plate) with the
wetting contact angle of 90◦. If the liquid volume is V , a drop whose bounding surface has the least surface
energy is a hemispherical drop of radius R1 = (3V/2π)1/3, provided that the gravity (g) is absent or that
its effect on the flattening of the drop can be neglected. The latter assumption is acceptable provided that the
size of the drop is less than the capillary length (σ/ρg)1/2, where ρ is the density of the liquid, and σ is the
liquid/vapor surface (interface) energy [28].

If another plate approaches the drop from above, parallel to the lower plate (Fig. 1b), upon its contact with
the drop, the drop looses its equilibrium with any further approach of the plates. The adhesive forces between
the plates and liquid set in and pull the plates toward each other, while the liquid spreads outward forming a
liquid bridge. If the separation between wetted plates is H < R1, the only possible equilibrium configuration
is a cylindrical bridge whose base radius is R = (V/π H)1/2 (as elaborated in Sect. 3), provided that a pair of
resistive forces F is supplied externally to balance the capillary attraction and the Laplace pressure (Fig. 2).
The magnitude of this force is

F = 2Rπσ − R2π�p = Rπσ, (1)

where �p = 2σκ = σ/R is the Laplace pressure, and κ = (2R)−1 is the mean curvature of the lateral surface
of the bridge. It is noted that in the case of 90◦ contact angle, there is no surface energy interchange caused
by the wetting of the plates, because the solid/liquid and solid/vapor interface energies are equal to each other
(σsl = σsv = σ ).

Suppose now that the bridge is quasi-statically stretched by slowly pulling the plates apart, under the
displacement controlled conditions. Following the transient liquid flow associated with each increment of

(a) (b)

Fig. 1 a A hemispherical liquid drop resting on a flat plate. Its radius is R1 = (3V/2π)1/3, where V is the liquid volume.
b Another plate approaching the drop, just before being pushed into the drop
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(a) (b)

Fig. 2 a A cylindrical liquid bridge of radius R and height H between two parallel plates. b The capillary forces and the Laplace
pressure exerted by the liquid on the plates are equilibrated by the externally applied forces F

stretch,1 the magnitude of the applied force is decreased, as needed for the new equilibrium configuration.
The question is at what value of the force F , and at what aspect ratio H/R, the cylindrical bridge looses
its stability. In particular, we want to address this question in light of the fact that a nonlinear differential
equation for the liquid shape 2σκ = �p may have multiple solutions. Indeed if the separation of the plates
is H = H1 = (3V/2π)1/3, either a hemispherical or cylindrical shape can fit between the plates (both being
surfaces of constant curvature). The separation of the plates spanned by n ≥ 1 adjacent hemispherical surface
segments is2

Hn = n2/3 H1, H1 =
(

3V

2π

)1/3

, (2)

which is obtained from the conditions

Hn = n Rn, V = 2n

3
R3

nπ. (3)

The configurations for n = 1, 2, 3, and 4 are shown in Fig. 3. The corresponding lateral surface is Sn = 2n R2
nπ ,

or, in terms of the liquid volume,

Sn = 2πn1/3 H2
1 . (4)

The radius ρn of the cylindrical bridge of height Hn , occupying the same volume V , is obtained from ρ2
nπ Hn =

V . This gives

ρn =
√

2

3

H1

n1/3 . (5)

The lateral surface of this cylinder is sn = 2πρn Hn so that

sn =
√

2

3
Sn < Sn . (6)

The aspect ratio of the cylinder is Hn/ρn = √
3/2 n. The force required for the equilibrium of such a cylindrical

bridge is

F̂n = ρnπσ =
(

2

3

)1/6 (
π2V

n

)1/3

σ =
(

2

3

)1/2
π H1

n1/3 σ. (7)

The sequence of the increasing heights (the plate separations) {Hn}, scaled by H1 = (3V/2π)1/3, is

{Hn}
H1

= {n2/3} = {1, 1.587, 2.08, 2.52, 2.924, 3.302, 3.659, 4, 4.327, 4.642, . . . }. (8)

1 The initial increase of the force applied during each incremental stretch supplies inertial effects for the transient fluid flow,
which are damped out by the viscosity of the fluid in reaching the equilibrium configuration.

2 The unduloidal surface consists of the sequence of attached spheres in the limit as ϕ∗ → π/2 (see Sect. 3). In this case c = 0
and (10) gives r/ cos ϕ = κ−1 = radius of the sphere.
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(a) (b)

(c) (d)

Fig. 3 The equilibrium liquid configurations between two parallel plates consisting of n ≥ 1 hemispherical drop segments. The
liquid volume is the same in all cases, so that the sequence of radii decreases according to Rn = R1/n1/3. The corresponding
heights are Hn = n Rn

3 Unduloidal equilibrium configurations

In the absence of gravity, the equilibrium shape of the lateral surface of the liquid bridge must be a surface
of constant mean curvature (because the pressure difference �p is constant across such a surface). Since the
contact angle with the end plates is 90◦, the possible solutions of the capillary equation under zero gravity are
circular cylinders and unduloids, with their maximum or minimum radii at the end plates [4,9].3 The profile
of an unduloid segment, sketched in Fig. 4a, is the solution of the nonlinear differential equation 2σκ = �p,
where the curvature is defined by the well-known formula

2κ = cos ϕ

r
− r ′′ cos3 ϕ, cos ϕ = 1

(1 + r ′ 2)1/2 . (9)

The first integral of (9) is

r cos ϕ = κr2 + c. (10)

It readily follows from the boundary conditions that the integration constant is c = κrarb, while the curvature

κ = 1

2ro
= 1

ra + rb
, ro = 1

2
(ra + rb), (11)

where ra and rb are the two base radii. Furthermore, from Eqs. (9) and (11),

2

ra + rb
= 1

ra
− r ′′

a = 1

rb
− r ′′

b = cos ϕ∗
r∗

, (12)

3 The profile of an unduloid surface is obtained by tracing the focus of an ellipse as it rolls along a straight line. The unduloid
surface is obtained by revolving the so- generated profile (Delaunay arc) around the line of rolling [29,30].
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(a) (b)

Fig. 4 An unduloidal equilibrium configuration of the liquid bridge with a one, and b two inflection points

where r∗ is the radius at the inflection point, and ϕ∗ is the corresponding slope. Consequently, by exploring
(12), we obtain

r2∗ = rarb, cos ϕ∗ = 2r∗
ra + rb

, sin ϕ∗ = ra − rb

ra + rb
,

r ′′
a = rb − ra

ra(ra + rb)
, r ′′

b = ra − rb

rb(ra + rb)
, r ′′

b − r ′′
a = ra − rb

rarb
.

(13)

Since �p = σ/ro, the force required to hold the bridge in equilibrium is

F = 2r∗πσ cos ϕ∗ − r2∗π�p = πσ
r2∗
ro

= πσro cos2 ϕ∗. (14)

The distances from the inflection point to the bottom and top plate are

ha,b = ro[E(k∗) ± k∗], k∗ = sin ϕ∗, (15)

where

E(k∗) =
π/2∫
0

(1 − k2∗ sin2 θ)1/2dθ = π

2

(
1 − 1

4
k2∗ − · · ·

)
(16)

is the complete elliptic integral of the second kind. In particular, ha − hb = ra − rb, so that the profile of the
unduloid is not antisymmetric with respect to the inflection point. The total height of the considered unduloidal
segment (h = ha + hb) is

h = 2ro E(k∗) = πro

(
1 − 1

4
k2∗ − · · ·

)
. (17)

In order that the inflection point is within the height of the bridge, hb ≥ 0. If the unduloidal bridge consists of n
segments from Fig. 4 so that its profile has n inflection points, the height of the bridge is n times greater than the
right-hand side of (17), i.e., h = 2nro E(k∗). The unduloidal configuration with two inflection points is sketched
in Fig. 4b. Figure 5 shows the variation of the radii ro, r∗, ra , and rb from Fig. 4a versus the increasing height
of the unduloid, under constant volume of the enclosed liquid. The scaling length is h̄ = (3V/2π)1/3, which is
the radius of a hemispherical drop R1 = H1 from Fig. 3a. The maximum height in Fig. 5 is h = h1 = 1.874H1,
which corresponds to unduloidal bifurcation to cylindrical shape; see the sequence of heights (27) below. The
corresponding variation of the height segments ha and hb, whose sum is the total height of the unduloid is
shown in Fig. 5b.

The lateral surface and the enclosed volume within the unduloid of Fig. 4a are evaluated in [9]. The
expressions are
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Fig. 5 a The variation of the radii ro, r∗, ra , and rb for the unduloidal segment with one inflection point from Fig. 4a versus
its height at constant volume. The scaling length is h̄ = R1 = H1 = (3V/2π)1/3. b The corresponding variation of the height
segments ha and hb, whose sum is the total height of the unduloid (h = ha + hb)

S = 4πr2
o

[
2E(k∗) − (1 − k2∗)K (k∗)

]
,

V = 2π

3
r3

o

[
(7 + k2∗)E(k∗) − 4(1 − k2∗)K (k∗)

]
,

(18)

where

K (k∗) =
π/2∫
0

(1 − k2∗ sin2 θ)−1/2dθ = π

2

(
1 + 1

4
k2∗ + · · ·

)
(19)

is the complete elliptic integral of the first kind. To first-order terms in k2∗ , the expressions in (18) simplify to

S = 2π2r2
o

(
1 + 1

4
k2∗

)
, V = π2r3

o

(
1 + 3

4
k2∗

)
. (20)

These can also be expressed, by incorporating the height h, as

S = 2πroh

(
1 + 1

2
k2∗

)
, V = πr2

o h
(
1 + k2∗

)
. (21)

If the unduloidal bridge configuration consists of n segments shown in Fig. 4a, its surface and volume are
n times greater than the right-hand sides of the expressions (18) or (20).

Figure 6a shows the variation of the surface area (S) of the unduloids with one, two, three, or more inflection
points versus the height h (normalized by S̄ and h̄, as indicated). The volume of the liquid is the same for all
unduloids. The utilized expressions to construct the plots are

S

S̄
= 4πn1/3 2E(k∗) − (1 − k2∗)K (k∗)

[(7 + k2∗)E(k∗) − 4(1 − k2∗)K (k∗)]2/3 , S̄ =
(

3V

2π

)2/3

, (22)

h

h̄
= n2/3 2E(k∗)

[(7 + k2∗)E(k∗) − 4(1 − k2∗)K (k∗)]1/3 , h̄ =
(

3V

2π

)1/3

= H1. (23)

They are obtained by combining expressions (17) and (18) and by letting k∗ ∈ [0, 1] to encompass the entire
range of unduloidal shapes (from cylindrical to spherical). The unduloids with one inflection point (n = 1) are
to the left and with more inflection points toward the right. In each range of the height where multiple unduloidal
shapes exist, the inequality Sn > Sn−1 holds. For a given liquid volume and a prescribed lateral surface, either
none, one, or two unduloids can fit between two plates. This can be observed from Fig. 6a, because a horizontal
line S = const. intersects at most two unduloidal branches. If two unduloidal configurations of the same volume
and lateral surface exist (configurations with n and n + 1 inflection points), the configuration with n inflection
points has a greater height.

Author's personal copy



On the stability of a cylindrical liquid bridge 239

1 2 3 4 5 6 7
6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7

4

6

8

10

12

(a) (b)

Fig. 6 a The variation of the surface area (S) of the unduloids with one, two, three, or more inflection points versus the height h,
normalized by S̄ and h̄, as specified in (22) and (23). The volume of the liquid is the same for all unduloids. b The same as in part
a, with the added parabolic variation of the lateral surface area of the cylindrical bridge. The square root parabola is an envelope
of the S-curves for the unduloids corresponding to different n. The bifurcation heights (hn) are where the S-curves merge into
the parabola
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Fig. 7 a The variation of the magnitude of the force F required to keep the bridge in equilibrium (scaled by F̄ = (πV )1/3σ )
versus the height of the bridge. The curves corresponding to unduloidal bridge shapes, determined from (24), branch off from the
cylindrical bridge curve (29) at the bifurcation heights h1, h2, h3, . . . . The force is equal to zero for the configurations of the type
shown in Fig. 3, corresponding to heights H1, H2, H3, . . . . b The variation of the capillary pressure �p (scaled by σ/h̄) versus
the height of the bridge. The curves corresponding to the unduloidal bridge shapes are obtained from (30), and for the cylindrical
bridge from (31)

The heights corresponding to the end points of each curve Sn in Fig. 6a are specified by the sequence {Hn}
given by (8). If un denotes an unduloid with n inflection points, than for h < H1, the only equilibrium shape
is a cylinder (c); for H1 < h < H2, the possible equilibrium shapes are c and u1; for H2 < h < h1, they are c,
u1 and u2; for h1 < h < H3, they are c and u2; for H3 < h < H4, they are c, u2 and u3; and for H4 < h < H5,
they are c, u2, u3 and u4, etc.

The force required to hold the unduloidal bridge in equilibrium is determined from (14) and can be
expressed as

F

F̄
=

(
3π

2n

)1/3 1 − k2∗
[(7 + k2∗)E(k∗) − 4(1 − k2∗)K (k∗)]2/3 , F̄ = (πV )1/3σ. (24)

The variation of this force with the height of the bridge is shown in Fig. 7a.

3.1 Bifurcation from unduloidal to cylindrical shape

The bifurcation of an n-segment unduloidal shape into a cylindrical shape takes place when k∗ → 0 in (17)
so that the height (hn) of the so-obtained cylinder is related to the radius of its base (rn) by hn = nπrn . The
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enclosed volume is, from Eq. (20), V = nπ2r3
n . Consequently, the height of the cylindrical bridge can be

expressed as

hn =
(

2π2

3

)1/3

Hn ≈ 1.8739Hn, (25)

where Hn is defined in terms of the volume V by Eq. (2).
The force required for the equilibrium of this cylindrical bridge is

Fn = rnπσ =
(

πV

n

)1/3

σ =
(

2π2

3n

)1/3

H1σ, (26)

which is related to the force F̂n from Eq. (7) by F̂n = (2π2/3)1/6 Fn .
The sequence of the increasing heights {hn}, scaled by h̄ = (3V/2π)1/3, for different values of n, is

{hn}
h̄

=
(

2π2

3

)1/3

{n2/3} = {1.874, 2.975, 3.898, 4.722, 5.479, 6.187, . . .}. (27)

The two sequences (8) and (27) joined together are

1

h̄
{H1, H2, h1, H3, H4, H5, h2, H6, H7, h3, H8, H9, H10, h4, . . .}
= {1, 1.587, 1.874, 2.08, 2.52, 2.924, 2.975, 3.302, 3.659, 3.898, 4, 4.327, 4.642, 4.722, . . .}.

For convenience, the values corresponding to the members of the bifurcation sequence {hn} are underlined.
Figure 6b shows the same plots as Fig. 6a, with the added parabolic variation of the surface area of the

cylindrical bridge versus its height, enclosing the same volume as each unduloid. The governing expression is
obtained from πr2h = V and S = 2πrh, which gives

S

S̄
= 2π

(
2h

3h̄

)1/2

, h̄ =
(

3V

2π

)1/3

. (28)

This square root-type parabola is an envelope of the family of S-curves for the unduloids with different n. The
contact points are the points of the bifurcation from the cylindrical to unduloidal shape, specified by the sequence
{hn} from (27). An alternative graphical illustration of the nonuniqueness of equilibrium configurations and
the bifurcation points was used in [9], where the plot of the normalized liquid volume versus the normalized
capillary pressure was constructed.

The force required to keep the cylindrical bridge in equilibrium is

F

F̄
=

(
2π2

3

)1/6
1

(h/h̄)1/2
= 1

(h/h1)1/2 , h1 =
(

2π2

3

)1/3

h̄. (29)

This is an envelope of the force-curves for unduloidal bridge shapes, as shown in Fig. 7a. For a given height of
the bridge, the force required to keep a cylindrical bridge in equilibrium is greater than the force required for
equilibrium of any unduloidal configuration at that height. The force–displacement relation for liquid bridges
with arbitrary contact angle is studied in [6].

The capillary pressure within the unduloidal bridge is �p = σ/r0, i.e.,

h̄�p

σ
= 2nE(k∗)

(
h

h̄

)−1

, h̄ =
(

3V

2π

)1/3

. (30)

The capillary pressure within a cylindrical bridge is �p = σ/R, where R is the radius of the base of the
cylindrical bridge so that

h̄�p

σ
=

(
3

2

)1/2 (
h

h̄

)1/2

, h̄ =
(

3V

2π

)1/3

. (31)

The plots are shown in Fig. 7b. For a given height of the bridge, the capillary pressure within a cylindrical
bridge is smaller than the capillary pressure within any unduloidal equilibrium configuration at that height. The
capillary pressure of latter configurations increases with the increase in the number of their inflection points.
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On the stability of a cylindrical liquid bridge 241

Fig. 8 A sinusoidal perturbation of the cylindrical liquid bridge specified by (32)

4 Stability analysis based on a sinusoidal perturbation

Figure 6 shows that the cylindrical shape of the liquid bridge is energetically preferred over all unduloidal
equilibrium shapes (all n ≥ 1). Nonetheless, the equilibrium configuration of the cylindrical bridge becomes
unstable when its height is greater than half of its circumference (H = π R), as expected from the classical
Plateau–Rayleigh instability of a liquid jet, which occurs at H/R = 2π .4 This is so because at the onset of
instability, there is a nonequilibrium geometrically permissible configuration of the liquid bridge with a lower
lateral surface energy. Indeed, assume that the profile of a perturbed shape is of the sinusoidal type (Fig. 8),

r = R0 + � sin
(π z

H

)
. (32)

This specifies a surface of revolution which does not have a constant curvature,5 as required by the Laplace
equation 2σκ = �p (pressure difference being constant in the absence of gravity) so that (32) does not repre-
sent a possible equilibrium configuration of the liquid bridge. It is, however, a geometrically (kinematically)
admissible configuration for the perturbation analysis, because it satisfies the boundary condition of 90◦ con-
tact angle with the two end plates. The relationship between R0 and � is specified by the condition that (32)
encloses a given volume of the liquid between the plates at a given distance H . This is

V = π

H/2∫
−H/2

r2 dz = π H

(
R2

0 + 1

2
�2

)
. (33)

The lateral surface area of the perturbed shape is

S = 2π R0L , L = 2

H/2∫
0

(
1 + r ′ 2) dz, (34)

4 This result is from the static analysis. The kinetic analysis of Rayleigh predicts that the perturbation of wavelength H ≈ 9R
grows most rapidly [28].

5 Its curvature, to first-order terms in �/H , is

κ = 1

2R0

[
1 +

(
π2 R0

H
− H

R0

)
�

H
sin

(π z

H

)]
,

which clearly depends on z.
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where L is the length of the perturbed profile curve. By using the approximation (1 + r ′ 2)1/2 ≈ 1 + r ′ 2/2, it
follows that6

L = H

(
1 + π2�2

4H2

)
, S = 2π R0 H

(
1 + π2�2

4H2

)
. (36)

If the perturbed shape is energetically preferred over the cylindrical shape, enclosing the same liquid volume,
the conditions S ≤ 2Rπ H and V = R2π H must hold, i.e.,

R0

(
1 + π2�2

4H2

)
≤ R, R2

0 + 1

�2 = R2. (37)

By squaring both sides of the inequality in (37) and by incorporating the relationship between R0 , R and �,
it follows that

R2
0π2 ≤ H2 ⇒ H ≥ π R

(
1 − �2

4R2

)
. (38)

This inequality is certainly satisfied, meaning that the considered sinusoidal shape has a smaller surface area
than a cylindrical shape, whenever the aspect ratio of the cylinder is H/R ≥ π . Thus, H/R = π is the critical
aspect ratio for the instability of a cylindrical liquid bridge. In terms of the liquid volume, the height of the
cylindrical bridge at the onset of instability is H = (πV )1/3 so that a cylindrical bridge is unstable if its
volume is smaller than H3/π . From the presented analysis, it also follows that the cylindrical bridge with
the volume larger than H3/π is stable relative to the sinusoidal perturbation (32); Vogel [4] (Theorem 4.3)
and Athanassenas [5] (Theorem 3.2) proved its stability for V > H3/π with respect to an arbitrary volume
preserving perturbation. Carter [6] performed numerical evaluation of stable bridge configurations for various
values of contact angle θ �= 90◦, observing that the volume of every stable liquid bridge was greater than
H3/π . This was known as “Carter conjecture”, which was subsequently proved by Finn and Vogel [10]. Zhou
[11] extended Finn and Vogel’s result and proved that the lower bound for the volume of a stable liquid bridge
(H3/π) also holds when the contact angles with two plates are different. She furthermore improved this lower
bound by deriving expressions for higher lower bounds, dependent on whether the profile of stable bridge is a
catenoid, a nodoid, or an unduloid with one or no inflection points.

5 Instability of unduloidal equilibrium configurations

It was shown by Vogel [4] that, for an arbitrary but equal contact angle with the end plates, among unduloidal
bridge configurations only those with no inflection points between the end plates can be stable, while those with
one or more inflection points are always unstable. This means that all unduloidal bridge configurations with 90◦
contact angle are unstable. We shed in this section additional light to this result, based on the following analysis
of the surface energy plots from Fig. 6. For h < H1 = (πV )1/3, the cylindrical bridge is the only equilibrium
configuration and is stable, as discussed in Sect. 4. For H1 < h < H2, there are two possible equilibrium
configurations, a cylindrical configuration (c) and an unduloidal configuration (u1) with one inflection point
(see Fig. 6b). Since H2 < h1, and since the cylindrical configuration is stable for h < h1, the unduloidal
configuration must be unstable. Indeed, consider the unduloidal configuration u1 whose height is slightly less
than the bifurcation height h1. If u1 was stable, all nearby configurations of the same height would have to
have a higher energy than u1; but the plot in Fig. 6 shows that the cylindrical configuration c has smaller
energy than u1. Thus, u1 must be unstable. Physically, for any u1, removing a bit of liquid near the bottom of
u1 (where ra > rb) and adding it near the top (Fig. 4a) would decrease the surface energy of the so-created
perturbed configuration. Since u2, u3, etc., consist of 2, 3, etc., unstable u1 segments, all unduloidal bridge
configurations are unstable. Their equilibrium configurations are thus associated with the saddle points of the
surface energy functional in the space of geometrically admissible surface shapes (Fig. 9b).

6 The exact evaluation of L actually gives

L = 2�

k
E(k), k2 = π2�2

H2 + π2�2 , (35)

where E(k) is the complete elliptic integral of the second kind.
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(a) (b)

Fig. 9 A schematic representation of the shape of the potential energy 	 = σ S − (�p)V of the liquid bridge whose height h is:
a H2 < h < h1, when there are three possible equilibrium configurations (stable cylindrical configuration c, and unstable
unduloidal configurations u1 and u2), and b H5 < h < h2, when there are four unstable equilibrium configurations (c, u2, u3, u4),
all being associated with the saddle points of the potential energy functional

The instability of the unduloidal bridge configuration with one inflection point in the range of height
H2 < h < h1, where there are three possible equilibrium configurations (c, u1, and u2, see Fig. 6a) can also be
demonstrated by using a sinusoidal perturbation (32). To proceed analytically, since H2/h1 = 1.587/1.874 ≈
0.85, we adopt the approximate expressions for the surface and volume of the unduloidal shape given by (21).
An analogous analysis can be performed numerically by using the exact expressions (18). The surface area
and the volume enclosed by the sinusoidal shape (32) are given by (33) and (36). The unduloidal bridge is
unstable with respect to this sinusoidal (nonequilibrium) perturbation of the same height h = H and the same
volume V , if

πr2
o H

(
1 + k2∗

) = π H

(
R2

0 + 1

2
�2

)
(39)

and

2π R0 H

(
1 + π2�2

4H2

)
< 2πro H

(
1 + 1

2
k2∗

)
, (40)

where the height of the bridge is

H = πro

(
1 − 1

4
k2∗

)
< πro. (41)

From (39), it follows that

R2
0 = r2

o

(
1 + k2∗

) − 1

2
�2, (42)

while (40) implies H > R0π . Thus, in view of (41),

π R0 < H < πro. (43)

In order that this inequality holds, the sinusoidal perturbation must be chosen such that R0 < ro. Since (42)
can be rewritten, to first-order terms in k2∗ , as

r2
o = R2

0

(
1 − k2∗

) + 1

2
�2, (44)

we conclude that R0 < ro provided that � >
√

2R0k∗. It remains to show that R0 < R, because we are
considering the height H < π R, where R is the radius of a cylindrical bridge of the same volume. The
inequality R0 < R is certainly fulfilled, because, from (21), the volume V = πr2

o H(1 + k2∗) = π R2 H , which
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gives R2 = r2
o (1 + k2∗). This proves that R > ro and thus R > R0, because R0 < ro for � >

√
2R0k∗.

Therefore, we have demonstrated that the sinusoidal nonequilibrium perturbation (39) with � >
√

2R0k∗ has
a lower surface energy than the considered unduloidal equilibrium configuration with one inflection point (u1)
so that the latter represents an unstable equilibrium configuration.

6 Lower bound estimates of the critical aspect ratio

Although we presented a static analysis for the determination of the precise value of the critical aspect ratio
H/R at which a cylindrical liquid bridge becomes unstable, a simpler analysis can be constructed to obtain a
reasonably accurate lower bound estimate of the critical aspect ratio. This analysis is analogous to that from
[31] in the case of a liquid jet. If a hemispherical drop configuration is energetically preferred over a cylindrical
bridge configuration enclosing the same volume (Fig. 10), its surface energy must be smaller, i.e.,

2R2
1π ≤ 2Rπ H,

2

3
R3

1π = R2π H ⇒ H ≥ 9

4
R = 2.25R. (45)

This represents a lower bound estimate of the critical aspect ratio, which implies that instability certainly does
not take place for smaller values of the aspect ratio. The predicted critical aspect ratio H/R = 2.25 is about
28 % lower than the previously determined static value H/R = π . In terms of the liquid volume, this simplified
analysis predicts that, at the instant of instability, the radius of the cylindrical bridge is R = (4V/9π)1/3 =
2R1/3 so that the estimated critical height can also be expressed as H = 3R1/2.

Two hemispherical drops are energetically less favored than one hemispherical drop of the same volume,
because its total surface area is 3

√
4 times greater. Consequently, the lower bound of the aspect ratio for the

formation of two hemispherical drops (Fig. 11) is twice higher and equal to H/R = 9/2. This is again about
28 % lower than the critical aspect ratio H/R = 2π , corresponding to the transition of the unduloidal bridge
with two inflection points into the cylindrical bridge of the same volume. More generally, if the configuration
consists of n hemispherical drops of radius Rn , then

2n R2
nπ ≤ 2Rπ H,

2n

3
R3

nπ = R2π H ⇒ H ≥ 9n

4
R = 2.25n R. (46)

The radius of the cylindrical bridge R at the instant of such n-mode instability and the corresponding force are

R =
(

4V

9nπ

)1/3

σ, F =
(

4π2V

9n

)1/3

σ. (47)

The n-mode instability cannot occur below the aspect ratio H/R = 9n/4 and above the force
F = (4π2V/9n)1/3σ , which are thus their lower and upper bound estimates, respectively. These expressions

(a) (b)

Fig. 10 a A hemispherical liquid drop between two parallel plates enclosing the volume V = 2π R3
1/3. b A cylindrical bridge of

the same liquid volume kept in equilibrium by the forces F = π Rσ . If two liquid configurations have the same lateral surface,
then R = 2R1/3 and H = 9R/4
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(a) (b)

Fig. 11 a Two hemispherical liquid drops between two parallel plates enclosing the volume V = 4π R3
1/3. b A cylindrical bridge

of the same liquid volume kept in equilibrium by the forces F = π Rσ . If two liquid configurations have the same lateral surface,
then R = 2R2/3 and H = 9R/2

can be compared with the previously derived expressions for the critical values H/R = nπ , R = (V/nπ2)1/3,
and F = (V π/n)1/3. While the approximate value of the critical aspect ratio is about 28 % lower, the approxi-
mate critical force and the approximate critical radius R are about 12 % higher than their previously determined
values. The corresponding height H is about 20 % lower than its true static value.

7 Discussion

We presented a study of the equilibrium and stability of a liquid bridge stretched between two parallel flat
plates in the case of 90◦ contact angle, which is appealing from the physical point of view and its conceptual
simplicity. A comprehensive variational analysis was originally presented in [4,5]. The sequence of height
intervals is determined for which the unduloidal configurations with different number of inflection points are
in equilibrium. The heights at which the bifurcation of a cylindrical bridge shape into an unduloidal shape
takes place are also calculated. It is shown that, for a given liquid volume, the lateral surface of a uniform
cylindrical bridge is smaller than the surface area of any unduloidal equilibrium shape of the same height.
The force required to keep the bridge in equilibrium is evaluated in each case. A simple proof is constructed
demonstrating that all unduloidal equilibrium configurations are unstable, confirming the known result that the
only stable equilibrium is that of a cylindrical bridge whose height is less than one-half of its circumference.
The latter stability is verified relative to a sinusoidal perturbation of the cylindrical shape. A lower bound
estimate of the critical aspect ratio is derived by employing a simple energy analysis. The stretching force
required to keep the bridge in equilibrium at the onset of instability is compared with its upper bound estimate.

The presented analysis can be extended to more general cases of equal and nonequal contact angles, which
are different from 90◦. These cases have been studied in the past by many. In the comprehensive analytical
and numerical analysis of the stability of liquid bridges by Vogel [7], no stable bridge with an inflection point
along its profile was found in the case of arbitrary but equal contact angles at two plates. For contact angles θ
less than about 31.1◦, he furthermore found that the unduloidal shape of liquid bridge becomes unstable before
the appearance of an inflection point, while for θ greater than about 31.1◦ the stability limit coincides with
the appearance of the inflection point (at the end of the bridge, thus with the slope equal to the contact angle).
The angle θ ≈ 31.146◦ was later found to be a unique root of a transcendental equation derived by Langbein
[9]. Zhou [12] examined the effect of the contact angle and the liquid volume on the geometry of stable
bridge configuration further, specifying when the profile of the bridge is unduloidal, nodoidal, or catenoidal.
For example, she found that for the contact angle less than about 15◦, the stable bridge configuration is of the
nodoidal type (inner portion of it), in agrement with the earlier conclusion from [9]. She also confirmed Vogel’s
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[7] conclusion that for θ > 90◦ all admissible inflectionless convex bridges are stable, while for θ < 90◦, not
all inflectionless concave bridges are stable, confirming the numerical results from [7–9].

If the contact angles at two plates are different (θ1 �= θ2), the stability analysis becomes more involved. A
stable unduloidal bridge configuration may contain an inflection point between the plates, but no stable bridge
with more than one inflection point was detected in numerical experiments by Vogel [7]. See also a related
discussion in [13], which also includes the analysis of the gravity effects on the asymmetry of liquid bridge. A
slight difference in the wetting properties of the two plates, and thus of their contact angles with the liquid, can
have a pronounced effect on the stability of the bridge. Even more striking is an inherent instability associated
with a slight tilting of the parallel plates (Concus and Finn [32]). If a bridge between parallel plates is initially
not a sphere, it changes discontinuously on an infinitesimal tilt of one of the plates: depending on the contact
angles, the bridge either disappears or changes its topology by forming a spherical cap on one of the plates, or
an edge blob when the tilted plates touch to form a wedge. A comprehensive analysis of these events can be
found in [33].
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