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Abstract The rate-type constitutive analysis of viscoelastic response of thin membranes, which includes
an instantaneous elastic response and viscous behavior in both shear and dilatation, is developed with the
aim to study the mechanical response of red blood cells. A convenient set of generalized stress and strain
variables is introduced, which facilitates the derivation and integration of the governing differential equations.
Gradual or sudden loading and stepwise unloading histories are considered. The performed parametric study
of the mechanical response illustrates the effects of the introduced material parameters on the coefficient of
viscoelastic lateral contraction and the overall membrane deformation. A closed form solution to the problem
of radial stretching of a viscoelastic hollow circular membrane is derived without referral to the correspondence
principle, which is of interest for the micropipette aspiration experiment of the red blood cell. The effects of
the material parameters on the instantaneous elastic response and the subsequent rate of creep are discussed.

1 Introduction

The objective of this paper is the formulation of a simple rate-type constitutive analysis of viscoelastic response
of thin membranes, with the application to red blood cell (erythrocyte) membranes. A study of the viscoelastic
response of the erythrocyte membrane is of interest because the blood flow in capillaries is influenced by the
deformability of the red blood cell, which depends on the geometry, elasticity and viscosity of its membrane.
From the microstructural point of view, the cell membrane is a composite structure consisting of an outer phos-
pholipid bilayer, transmembrane proteins, and a spectrin network attached to the cell on the inner cytoplasmic
side [1]. The bulk (areal) modulus of the cell membrane is controlled mostly by the phospholipidic bilayer,
while the shear modulus is determined by the elastic properties of the cytoskeleton, a two-dimensional network
of spectrin strands bound to the bilayer. The viscous properties of the cell are due to glycoproteins embedded
in or attached to a lipid bilayer [2]. A great amount of research has been devoted to various problems in the
mechanics of the red blood cell, as evidenced by the references [3–7]. In the cell mechanics the red blood
cell is visualized as a thin elastic membrane which surrounds a viscous fluid. A cell membrane is treated as a
continuum in two-dimensions, with a molecular character in the third. It is assumed that the membrane cannot
change its thickness in response to applied inplane stress, but can only change its inplane size and shape. In
this two-dimensional continuum framework, within the surface of the cell membrane, the stresses and elastic
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moduli are defined as the forces per unit length, and thus have the dimension on N/m [8]. The upper bound
on the inplane Poisson’s ratio is equal to 1, rather than 1/2 as in the three-dimensional isotropic continuum
elasticity.

The mechanical behavior of a thin membrane is described in the present paper by a viscoelastic model
with respect to both the deviatoric and isotropic biaxial states of stress. Bending stiffness is neglected and the
membrane material is assumed to be isotropic in its plane. An instantaneous elastic response to a suddenly
applied stress is included in the analysis by using an elastic element that is connected in series with the Kelvin–
Voigt viscoelastic element. A set of generalized stress and strain variables, defined by a weighted sum and
difference of the inplane normal stresses and dilatations, is introduced, which facilitates the derivation and
integration of the governing differential equations. The performed parametric study of the viscoelastic response
illustrates the effects of the introduced material parameters on the coefficient of viscoelastic lateral contraction
and the overall membrane deformation. It is shown that the inclusion of the instantaneous shear elasticity in the
considered viscoelastic model eliminates the physically unrealistic negative values of the coefficient of lateral
contraction. Motivated by the mechanical aspects of the micropipette aspiration test of a red blood cell, the
complete solution for the viscoelastic response of a hollow circular membrane under uniform tension applied
on its inner boundary is derived without referral to the correspondence principle, commonly used for such
viscoelastic problems [9–11]. The time evolution of the radial displacement in the membrane is calculated for
the selected representative values of the introduced shear parameter. The effects of the shear parameter on the
instantaneous elastic response and the subsequent rate of creep are discussed.

2 Viscoelastic response of thin membranes

A cell membrane is considered whose thickness is so small that the model of continuum mechanics applies
only within the plane of the membrane. Because of its negligible thickness,1 applied forces are considered to
be distributed per unit length, so that the membrane stresses σi j (i, j = 1, 2) are defined by the force/length
ratios, having the dimension N/m. The deviatoric parts of the stress and infinitesimal strain are accordingly

Si j = σi j − 1

2
σkkδi j , ei j = εi j − 1

2
εkkδi j , (1)

where δi j is the Kronecker delta (δkk = 2, with the summation convention over the repeated index). Geometri-
cally, εkk = ε11 +ε22 represents the relative change of the membrane area element dA, i.e., εkk = �(dA)/dA.
Since an infinitesimally thin membrane has no buckling resistance, we assume that the membrane loading is
such that the principal membrane stresses are noncompressive. A sufficient condition for this is that σ11 ≥ 0
and σ11σ22 ≥ σ 2

12.
The mechanical behavior of the membrane will be described by a viscoelastic model with respect to both

the deviatoric and equal biaxial (isotropic) stress states. To allow instantaneous strain in response to a suddenly
applied stress, an elastic element is connected in series with the Kelvin–Voigt viscoelastic element, as shown
in Fig. 1.2 The two elastic shear moduli are denoted by µ and µ0, and the two areal moduli are K and K0
(all in units of N/m). The instantaneous elastic response is governed by the moduli µ0 and K0. The shear
and areal viscosities are η and η̂, respectively (in units N s/m). While the stresses are equal in the elastic and
viscoelastic elements (Si j = Se

i j = Sve
i j ; σkk = σ e

kk = σ ve
kk ), the strains are obtained as the sum of the elastic

and viscoelastic contributions, i.e.,

ei j = ee
i j + eve

i j , εkk = εe
kk + εve

kk . (2)

The elastic components of strain are related to stress components by Hooke’s law3

ee
i j = 1

2µ0
Si j , εe

kk = 1

2K0
σkk . (3)

1 In a shell-type membrane mechanics, the small thickness (h) of the membrane is included in the analysis via the bending
stiffness of the membrane (proportional to h2/12).

2 Alternatively, a standard linear solid could be considered, in which the Maxwell viscoelastic element is connected in parallel
with an elastic element. An elastic and viscous element in series would be a suitable combination to model a permanent deformation
of the membrane. For an informative reference to viscoelasticity of biomaterials, see also [12].

3 If E0 and ν0 are the instantaneous Young’s modulus and Poisson’s ratio of the membrane, then εe
11 = (σ11 − ν0σ22)/E0 and

εe
22 = (σ22 − ν0σ11)/E0, so that µ0 = E0/2(1 + ν0) and K0 = E0/(1 − ν0). Clearly, ν0 ≤ 1 in the membrane elasticity, where

the limiting value ν0 = 1 corresponds to the membrane that cannot change its area under any loading conditions.
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Fig. 1 Mechanical model of a viscoelastic membrane: a deviatoric (shear) loading, b equal biaxial (isotropic) loading. The
instantaneous elastic moduli are µ0 and K0, and the two viscosity coefficients are η and η̂

The viscoelastic components of strain are related to stress by the Kelvin–Voigt type relations

Si j = 2µeve
i j + 2ηėve

i j , σkk = 2K εve
kk + 2η̂ε̇ve

kk , (4)

where the superimposed dot designates the time derivative. Upon the combination of (3) and (4), based on (2),
the constitutive equations for the in-plane viscoelastic response of the membrane are found to be

2µei j + 2ηėi j =
(

1 + µ

µ0

)
Si j + η

µ0
Ṡi j , (5)

2K εkk + 2η̂ε̇kk =
(

1 + K

K0

)
σkk + η̂

K0
σ̇kk . (6)

By introducing the time-parameters

t∗ = η

µ
, t̂∗ = η̂

K
, (7)

(5) and (6) can be rewritten as

ei j + t∗ėi j =
(

1 + µ

µ0

)
Si j

2µ
+ t∗

2µ0
Ṡi j , (8)

εkk + t̂∗ε̇kk =
(

1 + K

K0

)
σkk

2K
+ t̂∗

2K0
σ̇kk . (9)

In view of the expressions

S12 = σ12 , S11 = −S22 = 1

2
(σ11 − σ22) , σkk = σ11 + σ22 ,

e12 = ε12 , e11 = −e22 = 1

2
(ε11 − ε22) , εkk = ε11 + ε22 ,

(10)

in the subsequent analysis it will be convenient to introduce the following pairs of stress and strain variables:

σ = 1

2
(σ11 + σ22) , S = 1

2
(σ11 − σ22) ,

ε = 1

2
(ε11 + ε22) , e = 1

2
(ε11 − ε22) .

(11)

With these, the constitutive equations (8) and (9) can be recast as

t∗ε̇12 + ε12 = m

2µ
σ12 + t∗

2µ0
σ̇12 , (12)

t∗ė + e = m

2µ
S + t∗

2µ0
Ṡ , (13)

t̂∗ε̇ + ε = k

2K
σ + t̂∗

2K0
σ̇ . (14)
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The utilized dimensionless parameters m and k are

m = 1 + µ

µ0
, k = 1 + K

K0
. (15)

Alternatively, (12), and similarly (13) and (14), can be rewritten as

t∗ε̇12 + ε12 = 1

2µ̄

(
σ12 + η

µ + µ0
σ̇12

)
, (16)

where µ̄ = µ/m is the relaxed shear modulus (µ̄−1 = µ−1 + µ−1
0 ), corresponding to two elastic springs

connected in a series.4

For a prescribed history of applied stress, and properly specified initial conditions, the differential equations
(12)–(14) can be integrated to give the corresponding time variations of strain. The resulting expressions are

ε12 = exp

(
t0 − t

t∗

)⎧⎨
⎩

1

2µ

t∫
t0

exp

(
τ − t0

t∗

)[
m

t∗
σ12(τ ) + (m − 1)σ̇12(τ )

]
dτ + ε12(t0)

⎫⎬
⎭,

e = exp

(
t0 − t

t∗

)⎧⎨
⎩

1

2µ

t∫
t0

exp

(
τ − t0

t∗

)[
m

t∗
S(τ ) + (m − 1)Ṡ(τ )

]
dτ + e(t0)

⎫⎬
⎭ ,

ε = exp

(
t0 − t

t̂∗

)⎧⎨
⎩

1

2K

t∫
t0

exp

(
τ − t0

t̂∗

)[
k

t̂∗
σ(τ) + (k − 1)σ̇ (τ )

]
dτ + ε(t0)

⎫⎬
⎭ .

The individual longitudinal strains are then determined from ε11 = ε + e and ε22 = ε − e, which completes
the description of the viscoelastic membrane response in the range of small strains.

3 Loading histories

The closed form solutions for the time variation of strain corresponding to the prescribed loading histories
shown in Fig. 2 are given in this Section. The first loading history (Fig. 2a) is a gradual loading to a specified
stress level (at constant stress rate), followed by the two intervals of constant stress, released to zero by two
consecutive stress drops. The second loading history (Fig. 2b) differs from the previous loading history by
the absence of the initial gradual loading stage. The obtained results are used in the parametric study of the
infinitesimal creep response of the red blood cell in Sect. 4. Other loading histories, such as those used in the
study of the viscoelastic response of polymers [13] may also be of interest, but are not pursued here.

3.1 Gradual loading: stepwise unloading history

The loading history depicted in Fig. 2a is analytically specified by

σi j =

⎧⎪⎪⎨
⎪⎪⎩

σ ◦
i j t/t1,
σ ◦

i j ,

σ •
i j ,

0,

0 ≤ t ≤ t1,
t1 ≤ t ≤ t−2 ,

t+2 ≤ t ≤ t−3 ,

t ≥ t+3 .

(17)

4 If the standard linear solid was used, in which an elastic spring with shear modulus µ was connected to a Maxwell element
(µ0, η), the equation replacing (16) would read

t∗ε̇12 + ε12 = 1

2µ

(
σ12 + η

µ0
σ̇12

)
,

where t∗ = mη/µ and m = 1 + µ/µ0. The instantaneous shear modulus in this case is equal to µ + µ0, and the relaxed shear
modulus is µ̄ = µ.
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Fig. 2 Two prescribed loading histories

The strain response during the initial steady-state loading range (0 ≤ t ≤ t1) is obtained from the general
results presented in Sect. 2 as

ε12(t) = σ ◦
12

2µ

t∗
t1

[
m

t

t∗
+ exp

(
− t

t∗

)
− 1

]
,

e(t) = S◦

2µ

t∗
t1

[
m

t

t∗
+ exp

(
− t

t∗

)
− 1

]
, (18)

ε(t) = σ ◦

2K

t̂∗
t1

[
k

t

t̂∗
+ exp

(
− t

t̂∗

)
− 1

]
.

In the subsequent time interval, t1 ≤ t ≤ t−2 , the stress is held constant, and the corresponding strains are
found to be

ε12(t) = m
σ ◦

12

2µ

[
1 − exp

(
t1 − t

t∗

)]
+ ε12(t1) exp

(
t1 − t

t∗

)
,

e(t) = m
S◦

2µ

[
1 − exp

(
t1 − t

t∗

)]
+ e(t1) exp

(
t1 − t

t∗

)
, (19)

ε(t) = k
σ ◦

2K

[
1 − exp

(
t1 − t

t̂∗

)]
+ ε(t1) exp

(
t1 − t

t̂∗

)
.

At time t = t2 there is a sudden partial unloading from the stress level σ ◦
i j to σ •

i j . The corresponding sudden
decrease in strain is due to the elastic elements with moduli µ0 and K0, such that

ε12(t
+
2 ) = ε12(t

−
2 ) + 1

2µ0
(σ •

12 − σ ◦
12) ,

e(t+2 ) = e(t−2 ) + 1

2µ0
(S• − S◦) , (20)

ε(t+2 ) = ε(t−2 ) + 1

2K0
(σ • − σ ◦) .

In the time interval t+2 ≤ t ≤ t−3 , the stress is held constant at the level σ •
i j , while the corresponding strains

are

ε12(t) = m
σ •

12

2µ

[
1 − exp

(
t2 − t

t∗

)]
+ ε12(t

+
2 ) exp

(
t2 − t

t∗

)
,

e(t) = m
S•

2µ

[
1 − exp

(
t2 − t

t∗

)]
+ e(t+2 ) exp

(
t2 − t

t∗

)
, (21)

ε(t) = k
σ •

2K

[
1 − exp

(
t2 − t

t̂∗

)]
+ ε(t+2 ) exp

(
t2 − t

t̂∗

)
.
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Upon the unloading from σ •
i j to σi j = 0 at t = t3, the strains are

ε12(t
+
3 ) = ε12(t

−
3 ) − 1

2µ0
σ •

12 ,

e(t+3 ) = e(t−3 ) − 1

2µ0
S• , (22)

ε(t+3 ) = ε(t−3 ) − 1

2K0
σ • .

Finally, in the time interval t ≥ t+3 , in which the stresses are held at the zero value, the strains diminish
according to

ε12(t) = ε12(t
+
3 ) exp

(
t3 − t

t∗

)
,

e(t) = e(t+3 ) exp

(
t3 − t

t∗

)
, (23)

ε(t) = ε(t+3 ) exp

(
t3 − t

t̂∗

)
.

3.2 Sudden loading: stepwise unloading history

The sudden loading—stepwise unloading history, depicted in Fig. 2b, is analytically described by

σi j =
⎧⎨
⎩

σ ◦
i j ,

σ •
i j ,

0,

0+ ≤ t ≤ t−2 ,

t+2 ≤ t ≤ t−3 ,

t ≥ t+3 .

(24)

The instantaneous strain response to a suddenly applied stress σ ◦
i j is

ε12(0
+) = 1

2µ0
σ ◦

12 , e(0+) = 1

2µ0
S◦ , ε(0+) = 1

2K0
σ ◦ . (25)

In the time interval 0+ ≤ t ≤ t−2 , the strains accumulate according to

ε12(t) = m
σ ◦

12

2µ

[
1 − exp

(
− t

t∗

)]
+ ε12(0

+) exp

(
− t

t∗

)
,

e(t) = m
S◦

2µ

[
1 − exp

(
− t

t∗

)]
+ e(0+) exp

(
− t

t∗

)
, (26)

ε(t) = k
σ ◦

2K

[
1 − exp

(
− t

t̂∗

)]
+ ε(0+) exp

(
− t

t̂∗

)
,

which can be written condensly as

ε12(t) = σ ◦
12

2µ

[
m − exp

(
− t

t∗

)]
,

e(t) = S◦

2µ

[
m − exp

(
− t

t∗

)]
, (27)

ε(t) = σ ◦

2K

[
k − exp

(
− t

t̂∗

)]
.

Upon a partial unloading from the stress level σ ◦
i j to σ •

i j , at time t = t2, the strains are

ε12(t
+
2 ) = ε12(t

−
2 ) + 1

2µ0
(σ •

12 − σ ◦
12) ,
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e(t+2 ) = e(t−2 ) + 1

2µ0
(S• − S◦) , (28)

ε(t+2 ) = ε(t−2 ) + 1

2K0
(σ • − σ ◦) ,

while in the interval t+2 ≤ t ≤ t−3

ε12(t) = m
σ •

12

2µ

[
1 − exp

(
t2 − t

t∗

)]
+ ε12(t

+
2 ) exp

(
t2 − t

t∗

)
,

e(t) = m
S•

2µ

[
1 − exp

(
t2 − t

t∗

)]
+ e(t+2 ) exp

(
t2 − t

t∗

)
, (29)

ε(t) = k
σ •

2K

[
1 − exp

(
t2 − t

t̂∗

)]
+ ε(t+2 ) exp

(
t2 − t

t̂∗

)
.

Upon the complete unloading from σ •
i j to σi j = 0, at time t = t3, the strains reduce to

ε12(t
+
3 ) = ε12(t

−
3 ) − 1

2µ0
σ •

12 ,

e(t+3 ) = e(t−3 ) − 1

2µ0
S• , (30)

ε(t+3 ) = ε(t−3 ) − 1

2K0
σ • .

Thereafter, for t ≥ t+3 , they gradually retrieve according to

ε12(t) = ε12(t
+
3 ) exp

(
t3 − t

t∗

)
,

e(t) = e(t+3 ) exp

(
t3 − t

t∗

)
, (31)

ε(t) = ε(t+3 ) exp

(
t3 − t

t̂∗

)
.

4 Parametric study of the creep response

There have been numerous experiments to measure the elastic and viscous properties of the red blood cell
membrane, although different experiments have yielded widely varying results. From micropipette experiments
it is estimated that the shear modulus is in the range 5–20 µN/m, while the areal modulus is on the order
103–104 higher than that [14–17]. In our calculations we adopted the values µ = 2×10−5 N/m and K =1,000µ.
The relaxation response of the cell from the optical or laser tweezers stretching experiments can also be used to
determine the viscoelastic properties of the cell membrane. The characteristic time for relaxation was estimated
in this way [18] to be about 0.19 s, somewhat higher than the value of 0.1–0.13 s estimated from micropipette
aspiration experiments [2,15]. Based on this data, we adopted in our calculations the shear and areal coefficients
of cell viscosity to be η = 2 × 10−6 N s/m and η̂ = 100 η. The areal coefficient of viscosity is chosen so that
t̂∗ = 0.1 t∗ = 0.01 s, which corresponds to a physically reasonable ratio of the two relaxation times.

Consider a uniform loading of the membrane with a positive definite stress state, such that σ11σ22 ≥ σ 2
12

and

σ12 =
{

σ ◦
12,
0,

0+ ≤ t < 5τ,
t > 5τ ,

(32)

where τ = η/µ̄ and µ̄ = µ/m. Using the specified data, as previously indicated, Fig. 3 shows the time variation
of the shear strain ε12(t) for three different values of the parameter m, corresponding to the shear stress (32).5

The plots illustrate the effect of m ≥ 1 on the instantaneous elastic response and the subsequent rate of creep.

5 The shear stress/shear strain response is independent of the superimposed normal stresses and corresponding dilatations.
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Fig. 3 Time variation of the shear strain ε12(t) for three different values of the parameter m, corresponding to shear stress history
(32)

The value m = 1 implies the absence of instantaneous elasticity. The plots are generated by requiring that
the saturation strain after long held intervals of constant stress is the same in each case. Physically, this is the
most appealing requirement in the study of the creep rates immediately after instantaneous elastic loading or
unloading, and was accomplished by rewriting the first expression in (27) as

ε12(t) = σ ◦
12

2µ̄

[
1 − 1

m
exp

(
−m

t

τ

)]
, (33)

with µ̄ taken to be constant in each considered case. Accordingly, τ = η/µ̄ is also constant, while t∗ = τ/m
is m-dependent. Similar plots can be generated for other loading histories, which include any combination of
the inplane stress components.

Consider next a uniaxial tension test in which the stress σ 0
11 is suddenly applied at time t = 0, while

σ12 = σ22 = 0. Under this loading, σ 0 = S0 = σ 0
11/2, and from (27) there follows

e = σ 0
11

4µ

[
m − exp

(
− t

t∗

)]
, ε = σ 0

11

4K

[
k − exp

(
− t

t̂∗

)]
. (34)

Since ε11 = ε+e and ε22 = ε−e, the coefficient of viscoelastic lateral contraction, defined by c(t) = −ε22/ε11,
is

c(t) = −
1 − ν

1 + ν

[
k − exp

(
− t

t̂∗

)]
−

[
m − exp

(
− t

t∗

)]

1 − ν

1 + ν

[
k − exp

(
− t

t̂∗

)]
+

[
m − exp

(
− t

t∗

)] , (35)

where
1 − ν

1 + ν
= µ

K
.

Figure 4a, b show the variation of c(t) corresponding to selected values of the parameters m and k; in Fig. 4a
the parameter k is varied at fixed m, while in Fig. 4b the parameter m is varied at fixed k.

If k = m = 1, then ε11(0+) = ε22(0+) = 0 (no instantaneous elasticity), and c(0+) is undetermined.
Otherwise,

c(0+) = − (1 − ν)(k − 1) − (1 + ν)(m − 1)

(1 − ν)(k − 1) + (1 + ν)(m − 1)
. (36)

In particular, for m = 1 and k �= 1, c(0+) = −1, while for k = 1 and m �= 1, c(0+) = 1. If k = m �= 1, then
c(0+) = ν. The physically unrealistic value c(0+) = −1 for m = 1 and k �= 1 is eliminated by including in
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Fig. 4 The variation of the coefficient of viscoelastic lateral contraction c(t). a The bulk parameter k is varied at fixed m, b the
shear parameter m is varied at fixed k
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−0.5

0

0.5
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Fig. 5 The variation of the coefficient of viscoelastic lateral contraction c(t), illustrating the effect, via the parameter m, of the
instantaneous shear elasticity on the value c(0+)

the model the instantaneous shear elasticity, even with an exceedingly small value of the shear modulus µ0.
This is illustrated in Fig. 5.

If K → ∞ (ν → 1), then c(t) → 1. If m = 1 and η̂ → ∞ (t̂∗ → ∞), then

c(t) = −
1 − ν

1 + ν
−

[
1 − exp

(
− t

t∗

)]

1 − ν

1 + ν
+

[
1 − exp

(
− t

t∗

)] . (37)

The two limiting values of the coefficient of viscoelastic lateral contraction are in this case

c(0+) = −1 , lim
t→∞ c(t) = ν ,

which was previously discussed in the literature for materials that exhibit elastic behavior under hydrostatic
states of stress and the Kelvin–Voigt viscoelastic behavior under deviatoric states of stress [19].
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Fig. 6 a An approximately axisymmetric biconcave red blood cell under micropipette aspiration in which the cell is being drawn
into a glass tube, b the suction of an infinite plane membrane into a cylindrical pipette as the model for the experiment

5 Radial stretching of a hollow circular membrane

The characterization of deformation of the red blood cell has been achieved through a variety of experimental
techniques. Most common among these methods is the micropipette aspiration technique [2,8], in which the
stepwise increase of a suction pressure causes the cell to be drawn into a glass tube, whose inner diameter, in
conjunction with the aspiration pressure, can be appropriately chosen so as to control the extent of deformation
(Fig. 6).6 The suction of an infinite plane membrane into a cylindrical pipette is frequently taken as the model
for the experiment [15]. If �p is the pressure difference between the cell and the pipette, the longitudinal
stress in the cylindrical portion of the membrane drawn into the pipette is p = R1�p/2. Assuming that the
membrane slides smoothly (freely) at the tip of the pipette, the tension over the inner boundary r = R1 of
the horizontal flat portion of the membrane is then also equal to p. With this as a motivation, we consider
in the subsequent analysis a hollow circular membrane under uniform internal tension of amount p (Fig. 7).
The inner and outer radii of the flat membrane are R1 and R2, respectively. The outer boundary r = R2 is
assumed to be stress-free, although the analysis can be easily extended to include an appropriate membrane
tension over the outer boundary to accommodate for the internal pressure in the undeformed biconcave cell.
The stress field in the flat membrane throughout the course of infinitesimal viscoelastic deformation is

σr = R2
1 p

R2
1 − R2

2

(
1 − R2

2

r2

)
, σθ = R2

1 p

R2
1 − R2

2

(
1 + R2

2

r2

)
, (38)

independently of the material properties. Introducing

σ = 1

2
(σr + σθ ) , S = 1

2
(σr − σθ ) ,

ε = 1

2
(εr + εθ ) , e = 1

2
(εr − εθ ) ,

(39)

where εr = du/dr and εθ = u/r are the radial and circumferential components of the infinitesimal strain,
while u = u(r, t) is the radial displacement, we obtain from (38),

σ = R2
1 p

R2
1 − R2

2

, S = − R2
1 p

R2
1 − R2

2

R2
2

r2 . (40)

6 The human red blood cell has a biconcave shape, with an average diameter of about 8 µm. The cell undergoes large elastic
deformations as it passes through narrow capillaries whose inner diameter can be as small as 3 µm. In the process of delivering
oxygen from the lungs to body tissues, the red blood cell circulates through the human body nearly half a million times during
its life span of about 120 days.
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p
R2R1

r, u

Fig. 7 A hollow circular membrane under uniform tension p applied over the inner boundary r = R1 of the membrane. The outer
boundary r = R2 is stress-free

Thus, from (13) and (14), the differential equations for e and ε are

t∗ė + e = − R2
1

R2
1 − R2

2

R2
2

r2

[
m

2µ
p + t∗

2µ0
ṗ

]
, (41)

t̂∗ε̇ + ε = R2
1

R2
1 − R2

2

[
k

2K
p + t̂∗

2K0
ṗ

]
. (42)

Suppose that p = p(t) corresponds to a suddenly applied pressure p0 at time t = 0. The solution of
Eqs. (41) and (42) is then

e(t) = − p0

2µ

R2
1

R2
1 − R2

2

R2
2

r2

[
m − exp

(
− t

t∗

)]
, (43)

ε(t) = p0

2K

R2
1

R2
1 − R2

2

[
k − exp

(
− t

t̂∗

)]
, (44)

analogously to (27). Since εθ = ε − e = u/r , the displacement can be determined from u = r(ε − e), which
gives

u(r, t) = p0

2µ

R2
1

R2
1 − R2

2

{
µ

K

[
k − exp

(
− t

t̂∗

)]
r + R2

2

r

[
m − exp

(
− t

t∗

)]}
. (45)

The instantaneous elastic displacement field corresponding to sudden application of p0 is

u(r, 0+) = p0

2µ0

R2
1

R2
1 − R2

2

(
1 − ν0

1 + ν0
r + R2

2

r

)
, (46)

where ν0 is the instantaneous Poisson ratio. The variation of u(r, 0+)/u∗
0 with r/R1 and ν0, in the case

R2 = 3R1, is shown in Fig. 8. The normalizing factor is u∗
0 = p0 R1/2µ0. The relevant portion of the shown

surface is near ν0 = 1, because of the exceedingly small areal changes of the cell membrane.
If the areal moduli are infinitely large, (45) simplifies to

u(r, t) = p0

2µ

R2
1

R2
1 − R2

2

R2
2

r

[
m − exp

(
− t

t∗

)]
, (47)

and in this case

u(r, 0+) = p0

2µ0

R2
1

R2
1 − R2

2

R2
2

r
, (48)

u(r, ∞) = p0

2µ̄

R2
1

R2
1 − R2

2

R2
2

r
, µ̄ = µ

m
= µ0µ

µ0 + µ
. (49)
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Fig. 8 The variation of u(r, 0+)/u∗
0 with r/R1 and ν0, in the case R2 = 3R1 and according to (46)
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Fig. 9 The normalized displacement u(R1, t)/u∗, versus t/t∗ and m, according to (47) and for R2 = 3R1

The three-dimensional plot of the normalized displacement u(R1, t), versus time t and the parameter m, for
R2 = 3R1 and according to (47), is shown in Fig. 9. The utilized normalizing factor is u∗ = p0 R1/2µ. At any
instant of time, the normalized displacement u/u∗ is a linear function of m, and for a fixed m the magnitude of
u(R1, t) exponentially increases with time, asymptotically approaching the limiting value m R2

2/(R2
1 − R2

2).
If R2 → ∞, the stresses in the membrane are purely deviatoric, i.e., σr = −σθ = pR2

1/r2, so that σ = 0
and ε = 0. It readily follows that

e(t) = p0

2µ

R2
1

r2

[
m − exp

(
− t

t∗

)]
. (50)

Thus, regardless of the areal modulus, the displacement field is

u(r, t) = − p0

2µ

R2
1

r

[
m − exp

(
− t

t∗

)]
, (51)

with the limiting values

u(r, 0+) = − p0

2µ0

R2
1

r
, u(r, ∞) = − p0

2µ̄

R2
1

r
. (52)

The three-dimensional plots of u = u(r, t), corresponding to (51), are shown in Figs. 10 and 11 for the
two representative values of the shear parameter m = 1 (upper surface) and m = 1.25 (lower surface). In the
plot in Fig. 11, we held µ̄ and τ = η/µ̄ constant, so that t∗ = τ/m is m-dependent, while in Fig. 10 the shear
modulus µ is held constant, so that µ̄ is m-dependent. Accordingly, the time is scaled in this case with fixed t∗,
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Fig. 10 The three-dimensional plots of u = u(r, t), corresponding to (51) and two representative values of the shear parameter
m = 1 (upper surface) and m = 1.25 (lower surface). The shear modulus µ is held constant
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Fig. 11 The three-dimensional plots of u = u(r, t), corresponding to (51) and two representative values of the shear parameter
m = 1 (upper surface) and m = 1.25 (lower surface). The saturation shear modulus µ̄ is held constant

and the limiting values u(r, ∞) for different m are proportional to m, because µ̄ = µ/m in (52). A simple
relationship holds, u/u∗ = m(u/ū∗). Constraining the saturation shear modulus to be constant in Fig. 11 is
analogous to the analysis of the loading portion of Fig. 3 in Sect. 4. This constraint is a preferred choice in the
parametric analysis in which the steady state response is prescribed, and the objective is to calibrate the initial
elastic response and the subsequent rate of viscoelastic creep by an appropriate selection of m.

The obtained results are of interest for the mechanical analysis of early stages of the micropipette aspiration
of red blood cells, and the specification of viscoelastic properties of the cell membrane that remain pertinent
in the subsequent nonlinear range of deformation. A detailed analysis of large deformations is essential for
the complete mechanical analysis, but can only be performed numerically [21,22]. Large axially symmetric
stretching of a nonlinear viscoelastic membrane due to radial stress applied at the outer boundary, by using
an integral type constitutive theory, was already considered in [23]. In the context of nonlinear elasticity, a
related study of radial deformation of a plane sheet containing a circular hole is presented in [24], where the
reference to original work can also be found. For completeness of the present paper, we present in the Appendix
a rate-type constitutive theory for large viscoelastic deformations of thin membranes based on the logarithmic
finite strain and the loadings along fixed principal directions, as in the considerations of this Section.

6 Concluding remarks

The mechanical behavior of an infinitesimally thin membrane was described by a viscoelastic model with
respect to both the deviatoric and isotropic biaxial states of stress. The model also included an instantaneous
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elastic response corresponding to a suddenly applied stress. A set of generalized stress and strain variables,
defined by a weighted sum and difference of the inplane normal stresses and dilatations, was introduced,
which facilitated the derivation and integration of the governing differential equations. Gradual and sudden
loading and stepwise unloading histories with a sequential stress drop, were all considered. A parametric study
was performed to illustrate the effects of the introduced material parameters on the membrane behavior. The
viscoelastic response of a hollow circular membrane under uniform tension applied over its inner boundary
was derived without referral to a commonly used correspondence principle from the classical viscoelasticity
theory. An extension of the constitutive formulation to large strains is presented in the Appendix of the paper,
because large deformation characteristics of living cells significantly affect their biochemical functions [3,20].
A significant amount of work, based on nonlinear elasticity and finite element simulations, was already done
in this area to address the evolution of a biconcave shape of the cell during blood flow through small capillaries
[21,22]. The adoption of a more comprehensive shell-type membrane elasticity, which includes the bending
stiffness of the membrane [6,25–27], may be needed to explain important features of the cell behavior, such
as the origin of its shape in the natural healthy state of the cell, or the fatigue and decay of the cell membrane.
Damage type theories of inelastic response may be particularly helpful [28,29]. The analysis in this paper may
be also of interest in the considerations of other thin membranes, such as nucleus membranes [30] and carbon
nanotubes [31]. The incorporation of the inplane elastic anisotropy in the latter case is an important extension
of the analysis.

Acknowledgments Research support from the NSF Grant No. CMS-0555280 and the Montenegrin Academy of Sciences and
Arts is gratefully acknowledged.

Appendix: A generalization to large viscoelastic deformations

We provide in this Appendix a rate-type constitutive analysis for large viscoelastic deformations of thin
membranes based on the logarithmic finite strain measure. Having in mind the applications to radial stretching
of membranes, the considerations are restricted to loadings along fixed principal directions.7 The principal
components of the logarithmic strain are defined by

εi = ln λi , i = 1, 2 , (A.1)

where λi ≥ 1 are the principal stretches, the ratios of the deformed and undeformed material length ele-
ments in the direction of maximum and minimum stretch. For simplicity we shall adopt the assumption that
λ1λ2 = 1, which corresponds to an infinite membrane stiffness to areal changes; εi are then necessarily
deviatoric (ε1 + ε2 = 0). According to the model in Fig. 1a, we can write

εi = εe
i + εve

i . (A.2)

The purely elastic response is assumed to be described by a linear relation between the large logarithmic strain
and its work conjugate Cauchy stress, such that8

εe
i = 1

2µ
Si , Si = σi − 1

2
(σ1 + σ2) . (A.3)

Furthermore, since
Si = 2µεve

i + 2ηε̇ve
i , (A.4)

we obtain

2µεi + 2ηε̇i =
(

1 + µ

µ0

)
Si + η

µ0
Ṡi , (A.5)

where ε̇i = λ̇i/λi .

7 A recent comprehensive review of nonlinear membrane viscoelasticity based on an integral-type constitutive theory was
presented in [32].

8 More commonly, a simple generalization to encompass large elastic deformation is based on adopting the constitutive
equations σkk = 2K�(dA)/dA and τmax = 2µγmax, where �(dA)/dA = λ1λ2 − 1 is the relative area change, γmax =
(λ−2

2 −λ−2
1 )/4 is the maximum (Eulerian) shear strain, and τmax = (σ1 −σ2)/2 is the maximum shear stress [1]. In general, both

K and µ are dependent on λ1 and λ2, but, as a first approximation, they are often assumed to be constant [22,33].
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For a given strain history, (A.5) can be integrated to give

εi = exp

(
t0 − t

t∗

)⎧⎨
⎩

1

2µ

t∫
t0

exp

(
τ − t0

t∗

)[
m

t∗
Si (τ ) + (m − 1)Ṡi (τ )

]
dτ + εi (t0)

⎫⎬
⎭ , (A.6)

where t∗ = η/µ and m = 1 + µ/µ0. The principal stretches are then calculated as λi = exp(εi ).
On the other hand, if the deformation history is prescribed, (A.5) can be integrated for Si to give

Si = exp

(
t0 − t

T∗

)⎧⎨
⎩2µ

t∫
t0

exp

(
τ − t0

T∗

)[
1

mT∗
εi (τ ) + ε̇i (τ )

]
dτ + Si (t0)

⎫⎬
⎭ ,

with T∗ = η/(mµ0). The total stress is σi = Si − p, where p = p(t) is an arbitrary pressure, undetermined
by the constitutive analysis of the membrane that is rigid to areal change, but determined by the solution of
the specific boundary-value problem.
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