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Abstract The analysis of wind-influenced projectile motion in the case of linear and nonlinear (quadratic
or nonquadratic) drag force is reviewed. For quadratic or more general nonlinear drag force, the results can
be obtained only numerically, because the governing coupled differential equations of motion do not allow
an analytical solution, although there is a closed-form relationship between the velocity and an appropriately
defined angle parameter in the case of quadratic drag. For linear drag force, the entire solution, including
the expressions for the time-variation of velocity components and the shape of the trajectory, can be derived
in closed form. Forward-to-backward transition of the direction of motion of a projectile launched against
horizontal wind is analyzed. If during different phases of motion different types of drag apply, the extents of
these phases are not known in advance and the general expression for the drag force that encompasses the
entire range of the Reynolds number must be used throughout the motion, in conjunction with the numerical
solution of the governing differential equations. The transition fromnonquadratic to quadratic drag is discussed.
Illustrative examples of wind-influenced projectile motion considered in this review include the motion of golf
balls, respiratory droplets, powder particles, and flea beetles.

Keywords Linear drag · Nonlinear drag · Projectile motion · Quadratic drag · Reynolds number ·
Terminal velocity · Wind effect

1 Introduction

The study of projectile motion is of great importance for numerous areas of engineering and technology,
including external ballistics for military applications, sports techniques and technologies, design of spreaders
for distributing pelletized feed in aquacultural engineering, bio-ballistics with applications to agricultural engi-
neering, metal sparks spreading during machine grinding in manufacturing engineering, powder technology,
and inkjet printing technology. Fundamentally important in this analysis is the modelling of the drag force
exerted by the surrounding medium on the flying object. The present paper offers a review of the analysis of
projectile motion in the presence of linear and nonlinear (quadratic or nonquadratic) drag force. In the absence
of wind, the magnitude of the drag force in the model of quadratic drag is proportional to the square of the
velocity of the projectile, Fd = cv2, where c is the damping resistance coefficient [1–4]. For example, for
a spherical ball of radius R moving in the air, c = (1/2)cdρairA, where cd = 0.47 is the experimentally
determined aerodynamic drag coefficient, ρair is the air density, and A = πR2 is the mid-cross-sectional
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area. This type of drag, known as quadratic (Newton’s) drag, applies in the range of the Reynolds number,
103 < Re = 2Rv/νair < 3× 105, where νair is the kinematic viscosity of air. The quadratic drag model, with
the appropriate value of cd and the appropriate expression for the cross-sectional area A, applies to the motion
of baseballs, golf balls, stones, arrows, cannonballs, and other mechanically shot projectiles [5–8].

The magnitude of the drag force in the model of linear damping is proportional to the velocity, Fd = cLv,
where, for a spherical projectile, cL = 6πηairR, with ηair = νairρair being the dynamic viscosity of air [9,10].
This type of drag is known as Stokes’ drag, and it applies in the range of small Reynolds number (Re < 1), i.e.,
for slow (creepy) flows. The linear damping model is of less importance for the study of common projectiles,
where the velocities and sizes of the flying objects are too high for the adoption of the Stokes’ flow assumption,
but it is of interest and is often used in the study of sedimentation of pollutants or settlements of other very light
and small particles (silt in water, mist in the atmosphere, microorganisms in water) [1,11]. It has also been
used in the study of inkjet systems and the determination of the charged ink drop path [12], and in studying
the motion of very small respiratory droplets, ejected by breathing or soft talking [13].

For the intermediate range of the Reynolds number (1 < Re < 1000), the drag force is a more com-
plicated nonlinear function of velocity. It is commonly specified as Fd = (1/2)cdρairAv2 [14,15], with the
drag coefficient cd = cd(Re) expressed in terms of the Reynolds number by fitting experimental data. Various
expressions for the relationship cd = cd(Re) have been listed in references [16,17]. For example, the expres-
sions cd = 24/Re+3/Re0.28 and cd = 21.12/Re+6.3/

√
Re+0.25 have been used. Approximate expressions

for the entire range of the Reynolds number up to 2 × 105 in the form cd = 24/Re + 6/(1 + √
Re) + 0.4

and cd = (0.63 + 4.8/
√
Re)2 have also been proposed. In the presence of wind whose velocity is vw, the

drag force is Fd = −(1/2)cdρairA|v − vw|(v − vw), where cd = cd(Re) and the Reynolds number is defined
by Re = 2R|v − vw|/νair. The magnitude of the velocity of the projectile relative to the wind is denoted by
|v − vw|.

There have been numerous publications devoted to the study of projectile motion in the presence of ambient
drag, particularly in the context of military and sports applications. We summarize below some of the recent
ones, which include both research and pedagogical contributions of interest for applied physics and engineering
education. An analytical solution for the projectile velocity as a function of time in form of a ratio of two series
expansions has been derived in the case of quadratic drag in [18]. An approximate solution to the equations of
projectile motion under air resistance in the limit of short and long times has been derived in [19], and for low
angle ballistics in [20]. Additional analytical approximations have also been considered [21–23]. The effect
of the initial spin of a ball and the resulting lift force on the projectile motion of the ball has been studied in
references [24–27]. External fluid flow- and wind-influenced projectile motions were the topics of references
[18,28,29]. The bio-ballistics of small projectiles, with applications to insect jumps and plants’ shooting of
their seeds, have been considered in [30,31]. The use of the Lambert W function in the analysis of projectile
motion with linear drag has been investigated by several researchers [32–34]. The use of Excel spreadsheets to
simulate projectilemotionwith air resistancewas reported in references [35,36], while historical remarks about
projectile motion under ambient conditions can be found in [15,18,37–39]. Experimental results for sports
balls as projectiles were reported in [15,40,41]. Approximate formulas for spherical projectiles of shotguns or
muzzleloaders using nonlinear drag model with Mach dependent drag coefficient have been derived in [42].
Classical mechanics and physics textbooks also address various aspects of projectile motion [43–45]. Inelastic
bouncing of a spherical ball in the presence of quadratic drag with application to sports balls has been studied in
[46]. The models of linear and quadratic damping have also been used in the analysis of pendulums undergoing
large swings, as recently reviewed in [47].

The contents of the present review are as follows. The analysis of projectile motion in the case of quadratic
drag is presented in Sect. 2. The shape of the trajectory is depicted for any value of the damping parameter c and
the specified initial velocity v0 and ejection angle ϕ0 by normalizing the spatial coordinates x and y with the
length scale k−1, where k = c/m = g/v2T, with vT = √

mg/c being the terminal velocity at which the weight
of the projectile (mg) is balanced by the drag force. The time scale used in the analysis is τ = vT/g, where g
is the gravitational acceleration. The trajectories are obtained numerically, because the governing equations of
motion are coupled nonlinear ordinary differential equations, which do not allow a closed-form solution. For
shallow trajectories (low angle ballistics), there is an approximate but sufficiently accurate analytical solution.
In the absence of wind, the use of natural coordinates enable the derivation of a closed-form expression for
the velocity v = v(ϕ) in terms of the trajectory slope angle ϕ. With a modified angle parameter φ, the closed-
form solution v = v(φ) also exists in the presence of uniform wind. The effects of wind on the projectile’s
trajectory and the flight velocity are evaluated and discussed. The analysis of projectile motion in the case
of linear drag is presented in Sect. 3. The differential equations for the velocity components are in this case
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decoupled, which greatly facilitates the analysis and allows for the derivation of closed-form expressions for the
velocity components, trajectory and elapsed time during the motion, with or without the presence of wind. The
corresponding damping coefficient is denoted by cL, the parameter kL = cL/m has the dimension of time−1,
and the terminal velocity is vT,L = mg/cL. The values of kL are commonly so large that the trajectories of the
projectiles in the range of linear drag (Re< 1) dominantly consist of two nearly straight lines, on the time scale
of a fraction of the second or longer. Because the horizontal momentum is rapidly reduced by drag to almost
zero, the horizontal range of the projectile is much smaller than the horizontal range in the absence of drag. This
is illustrated by the motion of small respiratory droplet and a tungsten powder particle. Forward-to-backward
transition of the direction of motion in the case when the particle is ejected against the wind is also discussed.
In Sect. 4, the projectile motion is considered in the range of the Reynolds number in which neither the linear
nor quadratic drag model applies, but a more general nonlinear drag model in which the drag coefficient cd
is a nonlinear function of the Reynolds number. For some projectiles, the values of the Reynolds number can
change during motion in such a way that during one phase of motion quadratic drag applies, while during
another phase nonquadratic drag applies. Since the extents of different phases are not known in advance, for
such projectiles it is necessary to use the general expression for the drag force which encompasses the entire
range of the Reynolds number, and solve the corresponding equations of motion numerically. The transition
from nonquadratic to quadratic drag is also discussed. Closing remarks are given in Sect. 5.

2 Projectile motion under quadratic drag

Figure 1a shows a spherical projectile of mass m launched from the ground or platform at y = 0 with the
initial velocity v0 at an angle ϕ0 with respect to the horizontal x axis. If the air resistance is quadratic in the
velocity v, the equations of motion in still air (without wind) are [15,18]

dvx
dt

= −kvvx ,
dvy
dt

= −kvvy − g, (k = c/m), (2.1)

where vx = v cosϕ and vy = v sin ϕ are the velocity components of the projectile, and v = (v2x + v2y)
1/2.

These equations follow by applying either Newton’s or Lagrangian equations of motion. The parameter k has
the dimension length−1. The buoyancy force is not included in (2.1), which is satisfactory if the mass density
of the projectile is much larger than the mass density of the surrounding air [3].

It is also assumed that the spin of the projectile is absent or ignored; its inclusion gives rise to the side or
lift force, orthogonal to the drag force, as has been recently discussed in [24–26]. In the nondimensional form,
(2.1) is

(a) (b)

Fig. 1 a The motion of a spherical projectile of mass m launched from the ground with initial velocity v0 at an angle ϕ0 with
respect to the horizontal x axis. At the flight position shown, the forces acting on the projectile are its weight mg and the drag
force cv2, opposite to its current velocity v. b The tangential and normal components of acceleration are dv/dt and v2/ρ, where
ρ is the current radius of curvature of the trajectory. The infinitesimal arc-length of the trajectory is ds = −ρ dϕ
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(a) (b)

Fig. 2 a The variation of the velocity components (vx , vy) and the total velocity v = (v2x + v2y)
1/2 with the nondimensional time

t/τ (τ = vT/g) for the initial velocity v0 = 0.5vT and the launch angle ϕ0 = 45◦. Velocities are scaled by the terminal velocity
vT, and g is the acceleration of gravity. b The projectile trajectory y = y(x) in the case of initial velocity v0 = 0.5vT and two
values of the launch angle, ϕ0 = 45◦ and ϕ0 = 60◦. The normalizing length used in the plots is v2T/g

d(vx/vT)

d(t/τ)
= −(vx/vT)(v/vT),

d(vy/vT)

d(t/τ)
= −(vy/vT)(v/vT) − 1, (2.2)

where vT = (mg/c)1/2 is the terminal velocity and τ = vT/g is the time-parameter. The equations in
(2.2) represent a system of two coupled first-order nonlinear ordinary differential equations for the velocity
components vx = vx (t) and vy = vy(t), subject to the initial conditions vx (0) = v0 cosϕ0 and vy(0) =
v0 sin ϕ0. There is no closed-form solution to (2.2), but the equations can be solved readily by numerical means
using, for example, the MATLAB function ode45, which implements a Runge–Kutta method with a variable
time step for high accuracy and efficient computation. Figure 2a shows the variation of the nondimensional
velocity components (vx , vy)/vT, and the magnitude of the velocity v/vT, with the nondimensional time t/τ ,
for the launch angle ϕ0 = 45◦ and initial velocity v0 = vT/2. In the limit as time increases indefinitely, the
velocity v approaches the terminal velocity vT, while vx → 0. Having the velocity components determined,
the parametric equations of the trajectory x = x(t) and y = y(t) are obtained by numerical integration of
dx/dt = vx (t) and dy/dt = vy(t) using the MATLAB function cumtrapz, which computes the cumulative
integral by the trapezoidal method of integration. The corresponding plots are shown in Fig. 2b in the case
v0 = vT/2 and for the launch angles ϕ0 = 45◦ and 60◦. The initial position of the projectile is x0 = y0 = 0.

Equations of motion (2.1) can be rewritten by eliminating the time increment (dt) in terms of the infinites-
imal arc length (ds) using v = ds/dt [1,18]. This gives

dvx
ds

= −kvx ,
dvy
ds

= −k

(
v2T

v
+ vy

)
. (2.3)

The solution to the first equation in (2.3) is vx (s) = vx (0) exp(−ks). Thus, vx → 0 as s → ∞, which means
that the trajectory has a vertical asymptote alongwhich vy → −vT. Equation (2.3) also allows a simple analysis
of the trajectory shape in the limiting cases of very small and very large launch velocity [15]. For example, if
v0 � vT, the initial portion of the trajectory is nearly a straight line y = (tan ϕ0)x . Furthermore, it follows
that

d2y

dx2
= d

dx

(
vy

vx

)
= 1

cosϕ

(
1

vx

dvx
ds

− vy

v2x

dvx
ds

)
. (2.4)

Thus, by substituting (2.3) into (2.4), one obtains

d2y

dx2
= − g

v2x
, vx = vx (0) exp(−ks). (2.5)
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(a) (b)

Fig. 3 aThe trajectory of a spherical bullet of radius R = 0.01mandmassm = 0.006 kg, firedwith initial velocity v0 = 100m/s at
an angle ϕ0 = 15◦. The trajectory obtained by numerical integration of equations (2.1) is shown by a solid line, and the trajectory
obtained from the approximate expression (2.6) by a dashed line. b The predicted trajectories of the same bullet in the case
ϕ0 = 30◦

An alternative derivation of (2.5), based on the expression for the curvature of the trajectory, has been given in
[1]. Expression (2.5) can be integrated analytically to determine an approximate shape of a shallow projectile
trajectory by replacing s with x . The result is

y = x tan ϕ0 − gx2

2v20 cos
2 ϕ2

0

Z(x), Z(x) = exp(2kx) − 2kx − 1

(2kx)2/2
. (2.6)

In the absence of drag, Z(x) = 1. For example, Fig. 3a shows the trajectory of a spherical bullet of radius
R = 0.01 m and mass m = 0.006 kg, which is fired in stagnant air with initial velocity v0 = 100 m/s at an
angle ϕ0 = 15◦. The corresponding quadratic damping parameter is k = c/m = 0.015m−1. There is only a
small difference between the shapes of the trajectories obtained by numerical integration of equations (2.1),
and by using the approximate expression (2.6). The bullet will hit the ground at x = 114 m in the former case,
and at x = 115 m in the latter case. If air resistance was ignored the bullet would hit the ground at x = 509.7
m. The difference between the shapes of the trajectories obtained from (2.1) and (2.6) is smaller for smaller
angles ϕ0 < 15◦. For ϕ0 = 10◦, the maximum horizontal reach obtained from (2.1) is x(y = 0) = 98.5 m,
while (2.6) predicts 99 m. The corresponding maximum heights are ymax = 6.906 m and 6.930 m, which are
within 0.35% of each other. Figure 3b, on the other hand, shows the predicted trajectories in the case ϕ0 = 30◦,
demonstrating a significant departure of the approximate from the actual trajectory, except during the early
(almost linear) stage of motion.

2.1 Velocity expression v = v(ϕ)

The use of the natural coordinates (ρ, ϕ), where ρ is the radius of the current curvature of the projectile
trajectory and ϕ is the angle between the tangent to the trajectory and the positive x axis (Fig. 1b), results in
certain mathematical simplifications and decoupling of the equations of motion, which enables the derivation
of the closed-form expression for the velocity v = v(ϕ) (Bernoulli’s parametrization, [18]). The radius of
curvature ρ is related to the infinitesimal arc length ds by ds = −ρ dϕ, and the magnitude of the velocity is
v = ds/dt . The equations of motion with respect to the natural coordinates [1,21] are

dv

dt
= −kv2 − g sin ϕ,

v2

ρ
= g cosϕ. (2.7)

By using −ρ dϕ = ds = v dt , the two equations in (2.7) can be combined to obtain the first-order quasi-linear
differential equation for v2,

cosϕ
dv2

dϕ
− 2

v2T
v4 − 2 sin ϕ v2 = 0. (2.8)
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The differential equation (2.8) can be solved by first recalling that in the absence of air drag the velocity is
v = v0 cosϕ0/ cosϕ, which suggests the solution in the form v2 = w(ϕ)/ cos2 ϕ. When this is substituted
into (2.8), the differential equation for the auxiliary function w = w(ϕ) is found to be

dw

w2 = 2

v2T

dϕ

cos3 ϕ
, (2.9)

whose solution is

1

w0
− 1

w
= 1

v2T
[ f (ϕ) − f (ϕ0)], f (ϕ) = sin ϕ

cos2 ϕ
+ ln

1 + sin ϕ

cosϕ
. (2.10)

Thus, the final expression for the velocity v = v(ϕ) is

v = v0 cosϕ0

cosϕ

1√
1 + (v0/vT)2 cos2 ϕ0[ f (ϕ0) − f (ϕ)] . (2.11)

In contrast to the drag-free projectile motion, the velocity v is not a linear function of the initial velocity
v0. In the limit ϕ → −π/2, the velocity v(ϕ) → vT, which is the terminal downward velocity at which
the weight of the projectile mg is balanced by the drag force cv2T. The velocity at the highest point of the
trajectory is v∗ = v(ϕ = 0). The time dependence of the angle ϕ can be determined by numerical integration
of dϕ/dt = −g cosϕ/v, which follows by differentiating tan ϕ = vy/vx . In the absence of air resistance,
v = v0 cosϕ0/ cosϕ and tan ϕ = tan ϕ0 − gt/(v0 cosϕ0).

2.1.1 Classical derivation

An alternative derivation of the velocity expression v = v(ϕ)was used in [1]. It proceeds from the first equation
in (2.1) by eliminating the time increment as dt = −v dϕ/(g cosϕ). After dividing by cos3 ϕ, this gives

d(v cosϕ)

(v cosϕ)3
= 1

v2T

dϕ

cos3 ϕ
. (2.12)

Thus, upon integration,
1

v20 cos
2 ϕ0

− 1

v2 cos2 ϕ
= 1

v2T
[ f (ϕ) − f (ϕ0)], (2.13)

in agreement with (2.11). It is noted that there is a sign error in eq. (p) on page 101 of [1], and consequently
the plus sign in the denominator of their final expression for the velocity (74) should be a minus sign. It is
also noted that the logarithmic term in the expression for the function f (ϕ) in (2.10) can be cast in different
equivalent forms, e.g.,

ln
1 + sin ϕ

cosϕ
≡ 1

2
ln

1 + sin ϕ

1 − sin ϕ
≡ ln

[
tan

(ϕ

2
+ π

4

)]
.

The first representation was used in [15], the second was used in [1], and the third in [21,22].

2.2 Parametric representation of trajectory in terms of angle ϕ

Once the velocity expression (2.11) for v = v(ϕ) has been determined, the trajectory of the projectile can
be deduced from its parametric representation x = x(ϕ) and y = y(ϕ), using angle ϕ as a monotonically
decreasing parameter. The latter is obtained by numerical integration from dx = vx dt = (v cosϕ)dt and
dy = (tan ϕ)dx , after the time increment dt has been eliminated in favor of the angle increment dϕ. This gives

x(ϕ) = 1

g

∫ ϕ0

ϕ

v2dϕ, y(ϕ) = 1

g

∫ ϕ0

ϕ

v2 tan ϕ dϕ, (2.14)

where the coordinate origin has been placed at the launching point of the projectile. The maximum height of
the projectile and its x location (Fig. 1a) are determined from y∗ = y(ϕ = 0) and x∗ = x(ϕ = 0). The vertical
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asymptote to the projectile trajectory is xm = x(ϕ = −π/2), referred by some as the aerodynamic wall [15].
In the absence of drag, xm → ∞.

The angle ϕ1 < 0 which corresponds to the position y = 0 during the descent of the projectile after the
maximum reached height, and the corresponding value of x1 = x(ϕ1), can be determined from

y(ϕ1) = y∗ + 1

g

∫ 0

ϕ1

v2 tan ϕ dϕ = 0, x1 = 1

g

∫ ϕ0

ϕ1

v2dϕ = x∗ + 1

g

∫ 0

ϕ1

v2dϕ. (2.15)

The numerical evaluation of integrals can be performed by using the MATLAB function integral. The deter-
mination of the (optimal) launch angle ϕ0 that, for a given v0, maximizes the distance x1, has been studied in
[15,22,47]. The outcome of the analysis is that the optimal launch angle decreases below the no-drag optimal
angle of ϕ0 = 45◦ with the increase in drag and the increase in launch velocity v0. Alternatively, one can
determine the minimum required launch velocity and the corresponding launch angle to reach a given distance
x1 = L . In the absence of air resistance, the result is vmin

0 = √
Lg/2 at ϕ0 = 45◦. The corresponding time

to reach this distance is t1 = 2
√
L/g. Basketball players possibly tend to shoot the ball with the minimum

velocity required to bridge the distance from their hands to the basket along a projectile path.
The time corresponding to the angle ϕ follows by numerical integration,

t (ϕ) = 1

g

∫ ϕ0

ϕ

v(ϕ)

cosϕ
dϕ, (2.16)

with t = 0 at ϕ = ϕ0. The velocity versus the time plot v = v(t) can then be readily generated from the
parametric equations t = t (ϕ) and v = v(ϕ), the latter being specified by (2.11). The times to reach the
maximum height (y∗), and the position (x, y) = (x1, 0), are t∗ = t (ϕ = 0) and t1 = t (ϕ = ϕ1). In the absence
of drag (v0/vT = 0), the ascending and descending times are equal to each other, both being equal to v0/g.
In the presence of drag, the descending time (t1 − t∗) is greater than the ascending time (t∗) [48]. The time
to reach the terminal velocity vT is infinitely large, t (ϕ → −π/2) → ∞, although the value of vx rapidly
approaches zero, while |vy | rapidly approaches the terminal velocity vT.

In the absence of drag, the well-known explicit expressions for relations x = x(ϕ) and y = y(ϕ) are [[1],
p. 98]

x(ϕ) = v20 cos
2 ϕ0

g
(tan ϕ0 − tan ϕ), y(ϕ) = v20

2g

(
1 − cos2 ϕ0

cos2 ϕ

)
. (2.17)

The distance x1 corresponding to y1 = 0 is x1 = (v20/g) sin 2ϕ0, and thus xmax
1 = x1(ϕ0 = π/4) = v20/g with

the symmetry property x1(π/4 − θ) = x1(π/4 + θ) for 0 ≤ θ ≤ π/4 (Halley’s symmetry, in the absence of
drag [9,10]).

2.3 Wind effects

In the presence of wind whose velocity vector vw has the components vw,x and vw,y in the vertical plane of
the launch velocity vector v0, the drag force in the model of quadratic damping is

Fd = −c|v − vw|(v − vw), c = 1

2
cdρair(πR2), (2.18)

where the drag coefficient cd = 0.47 for the Reynolds number Re = 2R|v−vw|/νair in the range 103 ≤ Re ≤
3 × 105. Thus, the relative velocity (v − vw) appears in the definition of the Reynolds number and the drag
force. The governing differential equations for the horizontal and vertical components of velocity are then,
e.g., [18],

dvx
dt

= −k[(vx − vw,x )
2 + (vy − vw,y)

2]1/2(vx − vw,x ),

dvy
dt

= −k[(vx − vw,x )
2 + (vy − vw,y)

2]1/2(vy − vw,y) − g,
(2.19)

with initial conditions vx (0) = v0 cosϕ0 and vy(0) = v0 sin ϕ0. Equations (2.19) are two coupled differential
equations, which require numerical integration. After the velocity components vx and vy have been determined,
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(a) (b)

(c) (d)

Fig. 4 a Trajectory of the ball of mass m = 45 g and radius R = 45 mm ejected with initial velocity v0 = 40 m/s at an angle
ϕ0 = 30◦. The three curves correspond to stagnant air (solid line), forward wind (dashed line), and backward wind (dash-dotted
line), both with the wind speed of magnitude 10 m/s. b Portions of the plots from part a corresponding to y ≥ 0. c Variations of
the magnitude of the velocity v with the horizontal position x , and d the time t

the (x, y) coordinates of the trajectory follow by numerical quadrature from the velocity components, with
initial conditions x(0) = y(0) = 0.

Motion of a golf ball Figure 4a shows the trajectory of the ball of mass m = 45 g and radius R = 22 mm
ejected with initial velocity v0 = 40 m/s at an angle ϕ0 = 30◦. The solid line curve is for the motion of the ball
in stagnant air, the dashed line curve is for the motion in the presence of horizontal forward wind of magnitude
10 m/s, and the dash-dotted line curve is for the motion in the presence of the opposite direction of wind. In
the absence of wind, the trajectory has a vertical asymptote x = 136.78 m, while the asymptotes in the case
of forward and backward wind are tangent to the terminal velocity vector, whose slope is defined by the ratio
−vT/vw = ∓3.14, where vT = (mg/c)1/2 = 32.09m/s is the magnitude of the vertical component of terminal
velocity. Figure 4b shows the effect of wind on the maximum height of the ball and its maximum horizontal
reach, in the case when the ground is at y = 0. In the absence of wind, as the ball approaches the vertical
asymptote, the horizontal component of velocity vx → 0. In the presence of wind, the horizontal component
of velocity approaches the speed of the wind vx → vw = ±10 m/s, while the vertical component of velocity
approaches the vertical component of terminal velocity vy → −vT = −32.09 m/s. Parts (c) and (d) of Fig. 4
show the variations of the magnitude of the velocity v = (v2x + v2y)

1/2 with respect to the horizontal position x
and time t . The solid curve in Fig. 4c ends at x = 136.78 m, because, in the absence of wind, there is a vertical
asymptote of the trajectory x → xm = 136.78 m and in that limit v → vT. In all three considered cases,
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the motion of the ball is the range of the Reynolds number 4.81 × 104 < Re < 1.42 × 105, which validates
the adopted quadratic drag assumption with the drag coefficient cd = 0.47. On the other hand, if the ball had
a roughness of a golf ball, the transition from laminar to turbulent boundary layer, with the corresponding
sudden drop of the drag coefficient, would take place at the Reynolds number of about 4 × 104 [49], which
would require the use of the drag coefficient as law as 0.25 in the flow regime Re > 4 × 104.

2.4 Parametric expressions for velocity components in the presence of wind

By introducing the relative velocity u = v − vw, equations of motion (2.19) can be written, in the case of
constant wind velocity, as

dux
dt

= −kuux ,
duy

dt
= −kuuy − g, (2.20)

where u = (u2x + u2y)
1/2 is the magnitude of the relative velocity, and the initial conditions are ux (0) =

vx (0) − vw,x and uy(0) = vy(0) − vw,y . Equations in (2.20) are of the same form as equations in (2.1), and
we can recognize from (2.8) that u2 satisfies the first-order quasi-linear differential equation,

cosφ
du2

dφ
− 2

v2T
u4 − 2 sin φ u2 = 0, v2T = g/k. (2.21)

The angle parameter φ is the angle between the relative velocity vector u and the positive x axis and is defined
by [18]

tan φ = uy

ux
. (2.22)

In the absence of wind, the angle φ reduces to ϕ = tan−1(vy/vx ), which was used in Sect. 2.1. The solution
to differential equation (2.21) is, from (2.11),

u = u0 cosφ0

cosφ

1√
1 + (u0/vT)2 cos2 φ0[ f (φ0) − f (φ)] , (2.23)

where u20 = u2x (0) + u2y(0), tan φ0 = uy(0)/ux (0), and the function f is as defined in (2.10).
Having determined themagnitude of the relative velocity u = u(φ), the relative velocity components follow

from ux = u cosφ and uy = u sin φ, while the components of the projectile velocity are vx = ux + vw,x and
vy = uy + vw,y . The relationship between the time t and the angle parameter φ is, in analogy with (2.16),

t (φ) = 1

g

∫ φ0

φ

u(φ)

cosφ
dφ, (2.24)

with t = 0 at φ = φ0. Additional insightful aspects of the analysis can be found in [18].

3 Projectile motion under linear drag

The linear drag model is of less importance for the study of usual projectile motions, because the velocities
and size of the launched projectiles are too large for the Stokes’ drag assumption to apply. However, it may
be of importance for the analysis of slow motion of very small particles, such as small respiratory droplets
produced by soft talking and low ejection velocities [13]. We summarize below the main results of the analysis
in the case when the drag force is linear in velocity Fd = cLv, where cL is the constant damping coefficient,
as discussed in Sect. 1. The results can be given entirely in closed-form, which is a consequence of the fact
that the corresponding governing equations for the velocity components vx and vy are decoupled,

dvx
dt

= −kLvx ,
dvy
dt

= −kLvy − g, (kL = cL/m), (3.1)

and can be solved analytically to obtain [9,10,32]

vx = v0 cosϕ0 e
−kLt , vy = vT,L

(
pe−kLt − 1

)
, (vT,L = g/kL = mg/cL). (3.2)
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(a) (b)

Fig. 5 a Variations of the velocity components (vx , vy) and the total velocity v = (v2x + v2y)
1/2 with nondimensional time kLt

for the launch angle ϕ0 = 60◦ and the initial velocity v0 = 0.5vT,L, according to the linear drag model. b The trajectory of the
projectile in the case of two different launch velocities v0, both at ϕ0 = 60◦. The lengths are scaled by vT,L/kL, where vT,L is
the corresponding terminal velocity

The nondimensional parameter p is defined by

p = 1 + v0

vT,L
sin ϕ0, (3.3)

where vT,L is the terminal velocity in the model of linear drag. The variations of the velocity components and
the total velocity (scaled by vT,L) in the case of the initial velocity v0 = 0.5vT,L and the launch angle ϕ0 = 60◦
are shown in Fig. 5a.

Furthermore, by integration of dx = vx dt and dy = vy dt , it follows that the parametric equations of the
trajectory are

x = v0

kL
cosϕ0

(
1 − e−kLt

)
, y = vT,L

kL

[
p

(
1 − e−kLt

)
− kLt

]
, (3.4)

with time t as a monotonically increasing parameter. By eliminating kLt in (3.4), the y = y(x) representation
of the trajectory is

y =
(
tan ϕ0 + vT,L

v0 cosϕ0

)
x + vT,L

kL
ln

(
1 − kLx

v0 cosϕ0

)
. (3.5)

The vertical asymptote to the trajectory is xm = v0 cosϕ0/kL, which follows from (3.4) in the limit t → ∞.
The trajectories of the projectile in the case of the launch velocities v0 = 0.5vT,L and v0 = 0.75vT,L, and
the launch angle ϕ0 = 60◦, are shown in Fig. 5b. The corresponding positions of the vertical asymptote are
xmkL/vT,L = 1/4 and 3/8. It is noted that the values of kL are large in the case of linear drag and that the
trajectories rapidly approach their vertical asymptotes. The very early portion of the trajectory is a straight line
y = (tan ϕ0)x .

Motion of a respiratory droplet For a respiratory droplet of diameter 15μm and mass m = 1.762 ng, ejected
in stagnant air with velocity 1 m/s, the damping parameter is cL = 2.58μg/s; thus kL = 1, 464 s−1. The
corresponding trajectories for three ejection angles are shown in Fig. 6a. For the most part, they consist of
two nearly straight lines. The Reynolds number at the instant of ejection is Re=0.989, which rapidly decreases
with subsequent rapid decrease of the droplet’s velocity due to air drag. The corresponding variation of the
velocity and its components with time in the case ϕ0 = 30◦ is shown in Fig. 6b. The terminal velocity is
vT,L = mg/cL = 6.7 mm/s. In the absence of drag, vx = v0 cosϕ0 = const. and vy = v0 sin ϕ0 − gt ,
independently of R and m, while x(y = 0) = (v20/g) sin 2ϕ0 =88.3 mm, about 150 times greater than
xm = 0.59 mm in the presence of linear drag.
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(a) (b)

Fig. 6 a Trajectories of a respiratory droplet for three ejection angles in the case of linear drag. Vertical asymptotes are defined
by xm = v0 cosϕ0/kL. b Variations of the velocity v and its components (vx , vy) with time t for the launch angle ϕ0 = 30◦ and
the initial velocity v0 = 1 m/s. While vx rapidly approaches zero, vy → vT,L = 6.7 mm/s

3.1 Horizontal reach

The time t∗ = (1/kL) ln p to reach the apex of the trajectory is obtained from the condition vy(t∗) = 0. The
corresponding (x∗, y∗) coordinates are

x∗ = v20

2gp
sin 2ϕ0, y∗ = vT,L

kL
(p − ln p − 1). (3.6)

If 0 < ϕ0 < π/2, the time t1 to reach the point (x1, 0) is obtained by solving the equation y(t1) = 0, i.e.,

p
(
1 − e−kLt1

)
− kLt1 = 0, (3.7)

which follows from the second expression in (3.4). Expressed in terms of the Lambert W function, the solution
to (3.7) for kLt1 is

kLt1 = p + W
(−pe−p) . (3.8)

The corresponding coordinate x1 (horizontal reach of the projectile) is then obtained by substituting (3.8) into
the first expression in (3.4),

x1 = v0 cosϕ0

kL

[
1 + 1

p
W

(−pe−p)] . (3.9)

In the derivation, the definition of the Lambert W function W (z)eW (z) = z has been used [50,51]. Note that
(3.9) also follows directly from equation (3.5) by solving it for x when y = 0. An expression for the optimum
launch anglewhichmaximizes the horizontal reach of the projectile, also given in terms of LambertW function,
has been derived and discussed in [10,33]. The corresponding analysis in the case when the launching point
is higher than the landing point can be found in [34].

3.2 Velocity expression v = v(ϕ)

Similarly to the case of quadratic drag, a closed-form relationship v = v(ϕ) can be derived in the case of linear
drag. The governing differential equation for the velocity v in terms of the angle ϕ = tan−1(vy/vx ) can be
cast in the form

cosϕ
dv

dϕ
= 1

vT,L
v2 + v sin ϕ. (3.10)
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This equation can be solved by introducing an auxiliary function w = w(ϕ), related to v by v = w/ cosϕ,
which transforms (3.10) into

dw

w2 = 1

vT,L

dϕ

cos2 ϕ
. (3.11)

Equation (3.11) can also be derived from eq. (64) of reference [1], p.97, which is valid for an arbitrary nonlinear
drag, by taking f (v) = 1 in that equation and by making the substitution w = v cosϕ.

Upon integration of (3.11), the velocity is found to be

v = vT,L

[(
tan ϕ0 + vT,L

v0 cosϕ0

)
cosϕ − sin ϕ

]−1

. (3.12)

The velocity at the apex of the trajectory (ϕ = 0) is v∗ = (v0/p) cosϕ0. If cL → 0, the terminal velocity
vT,L → ∞, and (3.12) reduces to the well-known expression for the drag-free projectile motion [1], p.98,
v = v0 cosϕ0/ cosϕ, while v∗ = v0 cosϕ0 (because p = 1).

3.3 Wind effects

In the presence of wind, the drag force is Fd = −cL(v − vw) and the governing equations for the velocity
components become [6]

dvx
dt

= −kL(vx − vw,x ),
dvy
dt

= −kL(vy − vw,y) − g. (3.13)

These can be solved analytically to obtain [28,29]

vx = vw,x

(
1 − qxe

−kLt
)

vy = (vw,y − vT,L)
(
1 − qye

−kLt
)

, (3.14)

where

qx = 1 − v0 cosϕ0

vw,x
, qy = 1 − v0 sin ϕ0

vw,y − vT,L
. (3.15)

The parametric equations of the corresponding trajectory are then

x = vw,x

kL

[
kLt − qx

(
1 − e−kLt

)]
, y = vw,y − vT,L

kL

[
kLt − qy

(
1 − e−kLt

)]
. (3.16)

If the wind is horizontal (vw,x = vw, vw,y = 0), the parameters in (3.15) reduce to

qx = q = 1 − v0 cosϕ0

vw
, qy = p = 1 + v0 sin ϕ0

vT,L
, (3.17)

and the expressions for vy(t) and y(t) in (3.14) and (3.16) become independent of the presence of wind. Thus,
the time to reach the point (x1, y1 = 0) is given by (3.8), provided that 0 < ϕ0 < π/2. The corresponding
coordinate x1 is obtained by substituting (3.8) into the first expression in (3.16),

x1 = x(t1) = vw sin ϕ0 + vT,L cosϕ0

v0 sin ϕ0 + vT,L
v0t1. (3.18)

On the other hand, in the case of backward wind (vw < 0), the time to reach the point (x2 = 0, y2) is given
by kLt2 = q + W

(−qe−q
)
, which follows from (3.16). The corresponding coordinate y2, obtained from the

second expression in (3.16), can be expressed as

y2 = y(t2) = −vw sin ϕ0 + vT,L cosϕ0

v0 cosϕ0 − vw
v0t2, vw < 0. (3.19)
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3.4 Forward-to-backward transition of motion

If the projectile is launched against horizontal wind (vw < 0) at an angle 0 < ϕ0 < π/2, it will eventually
reverse its direction from the forward motion against the wind to the backward motion down the wind. The
transition may take place by either upward or downward reversal of the direction of motion. The physical
criterion for this transition is based on the comparison of the times to reach the points of the trajectory at which
the horizontal and vertical components of the velocity are equal to zero,

tvx=0

{
< tvy=0, upward reversal,
> tvy=0, downward reversal.

(3.20)

The expressions for the times tvx=0 and tvy=0 are easily obtained from (3.14) and are given by tvx=0 =
(1/kL) ln q and tvy=0 = (1/kL) ln p. By substituting them into (3.20), it follows that the upward reversal
occurs if q < p and the downward reversal if q > p. Thus, in view of expressions (3.3) and (3.17) for p and
q , the transition criterion is

|vw| tan ϕ0

{
> vT,L, upward reversal,
< vT,L, downward reversal.

(3.21)

If the wind velocity and the angle of launch are related by |vw| tan ϕ0 = vT,L, the projectile moves along
the straight line y = (tan ϕ0)x up to the point with coordinates x∗ = x(t∗) and y∗ = y(t∗) at which both
components of velocity are zero vx (t∗) = vy(t∗) = 0, where t∗ = (1/kL) ln p. The projectile then moves back
along the same straight line. Indeed, if |vw| tan ϕ0 = vT,L is substituted into the first expression in (3.14), it
follows that vx = (cot ϕ0)vy , and therefore y = (tan ϕ0)x . The condition |vw| tan ϕ0 = vT,L also follows by
requiring that x1 = 0 in (3.18), which was used in [28], where other inplane directions of wind were also
considered. If the projectile is launched against the horizontal wind at an angle −π/2 ≤ ϕ0 ≤ 0, the reversal
of the direction of motion is necessarily downward, because vy is always negative. The downward reversal of
the direction of motion takes place when vx = 0, i.e., at time t = (1/kL) ln q .

Motion of a tungsten powder particle Figure 7a shows the early time trajectories (within a fraction of 1 s)
of a tungsten powder particle of diameter 25μm ejected at ϕ0 = 45◦ with initial velocity v0 = 50 cm/s
against a horizontal air stream with different velocity vw, as indicated in the figure legend. The mass density of
tungsten is taken to be 19 g/cm3, thus kL = 27.7 s−1 and vT,L = 35.5 cm/s. (The value of kL for the tungsten
particle is much smaller than the value of kL for the previously considered respiratory droplet, because the
mass density of tungsten is about 19 times greater than the density of water.) For |vw| = vT,L the particle

(a) (b)

Fig. 7 a Early portion of the trajectory of a tungsten powder particle of diameter 25μm ejected at ϕ0 = 45◦ with initial velocity
v0 = 0.5 m/s against a horizontal air stream with different velocity vw, according to the linear drag model. For vw = −vT,L
the particle moves along the straight line y = x . For |vw| > vT,L, there is an upward reversal and for |vw| < vT,L a downward
reversal of the direction of motion. b Trajectories in the case of several smaller values of the backward air stream during the first
0.5 s. The ejection angle is ϕ0 = 45◦
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moves along the straight line y = x . For |vw| > vT,L, there is an upward reversal and for |vw| < vT,L a
downward reversal of the direction of motion. The initial Reynolds number is 0.825 and remains less than
1 throughout the motion, validating the use of the linear drag model. Because kL is large, the trajectories
quickly approach the straight lines with the slope −(vT,L/vw). In the absence of wind, the vertical asymptote
of the trajectory is xm = (v0/kL) cos(ϕ0) = 12.8 mm, which follows from (3.4). The trajectories in the
case of several smaller values of the backward wind, all giving rise to downward reversal of the direction of
motion during the first 0.5 s, are shown in Fig. 7b. The ejection angle is ϕ0 = 45◦. In the absence of drag,
x(y = 0) = (v20/g) sin 2ϕ0 = 25.5 mm, which is almost twice as large as xm = 12.8 mm. The study of the
projectile motion of a powder particle which includes its repeated rebounds after impacts with a flat surface
has been useful in the theoretical and experimental analysis of collisions in mechanical milling processes of
powder technology [52].

4 Projectile motion under nonquadratic drag

The motion of some spherical projectiles takes place in the range of the Reynolds number 1 < Re < 1000,
in which neither linear nor quadratic drag model applies, but a more involved nonlinear model. Furthermore,
for some projectiles the values of the Reynolds number can change during motion in such a way that during
one phase of motion a quadratic drag applies, while during another phase of motion a nonquadratic drag
applies. Since the extent of different phases of motion is not known in advance, it is necessary to introduce the
expression for the drag force that encompasses the entire range of the Reynolds number. This is commonly
done by defining the drag force as

Fd = −1

2
cdρairA|v − vw|(v − vw), A = πR2, (4.1)

where the drag coefficient cd depends on the Reynolds number according to experimental data. The following
expression, adapted from [16], fits the data for a smooth spherical projectile sufficiently well in the range
0 < Re ≤ 106,

cd =

⎧⎪⎨
⎪⎩
24Re−1 + 3.085Re−0.28, 0 < Re ≤ 103,
0.47, 103 ≤ Re ≤ 3 × 105,
0.1, 3 × 105 < Re ≤ 106.

(4.2)

Below Re ≈ 0.2, the dominant contribution to cd in (4.2) comes from the term 24/Re, which gives rise to
linear drag force. To simplify the analysis, the value cd = 0.1 is taken above Re = 3× 105 as an approximate
average value in the range 3× 105 < Re ≤ 106, replacing the actual nonlinear dependence of cd on Re in that
high range of the Reynolds number (characterized by partially turbulent boundary layer in the nonseparated
portion of flow). In some work, the nonlinear expression for cd is defined in the range of the Reynolds number
from about 0.2 to 2 × 103. The velocity of projectile is assumed to be sufficiently below the speed of sound
in air so that the dependence of the drug coefficient on the Mach number can be ignored. Recent analysis of
correlations for supersonic drag coefficient of spherical particles can be found in [53,54]. The variation of
cd with Re according to (4.2) is depicted in Fig. 8a (solid curve). The experimentally determined variation is
shown in Fig. 8b. The variation of the normalized drag force Fd with the Reynolds number Re, as obtained
from (4.1) and (4.2), is depicted in Fig. 8a by a dash-dotted curve. While the drag coefficient is decreasing,
or remains constant with the increase in the Reynolds number, the corresponding drag force is monotonically
increasing, apart from a sudden drop at Re = 3 × 105 associated with a sadden drop of cd from 0.47 to 0.1.

The differential equations of projectile motion in the case of nonlinear drag are [18]

dvx
dt

= −1

2
cdρair(A/m)|v − vw|(vx − vw,x ),

dvy
dt

= −1

2
cdρair(A/m)|v − vw|(vy − vw,y) − g,

(4.3)

with the initial conditions vx (0) = v0 cosϕ0 and vy(0) = v0 sin ϕ0, and with cd defined in (4.2). Equations
(4.3) are two coupled nonlinear differential equations which require numerical solution, and which can be
readily done by using, for example, the MATLAB function ode45. After the velocity components vx and vy
have been so determined, the (x, y) coordinates of the trajectory follow by numerical quadrature from the
velocity components, with the specified initial conditions for x(0) and y(0).
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(a) (b)

Fig. 8 a Variations (on the logarithmic scale) of the normalized drag force Fd/F̄d and the drag coefficient cd with the Reynolds
number according to (4.1) and (4.2). The normalizing factor is F̄d = (π/8)ρairν2air . b The experimentally determined variation
for a smooth sphere (reproduced from [49])

Motion of a respiratory droplet

Figure 9a shows the trajectories of a respiratory droplet of radius R = 100μm ejected in stagnant air with
initial velocity v0 = 10 m/s at three different values of the angle ϕ0. The evaporation of the droplet is ignored.
The horizontal momentum is rapidly lost, and the vertical component of velocity rapidly approaches the value
of the terminal speed (along the vertical portion of the trajectory). The corresponding variations of the Reynolds
number and the drag coefficient with time are shown in Fig. 9a (in case ϕ0 = 45◦). Throughout the motion, the
Reynolds number is in the range 5 < Re < 135, and the nonlinear expression for the drag coefficient applies
cd = 24Re−1 + 3.085Re−0.28, as defined in (4.2). The vertical portions of the trajectories are reached as the
velocity of the droplet approaches its terminal velocity (0.725 m/s). The corresponding limiting values of the
Reynolds number and the drag coefficient are Re = 9.56 and cd = 4.15. The terminal velocity (vT,N) for this
nonlinear drag range is the solution of a nonlinear algebraic equation

v1.72T,N + 4.723
(νair

R

)0.72
vT,N − 1.05

ρgR

ρair

(
R

νair

)0.28

= 0, (4.4)

which follows from the condition Fd = mg, where m is the mass of the droplet whose density is ρ. Figure 9b
shows the trajectories of the respiratory droplet ejected with initial velocity v0 = 10 m/s against the wind
with velocity |vw| = 1 m/s. The terminal velocity in this case is vterm = (v2T,N + v2w)1/2 = 1.235 m/s,
independently of ϕ0. The evaporation of the droplet at a given relative humidity significantly affects the shape
of the trajectory and increases the droplet’s horizontal reach. This has been discussed in [13,55–58] in the
context of the evaluation of the risks of infection by transmitted pathogenic droplets and the estimates of safe
distancing during soft or loud talking and coughing. Different empirical correlations for calculating the drag
coefficient in viscous spheres (liquid drops) have been listed and discussed in [59].

Motion of a flea beetle

Figure 9c shows the trajectories of a flea beetle, assumed to be of spherical shape with radius R = 0.8 mm and
mass density 0.25 g/cm3, corresponding to three launch angles ϕ0 and the same initial velocity of 3 m/s. Only
y ≥ 0 potions of the trajectories are shown. The variations of the Reynolds number and the drag coefficient
with time are shown in Fig. 10b, again in case ϕ0 = 45◦. Throughout the motion, the Reynolds number is
in the range 120 < Re < 320. The values of the Reynolds number and the drag coefficient at the terminal
velocity (2.414 m/s) are Re = 254.7 and cd = 0.748. These results are in qualitative agreement with kinematic
features of the flea beetle jumps reported in [60,61]. Figure 9d shows the trajectories of the same flea beetle
when it jumps against the wind with velocity |vw| = 2 m/s. For ϕ0 = 30◦ and 45◦, the downward reversal of
the direction of motion takes place, while for ϕ0 = 60◦ the reversal of the direction of motion is upward. The
terminal velocity in this case is vterm = 3.135 m/s.
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(a) (b)

(c) (d)

Fig. 9 a Trajectories of a respiratory droplet of radius R = 100μm ejected in stagnant air with initial velocity v0 = 10 m/s at
three different values of the angle ϕ0. b Trajectories of the same respiratory droplet ejected with initial velocity v0 = 10 m/s
against the wind |vw| = 1 m/s. c Trajectories of a flea beetle, assumed to be of spherical shape with radius R = 0.8 mm and
mass density 0.25 g/cm3, corresponding to three values of the jump angle ϕ0 and the same initial velocity of 3 m/s. Only y ≥ 0
potions of the trajectories are shown. d Trajectories of the flea beetle when it jumps against the wind |vw| = 2 m/s

4.1 Transition from nonquadratic to quadratic drag

In all cases considered in Fig. 9, the Reynolds number throughout the motion is in the range 1 < Re < 1000, in
which the same expression applies for the drag coefficient cd = 24Re−1 +3.085Re−0.28, as specified by (4.2).
It is not difficult to construct an example of the projectile motion in which the Reynolds number is in the range
1 < Re < 103 (nonquadratic drag range) during one phase of motion, and in the range 103 < Re < 3 × 105

(quadratic drag range) during another phase of motion. For example, Fig. 11a shows the variations of the
Reynolds number and the drag coefficient with time in the case of a spherical projectile of radius 2 mm and
mass density 0.25 g/cm3, launched in stagnant air with initial velocity 3 m/s at 45◦. During the first 0.7 s, the
Reynolds number is in the range 449 < Re < 1000, where the nonlinear expression for cd applies, but for
t > 0.7 s the Reynolds number is in the range 1000 < Re < 1269 (within the quadratic drag range), where
the drag coefficient is constant and equal to cd = 0.47. The corresponding variations of the normalized drag
force Fd/F̄d and the velocity v/v0 are shown in Fig. 11b. The normalizing force is the initial value of the drag
force F0

d = (1/2)ρairAc0dv
2
0, where c

0
d = 0.506. The terminal velocity is 4.816 m/s, which is obtained from

vT = 2.382[(ρ/ρair)gR]1/2.
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(a) (b)

Fig. 10 a Variations of the Reynolds number (Re) and the drag coefficient (cd) with time for a respiratory droplet from Fig. 9a,
in case ϕ0 = 45◦. The Reynolds number during the motion is in the range 5 < Re < 135. b Variations of the Reynolds number
and the drag coefficient with time for a flea beetle from Fig. 9c, in case ϕ0 = 45◦. The Reynolds number during the motion is in
the range 120 < Re < 320

(a) (b)

Fig. 11 a Variations of the Reynolds number and the drag coefficient with time in the case of a spherical projectile of radius 2
mm and mass density 0.25 g/cm3, launched in stagnant air with initial velocity 3 m/s at 45◦. During the first 0.7 s, the Reynolds
number is in the range 449 < Re < 1000, where the nonlinear expression for cd applies, but for t > 0.7 s the Reynolds number
is within the quadratic drag range 1000 < Re < 1269, where the drag coefficient is constant and equal to cd = 0.47. b The
corresponding variations of the normalized drag force Fd and the normalized velocity v

4.2 Transition from quadratic drag with cd = 0.47 to quadratic drag with cd = 0.1

To further illustrate the pronounced effect of the value of the drag coefficient used in the expression for the
drag force on the shape of the trajectory and the flight velocity of the projectile, consider a spherical projectile
of mass m = 45 g and radius R = 45 mm. If the projectile is launched with initial velocity v0 = 40 m/s at
30◦, the Reynolds number during its motion is in the range 6.64 × 104 < Re < 2.37 × 105 (in the absence
of wind), and the quadratic drag applies throughout the motion, with the drag coefficient cd = 0.47. However,
if the projectile is launched with initial velocity v0 = 80 m/s, the Reynolds number during the first 0.76 s is
greater than 3× 105, and the quadratic drag model with the drag coefficient cd = 0.1 applies during that stage
of motion, as specified by (4.2). Thereafter, the Reynolds number falls below the threshold value of 3 × 105,
and the projectile enters the quadratic drag regime with the drag coefficient cd = 0.47 (Fig. 12a). Figure 12b
shows the corresponding variations of the normalized drag force and the normalized velocity during the first
6 s. The normalizing force is F̄d = (1/2)ρair(πR2)v20. Details of the kinematic and the kinetic analysis of the
transition between different types of drag have not been previously elaborated upon, and it may be of interest
to pursue this analysis further by using different correlations for the drag coefficient [16,17,59].
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(a) (b)

Fig. 12 Projectile motion of a spherical ball of mass m = 45 g and radius R = 45 mm launched in stagnant air with initial
velocity v0 = 80 m/s at ϕ0 = 45◦. a The variations of the Reynolds number and the drag coefficient with time. During the first
0.76 s, Re > 3 × 105 and the drag coefficient is cd = 0.1. Thereafter, the Reynolds number falls below the threshold value of
3 × 105, and the ball enters the quadratic drag regime with the drag coefficient cd = 0.47. b Corresponding normalized drag
force and the normalized velocity of the ball versus the time

4.3 Reaching a projectile target

To illustrate the application of the presented analysis, suppose that the objective is to determine the initial
velocity v0 required to reach a target located at the point (x, y) = (50, 0) m, when the projectile motion takes
place in still air, and when it takes place in the presence of horizontal wind with velocity vw = ±10 m/s.
The launch angle is ϕ0 = 30◦. Let the projectile be a spherical ball of mass m = 45 g and radius R = 45
mm. Figure 13 depicts the results: shown in part (a) are the trajectories, and in part (b) the velocities of the
ball. In still air, the required initial velocity is v0 = 54 m/s; in the presence of forward wind vw = 10 m/s it
is v0 = 33.2 m/s, while in the presence of backward wind vw = −10 m/s, it is v0 = 72.7 m/s. The vertical
asymptote of the trajectory in still air is xm = 59.32m, and thus the solid curve for the velocity v in still air ends
in Fig. 13b at that point. In the case of backward wind, the ball reaches the maximum horizontal distance of 57
m, before reversing the horizontal direction of its motion and reaching a target point with coordinates (50, 0)
m. The terminal velocity in stagnant air is 15.69 m/s, while in the presence of both forward and backward

(a) (b)

Fig. 13 a Trajectories of a spherical ball of mass m = 45 g and radius R = 45 mm launched at ϕ0 = 30◦ with the initial velocity
adjusted to reach the target point (x, y) = (50, 0) m. The projectile motion is taking place in either stagnant air (vw = 0 m/s), or
in the presence of forward or backward wind (vw = ±10 m/s). The portions of the trajectories for y ≥ −40 m are shown only. b
Corresponding velocity variations
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wind (vw = ±10 m/s), the terminal velocity is (15.692 + 102)1/2 = 18.61 m/s. The drag coefficient in the
case of forward wind is cd = 0.1 throughout the projectile motion, while in the case of backward wind and
in the case of stagnant air, the drag coefficient is initially equal to 0.1, and when the Reynolds number falls
below 3 × 105 it jumps to 0.47. These results can be accordingly modified by the incorporation of the effect
of the roughness of the ball and the Magnus effect due to the imparted spin to the ball and the corresponding
aerodynamic force orthogonal to the velocity vector, which is of particular interest for the motion of sports
balls [24–27,62,63], but which is beyond the scope of the present review. One can also perform an optimization
analysis to determine the launch angle which minimizes the launch velocity required to reach a given target. In
the absence of wind and with a quadratic drag model, the results of such analysis have been reported in [64].

5 Conclusion

The analysis ofwind-influencedprojectilemotion of a spherical projectile in the presence of linear andnonlinear
drag force has been reviewed. The models of ambient drag are first considered in which the drag force is either
quadratic or linear in velocity. In the presence of quadratic drag, the governing differential equations are coupled
and require numerical solution. The results in Sect. 2 are conveniently expressed for any value of the damping
parameter c, and the specified initial velocity v0 and the launch angle ϕ0, by normalizing the spatial coordinates
x and y with the length scale k−1, where k = c/m andm is the mass of the projectile. For projectiles launched
at low angle, there is an approximate but sufficiently accurate closed-form solution. The relationship between
the velocity of the projectile v and an appropriately introduced angle parameter φ is derived in closed-form,
with or without the presence of uniform wind. The effects of wind on the trajectory and flight velocity are
evaluated and discussed. The differential equations of motion in the case of linear drag, considered in Sect. 3,
are decoupled and allow for an entirely closed-form solution for the velocity components and the trajectory
profile. The damping coefficient in this case is denoted by cL,while the parameter kL = cL/m has the dimension
time−1. The values of kL are commonly so large that the trajectories of the projectiles in the linear damping
range (Re< 1) dominantly consist of two nearly straight lines, on the time scale of a fraction of 1 s or longer.
This is illustrated by the motion of a small respiratory droplet and a tungsten powder particle. Forward-to-
backward transition of motion in the case of a projectile launched against horizontal wind is analyzed. The
projectile motion in the range of the Reynolds number when neither linear nor quadratic drag model applies is
considered in Sect. 4. If projectile motion consists of phases with different types of drag, the extents of which
are not known in advance, the general expression for the drag force, which encompasses the entire range of
the Reynolds number, must be used throughout the motion, in conjunction with the numerical solution of the
governing nonlinear differential equations of motion. Transition from nonquadratic to quadratic drag is then
discussed. Illustrative examples considered in this review include projectile motions of golf balls, respiratory
droplets, powder particles, and flea beetles. In addition to being of research and technological interest, the
presented analysis and results are appealing from the pedagogical point of view and for the incorporation in
undergraduate research projects, which can be beneficial to the scholarly and professional development of
engineering students [65,66].
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