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Abstract The circumferential shear stress along the boundary of a traction-free circular hole in an infinite
isotropic solid under antiplane shear is twice the circumferential shear stress along the corresponding circle in
an infinite solid without a hole, under the same loading conditions. This result, originally derived by Lin et al.
(Yielding, damage, and failure of anisotropic solids. EGF Publication, Mechanical Engineering Publications,
London, 1990) by invoking the extended circle theorem of Milne-Thomson, is rederived in this paper using
the Fourier series analysis, in the spirit of the original Kienzler and Zhuping (J Appl Mech 54:110–114,
1987) derivation of the plane strain result for the hoop stress around the hole. The formula is also deduced
by the complex potential method, without explicitly invoking the extended circle theorem. The ratio of the
circumferential stresses along the boundary of a noncircular hole and the congruent curve in a solid without a
hole depends on the loading. For an elliptical hole in an infinite solid under remote loading σ 0

xz , this ratio is
constant and equal to 1 + b/a; under σ 0

yz it is equal to 1 + a/b, where a and b are the semi-axes of the ellipse.
These constant values coincide with the values of the stress concentration factor in the two cases. If σ 0

xz and
σ 0

yz are both applied, the stress ratio varies along the boundary of the ellipse; a closed form expression for
this variation is determined. The portions of the elliptical boundary along which the strain energy density is
increased or decreased by the creation of the hole are determined for different types of loading and different
aspect ratios of the ellipse. An analytical expression for the stress concentration factor is then obtained for any
orientation of the ellipse relative to the applied load.

Keywords Antiplane strain · Circle theorem · Complex potential · Conformal mapping · Elliptical hole ·
Fourier series · Strain energy · Stress concentration factor

1 Introduction

There is a remarkable formula for hoop stress along the boundary of a circular hole in an infinite medium
under plane stress or plane strain conditions, derived by Kienzler and Zhuping [2], which reads
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σθ (a, θ) = 2
[
σ 0
θ (a, θ)− σ 0

r (a, θ)
] + 1

2

[
σ 0
θ (0, θ)+ σ 0

r (0, θ)
]
. (1)

The superscript ‘0’ denotes the fields in an infinite medium without a hole, and (r, θ) are the polar coordinates
with the origin at the center of the hole of radius r = a. The establishment of this formula stimulated research
that led to the formulation of the so-called heterogenization procedure [3,4], according to which the solution
of the problems of two or more inhomogeneities under remote or other type of loadings can be expressed
in terms of the solution to the corresponding homogeneous problems. Less known is the formula for the
circumferential shear stress along the boundary of a circular hole in the case of antiplane strain, according to
which the circumferential shear stress is equal twice the circumferential shear stress along the corresponding
circle in an infinite medium without a hole, under the same loading conditions. This formula was first noted by
Lin et al. [1], who deduced it from the expressions for the stress components outside a circular inhomogeneity
in an infinite medium,

σzr (r, θ) = σ 0
zr (r, θ)+ λ

a2

r2 σ
0
zr

(
a2/r, θ

)
, σzθ (r, θ) = σ 0

zθ (r, θ)− λ
a2

r2 σ
0
zθ

(
a2/r, θ

)
. (2)

The superposed ‘0’ designates the stress field in a homogeneous infinite medium without the inhomogeneity,
λ = (μI −μM)/(μI +μM), and (μI, μM) are the shear moduli of the inhomogeneity and matrix, respectively.
The stress field (2) follows from a version of the Milne-Thomson circle theorem for irrotational two-dimensional
flow of an incompressible inviscid fluid [5,6]. According to this theorem, the complex potentials for the stress
field inside and outside the inhomogeneity are ωI(z) = (1 +λ)ω0(z) and ωM(z) = ω0(z)+λω0(a2/z), where
ω0(z) is the complex potential of the homogeneous problem without the inhomogeneity, for the same loading
outside the circle r = a. The complex state of stress is σzy + iσzx = ω′(z), where the prime designates the
derivative with respect to the complex variable z. The theorem was first applied to solid mechanics by Smith
[7] to study the interaction between a screw dislocation and a circular inhomogeneity, and, independently,
in a sequence of papers on inhomogeneities by Honein et al. [8–10], who referred to it as the extended
circle theorem. If the inhomogeneity is a void (λ = −1), from the second equation of (2) follows that the
circumferential shear stress along the boundary of the void is

σzθ (a, θ) = 2σ 0
zθ (a, θ), (3)

which is the circumferential shear stress formula of Lin et al. [1].
While the plane strain formula (1) has been applied in [11] to evaluate the interaction between a circular

hole and an edge dislocation, and has been discussed by others, e.g., [3,4,12–16], the antiplane strain formula
(3) has not been previously used or cited in the literature, except in the author’s own recent work [17], where it
was used to evaluate the configurational forces in the problem of a circular inclusion subjected to an eigenstrain
near a traction-free circular void. It seems, therefore, desirable to shed additional light to this formula, which
is accomplished here using the Fourier series analysis, similarly to the Kienzler and Zhuping [2] derivation of
the plane strain formula. It is also derived using the complex variables approach, without explicitly invoking
the extended circle theorem. In contrast to circular holes, the ratio of the circumferential shear stress along the
boundary of a noncircular hole and the congruent curve in an unweakened solid depends on the loading. For
an elliptical hole in a solid under remote loading σ 0

xz , this ratio is constant and equal to 1 + b/a; under σ 0
yz it

is equal to 1 + a/b, where a and b are the semi-axes of the ellipse. These constant values coincide with the
values of the stress concentration factor in the two cases. If σ 0

xz and σ 0
yz are applied, the ratio varies along the

boundary of the ellipse. The expression for this variation is derived. The change in the strain energy density
(its increase or decrease) along the boundary of the ellipse, due to creation of the elliptical hole, is determined
for different types of loading and different aspect ratios of the ellipse. A closed form expression for the stress
concentration factor is then obtained for an arbitrary orientation of the ellipse relative to the applied load.

2 Circumferential shear stress along the boundary of the hole

Consider a traction-free circular cylindrical hole of radius a in an infinitely extended isotropic elastic solid
(Fig. 1). Suppose that at point C , at the distance d from the center O of the hole, there exists a source of stress,
such as a screw dislocation or a line force along direction parallel to the z-axis. The source of stress can also
be a circular inclusion of radius b ≤ (d − a), centered at point C and characterized by uniform antiplane
eigenshear. Alternatively, the source of stress can be a remote antiplane shear loading. The nonvanishing stress



Circumferential shear stress around circular and elliptical holes 225

(a) (b)

Fig. 1 a The source of stress at point C at a distance d from the center of the traction-free hole of radius a. The polar coordinates
from the origin O are (r, θ). The cartesian coordinates centered at O are (x, y), while those centered at C are (ξ, η). b The source
of stress at point C in an infinite solid without the hole. The dashed-line circle is of radius a, coincident with the boundary of the
hole from part (a). The distance from C to an arbitrary point on the circle is ρa

(a) (b)

Fig. 2 a The auxiliary problem in which the hole in an infinite medium is loaded over its boundary r = a with self-equilibrating
traction σ̂zr (a, θ) = −σ 0

zr (a, θ), where σ 0
zr (a, θ) is the radial shear stress component along the circle r = a in an infinite medium

without a hole. b Solid circular cylinder loaded over its boundary r = a by the shear stress σ 0
zr (a, θ)

components in antiplane strain problems are σzr and σzθ , where (r, θ) are the indicated polar coordinates. Along
the traction-free boundary of the circular hole, σr z = 0 (the other two traction components, σrr and σrθ , being
also equal to zero). The shear stresses are related to shear strains εzr = (1/2)∂w/∂r and εzθ = (1/2r)∂w/∂θ
by Hooke’s law as σzr = 2μεzr and σzθ = 2μεzθ , where w = w(r, θ) is the nonvanishing out-of-plane
displacement component. Thus, σzr = ∂Φ/∂r and σzθ = r−1∂Φ/∂θ , with Φ = Φ(r, θ) = μw(r, θ) as the
stress function. The substitution into equilibrium equation gives the governing Laplace’s equation for Φ,

∂

∂r
(rσzr )+ ∂σzθ

∂θ
= 0 ⇒ ∂2Φ

∂r2 + 1

r

∂Φ

∂r
+ 1

r2

∂2Φ

∂θ2 = 0. (4)

The stress field around a hole due to the source of stress at C can be determined by superposition. First,
the stress distribution σ 0

zr (r, θ) and σ 0
zθ (r, θ) is found in an infinite medium without a hole due to the same

source of stress (Fig. 1b). Second, the auxiliary problem is solved for the hole in an infinite medium, loaded
on its surface r = a by self-equilibrating (image) traction σ̂zr (a, θ) = −σ 0

zr (a, θ), as sketched in Fig. 2a. The
stress distribution of the original problem from Fig. 1a is the sum of the stress distributions for problems from
Figs. 1b and 2a, i.e.,

σzr (r, θ) = σ 0
zr (r, θ)+ σ̂zr (r, θ), σzθ (r, θ) = σ 0

zθ (r, θ)+ σ̂zθ (r, θ). (5)

2.1 Fourier series for σ 0
zr (a, θ) and σ 0

zθ (a, θ)

The Fourier series for the stress component σ 0
zr (a, θ) around the circle r = a is

σ 0
zr (a, θ) =

∞∑

n=1

(
A0

n cos nθ + B0
n sin nθ

)
, σ 0

zθ (a, θ) =
∞∑

n=1

(
B0

n cos nθ − A0
n sin nθ

)
, (6)
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where A0
n and B0

n are the corresponding Fourier coefficients. In proof of (6), consider a circular cylinder of
radius a loaded on its boundary by the shear stress σ 0

zr (a, θ), as shown in Fig. 2b. The stress state in this
cylinder is the same as the state of stress inside the circle r = a of the infinite medium problem from Fig. 1b.
The stress function for the cylinder problem is

Φc(r, θ) =
∞∑

n=1

rn(An cos nθ + Bn sin nθ), (7)

such that

σ 0
zr (r, θ) = ∂Φc

∂r
=

∞∑

n=1

nrn−1(An cos nθ + Bn sin nθ),

σ 0
zθ (r, θ) = 1

r

∂Φc

∂θ
=

∞∑

n=1

nrn−1(Bn cos nθ − An sin nθ).

(8)

Along the boundary of the cylinder, these stresses become

σ 0
zr (a, θ) =

∞∑

n=1

nan−1(An cos nθ + Bn sin nθ),

σ 0
zθ (r, θ) =

∞∑

n=1

nan−1(Bn cos nθ − An sin nθ).

(9)

The identifications nan−1 An = A0
n and nan−1 Bn = B0

n prove (6).

2.2 Auxiliary problem

The stress field due to self-equilibrating traction σ̂zr (a, θ) = −σ 0
zr (a, θ) must vanish as r → ∞. The appro-

priate stress function for the auxiliary problem from Fig. 2a is thus

Φ̂(r, θ) =
∞∑

n=1

r−n
(

Ân cos nθ + B̂n sin nθ
)
. (10)

The corresponding stresses are

σ̂zr (r, θ) = ∂Φ̂

∂r
= −

∞∑

n=1

nr−n−1( Ân cos nθ + B̂n sin nθ),

σ̂zθ (r, θ) = 1

r

∂Φ̂

∂θ
=

∞∑

n=1

nr−n−1(B̂n cos nθ − Ân sin nθ).

(11)

The boundary condition σ̂zr (a, θ) = −σ 0
zr (a, θ) specifies the constants Ân and B̂n , such that na−n−1 Ân = A0

n

and na−n−1 B̂n = B0
n . The substitution into (11), therefore, gives

σ̂zr (r, θ) = −
∞∑

n=1

(a

r

)n+1
(A0

n cos nθ + B0
n sin nθ),

σ̂zθ (r, θ) =
∞∑

n=1

(a

r

)n+1 (
B0

n cos nθ − A0
n sin nθ

)
.

(12)

The circumferential shear stress along the boundary of the hole is consequently

σ̂zθ (a, θ) =
∞∑

n=1

(
B0

n cos nθ − A0
n sin nθ

)
. (13)
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The comparison of (13) with the second part of (6) thus establishes σ̂zθ (a, θ) = σ 0
zθ (a, θ). The circumferential

shear stress along the boundary of the hole of the original problem is σzθ (a, θ) = σ 0
zθ (a, θ) + σ̂zθ (a, θ) =

2σ 0
zθ (a, θ), which is the Lin et al. [1] formula.
The same type of analysis can be performed in the case of an infinite medium with a hole under remote

antiplane shear loading (σ 0
zx , σ

0
zy). The circumferential shear stress along the boundary of the hole is then

σzθ (a, θ) = 2σ 0
zθ (a, θ) = 2

(
σ 0

zy cos θ − σ 0
zx sin θ

)
. (14)

3 Derivation by the complex potential approach

The most general function analytic inside the cylinder due to self-equilibrating traction σ 0
zr (t) over its boundary

z = t = a exp(iθ) is a complex polynomial

ω(z) =
∞∑

n=1

(Bn + i An)z
n, z = r exp(iθ), (15)

i.e., in an expanded form,

ω(z) =
∞∑

n=1

rn [(Bn cos nθ − An sin nθ)+ i (An cos nθ + Bn sin nθ)] . (16)

The stresses in the cylinder are deduced from

σ 0 = σ 0
zy + iσ 0

zx = ω′(z) =
∞∑

n=1

n(Bn + i An)z
n−1, (17)

with the polar coordinates representation

τ 0 = σ 0
zθ + iσ 0

zr = σ 0 exp(iθ) =
∞∑

n=1

n(Bn + i An)r
n−1 exp(inθ). (18)

Along the boundary of the cylinder, this gives

τ 0(t) =
∞∑

n=1

nan−1 [(Bn cos nθ − An sin nθ)+ i (An cos nθ + Bn sin nθ)] . (19)

The most general function analytic in an infinite medium outside the hole, due to self-equilibrating traction
σ̂zr (t) = −σ 0

zr (t) applied over the boundary of the hole, is

ω̂(z) = −ω
(

a2

z

)
= −

∞∑

n=1

(Bn − i An)

(
a2

z

)n

(20)

yielding

ω̂(z) =
∞∑

n=1

(
a2

r

)n

[(An sin nθ − Bn cos nθ)+ i(An cos nθ + Bn sin nθ)] . (21)

The stresses are

σ̂ = σ̂zy + i σ̂zx = ω̂′(z) =
∞∑

n=1

n(Bn − i An)
a2n

zn+1 , (22)

with the polar coordinates representation

τ̂ = σ̂zθ + i σ̂zr = σ̂ exp(iθ) =
∞∑

n=1

n(Bn − i An)
a2n

rn+1 exp(−inθ). (23)
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Along the boundary of hole, (23) gives

τ̂ (t) =
∞∑

n=1

nan−1[(Bn cos nθ − An sin nθ)− i(An cos nθ + Bn sin nθ)]. (24)

By comparing (19) and (24), it follows that the stress state τ̂ (t) is the complex conjugate to the stress state
τ 0(t), i.e., τ̂ (t) = τ 0(t). Consequently,

σ̂zr (a, θ) = −σ 0
zr (a, θ), σ̂zθ (a, θ) = σ 0

zθ (a, θ). (25)

Since the total stress of the original problem is the sum of the infinite-medium stress and the stress state from
the auxiliary problem, we again establish the circumferential shear stress formula σzθ (a, θ) = 2σ 0

zθ (a, θ).

4 Circumferential shear stress around elliptical hole

For noncircular holes, the ratio of the circumferential shear stresses along the boundary of the hole and along
the congruent curve in a solid without a hole is dependent on the type of loading and varies along the boundary
of the hole. This is demonstrated by considering an elliptical hole under remote shear loading σ 0

xz and σ 0
yz ,

shown in Fig. 3a. The corresponding stress field can be conveniently determined from the stress field around a
circular hole by applying conformal mapping, e.g., [18]. The complex potential for the circular hole problem
from Fig. 3b is

Ω(ζ) = σ 0
yz

(
ζ − R2

ζ

)
+ iσ 0

xz

(
ζ + R2

ζ

)
, (26)

where ζ = ρeiϕ . The conformal mapping of the region outside the circle of radius R = (a + b)/2 in the
complex ζ -plane to the region outside the ellipse with the semi-axes a and b in the complex z-plane is given
in [19–21] as

z = �(ζ ) = ζ + a2 − b2

4ζ
, (27)

where z = reiθ . The stress components follow from

σyz + iσxz = dω

dz
= dΩ/dζ

d�/dζ
, (28)

which gives

σyz + iσxz =
(σ 0

yz + iσ 0
xz)+ (σ 0

yz − iσ 0
xz)
(a + b)2

4ζ 2

1 − a2 − b2

4ζ 2

. (29)

Along the boundary of the hole the relation ζ = [(a + b)/2] exp(iϕ) is valid. Inserting it into (29) yields
the shear stress components along the boundary of the ellipse as

σxz = −(1 + k) sin ϕ

sin2 ϕ + k2 cos2 ϕ

(
σ 0

yz cosϕ − σ 0
xz sin ϕ

)
,

σyz = k(1 + k) cosϕ

sin2 ϕ + k2 cos2 ϕ

(
σ 0

yz cosϕ − σ 0
xz sin ϕ

)
.

(30)

The aspect ratio of the ellipse is k = b/a. It can be readily verified that the traction-free condition along the
boundary of the hole is satisfied, i.e., σnz = σxz sin β + σyz cosβ = 0, where n is the direction orthogonal to
the boundary of the elliptical hole at an arbitrary point of that boundary (Fig. 4).

The circumferential shear stress along the boundary of an elliptical hole and along the congruent ellipse
in a solid without a hole are

τ = σyz sin β − σxz cosβ, τ 0 = σ 0
yz sin β − σ 0

xz cosβ, (31)
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(a) (b)

Fig. 3 a An infinite solid with an elliptical cylindrical hole with the semi-axes a and b. The applied remote antiplane shear stress
components are σ 0

xz and σ 0
yz . b An infinite solid with a circular cylindrical hole of radius R = (a + b)/2. The remote antiplane

shear stresses are the same as in part (a)

Fig. 4 The circumferential shear stress τ = σyz sin β − σxz cosβ at an arbitrary point of the elliptical hole (x = a cosϕ, y =
b sin ϕ) in an infinite solid under remote antiplane shear stresses σ 0

xz and σ 0
yz is obtained by projecting the shear stress components

σxz and σyz in the direction of the tangent t to the ellipse. The geometric relations hold tan θ = k tan ϕ, tan β = k cot ϕ, where
k = b/a. The elliptical hole is traction-free, so that σnz = σxz sin β + σyz cosβ = 0, where n is the direction orthogonal to the
boundary of the hole

with

sin β = k cosϕ
(
sin2 ϕ + k2 cos2 ϕ

)1/2 , cosβ = sin ϕ
(
sin2 ϕ + k2 cos2 ϕ

)1/2 (32)

from Fig. 4. The substitution of (32) into (31) gives

τ = kσyz cosϕ − σxz sin ϕ
(
sin2 ϕ + k2 cos2 ϕ

)1/2 , τ 0 = kσ 0
yz cosϕ − σ 0

xz sin ϕ
(
sin2 ϕ + k2 cos2 ϕ

)1/2 . (33)
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(a) (b)

Fig. 5 The variation of the circumferential stresses τ and τ 0 under remote loading σ 0
xz = σ 0

yz = σ 0 (scaled by σ 0) along the
ellipse for: a three selected values of the ellipse aspect ratio k = b/a, and b their reciprocals

When (30) is substituted into (33), the circumferential shear stress along the boundary of the elliptical hole
becomes

τ = (1 + k)
σ 0

yz cosϕ − σ 0
xz sin ϕ

(
sin2 ϕ + k2 cos2 ϕ

)1/2 . (34)

This is plotted in Fig. 5. Thus, the difference of the two circumferential stresses is

τ − τ 0 = σ 0
yz cosϕ − kσ 0

xz sin ϕ

(sin2 ϕ + k2 cos2 ϕ)1/2
. (35)

For k �= 1, the ratio τ/τ 0 is dependent on ϕ and, thus, varies along the circumference of the ellipse. However, in
the case of remote shear loading σ 0

yz �= 0, σ 0
xz = 0, the ratio τ/τ 0 = 1+k−1 is constant along the boundary of

the ellipse. It is also constant in the case of remote shear loading σ 0
xz �= 0, σ 0

yz = 0, where τ/τ 0 = 1+k. In both
cases, the constant value is equal to the stress concentration factor of the solid weakened by the corresponding
elliptical hole. If σ 0

yz = ±σ 0
xz , one has

τ − τ 0

σ 0
yz

= cos(ϕ ± ψ)

(sin2 ϕ + k2 cos2 ϕ)1/2
, (36)

where the angle ψ = arctan(b/a).
The extreme value of the circumferential shear stress is obtained from the condition

dτ

dϕ
= 0 ⇒ tan ϕ = −k2 σ

0
xz

σ 0
yz
, tan θ = k tan ϕ. (37)

The maximum magnitude of τ is

|τ |max =
(

1 + 1

k

)(
σ 0 2

yz + k2σ 0 2
xz

)1/2
. (38)

Along the congruent ellipse in a solid without a hole, the corresponding results are

dτ 0

dϕ
= 0 ⇒ tan ϕ0 = −k

σ 0
xz

σ 0
yz
, tan θ0 = k tan ϕ0, (39)

and

|τ 0|max =
(
σ 0 2

yz + σ 0 2
xz

)1/2
. (40)
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(a) (b)

Fig. 6 The variation of the elastic strain energy density ratio U/U 0 under remote loading σ 0
yz �= 0, σ 0

xz = 0 along the ellipse
for: a four selected values of the ellipse aspect ratio k = b/a, and b their reciprocals

Thus, the angles at which the maximum circumferential shear stresses in two cases occur are related by
tan ϕ = k tan ϕ0, and

|τ |max

|τ 0|max
=

(
1 + 1

k

) (
σ 0 2

yz + k2σ 0 2
xz

σ 0 2
yz + σ 0 2

xz

)1/2

. (41)

In the case of remote shear loading σ 0
yz �= 0, σ 0

xz = 0, the maximum shear stresses are |τ |max =
(1 + k−1)σ 0

yz and |τ 0|max = σ 0
yz (both at x = ±a), reproducing the well-known stress concentration fac-

tor of 1 + k−1 [18]. In the case σ 0
xz �= 0, σ 0

yz = 0, the stress concentration factor is 1 + k. In the cases
σ 0

yz = ±σ 0
xz , we have

|τ |max

|τ 0|max
=

(
1 + 1

k

) (
1 + k2

2

)1/2

,
|τ |max

|σ 0
yz |

=
(

1 + 1

k

)
(1 + k2)1/2, (42)

with the maxima occurring at tan ϕ = ∓k2 for |τ |max, and tan ϕ0 = ∓k for |τ 0|max.

4.1 Elastic strain energy around an elliptical hole

The elastic strain energy density along the boundary of the elliptical hole is U = τ 2/(2μ), while the elastic
strain energy along the congruent ellipse in a solid without a hole is U 0 = (σ 0 2

xz + σ 0 2
yz )/(2μ). Thus, in view

of (34), their ratio is

U

U 0 =
(1 + k)2

(
σ 0

xz sin ϕ − σ 0
yz cosϕ

)2

(
σ 0 2

xz + σ 0 2
yz

) (
sin2 ϕ + k2 cos2 ϕ

) . (43)

For example, if σ 0
xz = 0, the elastic strain energy ratio becomes

U

U 0 = τ 2

σ 0 2
zy

= (1 + k)2
cos2 ϕ

sin2 ϕ + k2 cos2 ϕ
. (44)

The variation of U/U 0 around the boundary of the ellipse, for various values of k, is shown in Fig. 6. The
inequalities |τ |/σ 0

yz ≤ 1 and U/U 0 ≤ 1 hold for sec2 ϕ ≥ 2(1 + k), i.e., sec2 θ ≥ [1 + k2(1 + 2k)]. The same
curves correspond to σ 0

xz �= 0, σ 0
yz = 0, provided that in both parts of the figure, (a) and (b), the values of k

are replaced by their reciprocal values 1/k.
Figure 7 shows the variation of U/U 0 around the boundary of the ellipse in the cases when the loading is

σ 0
xz = σ 0

yz , and σ 0
xz = −σ 0

yz . The curves correspond to four selected values of the aspect ratio k. The curves
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(a) (b)

Fig. 7 The variation of the elastic strain energy density ratio U/U 0 under remote loading: a σ 0
xz = σ 0

yz , and b σ 0
xz = −σ 0

yz , for
four selected values of k ≤ 1

for the reciprocals of the selected values of k are obtained by mirror image of the shown curves across the
vertical line θ = 45◦. The loading case σ 0

xz = −σ 0
yz can be generated from the loading case σ 0

xz = σ 0
yz by the

counterclockwise rotation of the latter configuration with an angle of 90◦.
For a circular hole, (43) simplifies to

U

U 0 =
4

(
σ 0

xz sin ϕ − σ 0
yz cosϕ

)2

σ 0 2
xz + σ 0 2

yz
. (45)

The elastic strain energy density around a circular hole is not increased by the creation of a hole (U ≤ U 0), if

4σ 0
xzσ

0
yz − √

3
(
σ 0 2

xz + σ 0 2
yz

)
≤

(
3σ 0 2

xz − σ 0 2
yz

)
tan ϕ ≤ 4σ 0

xzσ
0
yz + √

3
(
σ 0 2

xz + σ 0 2
yz

)
. (46)

This gives | tan ϕ| ≤ √
3 for σ 0

xz = 0, | tan ϕ| ≤ √
3/3 for σ 0

yz = 0, and ±2 − √
3 ≤ tan ϕ ≤ ±2 + √

3
for σ 0

xz = ±σ 0
yz . In the latter case, within the first and fourth quadrant, 15◦ ≤ ϕ ≤ 75◦ for σ 0

xz = σ 0
yz , and

−75◦ ≤ ϕ ≤ −15◦ for σ 0
xz = −σ 0

yz .

5 Circumferential shear stress around an inclined elliptical hole

The results from the previous section can be applied to determine the circumferential shear stress along the
boundary of an inclined elliptical hole under antiplane shear loading σ 0 over remote horizontal planes as
shown in Fig. 8. By aligning the x and y axes with the main axes of the ellipse, one has σxz = σ 0 sin α and
σyz = σ 0 cosα, and from (33) and (34) there follows

τ = (1 + k) cos(α + ϕ)
(
sin2 ϕ + k2 cos2 ϕ

)1/2 σ
0, τ 0 = k cosα cosϕ − sin α sin ϕ

(
sin2 ϕ + k2 cos2 ϕ

)1/2 σ 0. (47)

The maximum circumferential shear stresses are |τ 0|max = σ 0 at tan ϕ0 = −k tan α, and

|τ |max =
(

1 + 1

k

)
(
cos2 α + k2 sin2 α

)1/2
σ 0, (48)

at the angle defined by tan ϕ = −k2 tan α. Consequently, the stress concentration factor (SCF) is

SCF = |τ |max

σ 0 =
(

1 + 1

k

) (
cos2 α + k2 sin2 α

)1/2
, (49)
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Fig. 8 An elliptical hole with the semi-axes a and b in an infinite solid under remote shear stress σ 0. The angle of inclination of
the ellipse main axis x relative to the horizontal direction is α

(a) (b)

Fig. 9 Variation of the stress concentration factor SCF with the inclination angle α for: a four selected values of the ellipse aspect
ratio k = b/a, and b for two selected values of k and their reciprocals

which is plotted for the selected values of the aspect ratio k versus the angle α in Fig. 9a. In particular, for
α = 0◦, 45◦, 90◦, the stress concentration factor is

SCF(0◦) = 1 + 1

k
, SCF(45◦) =

(
1 + 1

k

)(
1 + k2

2

)1/2

, SCF(90◦) = 1 + k. (50)

The plots of SCF for k = 1/2 and 2/3, and their reciprocals, are shown in Fig. 9b.
The expression for the stress concentration factor SCF under antiplane shear loading over remote vertical

planes is obtained from (49) by replacing α with 90◦ − α, or k with 1/k; both give

SCF =
(

1 + 1

k

) (
sin2 α + k2 cos2 α

)1/2
. (51)
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For each angle α, the SCF for the ellipse with the aspect ratio k, under shear loading over remote horizontal
planes, is equal to the SCF for the ellipse with the aspect ratio 1/k, under shear loading over remote vertical
planes.

6 Conclusions

The circumferential shear stress formula, deduced by Lin et al. [1] from the extended circle theorem of Milne-
Thomson, is rederived in this paper using the Fourier series analysis, analogously to the Kienzler and Zhuping
[2] derivation of the plane strain version for the hoop stress around a circular hole. The shear stress formula
is also derived using the complex potential approach, without explicitly invoking the extended circle theorem.
According to this formula, the circumferential shear stress along the boundary of a traction-free circular hole
in an infinite isotropic solid under antiplane shear loading is twice the circumferential shear stress along the
corresponding circle in an infinite solid without a hole, under the same loading conditions. For noncircular
holes, the ratio of the circumferential shear stress along the boundary of the hole and a congruent curve in an
infinite solid without a hole depends on the loading. For an elliptical hole under remote loading σ 0

xz , the stress
ratio is constant and equal to 1 + b/a; under remote σ 0

yz loading it is equal to 1 + a/b, where a and b are
the semi-axes of the ellipse. These constant values coincide with the values of the stress concentration factor
in the two cases. If σ 0

xz and σ 0
yz are both applied, the stress ratio varies along the boundary of the ellipse. A

closed form expression for this variation is determined. The change in the elastic strain energy density along
the boundary of the ellipse, produced by the creation of the hole, is determined for different types of loading
and different aspect ratios of the ellipse. The stress concentration factor is also evaluated for an arbitrary
orientation of the ellipse relative to the applied load. The analysis for other types of loading, such as internal
sources of stress, can be performed similarly. For example, the complex potential for a screw dislocation of the
Burgers vector bz , with the dislocation center at the point ζ0 = d exp(iϕ), relative to the center of a circular
hole of radius R in the ζ -plane, isΩ = (μbz/2π) ln[ζ(ζ − ζ0)/(ζ − (R2/d2)ζ0)], and the conformal mapping
(27) yields the stresses for a screw dislocation near an elliptical hole according to (28). The interaction of
screw dislocation with circular, elliptical, or arbitrarily shaped holes and elastic inhomogeneities by means of
conformal mapping has been previously studied in [22–24]. The stress concentration factors in certain types
of functionally graded plates or panels, weakened by a circular hole and subjected to antiplane shear loading,
have been recently evaluated in [25,26].
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