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Abstract The solution for a crystalline edge dislocation is presented within a framework of continuum linear
elasticity, and is compared with the Peierls–Nabarro solution based on a semi-discrete method. The atomic
disregistry and the shear stress across the glide plane are discussed. The Peach–Koehler configurational force is
introduced as the gradient of the strain energy with respect to the dislocation position between its two consecu-
tive equilibrium positions. The core radius is assumed to vary periodically between equilibrium positions of the
dislocation. The critical force is expressed in terms of the core radii or the energies of the stable and unstable
equilibrium configurations. This is used to estimate the Peierls stress for both wide and narrow dislocations.

Keywords Configurational force · Core radius · Disclination · Dislocation · Lattice friction · Peach–Koehler
force · Peierls stress

1 Introduction

A semi-discrete model of a lattice dislocation by Peierls [1] and Nabarro [2] was introduced to estimate the
minimum external stress required to surpass the lattice friction and drive a dislocation in a perfect crystal
lattice. Due to various simplifications introduced in the original model, the calculated values of the Peierls
stress were an order of magnitude or more higher than those experimentally observed or those calculated by
atomistic models. Further refinements and improvements of the model were subsequently suggested by many
researchers [3–12]. In the present paper, we derive a solution for the lattice dislocation in the framework of a
linear elasticity by superposing the solutions of two disclinations in an infinite medium. The atomic disregistry
and the shear stress across the glide plane are analyzed, with particular attention given to the relationship
between the dislocation core radius and the interplanar atomic spacing. The Peach–Koehler configurational
force is introduced as the gradient of the total strain energy with respect to dislocation position between two
consecutive equilibrium configurations. The core radius is assumed to vary periodically between equilibrium
positions of the dislocation. The critical configurational force is expressed in terms of the core radii or the
energies of the stable and unstable equilibrium configurations. This yields the Peierls stress required to surpass
the lattice friction due to atomic interactions. The results are applied to dislocations in metallic and covalently
bonded crystals, characterized by wide and narrow dislocation cores.
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Fig. 1 a An edge dislocation produced by a horizontal displacement discontinuity of constant amount b along the positive y-axis.
b A disclinated dislocation produced by a gradual displacement discontinuity from 0 to b along the height ρ

Fig. 2 a A semi-infinite dislocation wall with a continuous distribution of positive dislocations of density 1/ρ along the y-axis
from y = 0 to ∞. b A semi-infinite dislocation wall with a continuous distribution of negative dislocations of density 1/ρ along
the y-axis from y = ρ to ∞

2 Lattice dislocation in the framework of linear elasticity

The stress field of the Volterra edge dislocation (Fig. 1a) is singular due to excessive straining produced by the
constant displacement discontinuity b applied at the center of the dislocation. The shear stress along the x-axis
has a characteristic 1/x-type singularity as x → 0. To eliminate this singularity, the simplest remedy is to
assume that the displacement discontinuity b along the y-axis is achieved gradually – by a linear increase over
some distance ρ, as sketched in Fig. 1b. 1 This type of wedge dislocation can be modeled by the superposition
of two semi-infinite dislocation walls [14, 15]. These can also be viewed as two disclinations [16, 17], which
consist of infinitesimal dislocations of density 1/ρ (Fig. 2). The corresponding shear stress is

τxy(x, y) = µb

2π(1 − ν)

x

ρ

[
y

x2 + y2 − y − ρ

x2 + (y − ρ)2

]
, (1)

so that, along the x-axis,

τxy(x, 0) = µb

2π(1 − ν)

x

x2 + ρ2 . (2)

The elastic shear modulus is µ, and the Poisson ration ν. This is clearly finite everywhere, being equal to zero
at the origin, and diminishing again to zero as x → ±∞, in the manner of the Volterra dislocation. We can then
reasonably adopt (2) as the shear-stress distribution along the slip plane of a Taylor-type lattice dislocation,
produced by a gradual slip discontinuity along the x-axis. Denoting by β(x) the specific Burgers vector of a
continuous distribution of infinitesimal Volterra dislocations along the x-axis, we require

p.v.

∞∫
−∞

β(ξ)

x − ξ
dξ = bx

x2 + ρ2 ,

∞∫
−∞

β(x)dx = b , (3)

1 Lothe [13] used a linearly spread-out dislocation core for a screw dislocation to eliminate the divergence in the core energy,
while the stresses remained singular at the core boundary. In this paper we use the wedge dislocation along the vertical axis, but
only to produce a non-singular shear-stress distribution along the glide plane of an edge dislocation. This is then used in conjunc-
tion with a semi-inverse method to derive (through an integral equation approach) the corresponding displacement discontinuity
along the glide plane.
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which has the solution (derived in the Appendix)

β(x) = b

π

ρ

x2 + ρ2 . (4)

The corresponding slip discontinuity along the x-axis is

δ(x) =
x∫

0

β(ξ) dξ = b

π
tan−1 x

ρ
. (5)

The length ρ can now be interpreted as the distance from the center of the dislocation at which the slip dis-
continuity is δ(ρ) = b/4, which is half of the maximum slip δmax = b/2, infinitely far from the center of the
dislocation.

The corresponding Airy stress function is

� = − µb

4π(1 − ν)
y ln

[
x2 +

(
y + |y|

y
ρ

)2
]

, (6)

with the in-plane stresses [18]

σxx (x, y) = − µb

2π(1 − ν)

{
y ± 2ρ

x2 + (y ± ρ)2 + 2x2 y

[x2 + (y ± ρ)2]2

}
, (7)

σyy(x, y) = − µb

2π(1 − ν)

{
y

x2 + (y ± ρ)2 − 2x2 y

[x2 + (y ± ρ)2]2

}
, (8)

τxy(x, y) = µb

2π(1 − ν)

{
x

x2 + (y ± ρ)2 − 2xy(y ± ρ)

[x2 + (y ± ρ)2]2

}
, (9)

and the displacements [19, 20]

u(x, y) = b

2π

(
tan−1 y ± ρ

x
∓ π

2

|x |
x

)
+ b

4π(1 − ν)

xy

x2 + (y ± ρ)2 , (10)

v(x, y) = − b(1 − 2ν)

8π(1 − ν)
ln

x2 + (y ± ρ)2

b2 + b

4π(1 − ν)

y(y ± ρ)

x2 + (y ± ρ)2 . (11)

The upper sign corresponds to y > 0, and the lower sign to y < 0.2

By comparing (2) and (5) we establish the sinusoidal relationship between the shear stress and the slip
displacement,

τxy(x, 0) = µ

4π(1 − ν)

b

ρ
sin

2πδ(x)

b
. (12)

This reveals that δ(x) = (b/2)|x |/x implies ρ = 0, which is the case of the Volterra dislocation.

2 In the Peierls–Nabarro model y is measured from the surface of each half-space, a distance h/2 from the glide plane in the
middle of the thin atomic layer between the two half-spaces.
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Fig. 3 a A glide of an edge dislocation within the distance 0 ≤ 
 ≤ b. Three consecutive equilibrium configurations are shown.
b A periodic variation of the core radius ρ with the dislocation glide distance 
, according to Eq. (15), in the case k = 2

3 Configurational force on a lattice dislocation

The total strain energy in an infinite medium within a large radius R around the center of the dislocation is
[18, 21]

E = 1

2

R∫
−R

τxy(x, 0)δ(x) dx + ER , ER = µb2

8π(1 − ν)
, (13)

which is

E = µb2

4π(1 − ν)
ln

e1/2 R

2ρ
. (14)

If the uniform remote shear stress τ is applied, the dislocation will tend to glide along its glide plane, its
consecutive equilibrium configurations being schematically shown in Fig. 3a. The lattice friction stress due to
lattice periodicity and interatomic forces around the dislocation opposes this motion. Assuming that the radius
of the dislocation core changes with the glide distance 
, we consider a periodic variation

ρ(
) = 1

2
(ρo + ρ∗) + 1

2
(ρo − ρ∗) cos

kπ


b
, k = 2, 4, (15)

with a period 2b/k (i.e., b or b/2). The core radius at 
 = 0 is ρo and at 
 = b/k is ρ∗. In Fig. 3b it is
assumed that ρ∗ < ρo, so that 
 = 0 is a stable and 
 = b/2 an unstable equilibrium configuration of the
dislocation [since then, from Eq. (14), E∗ > Eo].

Assuming that the strain energy outside the large radius R remains unaltered by a small displacement 
 of
the center of the dislocation, the configurational force3 on the dislocation, according to the Eshelby concept
of this force [24, 25], can be defined as the energy gradient with respect to the glide distance, i.e.,

F(
) = dE

d

. (16)

Thus,

F(
) = dE

dρ

dρ

d

= − µb2

4π(1 − ν)

1

ρ

dρ

d

. (17)

Since, from Eq. (15),

dρ

d

= −kπ

2b
(ρo − ρ∗) sin

kπ


b
, (18)

the configurational force is

F(
) = kµb

8π(1 − ν)

ρo − ρ∗
ρ

sin
kπ


b
. (19)

3 A comprehensive treatment of the configurational (material) forces can be found in [22, 23].



Configurational force on a lattice dislocation and the Peierls stress

The maximum value of this force is obtained from

dF

d

= 0 ⇒ cos

kπ


b
= −ρo − ρ∗

ρo + ρ∗
, sin

kπ


b
= 2

√
ρoρ∗

ρo + ρ∗
. (20)

The corresponding radius, from (15), is given by ρ = 2ρoρ∗/(ρo + ρ∗), and substitution into (19) yields

Fmax = kµb

8(1 − ν)

ρo − ρ∗√
ρoρ∗

= kµb

8(1 − ν)

ρo − ρ∗
ρo

√
ρo

ρ∗
. (21)

This is the critical Peach–Koehler force required to drive a dislocation within its glide plane in a perfect crystal.
In terms of the energy barrier between the stable and unstable equilibrium configurations, the Peach–Koehler
force can be expressed as

Fmax = kµb

4(1 − ν)
sinh

E∗ − Eo

2D
, D = µb2

4π(1 − ν)
, (22)

i.e.,

Fmax = kπ

2

E∗ − Eo

b
+ higher order terms . (23)

Peach–Koehler forces on dislocations within the theory of couple stress and nonlocal elasticity have been
studied recently [26, 27].

4 A simple estimate of the Peierls stress

The Peierls stress, required to surpass the lattice friction stress and move a dislocation in a perfect crystal lattice,
is τPS = Fmax/b. Before precise evaluations of the energy difference between stable and unstable equilibrium
configurations are available, an estimate of the Peierls stress can be obtained from the expression (21) with
k = 2 as follows. The experimental evidence indicates that dislocations in softer metals are characterized by a
broader dislocation width (w = 2ρ) and a lower lattice friction stress. It can then be reasonably anticipated that
the relative change of the dislocation width is much more pronounced for a narrow than for a wide dislocation,
because the displacement of the center of the dislocation within the distance b/2 notably disturbs the narrow
core, whose size is only about b. For wide dislocations, the outermost atoms at the boundary of the core are
barely affected by the slight motion of the center of the dislocation, and thus the width of the dislocation is
almost unchanged in that case. Furthermore, the uniform elastic shear strain due to external stress, γ = τ/µ,
increases the atomic disregistry across the glide plane by γ h, which contributes to the decrease of the dislo-
cation width. For soft metals τ is small portion of µ and thus the contribution from γ to the change of the
dislocation width is small, but for hard covalently bonded crystals τ can be much higher, which significantly
affects the dislocation width. In view of this, an exponential function, which rapidly decreases with ρo, suggests
itself to describe the relative change of the dislocation width, and we propose that 4

ρ∗
ρo

= 1 − k1 exp

(−k2πρo

b

)
. (24)

The parameters k1 and k2 in general depend on Poisson’s ratio and the temperature. When (24) is substituted
into (21), we obtain the Peierls stress as

τPS ≈ µ

4(1 − ν)
k1 exp

(−k2πρo

b

)
. (25)

In Table 1 we list the specifications of k1 and k2 that reduce this expression to some of the well-known expres-
sions for the Peierls stress reported in the literature. The specifications in the table correspond to ρo = b/2(1−ν)
in Eq. (25). The parameter β in Foreman’s et al. formula is defined by β = 2π(α − 1)/(1 − ν), where α > 1
is a fitting parameter.

4 An alternative, albeit less appealing, expression for the relative change of the dislocation width is in terms of an inverse power
of the dislocation width, m(b/wo)

n , where m and n are appropriate parameters. It can be shown that for wide dislocations this
assumption leads to τPS ∼ µ(b/wo)

n , which is an expression of the type suggested in [28, 29] on the basis of the one-dimensional
Frenkel–Kantorova dislocation model.
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Table 1 Peierls stress expressions

Parameters: k1, k2 Formula

k1 = 8, k2 = 4 Peierls–Nabarro [1,2]
k1 = 8[1 + β + β2/6], k2 = 4α Foreman et al. [30]
k1 = [2.3 + 0.98(1 − ν)]/4, k2 = 2 Huntington [31]
k1 = 8, k2 = 2(3 − 2ν) Lee and Dundurs [32]

Knowing that the Peierls–Nabarro formula (k2 = 4), based on a double-counting scheme to calculate the
misfit energy around the glide plane, significantly underestimates the lattice friction stress for realistic values
of the core radius, although it overestimates the lattice friction stress if ρ is constrained to be h/2(1 − ν),
and knowing that a single-counting scheme halves the parameter k2, we adopt the value k2 = 2. Theoretical
elaborations in [4, 30] also support this choice of k2. Assuming that the narrowest dislocations have width
2ρ ≈ b, and expecting that the upper bound for the lattice friction stress is of the order of 0.1 µ, we specify
k1 = 4.

If ν = 1/3 and ρ0 = 2b, the Peierls stress is τPS = 5.25 × 10−6 µ, while for a narrow dislocation
with ρo = b/2 and ν = 1/5, τPS = 5.4 × 10−2 µ. The experimental values at low temperature for τPS in
closed-packed Cu is about 5 × 10−6 µ, while in covalent Si it is about 0.1 µ. If ρo = 1.7b and ν = 1/3,
τPS = 3.4 × 10−5 µ, which is close to an experimentally observed value for hexagonal close-packed (HCP)
Zn (2 × 10−5 µ for the basal plane). If ρo = b and ν = 0.3, τPS = 2.67 × 10−3 µ, which is close to an
experimentally observed value for a base-centered cubic (BCC) α-Fe (5 × 10−3 µ).

The radius ρo in the preceding analysis is a free parameter, to be specified for a given crystal and glide
system from the observations of the extent of the dislocation core spreading. Alternatively, ρo may be related
to an estimate of the maximum shear stress along the glide plane of the dislocation. Denoting this by τmax, it
follows that

ρo = µb

4π(1 − ν)τmax
. (26)

It is reasonable to assume that τmax is equal to the actual shear strength of the pure crystal under uniform
straining, either experimentally determined or estimated from atomistic calculations, which is a fraction of the
theoretical shear strength µb/2πh of the pure crystal [33]. Guided by experimental data on the lattice friction
stress, we take τmax to be one half of the theoretical shear strength, i.e., τmax = µb/4πh. For a face-centered
cubic (FCC) crystal (〈211〉 {111} partial, h/b = √

2 ), we obtain τmax = 0.056 µ. With ν = 1/3, Eq. (26)
gives ρo = 2b. For a BCC crystal (〈111〉 {110} glide system, h/b = √

2/3 ), we obtain τmax = 0.1 µ and, with
ν = 0.3, Eq. (26) gives ρo = 1.1b. For an HCP crystal (〈112̄0〉 {0001} glide system, h/b = 1.093), we obtain
τmax = 0.07 µ. With ν = 1/3, Eq. (26) gives ρo = 1.7b. Finally, for a diamond cubic crystal (〈110〉 {111}
shuffle plane, h/b = 0.4083), we obtain τmax = 0.2 µ and, with ν = 1/5, Eq. (26) gives ρo = 0.5b.

5 Conclusions

A solution for the lattice dislocation was derived in the framework of a continuum linear elasticity, and is
compared with the Peierls–Nabarro solution based on a semi-discrete model. The atomic disregistry and the
shear stress across the glide plane are discussed, with particular attention given to the relationship between
the dislocation width and the atomic spacing across the glide plane. The Peach–Koehler configurational force
on the lattice dislocation, defined as the gradient of the strain energy with respect to the dislocation position
between consecutive equilibrium configurations, was used, in conjunction with the periodic variation of the
core radius, to derive an expression for the critical configurational force and the Peierls stress required to
overcome the lattice friction due to atomic interactions. The obtained results are applied to edge dislocations
with both narrow and wide cores. The comparison with typical experimental data for metallic and covalently
bonded crystals is given.
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Appendix: Solution of the singular integral equation

The singular Cauchy-type integral equation

1

π
p.v.

∞∫
−∞

f (ξ) dξ

x − ξ
= g(x) (27)

has the solution

f (x) = 1

π
p.v.

∞∫
−∞

g(ξ) dξ

ξ − x
. (28)

The functions f (x) and g(x) are referred to as the Hilbert pair. Since

∞∫
−∞

g(x) dξ

ξ − x
= g(x)

∞∫
−∞

dξ

ξ − x
= 0 , (29)

the integral in (28) can be rewritten as

f (x) = 1

π

∞∫
−∞

g(ξ) − g(x)

ξ − x
dξ , (30)

which is an ordinary integral whenever g is Hölder continuous [34]. Thus, letting

1

π
f (ξ) = β(ξ) , g(x) = bx

x2 + ρ2 , (31)

it follows that

β(x) = b

π2

1

x2 + ρ2

∞∫
−∞

ρ2 − ξ x

ξ2 + ρ2 dξ = b

π

ρ

x2 + ρ2 . (32)
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