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Abstract Stress magnification in thin ligaments between small and large cylindrical voids is obtained by
matching the inner field approximation by beam theory to the outer rigid-body field in the bulk of the material.
A void between two larger voids is modeled as a large hole within a strip of straight edges (boundaries of the
holes with infinite radii of curvature). Both stretching and bending types of loading are applied to the strip.
Comparison of different orders of stress magnification for different geometries and loading conditions is made.
It is shown that the order of stress magnification in thin ligaments is (R/δ)n , where n = 1/2 in the ligament
between one small and one large void, n = 1 in the ligament between one small void and two large voids,
or between two small and two large voids, and n = 2 in the ligament between a large void and a small void
coalescing with another large void. The relevance of these results for the study of material failure by void
growth and coalescence is discussed.

Keywords Beam theory · Matched expansion · Ligament · Notched strip · Strain energy · Stress magnification ·
Void coalescence

1 Introduction

Large amount of research has been devoted during past several decades to the analysis of material failure by
ductile void growth and coalescence. Continuum elastoplastic theories, dislocation based models, and atomistic
simulations were all used to address the problem. Representative recent references include [1–8]. In this paper
we present an analytical determination of the maximum stress in thin ligaments or narrow regions between
close cylindrical voids. We consider ligaments between a small void and two nearby large voids, and ligaments
associated with two small voids positioned in-between two large voids (Fig. 1). In addition, we consider liga-
ments between a small void and a nearby large void, and the ligaments between a large void and a small void
coalescing with another large void (Fig. 2). The analysis is based on modeling small voids as large holes in a
rectangular strip whose straight edges are the boundaries of large outer voids of infinite radii of curvature. Both
stretching and bending types of loading are applied to the bulk. Stress magnification is obtained by matching
the inner field approximation, which is obtained by beam theory approximation within the ligament, to the
outer rigid-body field in the bulk of the material, away from the holes. The utilized approach is in an extension
of the early work by Koiter [9], who constructed an elementary solution for the stress magnification in the
neighborhood of a large hole symmetrically positioned within a rectangular strip under remote tension. The

V.A. Lubarda (B) · X. Markenscoff
Department of Mechanical and Aerospace Engineering, University of California,
San Diego, La Jolla, CA 92093-0411, USA
E-mail: vlubarda@ucsd.edu
Tel.: +/-858-5343169
Fax: +/-858-5345698



296 V.A. Lubarda, X. Markenscoff

(a) (b)

Fig. 1 a A small void in-between two large voids. b Two small voids in-between two large voids

(a) (b)

Fig. 2 a A small void nearby a large void. b A small void coalescing with one of two nearby large voids

thin ligament around the hole is modeled as a tapered beam and the integration of the corresponding fourth-
order differential equation was used for the deflection of the beam. Koiter found that the maximum stress, at
the root of the ligament, is σmax = 2σ(R/δ + 1), where σ is the applied stress, δ � R is the thickness of the
ligament in the vertical plane of symmetry, and R is the radius of the hole. Since the maximum stress around
the small hole in the middle of a wide strip is σmax = 3σ , the stress magnification factor for the large hole is
of the order of R/δ. Keller [10] considered this as a problem of matched inner and outer expansions, the inner
expansion being obtained by the beam theory. An integral equation method was previously used by Duan et al.
[11]. Markenscoff and Dundurs [12] analyzed several cases of loading and geometries of thin ligaments, and
showed that indeed the stresses obtained by the beam theory match those from the elasticity solutions to the
leading order terms. Markenscoff [13] furthermore extended Koiter’s analysis to an eccentric large hole under
remote tension by considering, in addition to equilibrium conditions, the compatibility of the deformation due
to stretching and rotation of the ligament. She found that the stress magnification factors are of the order of
R/δk (k = 1, 2), same as for the central hole.

Both Koiter’s and Markenscoff’s analyses were based on the integration of the differential equation of
the beam. In this paper we present an alternative, but simpler approach, based on an energy analysis and the
application of Castigliano’s theorem. We consider not only the stretching, but also the bending of the strips that
are weakened by large semicircular notches and centric or eccentric circular holes. We match the deformation
of the beam to the deformation of the bulk, which we take to be a rigid body translation or rotation. The
analysis delivers the stress magnification factors, as well as the geometric parameters describing the overall
deformation (stretching and relative rotation of the ends of the strip). In particular, we show that the stress
magnification in notched strips is of the order (R/δ)2, while in the strips weakened by large holes it is of the
order R/δ. This is compared to the stress magnification of the order (R/δ)1/2 in the ligament near the free
edge of the stretched half-plane. Furthermore, we derive a simple relationship between the maximum stresses
in the outer and inner ligaments for the stretched strip weakened by two symmetrically positioned large holes.
The results are also given for the bent strip weakened by two large circular holes. The derivation delivers a
simple relationship between the bending moment and the axial force in the thinnest section of the ligament,
M = Nδ/6. This relationship coincides with the one obtained by integrating the stresses in the exact elasticity
solution for a hole near the edge of the half plane under tension [14], in the limit of the thin ligament between
the hole and the free surface [12]. Since voids can be of very different shapes, and since the corresponding
stress magnification factors depend not only on the ratio of the radius of the void to the thickness of the ligament
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δ

R σσ

Fig. 3 A notched strip under uniform tension σ . The radius of a semicircular notch is R, and the minimum thickness of the
ligament is δ

but also on the void geometry, our analysis in those cases can be applied as a first-order asymptotic analysis
in which any smooth contour of the void is approximated by its osculating circle in the plane of ligament’s
symmetry.

The analysis and the results presented in the present paper are of interest, because an alternative numerical
treatment of the considered problems, such as the one based on the FEM, requires a sensitive mesh refinement
in thin regions of ligaments to capture the large stresses and their large gradients there, and does not deliver
explicitly the simple expressions for the stress magnification factors in terms of the geometric parameters of
the problem, nor the simple analytical relationships between the maximum stresses in different ligaments for
the strips weakened by multiple holes. The obtained results allow the comparison of the severity of different
loading/geometry configurations with respect to each other, which enable better understanding of the process
leading to material failure. Also, large stresses in thin ligaments facilitate dislocation emission from the surface
of the voids and their subsequent growth and coalescence [3].

The obtained results provide a quantitative framework for the understanding of the severity of stress in thin
ligaments that will lead to material failure by void growth and coalescence.

2 Stresses and deformation in a notched strip

A long plate (strip) weakened by a large semicircular notch under remote uniform tension is shown in Fig. 3.
The thickness of thin ligament in the plane of symmetry (the minimum ligament’s thickness) is δ � R, where
R is the radius of the notch. If the notch is not semi-circular, but of smooth profile, the radius R can be inter-
preted as the local radius of the curvature in the plane of symmetry. The present analysis is thus a first-order
asymptotic approach in which any smooth contour of the notch is approximated by its osculating circle in
the plane of ligament’s symmetry. For a sufficiently small ratio δ/R, the deformation of the strip is much
greater in the thin region around the notch (ligament) than outside of it, and we shall accordingly consider this
deformation only, the remote bulk of the strip moving approximately only as a rigid body. As in [9], we model
the ligament as a tapered beam of variable thickness, approximated by the first two terms of the polynomial
expansion as

t (x) = δ + x2

2R
. (1)

The axial force and bending moments (per unit thickness of the strip) at the two ends of an extracted segment
of the ligament are shown in Fig. 4. By the moment equilibrium, they are related by

M(x) = M − N
x2

4R
, M = M(0). (2)

The problem of a notched strip is statically determined with respect to M and N , since by the overall equilibrium
of each half of the notched strip, we must have

N = σ(R + δ) , M = 1

2
N R . (3)

The maximum tensile and compressive stresses occur at the inner and outer points of the thinnest section of
the ligament, and are respectively given by

σi = N

δ
+ 6M

δ2 = σ

(
3

R2

δ2 + 4
R

δ
+ 1

)
,

σo = N

δ
− 6M

δ2 = −σ

(
3

R2

δ2 + 2
R

δ
− 1

)
.

(4)
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Fig. 4 A ligament segment under axial forces and bending moments. A variable thickness of the ligament is t (x), with the
corresponding bending moment M(x)

σM

N

Fig. 5 One half of the notched strip under remote tension σ , which is balanced by the axial force N and the bending moment M
acting in the thinnest section of the ligament

Since the maximum stress in a stretched strip weakened by a small semicircular notch [15,16] is σmax ≈ 3.1σ ,
we conclude that the magnification factor for a large notch is of the order (R/δ)2.

We note that the stress contribution in the thinnest section of the ligament due to the bending moment
dominates over that due to the axial force. Indeed, since M = N R/2, (4) can be recast as

σi = N

δ

(
1 + 3

R

δ

)
, σo = N

δ

(
1 − 3

R

δ

)
, (5)

so that the bending contribution to stress is 3R/δ times greater than that due to the axial force. The much
greater stress due to bending was, of course, anticipated, because the bending mode dominates the overall
deformation of the heavily notched strip in Fig. 3. In fact, the relative rotation (2ϕ) of the two ends of the strip
can be easily calculated from an expression for the strain energy in the ligament and Castigliano’s theorem.
Since the deformation rapidly decreases with the distance x from the mid-section of the ligament, the strain
energy in each half of the ligament is

U =
∞∫

0

M2(x)dx

2E I (x)
+

∞∫
0

N 2dx

2Et (x)
, (6)

where I (x) = t3(x)/12. The application of Castigliano’s theorem (see Fig. 5) then gives

ϕ = ∂U

∂ M
=

∞∫
0

M(x)
∂ M(x)

∂ M
dx

E I (x)
= 3π

√
2N R

8E

(
3 − δ

R

)(
R

δ

)5/2

, (7)

which is the generalized displacement (rotation) conjugate to M . In the integration procedure, the following
general result is useful (e.g., [17])

∞∫
0

dx

(a2 + x2)n
= π(2n − 3)!!

2a2n−1(2n − 2)!! , n = 2, 3, . . . , a > 0 . (8)

The longitudinal displacement �, conjugate to N , can be calculated from

� = ∂U

∂ N
=

∞∫
0

M(x)
∂ M(x)

∂ N
dx

E I (x)
+

∞∫
0

Ndx

Et (x)
, (9)
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δ
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Fig. 6 A rectangular strip weakened by a large circular hole of radius R under uniform remote tension σ

M
N

σ

N

M

Fig. 7 One half of the strip with a large circular hole. The remote tension σ is balanced by the axial forces N and bending
moments M in the mid-planes of the ligaments

which gives

� = −π
√

2N

16E

(
3 − 17

δ

R

)(
R

δ

)3/2

. (10)

As commonly done in structural analysis, M and N are treated as independent when applying the Castigliano
theorem to determine the conjugate displacements ϕ = ∂U/∂ M and � = ∂U/∂ N . The actual relationship
between M and N , given by (3), is substituted upon the differentiation. This lead to Eqs. (7) and (10).

If the notched strip is subjected to the bending moment M at its remote ends, we have N = 0 and M = M.
By a straightforward analysis, it follows that

σi = −σo = 6M
δ2 , (11)

and

ϕ = 9π
√

2M
4Eδ2

(
R

δ

)1/2

, � = −3π
√

2M
8Eδ

(
R

δ

)1/2

. (12)

Recalling that σmax ≈ 3.1M/R2 for a very small notch in a strip of width R, we again conclude that the stress
magnification factor is of the order (R/δ)2. The dummy load N = 0 was applied to determine � in (12).

3 Stresses and deformation in a strip with a large central hole due to stretching

A rectangular strip with a large central hole of radius R, loaded at the remote ends of the strip by uniform
tension σ (or a nonuniform tension statically equivalent to an axial force 2N passing through the centroidal
axis of the strip), is shown in Fig. 6. In contrast to the notched strip, this problem is statically undetermined
with respect to the bending moment M in the vertical plane of symmetry (Fig. 7), while the axial force N is
statically determined and equal to

N = σ(R + δ). (13)
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The bending moment M can be obtained by requiring that the slope in the vertical plane of symmetry vanishes,
i.e.,

∂U

∂ M
= 0 . (14)

Since U is given by (6), and since

M(x) = M − N
x2

4R
, (15)

the condition (14) becomes

∞∫
0

M(x)
∂ M(x)

∂ M
dx

E I (x)
=

∞∫
0

(M − N x2/4R)dx

(E/12)(δ + x2/2R)3 = 0 . (16)

Upon integration, we obtain a simple relationship between the bending moment and axial force in the midsec-
tion of the ligament,

M = 1

6
Nδ . (17)

The corresponding stresses at the inner and outer points of the ligament are

σi = N

δ
+ 6M

δ2 = 2
N

δ
, σo = N

δ
− 6M

δ2 = 0 . (18)

In contrast to notched strips from Sec. 2, where the stress contribution from the bending moment M dominates
over the part from the axial force, in the strip weakened by a central hole the contributions to maximum stress
from the bending moment and axial force are equal to each other. This is because of large difference in the
magnitude of the bending moment in two cases: for the notched strip M = N R/2, while for the strip with a
central hole, M = Nδ/6 (3R/δ times smaller). From the deformation point of view, a strip with a central hole is
much stiffer in bending than a notched strip and thus the difference in the magnitude of the stress contributions
from the axial force and the bending moment in two cases. When expressed in terms of the applied stress σ ,
(18) can be rewritten as

σi = 2σ

(
R

δ
+ 1

)
, σo = 0 . (19)

Since the maximum stress in a stretched strip with a small hole is σmax = 3σ (the stress concentration factor
thus being equal to 3), we conclude that the magnification factor for a large hole is of the order R/δ (relative
to 3σ ). Recall that the stress magnification factor in the notched strip is of the order (R/δ)2. It should also be
recalled that in the thin ligament between the hole and the free surface of a stretched semi-infinite plate the
stress magnification factor is of the order (R/δ)1/2 [18]. Indeed, Mindlin [19] derived a remarkably simple
expression for the total force across the ligament between the hole and the free edge of a semi-infinite plate
(Fig. 8), for any ratio δ/R, which is

N = σd , d2 = (R + δ)2 − R2 , (20)

where d is geometrically the length of the tangent line to the circle from the top of the ligament. For δ � R, we
obtain from (20), d ≈ (2Rδ)1/2 (which is also the range of validity in x of the beam theory approximation of
the thin ligament), and since for thin ligaments M = Nδ/6, to first order, the maximum stress in the ligament
is σmax = 2N/δ = 2σ(2R/δ)1/2. It is also recalled that the stress magnification factor in a thin ligament
between a void and a free surface due to a dislocation on the other side of the void is also of the order (R/δ)1/2

(relative to the stress measure Eb/R, where b is the magnitude of the Burgers vector, [20]). When the loading
is due to body forces, as in the Mindlin’s [14] tunnel problem, the stress magnification factor in a thin ligament
above the tunnel is of the order (R/δ)1/2 (relative to the stress scale Rρg, where ρ is the mass density and g
is the acceleration of gravity, [21]).

Returning to the rectangular strip in Fig. 6, the stretching of the strip is equal to 2�, where � can be
calculated from

� = ∂U

∂ N
=

∞∫
0

M(x)
∂ M(x)

∂ N
dx

E I (x)
+

∞∫
0

Ndx

Et (x)
. (21)
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(a) (b)

Fig. 8 a A circular hole under the straight edge of a semi-infinite plate. The total horizontal force across the thickness δ of the
ligament above the hole is N = σd , where σ is the applied remote stress and d is the length of the indicated tangent line. b The
net horizontal force on the lower side of the extracted portion of the half-plane, at the depth d from the free edge, is equal to zero,
so that the axial force in the ligament is N = σd

Fig. 9 A virtual force F = 0 is applied to the ligament in the direction of the desired lateral displacement

This gives

� = π
√

2N

E

(
R

δ

)1/2

, (22)

or

� = π
√

2σ R

E

(
1 + δ

R

)(
R

δ

)1/2

. (23)

The lateral displacement of the points in the midsection of the ligament can be determined by applying the
virtual (zero) force in the direction of the lateral displacement (Fig. 9), and by using Castigliano’s theorem in
the form

v =
(

∂U

∂ F

)
F=0

. (24)

Since

M(x) =
(

M − N
x2

4R
− Fx

)
F=0

,
∂ M(x)

∂ F
= −x , (25)

there follows

v =
∞∫

0

M(x)
∂ M(x)

∂ F
dx

E I (x)
=

∞∫
0

(M − N x2/4R)(−x)dx

(E/12)(δ + x2/2R)3 . (26)

The integration gives

v = 2N

E

R

δ
, (27)

or

v = 2σ R

E

(
R

δ
+ 1

)
, (28)

in agreement with Koiter’s result obtained by the more involved integration of the differential equation of the
tapered beam.
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Fig. 10 A rectangular strip weakened by a large circular hole of radius R under uniform remote tension σ

Fig. 11 One half of the strip with a large circular hole. The remote tension σ is balanced by the axial forces N and bending
moments M carried by the thinnest section of the ligament

4 Stresses and deformation in a strip with a large central hole due to bending

A rectangular strip weakened by a large central hole and loaded at its remote ends by the bending moments M
is shown in Fig. 10. A free body diagram of one half of the strip is sketched in Fig. 11. The moment equilibrium
requires that

M − 2M − N (2R + δ) = 0 . (29)

The additional equation comes from the compatibility condition. Suppose that the right end of the strip in
Fig. 11 is fixed. Then the axial displacement � and the rotation ϕ of the midsection of the ligament must be
related by

ϕ = �

R + δ/2
. (30)

The simplest way to calculate � and ϕ is again by employing Castigliano’s theorem, i.e.,

ϕ = ∂U

∂ M
, � = ∂U

∂ N
. (31)

Since the strain energy U is given by (6), and since

M(x) = M + N
x2

4R
, (32)

we obtain

ϕ = 3π
√

2

8Eδ

(
R

δ

)1/2 (
6M

δ
+ N

)
, (33)

and

� = π
√

2

16E

(
R

δ

)1/2 (
6M

δ
+ 17N

)
. (34)

When these are substituted into (30), and the result is combined with (29), we obtain a system of two algebraic
equations for M and N . Its solution, to first order, is

N = M
6R

(
3 − δ

R

)
, M = −1

6
Nδ . (35)
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Fig. 12 A rectangular strip weakened by a large eccentric circular hole of radius R under uniform remote tension σ . The ligament
thickness in the vertical plane of symmetry is δ1 for the upper ligament, and δ2 for the lower ligament

Fig. 13 One half of the strip with a large eccentric circular hole. The remote tension σ is balanced by the axial forces N1 and N2,
and the bending moments M1 and M2 in the mid-planes of the two ligaments. The conjugate stretching and rotations are denoted
by �1, �2 and ϕ1, ϕ2

The corresponding stresses are

σi = −M
Rδ

(
1 − 1

3

δ

R

)
, σo = 0 . (36)

The stress at the outer point of the ligament vanishes, because of the first order approximation imbedded in
the relationship M = −Nδ/6. In the second-order approximation one has

N = M
6R

(
3 − δ

R

)
, M = − Mδ

12R

(
1 − 3

δ

R

)
= − Nδ

6

(
1 − 8

3

δ

R

)
, (37)

and the corresponding stresses would be

σi = −M
Rδ

(
1 − 5

3

δ

R

)
, σo = −4M

3R2 . (38)

The rotation of the two ends of the strip follows from (33) to (35). The result is

2ϕ = π
√

2M
E R2

(
R

δ

)1/2

(39)

5 Strip with a large eccentric hole under remote tension

A rectangular strip with a large eccentric hole of radius R, loaded at the remote ends by uniform tension σ , is
shown in Fig. 12. The ligament thicknesses in the vertical plane of symmetry are δ1 and δ2. The equilibrium
conditions for one half of the strip (Fig. 12) are

N1 + N2 = σ(2R + δ1 + δ2) , (40)
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N2

(
2R + δ1 + δ2

2

)
+ M1 − M2 − σ(2R + δ1 + δ2)

(
R + δ2

2

)
= 0 . (41)

The problem is two times statically undetermined with respect to axial forces and bending moments in the
vertical plane of symmetry. The two additional equations are obtained from the compatibility consideration.
Suppose that the right-hand side of one half of the strip in Fig. 13 is fixed. Then, we require, as in [13], that
the axial displacements and the rotations of two ligaments are related to each other according to

ϕ1 = −ϕ2 , (42)

�2 − �1 =
(

2R + δ1 + δ2

2

)
ϕ1 . (43)

The displacements and rotations are most readily calculated from

ϕk = ∂Uk

∂ Mk
, �k = ∂Uk

∂ Nk
, (k = 1, 2). (44)

The compatibility conditions (42) and (43) can be again interpreted as matching the inner beam theory field
in the thin ligament with the outer rigid-body field in the bulk of the strip. The strain energy in each ligament
is given by

Uk =
∞∫

0

M2
k (x)dx

2E Ik(x)
+

∞∫
0

N 2
k dx

2Etk(x)
, (k = 1, 2), (45)

with

tk(x) = δk + x2

2R
, Mk(x) = Mk − Nk

x2

4R
, (k = 1, 2). (46)

It readily follows that

ϕk = 3π
√

2

8Eδk

(
R

δk

)1/2 (
6Mk

δk
− Nk

)
, (47)

�k = π
√

2

16E

(
R

δk

)1/2 (
−6Mk

δk
+ 17Nk

)
, (k = 1, 2). (48)

To first order in δk/R, the solution of Eqs. (40)–(43) is

M1 = 1

6
N1δ1 , M2 = 1

6
N2δ2 , (49)

N1 = 1

6
σ R

(
6 + 5

δ1

R
+ δ2

R

)
, N2 = 1

6
σ R

(
6 + δ1

R
+ 6

δ2

R

)
. (50)

The corresponding stresses at the inner and outer points of the upper ligament are

σi = σ R

3δ1

(
6 + 5

δ1

R
+ δ2

R

)
, σo = 0 , (51)

while at the inner and outer points of the lower ligament,

σi = σ R

3δ2

(
6 + δ1

R
+ 5

δ2

R

)
, σo = 0 . (52)

If δ1 = δ2 = δ, we recover the results (19) from Sec. 3.
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Fig. 14 A rectangular strip weakened by a large eccentric circular hole of radius R under remote bending moments M. The
ligament thickness in the vertical plane of symmetry is δ1 for the upper ligament, and δ2 for the lower ligament

Fig. 15 One half of the strip with a large eccentric circular hole. The remote bending moment M is balanced by the axial forces
N and the bending moments M1 and M2 in the mid-planes of the two ligaments. The conjugate stretching and rotations are
denoted by �1, �2 and ϕ1, ϕ2

6 Strip with a large eccentric hole under remote bending

A rectangular strip with a large eccentric hole under remote bending moments M is shown in Fig. 14. The
ligament thicknesses in the vertical plane of symmetry are again δ1 and δ2. The equilibrium condition for one
half of the strip shown in Fig. 15 are

N

(
2R + δ1 + δ2

2

)
+ M1 + M2 = M . (53)

The problem is two times statically determined with respect to axial force N and the bending moments M1
and M2. The two additional equations are obtained from the compatibility consideration. Assuming that the
right-hand side of one half of the strip in Fig. 15 is fixed, we require that the axial displacements and the
rotations of two ligaments are related to each other according to

ϕ1 = ϕ2 , (54)

�1 + �2 =
(

2R + δ1 + δ2

2

)
ϕ1 , (55)

where ϕk and �k are defined by (44). The strain energy in each ligament is given by (45), with tk(x) =
δk + x2/2R, k = 1, 2, and

M1(x) = M1 + N
x2

4R
, M2(x) = −M2 − N

x2

4R
. (56)

It readily follows that

ϕk = 3π
√

2

8Eδk

(
R

δk

)1/2 (
6Mk

δk
+ N

)
, (57)

�k = π
√

2

16E

(
R

δk

)1/2 (
6Mk

δk
+ 17N

)
, (k = 1, 2). (58)
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Fig. 16 A rectangular strip weakened by two large circular holes of radius R under uniform remote tension σ . The inner minimum
ligament thickness is δ2, and the outer is δ1

Fig. 17 One half of the strip with two large circular holes. The remote tension σ is balanced by the axial forces N1 and N2, and
the bending moments M1 in the mid-plane of the outer ligaments

To first order in δk/R, the solution of Eqs. (53)–(55) is

M1 = −1

6
Nδ1 , M2 = −1

6
Nδ2 , (59)

N = M
6R

(
3 − δ1 + δ2

2R

)
. (60)

The corresponding stresses at the outer points of the ligaments are equal to zero, while at the inner points of
the upper and lower ligament they are, respectively,

σi = − M
Rδ1

(
1 − δ1 + δ2

6R

)
, σi = M

Rδ2

(
1 − δ1 + δ2

6R

)
. (61)

If δ1 = δ2 = δ, we recover the results (36) from Sec. 4 for the bent strip with a central hole.
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7 Strip weakened by two large holes under tension

The foregoing analysis can be extended to strips weakened by more than one large holes. We illustrate this
by considering a strip weakened by two large holes, each of radius R, symmetrically positioned within the
strip, as shown in Fig. 16. The outer ligament thickness is δ1 and the inner ligament thickness is δ2. The strip
is loaded at its remote ends by uniform tension σ . The free-body diagram of one half of the strip is shown in
Fig. 17. Due to symmetry with respect to the horizontal mid-plane of the strip, there is no bending moment in
the inner ligament, while the axial forces and the bending moments in two outer ligaments are equal to each
other. The equilibrium condition is then

2N1 + N2 = σ(4R + 2δ1 + δ2) . (62)

The bending moment M1 can be determined by requiring that the slope in the vertical plane of symmetry
vanishes for each ligament. Proceeding as in Sec. 3, we obtain that

M1 = 1

6
N1δ1 . (63)

The remaining equation is the compatibility condition, which matches the deformation of ligaments with the
rigid-body displacement of the outer bulk of the strip. This is

�1 = �2 , (64)

where

�1 =
∞∫

0

M1(x)
∂ M1(x)

∂ N1
dx

E I1(x)
+

∞∫
0

N1dx

Et1(x)
, (65)

and

�2 =
∞∫

0

N2dx

Et2(x)
. (66)

The bending moments and the ligament thicknesses at an arbitrary x within the ligaments are

M1(x) = M1 − N1
x2

4R
, t1(x) = δ1 + x2

2R
, t2(x) = δ2 + x2

R
. (67)

Upon integration and substitution into (64), it follows that

N2 = 2

(
2δ2

δ1

)1/2

. (68)

When this is combined with (62), we obtain, to the leading-order terms,

N1 = 2R

1 + (2δ2/δ1)1/2 σ , (69)

N2 = 4R(2δ2/δ1)
1/2

1 + (2δ2/δ1)1/2 σ . (70)

The stress in the inner ligament is

σ2 = N2

δ2
= 4(2δ2/δ1)

1/2

1 + (2δ2/δ1)1/2

R

δ2
σ , (71)

while the maximum stress in the outer ligaments is

σmax
1 = N1

δ1
+ 6M1

δ2
1

= 2
N1

δ1
= 4

1 + (2δ2/δ1)1/2

R

δ1
σ . (72)
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Fig. 18 A rectangular strip weakened by two large holes of radius R under remote bending moments M

Fig. 19 One half of the strip weakened by two large holes. The remote bending moment M is balanced by axial forces N1 and
bending moments M1 and M2

The stress magnification factors are of the order R/δ2 and R/δ1, respectively. Evidently,

σ2

σmax
1

=
(

2δ2

δ1

)1/2

, (73)

which reveals a remarkably simple condition that σ2 > σmax
1 if δ2 < 2δ1. It should be recalled in this context

that the stress magnification in a thin ligament between two holes in a stretched infinite medium is only of the
order (R/δ)1/2, which was obtained in [22] by using an asymptotic analysis of the two-dimensional elasticity
solution.

8 Strip weakened by two large holes under bending

A rectangular strip weakened by two large holes and loaded at its remote ends by the bending moments M is
shown in Fig. 18, with a free body diagram of one half of the strip shown in Fig. 19. The moment equilibrium
requires that

M − 2M1 − M2 − N1(4R + δ1 + δ2) = 0 . (74)

The additional two equations needed to calculate the three unknown quantities (M1, M2, N1) come from the
compatibility conditions

ϕ1 = ϕ2 , (75)
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ϕ1 = �1

2R + δ1/2 + δ2/2
. (76)

It readily follows that

ϕ1 = 3π
√

2

8Eδ1

(
R

δ1

)1/2 (
6M1

δ1
+ N1

)
, (77)

�1 = π
√

2

16E

(
R

δ1

)1/2 (
6M1

δ1
+ 17N1

)
. (78)

ϕ2 = 3π

4E

(
R

δ2

)1/2 3M2

δ2
2

. (79)

When these are substituted into (74)–(76), we obtain a system of three algebraic equations for M1, M2, and
N1, whose solution is

N1 = M
4R

(
1 − 1

6

δ1

R
− 1

4

δ2

R

)
, (80)

M1 = −Mδ1

24R

(
1 − 3

2

δ1

R
− 1

4

δ2

R

)
, (81)

M2 =
√

2M
18

(
δ2

δ1

)1/2 (
δ2

R

)2 (
1 − 1

12

δ1

R
− 1

4

δ2

R

)
. (82)

To the leading-order terms this is equivalent to

N1 = M
4R

, M1 = −Mδ1

24R
, M2 =

√
2M
18

(
δ2

δ1

)1/2 (
δ2

R

)2

, (83)

with M1 = −N1δ1/6. The corresponding maximum stresses are

σmax
1 = N1

δ1
− 6M1

δ2
1

= 2
N1

δ1
= M

2Rδ1
, σmax

2 = 6M2

δ2
2

=
√

2M
3R2

(
δ2

δ1

)1/2

. (84)

As expected on physical grounds, the remote ligaments are dominantly carrying the bending moment M, so
that σmax

1 is of the order R/δ1 greater than σmax
2 . Indeed, the bending moment M2 is only of the order δ2/R

times M1, since from (84)
M2

M1
= −4

√
2

3

(
δ2

δ1

)3/2
δ2

R
. (85)

9 Conclusions

We have presented a simple method of calculating the stress magnification factors in thin ligaments between
small and large cylindrical voids. This is accomplished by considering large semicircular notches or circular
holes in rectangular strips under stretching or bending types of loading. The utilized method is based on the
consideration of the strain energy in thin ligaments modeled as tapered beams, and the matching of the inner
beam theory approximation in thin ligaments to the outer rigid-body field in the bulk of the material. It is
shown that for the strip weakened by a large circular hole (modeling a small void in close vicinity of two
large voids), the stress magnification factor is of the order R/δ. The same magnification factor is found in the
outer ligaments between two small and two large voids. For this case we also derived a simple relationship
between the maximum stresses in the outer and inner ligaments. For the bent strip weakened by two large
holes we showed that the maximum stress in the outer ligament is of the order R/δ greater than the maximum
stress in the inner ligament. For the strip weakened by a large semicircular notch (modeling a coalescing
void), the stress magnification factor is of the order (R/δ)2. Finally, the stress magnification factor is of the
order (R/δ)1/2 in the ligament between one small and one large void. The analysis presented in this paper is
of interest, because an alternative numerical approach to the considered problems requires a sensitive mesh
refinement in thin regions of ligaments and does not deliver explicitly the simple analytical expressions for the



310 V.A. Lubarda, X. Markenscoff

stress magnification factors nor the relationships among maximum stresses in different ligaments. Moreover,
in some numerical schemes incorporating the order of the singularity may improve the convergence and the
accuracy. The obtained results provide a quantitative framework for the understanding of the severity of stress
in thin ligaments that will lead to material failure by void growth and coalescence.
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