ELASTOPLASTICITY THEORY

by

V. A. Lubarda
Contents

Preface

Part 1. ELEMENTS OF CONTINUUM MECHANICS 1

Chapter 1. TENSOR PRELIMINARIES 3
1.1. Vectors 3
1.2. Second-Order Tensors 4
1.3. Eigenvalues and Eigenvectors 6
1.4. Cayley–Hamilton Theorem 7
1.5. Change of Basis 7
1.6. Higher-Order Tensors 8
1.6.1. Traceless Tensors 10
1.7. Covariant and Contravariant Components 10
1.7.1. Vectors 10
1.7.2. Second-Order Tensors 11
1.7.3. Higher-Order Tensors 12
1.8. Induced Tensors 13
1.9. Gradient of Tensor Functions 15
1.10. Isotropic Tensors 16
1.11. Isotropic Functions 17
1.11.1. Isotropic Scalar Functions 17
1.11.2. Isotropic Tensor Functions 18
1.12. Rivlin’s Identities 19
1.12.1. Matrix Equation $A \cdot X + X \cdot A = B$ 20
1.13. Tensor Fields 21
1.13.1. Differential Operators 21
1.13.2. Integral Transformation Theorems 23

References 25

Chapter 2. KINEMATICS OF DEFORMATION 27
2.1. Material and Spatial Description of Motion 27
2.2. Deformation Gradient 28
2.2.1. Polar Decomposition 29
2.2.2. Nanson’s Relation 31
2.2.3. Simple Shear 32
2.3. Strain Tensors 33
CONTENTS

2.3.1. Material Strain Tensors
2.3.2. Spatial Strain Tensors
2.3.3. Infinitesimal Strain and Rotation Tensors
2.4. Velocity Gradient, Velocity Strain, and Spin Tensors
2.5. Convected Derivatives
2.5.1. Convected Derivatives of Tensor Products
2.6. Rates of Strain
2.6.1. Rates of Material Strains
2.6.2. Rates of Spatial Strains
2.7. Relationship between Spins W and ω
2.8. Rate of F in Terms of Principal Stretches
2.8.1. Spins of Lagrangian and Eulerian Triads
2.9. Behavior under Superimposed Rotation
References

Chapter 3. KINETICS OF DEFORMATION
3.1. Cauchy Stress
3.2. Continuity Equation
3.3. Equations of Motion
3.4. Symmetry of Cauchy Stress
3.5. Stress Power
3.6. Conjugate Stress Tensors
3.6.1. Material Stress Tensors
3.6.2. Spatial Stress Tensors
3.7. Nominal Stress
3.7.1. Piola–Kirchhoff Stress
3.8. Stress Rates
3.8.1. Rate of Nominal Stress
3.9. Stress Rates with Current Configuration as Reference
3.10. Behavior under Superimposed Rotation
3.11. Principle of Virtual Velocities
3.12. Principle of Virtual Work
References

Chapter 4. THERMODYNAMICS OF DEFORMATION
4.1. Energy Equation
4.1.1. Material Form of Energy Equation
4.2. Clausius–Duhem Inequality
4.3. Reversible Thermodynamics
4.3.1. Thermodynamic Potentials
4.3.2. Specific and Latent Heats
4.4. Irreversible Thermodynamics
4.4.1. Evolution of Internal Variables
4.4.2. Gibbs Conditions of Thermodynamic Equilibrium
4.5. Internal Rearrangements without Explicit State Variables
References
4.6. Relationship between Inelastic Increments .. 93
References ... 96

Part 2. THEORY OF ELASTICITY ... 99

Chapter 5. FINITE STRAIN ELASTICITY .. 101
5.1. Green-Elasticity ... 101
5.2. Cauchy-Elasticity ... 104
5.3. Isotropic Green-Elasticity ... 105
5.4. Further Expressions for Isotropic Green-Elasticity 106
5.5. Constitutive Equations in Terms of B ... 107
5.6. Constitutive Equations in Terms of Principal Stretches 109
5.7. Incompressible Isotropic Elastic Materials ... 110
5.8. Isotropic Cauchy-Elasticity ... 111
5.9. Transversely Isotropic Materials ... 112
 5.9.1. Transversely Isotropic Cauchy-Elasticity .. 115
5.10. Orthotropic Materials ... 116
 5.10.1. Orthotropic Cauchy-Elasticity ... 117
5.11. Crystal Elasticity ... 118
 5.11.1. Crystal Classes .. 118
 5.11.2. Strain Energy Representation .. 121
 5.11.3. Elastic Constants of Cubic Crystals ... 122
References ... 124

Chapter 6. RATE-TYPE ELASTICITY ... 129
6.1. Elastic Moduli Tensors .. 129
6.2. Elastic Moduli for Conjugate Measures with $n = \pm 1$ 131
6.3. Instantaneous Elastic Moduli .. 133
6.4. Elastic Pseudomoduli .. 134
6.5. Elastic Moduli of Isotropic Elasticity ... 136
 6.5.1. Components of Elastic Moduli in Terms of C 138
 6.5.2. Elastic Moduli in Terms of Principal Stretches 139
6.6. Hypoelasticity ... 140
References ... 143

Chapter 7. ELASTIC STABILITY ... 147
7.1. Principle of Stationary Potential Energy .. 147
7.2. Uniqueness of Solution ... 148
7.3. Stability of Equilibrium .. 149
7.4. Incremental Uniqueness and Stability ... 150
7.5. Rate-Potentials and Variational Principle .. 151
 7.5.1. Betti's Theorem and Clapeyron's Formula ... 153
 7.5.2. Other Rate-Potentials ... 154
 7.5.3. Current Configuration as Reference ... 154
7.6. Uniqueness of Solution to Rate Problem ... 155
7.7. Bifurcation Analysis .. 156
7.8. Localization Bifurcation 160
7.9. Acoustic Tensor 162
 7.9.1. Strong Ellipticity Condition 163
7.10. Constitutive Inequalities 164
References 167

Part 3. THEORY OF PLASTICITY 171

Chapter 8. ELASTOPLASTIC CONSTITUTIVE FRAMEWORK 173
8.1. Elastic and Plastic Increments 173
 8.1.1. Plastic Stress Increment 174
 8.1.2. Plastic Strain Increment 175
 8.1.3. Relationship between Plastic Increments 177
8.2. Yield Surface for Rate-Independent Materials 179
 8.2.1. Yield Surface in Strain Space 179
 8.2.2. Yield Surface in Stress Space 181
8.3. Normality Rules 185
 8.3.1. Invariance of Normality Rules 185
8.4. Flow Potential for Rate-Dependent Materials 188
8.5. Ilyushin’s Postulate 189
 8.5.1. Normality Rule in Strain Space 191
 8.5.2. Convexity of the Yield Surface in Strain Space 192
 8.5.3. Normality Rule in Stress Space 194
 8.5.4. Additional Inequalities for Strain Cycles 195
8.6. Drucker’s Postulate 196
 8.6.1. Normality Rule in Stress Space 198
 8.6.2. Convexity of the Yield Surface in Stress Space 199
 8.6.3. Normality Rule in Strain Space 201
 8.6.4. Additional Inequalities for Stress Cycles 203
 8.6.5. Infinitesimal Strain Formulation 203
8.7. Relationship between Work in Stress and Strain Cycles 205
8.8. Further Inequalities 207
 8.8.1. Inequalities with Current State as Reference 208
8.9. Related Postulates 210
References 211

Chapter 9. PHENOMENOLOGICAL PLASTICITY 217
9.1. Formulation in Strain Space 217
 9.1.1. Translation and Expansion of the Yield Surface 220
9.2. Formulation in Stress Space 223
 9.2.1. Yield Surface in Cauchy Stress Space 225
9.3. Nonuniqueness of the Rate of Deformation Partition 226
9.4. Hardening Models in Stress Space 227
 9.4.1. Isotropic Hardening 227
CONTENTS

9.4.2. Kinematic Hardening 232
9.4.3. Combined Isotropic-Kinematic Hardening 236
9.4.4. Mróz Multisurface Model 238
9.4.5. Two-Surface Model 241

9.5. Yield Surface with Vertex in Strain Space 243
9.6. Yield Surface with Vertex in Stress Space 246
9.7. Pressure-Dependent Plasticity 249
 9.7.1. Drucker–Prager Condition for Geomaterials 250
 9.7.2. Gurson Yield Condition for Porous Metals 252
 9.7.3. Constitutive Equations 253

9.8. Nonassociative Plasticity 255
 9.8.1. Plastic Potential for Geomaterials 256
 9.8.2. Yield Vertex Model for Fissured Rocks 260

9.9. Thermoplasticity 262
 9.9.1. Isotropic and Kinematic Hardening 264

9.10. Rate-Dependent Plasticity 265
 9.10.1. Power-Law and Johnson–Cook Models 266
 9.10.2. Viscoplasticity Models 268

9.11. Deformation Theory of Plasticity 273
 9.11.1. Deformation vs. Flow Theory of Plasticity 278
 9.11.2. Application beyond Proportional Loading 279
 9.11.3. J_2 Corner Theory 280
 9.11.4. Pressure-Dependent Deformation Theory 282

References 286

Chapter 10. PLASTIC STABILITY 303
10.1. Elastoplastic Rate-Potentials 303
 10.1.1. Current Configuration as Reference 304
10.2. Reciprocal Relations 306
 10.2.1. Clapeyron’s Formula 307
10.3. Variational Principle 307
 10.3.1. Homogeneous Data 309
10.4. Uniqueness of Solution 310
 10.4.1. Homogeneous Boundary Value Problem 312
 10.4.2. Incrementally Linear Comparison Material 313
 10.4.3. Comparison Material for Elastoplastic Response 316
10.5. Minimum Principle 318
10.6. Stability of Equilibrium 320
10.7. Relationship between Uniqueness and Stability Criteria 321
10.8. Uniqueness and Stability for Rigid-Plastic Materials 325
 10.8.1. Uniaxial Tension 327
 10.8.2. Compression of Column 328
10.9. Eigenmodal Deformations 330
 10.9.1. Eigenstates and Eigenmodes 331
 10.9.2. Eigenmodal Spin 332
10.9.3. Eigenmodal Rate of Deformation 335
10.9.4. Uniaxial Tension of Elastic-Plastic Material 336
10.9.5. Triaxial Tension of Incompressible Material 337
10.9.6. Triaxial Tension of Rigid-Plastic Material 339
10.10. Acceleration Waves in Elastoplastic Solids 340
10.10.1. Jump Conditions for Shock Waves 341
10.10.2. Jump Conditions for Acceleration Waves 342
10.10.3. Propagation Condition 343
10.10.4. Stationary Discontinuity 345
10.11. Analysis of Plastic Flow Localization 346
10.11.1. Elastic-Plastic Materials 347
10.11.2. Localization in Pressure-Sensitive Materials 350
10.11.3. Rigid-Plastic Materials 356
10.11.4. Yield Vertex Effects on Localization 360
References 365

Chapter 11. MULTIPLICATIVE DECOMPOSITION 373
11.1. Multiplicative Decomposition $F = F^n \cdot F^p$ 373
11.1.1. Nonuniqueness of Decomposition 374
11.2. Decomposition of Strain Tensors 376
11.3. Velocity Gradient and Strain Rates 378
11.4. Objectivity Requirements 379
11.5. Jaumann Derivative of Elastic Deformation Gradient 381
11.6. Partition of Elastoplastic Rate of Deformation 382
11.7. Analysis of Elastic Rate of Deformation 385
11.7.1. Analysis of Spin Ω^p 387
11.8. Analysis of Plastic Rate of Deformation 388
11.8.1. Relationship between D^p and ω^p 390
11.9. Expression for D^p in Terms of F^n, F^p, and Their Rates 390
11.9.1. Intermediate Configuration with $\omega^p = 0$ 391
11.10. Isotropic Hardening 392
11.11. Kinematic Hardening 393
11.12. Rates of Deformation Due to Conveceted Stress Rate 396
11.13. Partition of the Rate of Lagrangian Strain 398
11.14. Partition of the Rate of Deformation Gradient 400
11.15. Relationship between $(P)^p$ and $(\dot{T})^p$ 402
11.16. Normality Properties 403
11.17. Elastoplastic Deformation of Orthotropic Materials 406
11.17.1. Principal Axes of Orthotropy 406
11.17.2. Partition of the Rate of Deformation 408
11.17.3. Isoclinic Intermediate Configuration 410
11.17.4. Orthotropic Yield Criterion 411
11.18. Damage-Elastoplasticity 411
11.18.1. Damage Variables 411
11.18.2. Inelastic and Damage Rates of Deformation 413
CONTENTS

11.18.3 Rates of Damage Tensors 415
11.19 Reversed Decomposition $F = F_p \cdot F_e$ 416
11.19.1 Elastic Unloading 419
11.19.2 Elastic and Plastic Rates of Deformation 420
References 422

Chapter 12. CRYSTAL PLASTICITY 429
12.1 Kinematics of Crystal Deformation 429
12.2 Kinetic Preliminaries 434
12.3 Lattice Response 436
12.4 Elastoplastic Constitutive Framework 437
12.5 Partition of Stress and Strain Rates 439
12.6 Partition of Rate of Deformation Gradient 441
12.7 Generalized Schmid Stress and Normality 445
12.8 Rate of Plastic Work 449
12.9 Hardening Rules and Slip Rates 452
12.10 Uniqueness of Slip Rates for Prescribed Strain Rate 455
12.11 Further Analysis of Constitutive Equations 457
12.12 Uniqueness of Slip Rates for Prescribed Stress Rate 460
12.13 Fully Active or Total Loading Range 462
12.14 Constitutive Inequalities 464
12.15 Implications of Hyushin’s Postulate 469
12.16 Lower Bound on Second-Order Work 471
12.17 Rigid-Plastic Behavior 473
12.18 Geometric Softening 475
12.19 Minimum Shear and Maximum Work Principle 477
12.20 Modeling of Latent Hardening 480
12.21 Rate-Dependent Models 484
12.22 Flow Potential and Normality Rule 486
References 488

Chapter 13. MICRO-TO-MACRO TRANSITION 493
13.1 Representative Macroelement 493
13.2 Averages over a Macroelement 494
13.3 Theorem on Product Averages 497
13.4 Macroscopic Measures of Stress and Strain 500
13.5 Influence Tensors of Elastic Heterogeneity 502
13.6 Macroscopic Free and Complementary Energy 503
13.7 Macroscopic Elastic Pseudomoduli 504
13.8 Macroscopic Elastic Pseudocomplicences 506
13.9 Macroscopic Elastic Moduli 508
13.10 Plastic Increment of Macroscopic Nominal Stress 508
13.10.1 Plastic Potential and Normality Rule 510
13.10.2 Local Residual Increment of Nominal Stress 511
13.11 Plastic Increment of Macroscopic Deformation Gradient 512
13.11.1. Plastic Potential and Normality Rule 514
13.11.2. Local Residual Increment of Deformation Gradient 515
13.13. Plastic Increment of Macroscopic Lagrangian Strain 518
13.15. Nontransmissibility of Basic Crystal Inequality 524
13.16. Analysis of Second-Order Work Quantities 526
13.17. General Analysis of Macroscopic Plastic Potentials 528
13.17.1. Deformation Space Formulation 529
13.17.2. Stress Space Formulation 531
13.18. Transmissibility of Iyushin’s Postulate 533
13.20. Macroscopic Flow Potential for Rate-Dependent Plasticity 537
References 538

Chapter 14. POLYCRYSTALLINE MODELS 543
14.1.1. Polycrystalline Axial Stress-Strain Curve 547
14.1.2. Stresses in Grain 551
14.1.3. Calculation of Polycrystalline Yield Surface 553
14.2. Eshelby’s Inclusion Problem of Linear Elasticity 556
14.2.1. Inclusion Problem 557
14.2.2. Inhomogeneity Problem 559
14.3. Inclusion Problem for Incrementally Linear Material 561
14.3.1. Dual Formulation 564
14.3.2. Analysis of Concentration Tensors 565
14.3.3. Finite Deformation Formulation 567
14.4. Self-Consistent Method 569
14.4.1. Polarization Tensors 572
14.4.2. Alternative Expressions for Polycrystalline Moduli 573
14.4.3. Nonaligned Crystals 574
14.4.4. Polycrystalline Pseudomoduli 575
14.5. Isotropic Aggregates of Cubic Crystals 578
14.5.1. Voigt and Reuss Estimates 580
14.6. Elastoplastic Crystal Embedded in Elastic Matrix 581
14.6.1. Concentration Tensor 583
14.6.2. Dual-Concentration Tensor 585
14.6.3. Locally Smooth Yield Surface 586
14.6.4. Rigid-Plastic Crystal in Elastic Matrix 589
14.7. Elastoplastic Crystal Embedded in Elastoplastic Matrix 590
14.7.1. Locally Smooth Yield Surface 593
14.7.2. Rigid-Plastic Crystal in Rigid-Plastic Matrix 594
14.8. Self-Consistent Determination of Elastoplastic Moduli 595
14.8.1. Kröner-Budiánsky-Wu Method 598
14.8.2. Hutchinson’s Calculations 599
CONTENTS

14.8.3. Berveiller and Zaoui Accommodation Function 600
14.8.4. Lin's Model 601
14.8.5. Rigid-Plastic Moduli 602
14.9. Development of Crystallographic Texture 603
14.10. Grain Size Effects 608
References 612

Author Index 623

Subject Index 629