MIDTERM 1 Equation Sheet MAE101B del Alamo section

Note: For simplicity, you are allowed to use $\pi = 3.14$, $g = 10 m/s^2$ in the numerical calculations of this midterm.

Mass conservation equation

Q = AV = const $A = \frac{\pi D^2}{4}$ in a pipe (D = pipe diameter, V = average velocity)

Reynolds Numbers

Reynolds number based on the pipe diameter: $\operatorname{Re}_{D} = \frac{\rho V D}{\mu}$ Friction Reynolds number based on the roughness height $\operatorname{Re}_{\varepsilon} = \frac{\rho u_{\tau} \varepsilon}{\mu}$

(ρ = fluid density, μ = fluid viscosity, u_{τ} = friction velocity, ε = roughness height)

Energy Equation Between Two Arbitrary Sections 1 and 2

$$\frac{p_2 - p_1}{\rho g} + (\frac{V_2^2}{2g} - \frac{V_1^2}{2g}) + z_2 - z_1 = \frac{\dot{W}_{pump}}{\rho g Q} - \frac{\dot{W}_{turbine}}{\rho g Q} - h_f - h_m$$

(p = pressure, z = vertical coordinate, g = gravitational acceleration)

Friction head loss: $h_f = \frac{V^2}{2g} \frac{L}{D} f$ (*f* is the Darcy friction factor and L the pipe length)

Minor head losses: $h_m = \frac{V^2}{2g}K$

(K is the loss coefficient across the element that generates the friction losses, i.e. a reservoir exit)

Friction velocity:
$$\frac{u_{\tau}}{V} = (\frac{f}{8})^{1/2}$$

Laminar / Turbulent Regimes

 $\text{Re}_D < 2300$ laminar flow $\text{Re}_D > 2300$ turbulent flow

Hydrodynamically smooth / rough Regimes

 $0 < \text{Re}_{\varepsilon} < 5$ hydraulically smooth pipe $5 < \text{Re}_{\varepsilon} < 70$ hydraulically transitional pipe $\text{Re}_{\varepsilon} > 70$ hydraulically fully rough pipe

