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Micro/nano-scale propulsion has attracted considerable recent attention due to its promise for

biomedical applications such as targeted drug delivery. In this paper, we report on a new experimental

design and theoretical modelling of high-speed fuel-free magnetically-driven propellers which exploit

the flexibility of nanowires for propulsion. These readily prepared nanomotors display both high

dimensional propulsion velocities (up to z 21 mm s�1) and dimensionless speeds (in body lengths per

revolution) when compared with natural microorganisms and other artificial propellers. Their

propulsion characteristics are studied theoretically using an elastohydrodynamic model which takes

into account the elasticity of the nanowire and its hydrodynamic interaction with the fluid medium. The

critical role of flexibility in this mode of propulsion is illustrated by simple physical arguments, and is

quantitatively investigated with the help of an asymptotic analysis for small-amplitude swimming. The

theoretical predictions are then compared with experimental measurements and we obtain good

agreement. Finally, we demonstrate the operation of these nanomotors in a real biological environment

(human serum), emphasizing the robustness of their propulsion performance and their promise for

biomedical applications.
1 Introduction

Micro/nano-scale propulsion in fluids is challenging due to the

absence of the inertial forces exploited by biological organisms

on macroscopic scales. The difficulties are summarized by Pur-

cell’s famous ‘‘scallop theorem’’,1 which states that a reciprocal

motion (a deformation with time-reversal symmetry) cannot

lead to any net propulsion at low Reynolds numbers. The

Reynolds number, Re ¼ rUL/m, measures the relative impor-

tance of inertial to viscous forces, where r and m are the density

and shear viscosity of the fluid, while U and L are the charac-

teristic velocity and length scales of the self-propelling body.

Natural microorganisms inhabit a world where Re � 10�5

(flagellated bacteria) to 10�2 (spermatozoa),2,3 and they achieve

their propulsion by propagating traveling waves along their

flagella (or rotating them) to break the time-reversibility

requirement, and hence escape the constraints of the scallop

theorem.2,4 Because of the potential of nano-sized machines in

future biomedical applications,5 such as targeted drug delivery

and microsurgery, interdisciplinary efforts by scientists and
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engineers have recently resulted in major advances in the design

and fabrication of artificial micro/nano-scale locomotive

systems.6–9

Broadly speaking, these micro/nano-propellers can be classi-

fied into two categories, namely chemically-powered nano-

motors6–8 and externally-powered propellers.9 Chemically-

powered nanomotors generally deliver higher propulsion speeds,

but due to the requirements for chemical fuels and reactions,

their applications in real biological environments face a number

of challenges. Externally-powered propellers are often actuated

by external magnetic fields. Note that these externally-powered

locomotive systems are often referred to as micro- or nano-

swimmers in the literature, but strictly speaking, they do not

represent true self-propulsion because of the presence of non-

zero external torques. In this paper, we reserve the terminology,

‘‘swimmers’’, to force-free and torque-free self-propelling bodies

and refer to externally-powered locomotive systems as propel-

lers, or motors.

According to their propulsion mechanisms, externally pow-

ered propellers can be further categorized into three groups (see

the summary presented in Table 1). The first group includes

helical propellers,13,14 as inspired by helical bacterial flagella,11

which propel upon rotation imposed by external magnetic fields.

The second group of propellers relies on a surface to break the

spatial symmetry and provide one additional degree of freedom

to escape the constraints from the scallop theorem, and hence are

termed surface walkers.15–18 Finally, the third type of propellers,

referred to as flexible propellers, exploits the deformation of

flexible filaments for propulsion. The new nanomotor presented
Soft Matter, 2011, 7, 8169–8181 | 8169
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Table 1 Comparison between natural micro-organisms and different experimentally realized externally-powered fuel-free propellers, divided into three
main categories: (a) flexible propellers; (b) rigid helical propellers; (c) surface walkers (i.e. requiring a surface for propulsion). We report the maximum
dimensional speeds Umax and the maximum dimensionless speeds ~Umax ¼ U/Lf, and their corresponding characteristic lengths L and actuation
frequencies f.

Type of Propellers Schematic/Micrograph
Maximum dimensional speed
Umax [mm s�1]

Maximum dimensionless speed
~Umax ¼ U/Lf (�10�3)

Escherichia coli11
L ¼ 10 mm

U z 30 mm s�1 f ¼ 100 Hz
~U z 30

Flexible propeller10
L ¼ 24 mm

~Umax z 94 f ¼ 10 Hz
U z 22 mm s�1a

Flexible propeller12
L ¼ 6.5 mm L ¼ 6.5 mm

Umax ¼ 6 mm s�1 f ¼ 15 Hz ~Umax ¼ 77 f ¼ 7 Hz
~U ¼ 62 U ¼ 3.5 mm s�1

Flexible propeller (the current paper)

L ¼ 5.8 mm L ¼ 5.8 mm

Umax ¼ 21 mm s�1 f ¼ 35 Hz ~Umax ¼ 164 f ¼ 15 Hz
~U ¼ 103 U ¼ 14.3 mm s�1

Helical propeller13
L ¼ 38 mm L ¼ 38 mm

Umax ¼ 18 mm s�1 f ¼ 30 Hz ~Umax ¼ 21 f ¼ 10 Hz
~U ¼ 16 U ¼ 8 mm s�1

Helical propeller14
L ¼ 2 mm

Umax ¼ 40 mm s�1 f ¼ 150 Hz
~U ¼ 133

Surface walker15,16
L ¼ 4 mm L ¼ 4 mm

Umax ¼ 3.5 mm s�1 f ¼ 15 Hz ~Umax ¼ 80 f ¼ 10 Hz
~U ¼ 58 U ¼ 3.2 mm s�1

Surface walker17
L ¼ 3 mm

Umax ¼ 12 mm s�1
f ¼ 32 Hz
~U ¼ 125

Surface walker18
L ¼ 12 mm L ¼ 4 mm

Umax ¼ 37 mm s�1 f ¼ 35 Hz ~Umax ¼ 90 f ¼ 10 Hz
~U ¼ 88 U ¼ 17 mm s�1

a Estimated from the dimensionless speed in Ref. 10.

8170 | Soft Matter, 2011, 7, 8169–8181 This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 (a) Schematic representation of a Ni–Ag nanowire motor, and

notation for the model. (b) Scanning Electron Microscopy (SEM) image

showing the topography of Ni–Ag nanowire which was partially dis-

solved in 5% H2O2 for 1 min.
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in this paper falls into this category. Dreyfus et al.10 were the first

to realize the idea experimentally by fabricating a 24 mm long

propeller based on a flexible filament, made of paramagnetic

beads linked by DNA, and attached to a red blood cell. Actua-

tion was distributed along the filament by the paramagnetic

beads; the presence of the red blood cell broke the front–back

symmetry, and allowed the propagation of a traveling wave

along the filament, leading to propulsion. Recently, Gao et al.12

proposed a flexible nanowire motor made of only metallic

nanowires (with three segments of Au, Ag and Ni) readily

prepared using a template electrodeposition approach, and able

to swim at speeds of up toUz 6 mm s�1 for a size of Lz 6.5 mm.

In contrast to the propeller proposed by Dreyfus et al.,10 the

actuation in the device of Gao et al.12 acted only on the magnetic

Ni portion of the filament (the head), while the rest of nanomotor

was passive.

In the current paper, we present both a new design and

a theoretical modelling approach for a flexible nanowire motor

which offers an improved propulsion performance (up toUz 21

mm s�1 at an actuation frequency (f) of 35 Hz), approaching thus

the speed of natural microscopic swimmers, such as Escherichia

coli (U z 30 mm s�1 at f ¼ 100 Hz)11 while using a lower

frequency. The effect of size and frequency can be scaled off by

nondimensionalizing the propulsion speed by the intrinsic

velocity scale (the product of body length and frequency, Lf) to

obtain a dimensionless propulsion speed, U/Lf, which can be

interpreted as the number of body lengths travelled per revolu-

tion of actuation (or also referred to as the stride length in terms

of body length in the biomechanics literature). The nanomotor

put forward in this paper displays remarkable dimensionless

propulsion speeds compared with natural microorganisms and

other artificial locomotive systems (see summary of the literature

and the current results in Table 1).

After presenting the experimental method and its perfor-

mance, we study the propulsion characteristics of this new high-

speed flexible nanomotor theoretically via an analytical model.

The critical role of flexibility in this mode of propulsion is

established first using simple physical arguments, followed by an

asymptotic analysis which predicts the filament shape and pro-

pulsion speed in different physical regimes. The theoretical

predictions are compared with experimental measurements and

we obtain good agreement. The improved propulsion perfor-

mance of the new fuel-free nanowire motor makes it attractive

for future biomedical applications, which we further illustrate by

demonstrating the performance of the propulsion mechanism in

an untreated human serum sample.
2 High-speed propulsion

2.1 Nanomotor design and fabrication

The nanowire motors described in this paper were prepared using

a common template-directed electrodeposition protocol. In

contrast to the previous three-segment (Ni–Ag–Au) design by

Gao et al.,12 the new design relies primarily on a 1.5 mm-long Ni

head and a 4 mm-long flexible Ag tail (see a Scanning Electron

Microscopy (SEM) image in Fig. 1b). A 0.3 mm-long Au segment

was also included (adjacent to the Ni segment) to protect the Ni

segment from acid etching during the dissolution of the Cu
This journal is ª The Royal Society of Chemistry 2011
sacrificial layer, and to allow functionalizing the motor with

different types of biomolecules and cargos. Both the Ni and Au

segments have a diameter of 200 nm. While the Ni segment has

a length of 1.5 mm useful to generate sufficient magnetic torques,

only a very short segment of Au (0.3 mm) was used to minimize

the overall fluid drag of the nanomotor. Flexibility of the silver

segment (Fig. 1b) was achieved by its partial dissolution in

hydrogen peroxide solution.12 The dissolution step leads also to

hydroxyl products that chemisorb on the Ag surface and result in

AgOH and Ag2O surface products. The dissolved Ag filament

had a reduced diameter of approximately 100 nm. For the

hydrodynamic model considered in this paper, the rigid short Au

segment is hydrodynamically indistinguishable from the rigid Ni

segment, and hence the Ni and Au segments are considered in the

model as a single rigid 1.8 mm-long segment (1.5 mmNi + 0.3 mm

Au), i.e. the nanomotor has a total length of 5.8 mm.

The speed of a nanomotor was measured using MetaMorph

7.6 software (Molecular Devices, Sunnyvale, CA), capturing

movies at a frame rate of 30 frames per second. The trajectory

was tracked using a MetaMorph tracking module and the results

were statistically analyzed using Origin software. The speed

measured in this manner is a time-averaged distance travelled per

unit time. The measurements were performed when the nano-

motors had reached an equilibrium position (in which case the

image of the nanowire would stay focused under the micro-

scope), which leads therefore to the time-averaged measurement

of U in the laboratory frame. The equilibrium distance between

the nanomotor and the bottom surface was estimated, by varying

the focal plane of the microscope, to be at the scale of a few

microns. The detailed experimental procedures can be found in

ESI.†
2.2 Propulsion performance

The flexible nanomotors were driven by a magnetic field with an

unsteady component of amplitude H1, rotating sinusoidally in

a plane perpendicular to a constant component, H0. The

magnetic field precessed about the direction of the constant

magnetic field at an angular frequency U ¼ 2pf. The nano-

motor was observed to propel unidirectionally (straight trajec-

tories) in the direction of the constant magnetic field. In Fig. 2

we show two nearby identical nanomotors under the actuation

of the external magnetic field at f ¼ 20 Hz (see Video 1, ESI†).

These two nanowires propel at essentially the same swimming

speed along the same direction (the red lines are their
Soft Matter, 2011, 7, 8169–8181 | 8171
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Fig. 2 Two identical nanomotors swimming under the same magnetic

field at a frequency f ¼ 20 Hz. The red lines display the superimposed

location of the nanomotors over a 2-second interval.

Fig. 3 Physical explanation of the necessity of chiral deformation in

achieving propulsion. If the deformation is not chiral, the kinematics of

the mirror image of the nanowire is identical to the time-reversed kine-

matics, leading to U ¼ 0.
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trajectories in a period of 2 s), illustrating the stability of this

mode of propulsion. For helical propellers,13,14 swimming is due

to the rotation of rigid chiral objects and hence the swimming

kinematics scales linearly with the applied field: a reversal of the

direction of rotation of the magnetic field leads to propulsion in

the opposite direction for these rigid chiral objects. In contrast,

the flexible nanowire motors here exhibit uni-directional

swimming, independent of the rotational direction of the

external magnetic field. This is due to the nonlinear swimming

kinematics arising from the flexibility of the nanowire. This

simple test illustrates the fundamental difference between the

propulsion of rigid chiral objects and flexible propellers. In our

case, the direction of swimming can be controlled by altering

the orientation of the axial constant component of the magnetic

field, H0.

We further show in Fig. 5(a) the trajectories of the same

nanomotor at different frequencies (see captions for details) over

a 3 second period (see Video 2, ESI†). Upon the settingsH1 ¼ 10

G,H0¼ 9.5 G, and f¼ 15 Hz, we are able to achieve a propulsion

speed of U ¼ 14.3 � 2.46 mm s�1. The speed of 20 different

nanomotors were measured, with all other experimental condi-

tions kept fixed; the values of the swimming speeds, U, reported

in this paper are averaged quantities over these different nano-

motors. One meaningful method of comparing the propulsion

speed between various propeller designs consists in scaling the

speed with the only intrinsic characteristic velocity scale of the

propeller Lf, where L is a characteristic body length, and f is

a characteristic frequency. This allows to quantify the distance

travelled by the propeller in terms of body lengths per revolution

of rotation. Escherichia coli bacteria11 typically propel with U/Lf

z 0.03 body lengths per revolution, while the flexible nanomotor

reported here was able to travel 0.164 body lengths per revolu-

tion at f ¼ 15 Hz (see Table 1 for detailed comparison). The

maximum dimensional speed achieved was U ¼ 20.8 � 3.07 mm

s�1 with f ¼ 35 Hz, corresponding in that case to z0.1 body

lengths per revolution. We then experimentally measured the

speed-frequency characteristics of these flexible nanowire motors

(results shown as symbols in Fig. 5b). In the next section we

present a simple physical model for the locomotion of flexible

nanomotors, and compare our theoretical predictions with these

experimental measurements.
8172 | Soft Matter, 2011, 7, 8169–8181
3 A minimal model for flexible nanomotors

3.1 Chiral propulsion

In this section, we illustrate the working principles of the flexible

nanowire motors. First, we establish that it is essential for the

nanowire to deform in a chiral fashion in order to achieve

propulsion.

For low Reynolds number incompressible flows, the governing

equations are the Stokes equation Vp ¼ mV2u, and the continuity

equation V$u ¼ 0, where m is the shear viscosity, and p and u are

the fluid pressure and the velocity field respectively. Two prop-

erties of the Stokes equation can be used to deduce the necessity

of the nanowire being chiral in order to achieve net swimming, as

shown by Childress.3 First, it can be shown that the mirror image

of a Stokes flow is also a Stokes flow. Therefore, suppose

a nanowire swims with a velocity U along its rotation axis, then

its mirror image will also swim at the same velocityU (see Fig. 3).

Second, since time does not appear in Stokes equation, it only

enters the problem as a parameter through the boundary

conditions. This leads to the time reversibility of the Stokes

equation, meaning that the velocity field u reverses its sign upon

a t / �t time reversal. In the context of our nanowire motors,

suppose the nanowire propels at a velocity U, then when time is

reversed, the nanowire will propel at a velocity�U (Fig. 3). If the

deformation of the nanowire is not chiral, the mirror image of the

nanowire can be superimposed with the original nanowire, and

the only thing reversed in the mirror image is the rotational

kinematics (i.e. if the original nanowire rotates clock-wisely, its

mirror image will have exactly the same shape but rotates

counter-wisely; note that the translational velocity is unchanged

in the mirror image). In this case, one can also notice that the

kinematics in the mirror image is the same as a time reversal of

the original kinematics, except that the translational velocity is

also reversed for the case of time-reversal (�U, due to the time-

reversibility of Stokes flows). In other words, we have now two
This journal is ª The Royal Society of Chemistry 2011
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nanowires (a mirror-imaged nanowire and a time-reversed

nanowire) having exactly the same deformation kinematics but

with opposite translational velocity (�U ¼ U), and therefore we

conclude that this can happen only if the translational velocity is

identically zero (U ¼ 0). Therefore non-chiral deformation

cannot lead to net propulsion. This simple physical argument

shows that a combination of rotational actuation and nanowire

flexibility is critical for this mode of propulsion. Recently, the

dynamics of tethered elastic filaments actuated by precessing

magnetic fields has been studied19–26 and chiral deformation

along the filament has been found to produce propulsive force

and fluid pumping. The swimming behaviours of an untethered

flexible magnetic filament displaying chiral deformation was also

addressed computationally.27
3.2 Model setup

Nextwe showthat a simplemodel taking intoaccount the elasticity

of the nanowire and its hydrodynamic interaction with the fluid

medium captures the essential physics and provides quantitative

agreement with experimental measurements.We first solve for the

detailed shape of the silver filament, we then predict the propulsion

speed, and finally we compare our results with the experimental

measurements. Theoretical modelling of this type belongs to the

general class of elastohydrodynamical problems, which has

recently received a lot of attention in the literature.22,28–34

Under our theoretical framework, we model the magnetic Ni

segment as a rigid slender rod (radius am ¼ 100 nm, length Lm ¼
1.8 mm) (the short Au segment is considered to be part of the rigid

rod in this model, as discussed above, see Fig. 1), and the flexible

Ag nanowire (radius a ¼ 50 nm, length L ¼ 4 mm) as a classical

Euler–Bernoulli beam.35 We then employ a local fluid drag

model, known as resistive force theory,4 to describe the fluid–

body interaction. The use of a local and linear theory signifi-

cantly simplifies the analysis and is expected to provide quanti-

tative agreement because geometric nonlinearities and nonlocal

hydrodynamic effects were proven to be subdominant for gentle

distortions of a slender body in previous work.29,32,33

Notation for the model is shown in Fig. 1 (a). The external

magnetic field precesses about the z-axis in the clock-wise direc-

tion, and can be described as H ¼ (H1cosUt, �H1sinUt, H0)¼
H0(hcosUt, �hsinUt, 1), where h ¼ H1/H0 is the dimensionless

relative strength of the rotating (H1) and constant (H0) compo-

nents of the magnetic field. We study the regime where the

nanowire follows synchronously the precessing magnetic field,

rotating at the same angular frequency (U) as the magnetic field

about the z-axis. In addition, we can move in a rotating frame in

which the magnetic field is fixed and the shape of the flexible

nanowire does not change with time. In this frame, the precessing

magnetic field is given by H ¼ H0(h, 0, 1), and the nanowire has

a non-changing shape r(s) ¼ (rt(s), z(s)) ¼ (x(s), y(s), z(s)) in

a background flow, vb, rotating counter-clockwise about the

z-axis: vb ¼ Uez � rt ¼ U(�y, x, 0), where ez is the unit vector in

the z-direction and s is the arclength parameter along the filament.
3.3 Elastohydrodynamics at low Reynolds number

We describe the fluid-body interaction by resistive force theory,

which states that the local fluid drag depends only on the local
This journal is ª The Royal Society of Chemistry 2011
velocity of the filament relative to the background fluid (although

in a non-isotropic fashion). This is thus a local drag model which

ignores hydrodynamic interactions between distinct parts of the

filament, but was shown to be quantitatively correct for gentle

distortions of the filament shape.29,32,33 The viscous force acting

on the filament is thus expressed as

fvis ¼ �[xktt + xt(1 � tt)]$u, (1)

where t(s) is the local tangent vector, u(s) ¼ U � vb is the local

velocity of the filament relative to the background flow vb, andU

is the swimming velocity of the nanomotor. Here, xk and xt are

the tangential and normal drag coefficients of a slender filament

(L [ a) and are given approximately by

xk ¼
2pm

logðL=aÞ � 1=2
; xt ¼ 4pm

logðL=aÞ þ 1=2
; (2)

where m is the viscosity of the fluid (water, m ¼ 10�3 N s m�2).

Since the Ni and Ag segments have different aspect ratios (Lm/am
for the Ni segment), a different set of drag coefficients (xmk, xmt)

is used for the rigid segment.

When the flexible Ag filament of the nanomotor is deformed,

elastic bending forces arise trying to minimize the bending

energy. This elastic bending force can be obtained by taking

a variational derivative of the energy functional

E ¼ 1

2

ðL
0

Aðv2r=vs2Þ2ds, where A is the bending stiffness of the

material. The elastic bending force is then given by

felastic ¼ �A
v 4r

vs 4
$ (3)

Since we are in the low Reynolds number regime, inertial forces

are negligible, and the local viscous fluid forces balance the

elastic bending forces, fvis + felastic ¼ 0, which yields the equation

governing the filament elastohydrodynamics

�
xkttþ xtð1� ttÞ�$u ¼ �A

v 4r

vs 4
$ (4)

The flexible Ag filament is clamped to the magnetic Ni segment,

which is assumed to be rigid and straight. Hence, its position

vector is given by rm(s) ¼ r|s¼L + t|s¼L(s � L), where s ˛ [L, L +

Lm].
3.4 Nondimensionalization

We now nondimensionalize the variables and equations and

identify the relevant dimensionless parameters governing the

physics of this problem. Specifically, we scale lengths by L,

rotation rates by U ¼ 2pf, times by U�1, velocities by LU, fluid

forces by xtL2U, fluid torques by xtL3U, elastic forces by A/L2,

and elastic torques by A/L. Using the same symbols for

simplicity, the dimensionless elastohydrodynamic equation now

reads

�
g�1ttþ ð1� ttÞ�$u ¼ �Sp�4 v

4r

vs 4
; (5)

where we have defined g¼ xt/xk, and Sp¼ L(xtU/A)1/4 is termed

the sperm number, which characterizes the relative influence of

the fluid and bending forces.
Soft Matter, 2011, 7, 8169–8181 | 8173
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3.5 Asymptotic analysis

The geometrical nonlinearity of eqn (5) renders the elastohy-

drodynamic equation only solvable via numerical simulation in

most situations. Here we are able to illustrate the essential

physics of flexible nanomotor propulsion analytically via an

asymptotic analysis for the case where h ¼ H1/H0 is small. Such

an approximation drops the geometrical nonlinearities and, as

will be shown below, separates the task of determining the fila-

ment shape and swimming velocities of the nanomotor, as the

axial velocities are one order of magnitude smaller than the

transverse velocities, the axial swimming kinematics being thus

slaved to the transverse kinematics.34 Even with this simple

model, we find that the theoretical predictions agree well with the

experimental measurements. In the experiments, we do not

observe very significant distortion of the flexible Ag filament,

which might explain the success of this simple model.

As the nanomotor was observed to propel unidirectionally in

the z-direction in the experiments (i.e. the direction about which

the actuating magnetic field precesses), we write the swimming

speed as U ¼ (0, 0, U) and aim at predicting the leading order

swimming speed in h. We do not expect any O(h0) deformation

nor swimming velocities, and hence the appropriate expansions

for the deformation of the nanowire and the swimming speed are

given by

rt(z) ¼ hrt(z) + h2rt(z) + O(h3), (6)

U ¼ hU1 + h2U2 + O(h3), (7)

where we have s z z + O(h2).

The elastoydrodynamic equation is a fourth-order partial

differential equation in space, and needs thus to be supplied with

four boundary conditions. We prescribe dynamic boundary

conditions at the free end z ¼ 0, requiring it to be force-free and

torque-free, which is v3r/vz3(z ¼ 0) ¼ 0 and v2r/vz2(z ¼ 0) ¼
0 respectively. Since the deformed shape rotates about the z-

direction, without loss of generality, we assume the Ni head lies

on the x � z plane. We then prescribe kinematic boundary

conditions at the other end z ¼ 1: rt(z ¼ 1) ¼ (b,0) and vrt/vz

(z¼ 1)¼ (h,0). From experimental observations, the value of b is

seen to be negligibly small (b z 0) and is difficult to measure

accurately. Here, for simplicity, we thus take b ¼ 0 in our

calculations below. In this geometric model, we assume that the

slope of the magnetic Ni head, vx(z)/vz(z ¼ 1), follows the slope

of the external field (h ¼ H1/H0), which is a good approximation

when the magnetic field strength is strong or when the frequency

of actuation is low, such that the Ni head can align closely with

the external magnetic field. The magnitude of the magnetic tor-

que can be compared with the viscous torque acting on the Ni

head, and their ratio is given by the so-called Mason number,

Ma. The ratio varies from 0.018–0.12, for frequency varying

form 5 Hz to 35 Hz. One can also compare the magnetic torque

to the characteristic viscous torque acting on the Ag filament,

and it varies from 0.13–0.93, for the same range of frequency. In

both cases, Ma is thus typically small and is at most O(1) at high

frequencies. Therefore, within the range of frequency explored in

the experiment, our geometrical model is considered to be a valid

approximation. At higher frequencies, we would get Ma [ 1,

which would play a role in the boundary condition at z ¼ 1. In
8174 | Soft Matter, 2011, 7, 8169–8181
that regime, the viscous torque would dominate the typical

actuation torque by the magnetic field, and the Ni segment would

therefore not be able to align with the magnetic field closely. We

expect that the slope of the Ni rod might then be smaller than

that of the magnetic field, and the phase lag between the motion

of the Ni segment and the magnetic field could be substantial. As

a result, a degradation in the propulsion performance would be

expected to occur in this regime.

3.5.1 Determining the flexible filament shape: O(h) calcula-

tions. At order O(h), the local viscous force is given by fvis ¼ h

(�y1(z), x1(z), �g�1U1)+ O(h2). From here, we can integrate the

O(h) local viscous force in the z-direction over the entire nano-

motor and since this total force needs to vanish because of the

absence of external forces, we find U1 ¼ 0: swimming occurs

therefore at order O(h2). The elastic force is given by felastic ¼ �h

Sp�4(v4x1/vz
4, v4y1/vz

4, 0) + O(h2). Balancing the local viscous

and elastic forces in the transverse directions yield the hyper-

diffusion equations32

�y1 ¼ Sp�4 v
4x1

vz4
; (8)

x1 ¼ Sp�4 v
4y1

vz4
; (9)

which govern the first order filament shape. The general solution

to this system of partial differential equations is given by

x1ðzÞ ¼
X8

n¼1

An expðSp rnzÞ; (10)

y1ðzÞ ¼
X8

n¼1

�Anr
4
n expðSp rnzÞ; (11)

where rn is the n-th eight roots of �1, and An are complex

constants to be determined by the boundary conditions. The

boundary conditions to this order at z ¼ 0 are given by v3x1/

vz3(z ¼ 0) ¼ v3y1/vz
3(z ¼ 0) ¼ v2x1/vz

2(z ¼ 0) ¼ v2y1/vz
2(z ¼ 0) ¼

0. The appropriate boundary conditions at z ¼ 1 are given by

x1(z ¼ 1) ¼ y1(z ¼ 1) ¼ 0, vx1/vz(z ¼ 1) ¼ 1, and vy1/vz(z ¼ 1) ¼
0. The O(h) filament shape is now completely determined.

3.5.2 Determining the swimming speed: O(h2) calculations. At

order O(h2), the local viscous fluid force acting on the flexible

filament in the z-direction is given by

ez$fvis2 ¼
�ðg�1 � 1ÞLðzÞ � g�1U2; 0# z\1;

xmt

xt

�� �
g�1
m � 1

�
LðzÞ � g�1

m U2

�
; 1\z# 1þ lm;

8<
:

where lm ¼ Lm/L, and we have introduced the function L(z) ¼
y1(z)vx1/vz(z) � x1(z)vy1/vz(z). Since the nanomotor is overall

force-free, the second order swimming speed U2 can be deter-

mined by integrating the local viscous fluid in the z-direction over

the entire nanomotor and requiring this total force to vanish, i.e.ð1þlm

0

ez$fvis2dz ¼ 0; (12)

and we see that the swimming speed is slaved to the first order

filament shape (x1(z), y1(z)) via the function L(z). Upon
This journal is ª The Royal Society of Chemistry 2011
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simplification with eqn (8) and (9) and the boundary conditions

at z ¼ 0, we obtain

U2 ¼ 1� g

Sp4ð1þ almÞ

�
"
vx1

vz

v3x1

vz3
� 1

2

�
v2x1

vz2

�2

þ vy1

vz

v3y1

vz3
� 1

2

�
v2y1

vz2

�2
#
z¼1

;

(13)

where a ¼ xmk/xk. In dimensional form, the leading order

swimming speed, is given by

U ¼ h2
A
�
xk � xt

�
xt

�
Lxk þ Lmxmk

��
"
vx1

vz

v3x1

vz3
� 1

2

�
v2x1

vz2

�2

þ vy1

vz

v3y1

vz3
� 1

2

�
v2y1

vz2

�2
#
z¼1

þO
�
h3
�
:

(14)

As in previous work,22,23,33,34,36,37 we observe that this mode of

propulsion relies on the drag anisotropy of slender filaments, g¼
xt/xk s 1. Indeed, when g ¼ 1, the swimming speed vanishes.

Note that for very slender filaments, we have gz 2 (see eqn (2)).

We also see that the swimming speed scales quadratically with

the relative strength of the rotating and constant components of

the magnetic field,U� h2, for h� 1. This scaling is confirmed by

a complementary asymptotic calculation valid for low sperm

numbers (see Appendix for details).

Next, we plot our predicted dimensionless second order

swimming speed as a function of the sperm number Sp (Fig. 4a)

together with the predicted filament shapes (Fig. 4b), and observe

three different characteristic regimes. The sperm number Sp is

the most important dimensionless group governing the pro-

pulsion performance. For Sp � 1, bending forces dominate and

the filament is effectively straight (Fig. 4b-i). Hence, the filament

motion is almost kinematically reversible, and it produces small

propulsion. Quantitatively, a small Sp asymptotic analysis
Fig. 4 (a) Variation of the dimensionless propulsion speed at second order, U

three-dimensional shape of the Ag nanowire at equal time intervals (t ¼ [T/6

rotating magnetic field), for four different sperm numbers. The Ni head is no

This journal is ª The Royal Society of Chemistry 2011
presented in the Appendix reveals that the dimensionless swim-

ming speed grows with the fourth power of the sperm number,U2

� Sp4, for Sp� 1. On the other hand, from eqn (10) and (11), we

see that most deflection is concentrated around a small region

0 # z < 1/Sp, when Sp [ 1, due to the exponential decay of the

solution amplitude. In this regime (Sp [ 1), the viscous forces

dominate, and propulsion is inefficient because a large portion of

the filament has small deflection and thus experiences drag but

contributes to no thrust (Fig. 4b-iii & iv). As a result, we expect

optimal swimming to occur when Sp is of order one, where the

total drag of the nanomotor is kept low while the drag-induced

bending is fully exploited to produce propulsion. This is

confirmed in our calculation, and we observe the optimal sperm

number to occur at Sp z 2, which gives a maximum propulsion

speed of U2 z 0.042 (Fig. 4a). The filament shape close to

optimal swimming (Sp ¼ 2) is shown in Fig. 4b-ii.

3.6 Comparison with experimental measurements

Under fixed magnitude of the rotating and constant components

of the magnetic field, the swimming speed of a nanomotor was

measured with the frequency of the magnetic field varying

between 0 to 35 Hz. The experiment was repeated on the same

nanomotor for three different settings of magnetic field strengths

(shown using three different symbols with error bars in Fig. 5b;

a total of 20 different nanowires were sampled). The rotating

magnetic field strength H1 was kept constant at H1 ¼ 10 G, and

the constant magnetic field strength was set to be H0 ¼ 14.3 G

(blue squares), H0 ¼ 11.8 G (red circles), and H0 ¼ 9.5 G (green

diamonds).

We then compare in Fig. 5b our theoretical predictions (solid

lines) with experimental measurements, plotted as swimming

velocity vs. frequency (main figure) or sperm number (inset). In

our theoretical model, the value of the bending stiffness A of the

flexible filament is unknown. Standard bending stiffness of pure

silver is inapplicable here since the dissolution of silver in
2, with the sperm number, Sp. (b) Superimposed snapshots of predicted

,2T/6,.,5T/6,T] from dark to bright color, where T is the period of the

t shown here for simplicity.

Soft Matter, 2011, 7, 8169–8181 | 8175
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Fig. 5 Dependence of the nanomotor swimming speed on the actuation frequency. (a) Superimposed trajectories of the same Ni–Ag nanomotor at

different frequencies f ¼ 5, 10, 15, 30 Hz (as indicated) over a 3-second period (red lines), with H1 ¼ 10 G and H0 ¼ 9.5 G. The scale bar is 10 mm. (b)

Speed-frequency characteristics of flexible nanowire motors. Symbols represent experimental data for different setups of the magnetic field: blue squares

(H1 ¼ 10 G, H0 ¼ 9.5 G); red circles (H1 ¼ 10 G, H0 ¼ 11.8 G); green diamonds (H1 ¼ 10 G, H0 ¼ 14.3 G). Error bars show standard deviations of the

measured speeds (20 samples). The solids lines show the theoretical predictions (eqn (14)) with A ¼ 3.6 � 10�24 N m2. The inset in (b) displays the

dependence of the swimming speed on the sperm number, Sp.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

31
 A

ug
us

t 2
01

1
Pu

bl
is

he
d 

on
 2

1 
Ju

ly
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

50
3H

View Online
hydrogen peroxide rendered the filament a porous structure with

significantly reduced strength and a different chemical compo-

sition (Ag2O, AgOH). A value of A¼ 3.6� 10�24 N m�2 fits, with

the least total squared errors, the experimental data withH1 ¼ 10

G,H0 ¼ 14.3 G (blue squares), which is the case where our model

is expected to work best as the ratio h ¼ H1/H0 is the smallest.

This bending stiffness is then used to predict the propulsion speed

under different magnetic field settings (green and red solid lines

in Fig. 5b, see captions for details).

The theoretical model is seen to capture both qualitatively and

quantitatively the speed-frequency characteristics of these flexible

nanomotors. Qualitatively, the rate of change of the swimming

speedwith respect to the frequency increases at low frequencies (U

� f2 for small f, as shown in the Appendix), but then gradually

decreases as the frequency continues to increase, and eventually

levels off at high frequencies. Physically, increasing the actuation

frequency is equivalent to increasing the spermnumber.When the

frequency is varied from 0 to 35 Hz, it corresponds to a variation

of the sperm number Sp from 0 to 2.6, experiencing a degradation

in swimming performance beyond the optimal sperm number Sp

z 2, which corresponds to a frequency of around 15 Hz in our

experiment. This degradation manifests as a less-than linear

speed-frequency variation (since the dimensional swimming speed

scales as LU, linearly inU) beyond the frequency 15 Hz, resulting

in the level-off at higher frequencies. As noted above, at very high

frequencies, the magnetic Ni head will be unable to follow

synchronously the rapid rotating magnetic field. The dynamics of

propulsion will be more complicated in that regime, and the

simple model presented here will likely be inapplicable.

The agreement between our theoretical model and our exper-

imental results is very satisfactory. The discrepancies are larger

for the setup H1 ¼ 10 G, H0 ¼ 9.5 G (green lines and squares),
8176 | Soft Matter, 2011, 7, 8169–8181
which is expected because hz 1.1 in this case and the asymptotic

assumption of small h is less valid. Note that our measurements

did not sample the low Sp regime as in our experiments, swim-

ming at low frequencies appear to be significantly influenced by

Brownian motion.

Our model has only one fitting parameter, the bending stiffness

A, which—as explained above—we fit to the bottom data set in

Fig. 5b, and use to predict the other two data sets. The estimated

value we obtain from the fitting is equivalent to a pure silver

nanowire of diameter z6 nm (with elastic modulus, E ¼ 80 G

Pa), which is much smaller than the diameter of flexible segment

observed. This is expected because the chemical composition of

silver is altered after the dissolution, and a large portion of the

flexible nanowire is indeed a thick layer of surface byproducts

formed after the chemical reaction, which contributes little, if

any, to the bending strength. The diameter of the actual struc-

tural filament that bears the bending loads is difficult to measure

experimentally (see details of the structure in Fig. 1b). In addi-

tion, non-uniform chemical reactions lead to strong local defects

or points of weakness along the nanowire, which might signifi-

cantly reduce the bending strength. We can compare our esti-

mated bending stiffness, A ¼ 3.6 � 10�24 N m2, with the bending

stiffness of typical flagella of natural microscopic swimmers, such

as eukaryotic spermatozoa, which also rely on the flexibility of

flagella for propulsion. These biological filaments have their

bending stiffnesses ranging from38 10�24 N m2 to39 10�22 N m2,

which is the range in which our estimated value lies.
4 Discussion

In this work, we designed and fabricated a high-speed fuel-free

nanomotor utilizing the flexibility of nanowires for propulsion.
This journal is ª The Royal Society of Chemistry 2011
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These flexible nanomotors demonstrate a number of advantages:

first, the fabrication process is relatively simple and involves

a common template-directed electrodeposition protocol of nano-

wires; second, these nanowire motors are able to propel at high

speeds, both dimensional (up to z21 mm s�1) and dimensionless

(up to 0.164 body lengths per revolution), and their performance

compares very well with natural microorganisms and other

synthetic locomotive systems; third, they are actuated by external

magnetic field and do not require specific chemical environments

(fuels) for propulsion, which is preferable for biomedical appli-

cations. Indeed, the performance of the nanomotors reported here

is notaffectedby thepresenceof ionsorother chemical species, and

they are able to propel equallywell in real biological settings.As an

illustration, we have placed these flexible nanomotors in human

serum, and observed similar propulsion behaviours (Fig. 6 and

Video 3, ESI†). This demonstrates an exciting potential of these

flexible nanomotors for future biomedical applications such as

targeted drug delivery systems, or cell manipulation.

The fundamental physics of the flexible nanomotors has been

illustrated by a simple analytical elastohydrodynamic model. The

propulsion characteristics were experimentally studied and

compared with the theoretical model, with good agreement.

Strictly speaking, the results of the asymptotic model presented

in this paper are valid only for h� 1. However, as shown in other

previous studies which compared asymptotic results with

numerical and experimental studies,29,32,33 these asymptotic

models often remain valid even up to h � 1, meaning that

geometrical nonlinearities do not play very significant roles. Our

results also ignore the hydrodynamic effect of the bottom surface

close to which the nanomotors are propelling. As we estimated

experimentally the distance of the filaments to the surface to be

on the order of microns, and therefore on the order of the

swimmer size, we do not expect strong hydrodynamic effects

from the surface, which might explain the success of our simple

modelling approach. Further progress in theoretical modelling

most likely have to be obtained numerically. More accurate yet

complicated descriptions of the hydrodynamic interactions can

be achieved using methods such as slender body theory,40 or

regularized Stokeslets.41 Tension, self-spinning, and twist strains

of the filament may also be considered for improvements.
Appendix. Swimming at low sperm numbers

In this appendix, we consider another physically interesting

asymptotic limit, the low sperm number limit, G ¼ Sp4 � 1. The
Fig. 6 Time lapse images (time as indicated) of the motion of nanowire

motor (velocity, U ¼ 15 mm s�1) in human serum at f ¼ 15 Hz, withH1 ¼
10 G and H0 ¼ 9.5 G. Scale bar is 5 mm.

This journal is ª The Royal Society of Chemistry 2011
results in this asymptotic limit are not expected to provide

quantitative agreement with the experimental measurements,

since the value of G in the experiment is typically large. Never-

theless, this analysis still allows us to reveal different scaling

behaviours of the propulsion speed at low sperm numbers. Kea-

veny and Maxey27 investigated the propulsion of a flexible fila-

ment with distributed magnetic actuation. With a resistive force

model, they considered the low sperm number limit and found

that the propulsion speed scales with the fourth power of the

sperm number, U � Sp4, at low sperm numbers. We will follow

closely their method of solution and perform similar calculations

here to show that the same scaling holds for our flexible nanowire

motor subject to boundary actuation. An explicit formula for the

leading order propulsion speed in G will be derived. Expanding

this formula for small h will confirm our scaling ofU with h from

the small-h asymptotic analysis in the main text.

First, the problem is formulated below, taking into account the

effects of twisting, self-spinning, and inextensibility of the

nanowire. Denoting N(s, t) and M(s, t) as the resultant internal

force and moment on a cross section, the local force and moment

balances are

vN

vs
¼ �

xk � xt
�ðt$uÞtþ xtu; (15)

vM

vs
þ t � N ¼ xra

2ðu$tÞt; (16)

where u(s, t) is the angular velocity, and xr ¼ 4pm is the resistive

coefficient for the viscous torque produced by self-spinning

(rotation about its own local axis, t) of the filament. The internal

moment M(s, t) has a constitutive relation

M ¼ At� vt

vs
þ Kt

vJ

vs
t; (17)

where Kt is the twist modulus of the filament and J(s, t) is the

twist angle. In contrast to the propeller studied by Keaveny and

Maxey,27 the magnetic torque does not come into the local

moment balance in our case, but only through the boundary

condition. The boundary conditions are given by the balance of

external forces and torques at the ends of the flexible filament.

We have a free end at s ¼ 0. The external forces and torques at

s ¼ 1 are given by the total viscous force and viscous torque

together with the magnetic torque acting on the Ni segment,

which is modelled as a slender rigid rod:

N(s ¼ 0) ¼ 0, (18)

M(s ¼ 0) ¼ 0, (19)

Nðs ¼ 1Þ ¼ �Lm½ðxmk � xmtÞðt$uÞtþ xmtu�s¼1

þxmt

L2
m

2
u � t

����
s¼1

;
(20)

Mðs ¼ 1Þ ¼ Mtjs¼1 � H

�xmt

	
L2

m

2
t�uþ L3

m

3
½u� ðt$uÞt�



s¼1

;
(21)

where M ¼Msa
2
mpLm is the strength of the magnetic moment of

the Ni segment and Ms ¼ 485 � 103 A m�1 is the spontaneous

magnetization of Ni.
Soft Matter, 2011, 7, 8169–8181 | 8177
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To study the low sperm number limit, we adopt the following

nondimensionalizations: we scale times with U�1, lengths with L,

H withH0, elastic forces with A/L2, and elastic torques with A/L.

With these nondimensionalizations, the dimensionless equations

(using the same variables for simplicity) now read

vN

vs
¼ G

h�
g�1 � 1

�ðt$uÞtþ u
i
; (22)

RGðu$tÞt ¼ t� v2t

vs2
þ t�Nþ K

v

vs

�
vJ

vs
t

�
; (23)

where R ¼ xra
2/xtL2, K ¼ Kt/A, and G ¼ Sp4. The dimensionless

boundary conditions are

N(s ¼ 0) ¼ 0, (24)

M(s ¼ 0) ¼ 0, (25)

Nðs ¼ 1Þs ¼ �Gb � �ðg�1
m � 1Þðt$uÞtþ u

�
lm þ l2m

2
u�t

	 

s¼1

;

(26)

Mðs ¼ 1Þ ¼ Cmtjs¼1�H� Gb

	
l2m
2
t�uþ l3m

3
½u� ðt$uÞt�



s¼1

;

(27)

where lm ¼ Lm/L, b ¼ xmt/xt, gm ¼ xmt/xmk, and Cm ¼
Msa

2
mpLmH0L/A is a dimensionless parameter characterizing the

relative strength of the magnetic and elastic torques. Finally, we

have the inextensibility condition

t(s, t)$t(s, t) ¼ 1. (28)

Eqn (22) through (28) completely describe the full swimming

problem (within the realm of resistive force theory and classical

elastic beam theory) without making any assumption. There is

no restriction on the validity of the solution to this system, but

the solution has to be obtained numerically, with special

attention on the nonlinearities arising in the differential equa-

tion and the boundary conditions. To make analytical prog-

resses, we consider the asymptotic limit G � 1, and calculate the

leading order swimming speed in G. Following the method and

notations by Keaveny and Maxey,27 we assume the filament

attains a constant shape at steady-state and rotates about the z-

axis synchronously with the external magnetic field, hence we

write the dimensionless steady-state conformation of the fila-

ment as

x(s, t) ¼ �b(s)cos[t + f(s)], (29)

y(s, t) ¼ �b(s)sin[t + f(s)], (30)

z(s, t) ¼ a(s) + ~Ut, (31)

where ~U ¼ U/LU is the dimensionless swimming speed in the z-

direction, whereas a(s), b(s), and f(s) are geometrical unknowns

to be determined. Like the small-h asymptotic analysis in the

main text and in Ref. 27, here we have considered unidirectional

swimming in the z-direction. In addition, since the functions a(s),

b(s) and f(s) are independent of time, we only find the solution at
8178 | Soft Matter, 2011, 7, 8169–8181
one specific time, t ¼ 0.27 The magnetic field at t ¼ 0 is given by

H ¼ (h, 0, 1). We seek expansions in G in the form of

N ¼ N0 + N1G + O(G2), (32)

M ¼ M0 + M1G + O(G2), (33)

da

ds
¼ da0

ds
þ da1

ds
GþO

�
G2

�
; (34)

db

ds
¼ db0

ds
þ db1

ds
GþO

�
G2

�
; (35)

df

ds
¼ df1

ds
GþO

�
G2

�
; (36)

dj

ds
¼ dj1

ds
GþO

�
G2

�
; (37)

~U ¼ ~U0 + ~U1G + O(G2), (38)

and similar expansions hold for other variables. With these

expansions, we can express the local tangent t(s) and velocity

u(s, t) as

t(s) ¼ t0 + t1G + O(G2), (39)

¼
�
� db0

ds
; 0;

da0

ds

�

þ
�
� db1

ds
;� dðb0f1Þ

ds
;
da1

ds

�
GþO

�
G2

�
;

(40)

u(s) ¼ (0, �b0, ~U0) + (b0f1, �b1, ~U1)G + O(G2). (41)

In the following section, we will perform the calculations order

by order.

A.1 O(G0) calculations

The O(G0) local balance of forces and torques are given by

dN0

ds
¼ 0; (42)

0 ¼ t0�N0 þ t0� d2t0

ds2
þ K

d

ds

�
dJ0

ds
t0

�
; (43)

with boundary conditions

N0(s ¼ 0) ¼ 0, (44)

M0(s ¼ 0) ¼ 0, (45)

N0(s ¼ 1) ¼ 0, (46)

M0(s ¼ 1) ¼ Cmt0|s¼1 � H, (47)

and inextensibility condition�
da0

ds

�2

þ
�
db0

ds

�2

¼ 1: (48)

The solution at this order is given by
This journal is ª The Royal Society of Chemistry 2011
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N0(s) ¼ 0, (49)

da0

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
p ; (50)

db0

ds
¼ �hffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
p ; (51)

J0(s) ¼ ~U0 ¼ 0. (52)
A.2 O(G) calculations

The O(G) local balance of forces and torques are given by

dN1

ds
¼ �

g�1 � 1
�ðt0$u0Þt0 þ u0; (53)

0 ¼ t0�N1 þ t0�d2t1

ds2
þ t1�d2t0

ds2
þ K

d2
J1

ds2
t0; (54)

with boundary conditions

N1(s ¼ 0) ¼ 0, (55)

M1(s ¼ 0) ¼ 0, (56)

N1ðs ¼ 1Þ ¼ �blm ���
g�1
m � 1

�ðt0$u0Þ t0 þ u0 þ lm

2
u0 � t0



s¼1

;
(57)

M1ðs ¼ 1Þ ¼ Cmt1js¼1 � H

� bl2m

	
t0�u0

2
þ lm

3

�
u0 � ðt0$u0Þt0

�

s¼1

; (58)

and the inextensibility condition

da1

ds
¼ h

db1

ds
$ (59)

From the solution at O(G0), eqn (51), we can integrate to get

b0ðsÞ ¼ �hs=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p þ C1, where C1 is a constant to be deter-

mined. By satisfying the equations and boundary conditions at

this order, we find that

C1 ¼ h½1þ blmð2þ lmÞ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p ð1þ blmÞ
$ (60)

The solution at this order is then given by

dðb0f1Þ
ds

¼ hs4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p � C1s
3

6
þ B1; (61)

db1

ds
¼ da1

ds
¼ dJ1

ds
¼ 0; (62)

where

B1 ¼ h

24Cm

�
1þ h2

�ð1þ blmÞ
�n

2þ Cm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p �
1þ blmð3þ 2lmÞ

�
þ2blm

�
4þ lmð6þ lmð4þ blmÞÞ

�o
:

(63)
This journal is ª The Royal Society of Chemistry 2011
A.3 O(G2) calculations

The O(G2) local balance of forces and torques are given by

dN2

ds
¼ �

g�1 � 1
�ðt1$u0 þ t0$u1Þt0 þ u1; (64)

Rðu1$t0 þ u0$t1Þt0 ¼ t0�N2 þ t1�N1

þ t0 � d2t2

ds2
þ t1 � d2t1

ds2
þ K

d2
J2

ds2
t0;

(65)

with boundary conditions

N2(s ¼ 0) ¼ 0, (66)

M2(s ¼ 0) ¼ 0, (67)

N2ðs ¼ 1Þ ¼ �blm
�ðg�1

m � 1Þðt0$u1 þ t1$u0Þt0
þu1 þ lm

2
ðu0�t1 þ u1�t0Þ

�
s¼1

;
(68)

M2ðs ¼ 1Þ ¼ Cmt2rs¼1�H� bl2m

	
1

2
ðt0$u1 þ t1$u0Þ

þ lm

3
½u1 � ðt1$u0 þ t0$u1Þt0 � ðt0$u0Þt1�



s¼1

$
(69)

From the local balance of force (eqn (64)) with the boundary

conditions at s¼ 0 (eqn (66)), we find thatN2 ¼ (N2x,N2y,N2z) is

given by

N2xðsÞ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p �
g�1 � 1

��"
JðsÞ þ

~U1sffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p þ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p HðsÞ þ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p C3s

#

þHðsÞ þ C3s;

(70)

N2y(s) ¼ �b1s (71)

N2zðsÞ ¼ g�1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p �"
JðsÞ þ

~U1sffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p þ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p HðsÞ þ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p C3s

#

þU1s;

(72)

where C3 is an unknown integration constant and we define the

functions

FðsÞ ¼ dðb0f1Þ
ds

¼ hs4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p � C1s
3

6
þ B1; (73)

GðsÞ ¼
ðs
0

Fðs0Þds0 ¼ hs5

120
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p � C1s
4

24
þ B1s; (74)

HðsÞ ¼
ðs
0

Gðs0Þds0 ¼ hs6

720
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p � C1s
5

120
þ B1

s2

2
; (75)

JðsÞ ¼
ðs
0

b0ðs0ÞFðs0Þds0: (76)

Examining the force components N2x and N2z, we have two

unknowns, namely U1 and C3. These two unknowns are
Soft Matter, 2011, 7, 8169–8181 | 8179
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Fig. 7 Variation of the dimensionless swimming speed, U/LU, with the

relative magnetic field strength, h, for different sperm numbers based on

the low-Sp calculations: Sp ¼ 0.2 (dark blue solid line), Sp ¼ 0.3 (light

green solid line). The red dotted (Sp ¼ 0.2) and black dash-dotted (Sp ¼
0.3) lines are the corresponding results from the small-h calculations.

Inset: Same plot for Sp ¼ 0.5 (dark orange solid line) and Sp ¼ 0.6 (light

blue solid line). The green dotted (Sp¼ 0.5) and brown dash-dotted (Sp¼
0.6) lines are the corresponding results from the small-h calculations.
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determined by applying the boundary conditions at s ¼ 1 (eqn

(68)), yielding a 2 � 2 system of equations�
A11 A12

A21 A22

��
~U1

C3

�
¼

0
@ hF1 þ blmGð1Þ þ bl2m

2
Fð1Þ þHð1Þ

F1

1
A;

(77)

where

A11 ¼ A22 ¼ �
�
hðg�1 � 1Þ
1þ h2

þ hblm
�
g�1
m � 1

�
1þ h2



; (78)

A12 ¼ �
�
blm þ h2blm

�
g�1
m � 1

�
1þ h2

þ 1þ h2ðg�1 � 1Þ
1þ h2



; (79)

A21 ¼ �
�
blm þ blm

�
g�1
m � 1

�
1þ h2

þ 1þ g�1 � 1

1þ h2



; (80)

F1 ¼ g�1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
"
Jð1Þ þ hffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
p Hð1Þ

#

þ blm
�
g�1
m � 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
"

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p Gð1Þ þ b0ð1ÞFð1Þ
#
:

(81)

Upon solving this system of linear equation, we arrive at an

explicit formula for the leading order swimming speed

~U ¼ ~U1G + O(G2) (82)

~U ¼ h2

1440
�
1þ h2

�3=2ð1þ blmÞ2ðgblm þ gmÞ
�

n
5ggm½1þ blmð4þ 3lmÞ�2 � 4gblm½4þ blmð13þ 9lmÞ�

�5gm � gmblm½24þ 30lm þ blmð28þ 84lm þ 45l2mÞ�
o
G

þO
�
G2

�
:

(83)

Again, we can verify that when we have isotropic drag g ¼ gm ¼
1, then no swimming is possible, ~U1 ¼ 0.

A.4 Variation with the relative magnetic field strength, h

First, one can see that Cm, which is the ratio of the characteristic

magnetic torque to the characteristic elastic torque, does not

enter the formula for ~U1 (eqn (83)), meaning that the absolute

value of the magnetic field strength or the dipole moment

strength has not yet played a role in the swimming speed at low

sperm numbers. However, the relative strength of the rotating

and constant magnetic field, h ¼ H1/H0, has an interesting effect

here. From the small-h asymptotic analysis in the main text, we

knew swimming occurs at O(h2) (eqn (14)), and hence the

swimming speed (both dimensional or dimensionless) scales

quadratically with h, U � h2, for h � 1. This is confirmed by

examining eqn (83), where we have ~U � h2/(1 + h2)3/2 ¼ h2 +O(h3)

when expanded for small h. When the dimensionless swimming

speeds from the two asymptotic analyses are plotted against h for

small sperm numbers (Fig. 7, different lines represent results at

various sperm numbers, see the caption for details), we see an

excellent agreement when h is small, illustrating that the swim-

ming speed does increase quadratically with h for small h (the

dotted lines are the small-h asymptotic results). From the low
8180 | Soft Matter, 2011, 7, 8169–8181
sperm number results (solid lines), the swimming speed then

experiences a maximum when h continues to increase (the small-h

results are no longer valid in this regime), and eventually

decreases with further increase in h. From the analytical

expression (eqn (83)), we see that the maximum swimming speed

occurs at h ¼ ffiffiffi
2

p
z1:41.
A.5 Variation with the sperm number, Sp

From the small-h asymptotic analysis in the main text, we have

illustrated the dependence of the dimensionless swimming speed

on the sperm number, Sp (Fig. 4). Here, via the low sperm

number asymptotic results (eqn (83)), we see quantitatively that

the dimensionless swimming speed scales as the fourth power of

the sperm number, ~U ¼U/LU� G� Sp4, for low Sp. Since Sp4 f

f, this also means that the dimensional swimming speed scales

quadratically with the frequency U � f 2, for small f. We confirm

this result by plotting the variation of the dimensionless swim-

ming speed with the sperm number (Fig. 8), and the variation of

the dimensional swimming speed with the frequency (Fig. 8

inset). We compare the low-Sp asymptotic results (h ¼ 0.2, dark

blue solid line; h ¼ 0.4, light green solid line) with the corre-

sponding small-h asymptotic results h ¼ 0.2 (red dotted line) and

h ¼ 0.4 (black dash-dotted line), so that the small-h asymptotic

assumption (h � 1) is expected to be valid. We see the results

from the two asymptotic analyses agree with each other for

sufficiently low sperm numbers (Fig. 8), or frequencies (Fig. 8

inset), confirming the scaling U/LU � Sp4 (U � f 2), at low sperm

numbers (low frequencies).

To summarize, in this appendix, with the help of a low-Sp

asymptotic analysis, we have confirmed the scaling U � h2 for
This journal is ª The Royal Society of Chemistry 2011
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Fig. 8 Variation of the dimensionless swimming speed, U/LU, with the

sperm number, Sp, based on the low-Sp calculations: h ¼ 0.2 (dark blue

solid line), h ¼ 0.4 (light green solid line). The red dotted (h ¼ 0.2) and

black dash-dotted (h ¼ 0.4) lines are the corresponding results from the

small-h calculations. Inset: Variation of the dimensional swimming speed

U with the frequency f based on the low-Sp calculations: h ¼ 0.2 (dark

blue solid line), h ¼ 0.4 (light green solid line). The red dotted (h ¼ 0.2)

and black dash-dotted (h ¼ 0.4) lines are the corresponding results from

the small-h calculations. A bending stiffness of A ¼ 3.6 � 10�24 N m2 is

used in the speed-frequency plot (inset).
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small h in the main text, and established the complementary

scalingsU/LU� Sp4 for small Sp, or equivalentlyU� f 2 for small

f. Note that the results in this appendix are valid for very small Sp

numbers, and hence are not expected to be useful for experi-

mental comparison. In addition, Cm is assumed to be O(1)

throughout the calculations. Since Cm f lm, the results here are

invalid for lm � 1 and lm [ 1.
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