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Abstract

This article investigates the implementation of modern control design techniques on models of open shear flows using the linear

complex Ginzburg–Landau (GL) model for the cylinder wake, with the coefficients as scaled by Roussopoulos and Monkewitz

(Physica D 97 (1996) 264). Based on noisy measurements 1.5 diameters downstream of the cylinder, the compensator uses an H1
filter to construct a state estimate which, in turn, is used to compute H1 feedback control at the cylinder to drive the system

perturbations to zero. The application of such modern control rules leads to substantially better performance than the proportional

measurement feedback proposed by previous studies. Preliminary results of the effectiveness of linear control to stabilize the

nonlinear GL model are also presented. � 2002 Elsevier Science Inc. All rights reserved.

PACS: 47.20.)k; 47.20.Ft; 47.62.+q
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1. Introduction

The instability and self-sustained oscillation of the
flow behind a circular cylinder is a fundamental yet
only recently understood problem. Due to the numerous
engineering consequences of unstable bluff-body flows,
the canonical problem of the instability of the cylinder
wake has been the focal point of many studies in the
past decade (see, e.g., Williamson, 1996 for a review).
The possibility of controlling this instability, or at least
delaying the critical value of Reynolds number charac-
terizing its onset, is an idea that has recently received
growing attention (see, e.g., Tokumaru and Dimotakis,
1991; Min and Choi, 1999; He et al., 2000).

Experimental and numerical studies of control of
vortex shedding have been the focus of several investi-
gations. As early as 1967, proportional measurement
feedback control of vortex shedding behind an oblong
cylinder was implemented experimentally in Berger
(1967); he succeeded for a short range of Reynolds
numbers, between Rec ¼ 79:2 and Re ¼ 90:3. Since then,

many other publications have considered various pas-
sive and physically-based active strategies. A numerical
and theoretical study of the control of the cylinder wake
has been carried out in Park et al. (1994). Using pro-
portional measurement feedback, suppression of vortex
shedding was achieved in their simulations at Re ¼ 60
for select sensor locations. At Re ¼ 80, the wake could
not be controlled; the primary vortex shedding mode
was stabilized but a secondary, lower-frequency shed-
ding mode arose; this effect was also observed experi-
mentally by Roussopoulos (1993). More recently, Min
and Choi (1999) used ‘‘suboptimal’’ control theory (i.e.
finite-horizon nonlinear optimal control theory applied
over an infinitesimal time horizon, subject to several
convenient assumptions) to completely stabilize vortex
shedding in simulations up to Re ¼ 160. This impressive
performance well exceeds previous results and motivates
the present work, which attempts to stabilize a model
of the wake using simpler, time-independent feedback
gains.

The growing flow control community and the inter-
disciplinary perspective it has pursued in the last few
years makes it now possible to adapt a modern control
point of view on certain flow systems. We have recently
published an extensive review article (Bewley, 2001) that
provides a basic introduction to certain well-known
concepts from modern control theory in the fluid-
mechanical setting, defining transfer function norms,
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state feedback, estimators, etc., and providing an in-
troduction to H1 control theory and the separation
principle of the H2 setting. This review article provides
scores of references to related work at the intersection of
these two fields. The present paper assumes knowledge
of this review article as background material, and in-
vestigates the use of linear H1 control theory on a 1D
model of the cylinder wake in order to shed some light
on some of the central unsolved issues in the control of
instabilities in open shear flows.

Open shear-flow instabilities, and the major role they
play in flow transition, have been analyzed in the last 15
years using the concepts of absolute and convective in-
stabilities (Huerre and Monkewitz, 1990). Considering
an unstable parallel flow, the instability is called con-
vective if a perturbation grows while being advected
away by the mean flow and any fixed point in the do-
main eventually comes back to rest when the upstream
disturbance is removed. On the other hand, if the mean
advection is not strong enough, the instability will con-
taminate the entire system and is called absolute; in this
case, the flow perturbation remains even if the distur-
bance triggering it is neutralized. These characteriza-
tions of parallel flows can be extended to the local
analysis of slightly nonparallel flows. Nonparallel flows
are often found to contain different regions with differ-
ent stability characteristics. Flows which are locally
convectively unstable everywhere behave as noise am-
plifiers, as they are extremely sensitive to external dis-
turbances, though they are globally stable. On the other
hand, flows displaying a sufficiently large pocket of ab-
solute instability behave as oscillators (Chomaz et al.,
1988), and are found to be dominated by a synchronized
linear behavior, termed a linear global mode. This linear

transient will grow in place and eventually saturate due
to nonlinearities, leading to self-sustained oscillations
such as those in the wake of the circular cylinder.

2. The Ginzburg–Landau model

The system we will consider in this paper, the non-
parallel Ginzburg–Landau (GL) system, is the simplest
model one can construct that displays a spatial transi-
tion from a local convective instability to a local abso-
lute instability. It is given by

ow
ot

¼ lðxÞ
�

� UðxÞ o

ox
þ g

o2

ox2

�
w � kjwj2w: ð1Þ

This equation models the wave amplitude in a spatially
extended system and has been used successfully to model
the transition of both closed and open flows. In the case
of interest here, the coefficients lðxÞ, UðxÞ and g, and
their dependence on the Reynolds number, are chosen
such that this equation models quantitatively the Hopf
bifurcation which takes place in the cylinder wake at
Re ¼ 47 and qualitatively the wake behavior as the
Reynolds number is increased beyond this value. The
present paper focuses primarily on the control and es-
timation of the linear GL equation (linearizing the sys-
tem around the solution w ¼ 0); we will also characterize
the effect of this linear control on the global nonlinear
behavior. We choose complex coefficients in (1) and the
dependence of these coefficients on Reynolds number as
suggested by Roussopoulos and Monkewitz (1996) in
their study of the cylinder wake feedback control
problem to facilitate comparison with the existing lit-
erature.

Nomenclature

H2 optimal control
H1 robust control
Re Reynolds number
w state variable
t time coordinate
x space coordinate
l instability term in the GL equation
U coefficient of advection term
g coefficient of diffusion term
k coefficient of nonlinear term
ww state disturbances
wy measurement noise
y measurement output
u control input
xf actuator position
xs sensor position
x state variable discretization vector

w disturbance vector
A GL operator discretization matrix
B1 state disturbances input matrix
D12 measurement noise input matrix
B2 control input matrix
C1 measurement output matrix
a noise to disturbance ratio
‘ control penalty
c robustness parameter
J cost functional
Q state energy matrix
R control energy matrix
S disturbance energy matrix
jjTxwjj2 transfer function 2-norm
jjTxwjj1 transfer function 1-norm
D2 relative gain in jjTxwjj2 (%)
D1 relative gain injjTxwjj1 (%)
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3. The control strategy

This work addresses the following idealized model
problem displayed in Fig. 1: considering the 1D system
model (1), what stabilizing effect can be achieved with
noisy information about the system 1.5 diameters
downstream of the origin and actuation at the origin
(i.e., the cylinder location) itself, even if the system is
perturbed by unknown external disturbances and sig-
nificant unmodeled system dynamics? The actuation
might be achieved in practice by rotation or transverse
oscillation of the cylinder itself; we do not attempt to
model accurately the flow actuation in our present 1D
analysis, which is focused more on the alteration of the
global dynamics in the 1D model of the wake. We rep-
resent the control u as a local forcing at x ¼ xf and the
measurement y of the state of the system at x ¼ xs such
that we may represent the linearization of the model (1)
as:

ow
ot

¼ Lw þ wwðx; tÞ þ dðx� xfÞf ðtÞ;

y ¼ wðxsÞ þ wyðtÞ;
ð2Þ

where L functionally represents the first three terms on
the right-hand side of (1), and wwðx; tÞ and wyðtÞ repre-
sent the state disturbances and measurement noise re-
spectively. As in Roussopoulos and Monkewitz (1996),
we take xf ¼ 0 and xs ¼ 1:5. Fig. 2 displays the position
of both the actuator and the sensor with respect to the
local instability zones of the uncontrolled system for a
variety of Reynolds numbers. An appropriate discreti-
zation of the continuous GL equation leads to the
standard state-space form for the system. Taking a as a
free parameter representing the ratio of the strength of
the measurement noise to that of the state disturbances,
we write this state-space form as

_xx ¼ Axþ B1wþ B2u;

y ¼ C1xþ aD21w;
ð3Þ

where x is the discretized state vector, u the control, and
w the discretized disturbance vector (including both
the measurement noise and the state disturbances).
The computations presented in this paper have been
achieved with a Fourier collocation method for the
spatial discretization on a stretched grid clustered near
both the sensor and forcing points to ensure resolution
of the sensing and forcing. The control design applied by
our study is the linear H1 control approach introduced
by Doyle et al. (1989). This control methodology can be
briefly described as the following: (1) choice of a qua-
dratic cost function, (2) choice of the design parameters,
and (3) computation of the control matrices. The per-
formance of the closed-loop plant depends strongly on
the several decisions made at each of these steps. The
cost function J must weigh together the state x, the
control u, and the noise w; moreover, since the GL op-
erator is time invariant, one can apply the control theory
for infinite time horizons, which leads to the following
general form for the cost function:

J ¼ E x�Qx
�

þ ‘2u�Ru� c2w�Sw
�
; ð4Þ

where Q, R and S are positive definite matrices and E
denotes the expected value. The H1 control approach
allows one to compute the control u that minimizes
the cost function in the presence of the ‘‘worst-case’’
disturbance w that simultaneously maximizes the cost
function, in the spirit of a noncooperative game or
saddle-point problem. More detailed review of the H1
control design procedure is given in Bewley (2001). In

Fig. 1. Vortex shedding control approximately modeled by the ideal-

ized 1D system: based on noisy measurements downstream of the

cylinder, the compensator constructs a state estimate which, in turn, is

used to compute control feedback applied at the cylinder itself.

Fig. 2. Sketches on the region on the real x-axis of local stability (light

grey), convective instability (dark grey) and absolute instability (black)

of the uncontrolled GL model for various Reynolds numbers. (a)

Re ¼ 29, onset of local absolute instability at x ¼ 1:24 (b) Re ¼ 47,

onset of linear global instability, (c) Re ¼ 100, (d) Re ¼ 175, (e)

Re ¼ 235, (f) Re ¼ 284. Representative locations for the sensor and

actuator are marked with o and 	 respectively; we seek to determine

control forcing, to be applied at xf , based on the sensor measurement,

taken at xs, in order to stabilize the global dynamics of this system.
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addition to a, the two other design parameters are the
weighting on the control penalty, ‘ (large ‘ resulting in
small control amplitude), and the weighting on the dis-
turbance penalty, c (large c resulting in small ‘‘worst-
case’’ disturbance amplitude accounted for during the
controller design). A case of particular interest is theH2

(or ‘‘optimal control’’) approach, which is achieved by
taking the c ! 1 limit, resulting in a worst-case dis-
turbance of vanishing amplitude to be accounted for
during the controller design. It may be shown that the
control design procedure in this limit is essentially
equivalent to the control design that minimizes the cost
function under a white-noise assumption for w.

4. Performance analysis

In the previous section, we briefly discussed the re-
formulation of the GL system into standard state-space
form and the design anH1 compensator for this system
with three design parameters ‘, a, and c. This section
now examines some of the relevant questions concerning
the effectiveness of this compensation on both the linear
and the nonlinear GL system.

4.1. Linear control of the linear GL equation

We now introduce three appropriate measures of
performance for the present problem. The first measure
is the maximum Reynolds number for stability of the
closed-loop system using double-precision arithmetic
(see Lauga and Bewley, 2002 for further discussion
regarding the influence of numerical precision on this
result). If one does not apply control, the system is
unstable as soon as Re exceeds the threshold value of 47.
The higher the new threshold for instability is, the more
effective the control is for delaying transition. The other
two performance measures are the transfer function 2-
norm jjTxwjj2, quantifying the amplification of zero-
mean white Gaussian disturbances by the closed-loop
system, and the transfer function infinity-norm jjTxwjj1,
quantifying the amplification of disturbances with
‘‘worst-case’’ structure by the closed-loop system.
Broadly speaking, the transfer-function norms jjTxwjj2
and jjTxwjj1 represent how the wake model with control
feedback applied responds to benign and malevolent
disturbance respectively. As a consequence, jjTxwjj2 for a
given stable system is always smaller than jjTxwjj1.

Optimal control with full information and double-
precision arithmetic stabilizes the wake model up to a
Reynolds number Res ¼ 284, which corresponds to sta-
bilization of seven linear global modes. This represents
an effective stabilizability limit of the model system with
the chosen actuator using double-precision arithmetic.
The estimator itself is able to fully recover the state from
noisy measurements at xs ¼ 1:5 up to a Reynolds num-

ber of Red ¼ 235; this represents an effective detectabil-
ity limit of the model using the chosen sensor double-
precision arithmetic. Due to the separation principle
between the control and estimation problems in the H2

framework, the compensator formed by combining the
estimator and the controller will stabilize the plant up
the minimum of these two values, Rec ¼ 235. This crit-
ical Reynolds number, corresponding to the stabili-
zation of six linear global modes, compares quite
favorably with the maximum Reynolds number Re ¼ 64
which could be stabilized by the proportional control
approach developed by Roussopoulos and Monkewitz
(1996), which stabilized only one linear global mode.
Our first conclusion is therefore that the optimal control
design is much more effective in delaying system insta-
bility than simpler control strategies.

A ‘‘robust’’ control design can also be developed with
this approach, either for the full-information case or for
the measurement-based compensator. Fig. 3 displays the
variations of the effective stabilizability limit using full-
information H1 control and double-precision arith-
metic for various values of the control penalty ‘. Table 1
extends these results to the H1 compensator, i.e. to the
case in which the controller does not have access to full
information but instead constructs a state estimate
based on the measurement obtained by the sensor.

The results from Fig. 3 and Table 1 allow us to make
several important observations. It appears first that the
maximum stabilized Reynolds number using double-
precision arithmetic depends monotonically on the ro-

Fig. 3. Maximum Reynolds number for stability of the controlled GL

system with full-information H1 control and double-precision arith-

metic as a function of the robustness parameter c for various values of
the control penalty ‘. The horizontal line represents the H2 limit

Re ¼ 284 (independent of ‘). This plot shows that, for a given value of
design-point linear worst-case disturbance rejection c, an increased

value of Rec is attained for reduced values of ‘, at the cost of increased
control input.
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bustness parameter c before reaching an asymptotic
value. These asymptotic values as c approaches infinity
are the values given by the optimal control approach
(Re ¼ 284 for the full-information case in Fig. 3,
Re ¼ 235 for the estimator-based case in Table 1), which
was expected as theH2 control design reduces exactly to
the H1 control design for c ! 1. Another observation
is that, for a given robustness parameter c, increasing
the penalty on the control ‘ or the measurement noise
strength a results in decreasing the maximum Re which
is stabilized (a detailed analysis actually shows that the
limit on the Reynolds number depends only on the ratio
‘=c in the case of full-information control, as can be seen
on Fig. 3). We see therefore that the H1 approach is
less efficient than the H2 control in delaying the insta-
bility; introduction of the disturbance effectively detunes
the optimal compensator.

Another advantage of the modern control design over
the simpler proportional scheme of Roussopoulos and
Monkewitz (1996) is the decrease in the transfer func-
tion norms. Table 2 presents a comparison at Re ¼ 60
for two different noise strengths between the values of
the transfer function 2-norms and infinity-norms for the
RM96 proportional approach and for the present opti-
mal control approach with various values for ‘.

A first result to be observed is the monotonic de-
pendence of the transfer function norms on the control
penalty ‘ and the measurement noise to state distur-
bance ratio a: for a given a, increasing ‘ results in less
authority of the control and therefore deteriorates the
disturbance rejection (increasing the values for the
transfer function norms); for a given ‘, increasing a re-
sults in having less reliable measurements and therefore
again deteriorates the disturbance rejection. By analy-
sing the results of Table 2, it is clear that, both in the

case of low (a ¼ 0:01) and high (a ¼ 100) noise strength,
applying modern control on the present system is more
effective than proportional control in terms of dis-
turbance rejection in the closed-loop system, both for
rejection of ‘‘white’’ disturbances (reduced values of
jjTxwjj2) and for rejection of ‘‘worst-case’’ disturbances
(reduced values of jjTxwjj1). Therefore, even in the do-
main where the simple proportional control of RM96
stabilizes the model, it is much preferable to apply
modern control.

A final important aspect to be considered in this
linear study is the relative performance of the H2 and
H1 controls. Table 3 presents the values of the two

Table 1

New stability Reynolds Rec number for measurement-based H1
control of the linear GL equation using double-precision arithmetic as

a function of the robustness parameter c for three casesa

log c Rec

Case 1 Case 2 Case 3

1 47.0 47.0 47.0

2 50.9 47.0 47.0

3 99.4 47.0 47.0

4 129.6 89.1 94.2

5 151.2 122.5 120.0

6 169.7 142.7 140.7

7 186.5 163.7 160.6

8 218.4 201.3 197.5

9 231.5 218.4 215.5

10 235.0 221.6 231.6

1 235.0 235.0 235.0
aCase 1: ‘ ¼ 1; a ¼ 1; Case 2: ‘ ¼ 1; a ¼ 100; Case 3: ‘ ¼ 100; a ¼ 1;

note that as the design-point linear worst-case disturbance rejection is

improved (c reduced), the new stability Reynolds number deteriorates

(reduces).

Table 2

Comparison of transfer function norms jjTxwjj2 and jjTxwjj1 at Re ¼ 60

for six types of controla

a Control jjTxwjj2 jjTxwjj1
0.01 RM96 (proportional) 55.8 653

H2 (‘ ¼ 10,000) 21.0 130

H2 (‘ ¼ 100) 20.3 122

H2 (‘ ¼ 10) 12.1 44.1

H2 (‘ ¼ 1) 8.0 18.0

H2 (‘ ¼ 0:01) 7.6 15.0

100 RM96 (proportional) 212 2500

H2 (‘ ¼ 10,000) 165 1343

H2 (‘ ¼ 100) 161 1308

H2 (‘ ¼ 10) 121 796

H2 (‘ ¼ 1) 99.4 582

H2 (‘ ¼ 0:01) 96.8 553
a The proportional strategy of Roussopoulos and Monkewitz

(1996), measurement-based H2 control for ‘ ¼ 10,000, 100, 10, 1 and

0.01. Top: a ¼ 0:01, bottom: a ¼ 100; note that H2 control uniformly

improves both measures of disturbance rejection as compared with

proportional control.

Table 3

Comparison of transfer function norms jjTxwjj2 and jjTxwjj1 between

two types of control for ‘ ¼ 1 and a ¼ 1a

Re jjTxwjj2 jjTxwjj1 D2 D1

60 8.5 20.0 – –

H2 100 40.9 224.8 – –

150 5541 17119 – –

200 5,454,553 13,076,172 – –

60 10.3 11.7 þ21.2% �41.5%
H1 100 70.3 103.6 þ71.9% �53.9%

150 6385 8594 þ15.2% �49.8%
200 5,465,686 6,625,000 þ0.2% �49.3%

aH2 control and H1 control with the smallest value possible for c.
D2 is the relative difference between the transfer function 2-norms and

D1 the relative difference between the transfer function 1-norms. In

all cases, H1 control improves (reduces) the worst-case disturbance

rejection, jjTxwjj1, while it deteriorates (increases) the rejection of

gaussian disturbances jjTxwjj2. Also note that, even though the stabil-

izability limit of this system is Rec ¼ 235, the transfer function norms

of the controlled system at ReJ 200 are so large that practical oper-

ation of the system in a noisy environment is not possible in this range.
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transfer function norms for various Reynolds numbers
with the two control strategies applied: the H2 control
and the H1 control with the smallest possible value
for c (termed c0). These computations were achieved
with moderate values of both the control penalty (‘ ¼ 1)
and the measurement noise to state disturbance ratio
(a ¼ 1). Important conclusions can be drawn from the
results displayed on the Table 3. It appears first that
both transfer function norms increase monotonically as
the Reynolds number is increased, indicating hightened
sensitivity of the closed-loop system to disturbances as
the number of linear global modes increases. It appears
also that applying H1 control instead of H2 control
results in an increase in jjTxwjj2 and a decrease in
jjTxwjj1. As a consequence, a design trade-off should be
considered between white disturbance rejection and
worst-case disturbance rejection. It is also apparent that,
for increasing Re, it is preferable to apply H1 control
thanH2 control, as theH1 approach gives a very large
decrease in jjTxwjj1, denoted D1, while giving only a
very small increase in jjTxwjj2, denoted D2. We thus
conclude that applying a robust control strategy as one
approaches the stabilizability limit of the system, Re ¼
235, presents a substantial advantage over the corre-
sponding optimal control strategy.

4.2. Linear control of the nonlinear GL equation

The idea of applying the linear control strategy to the
nonlinear GL model is appealing for two reasons: first,
because having designed and computed a linear control
strategy, it is straightforward to test it on the nonlinear
equation, and second, because the nonlinear model
better addresses the real problem of interest, that is,

stabilizing the nonlinear synchronized behavior. Fig. 4
displays a simulation for Re ¼ 100 with random finite-
amplitude initial conditions for the simulation when the
linear optimal control is applied at time t ¼ 150. This
simulation was performed with a semi-implicit Adams–
Bashforth–Crank–Nicholson time advancement under
white noise conditions. It can be seen in Fig. 4 that
linear control effectively stabilizes the nonlinear system
and drives the state to zero extremely quickly. Further
computations will be needed to explore this result at
different Reynolds numbers and for various different
control strategies, though this preliminary result is en-
couraging in this regard.

5. Conclusion

This paper investigates the use of linear H1 control
theory on a simple model of the cylinder wake to broach
some fundamental unanswered questions regarding the
control of open shear flows instabilities. It is shown that
the application of such modern control rules leads to
substantially better performance than the proportional
measurement feedback proposed by previous studies by
delaying the Reynolds number for onset of linear global
instability by a factor of 5 and significantly decreasing
the sensitivity of the system to external perturbations.
The advantage of using robust over optimal control was
shown to be of particular importance near the stabiliz-
ability limit of the system, and preliminary results were
given where the linear control stabilized the entire
nonlinear GL equation.

One of the conclusions from Monkewitz (1989) and
Huerre and Monkewitz (1990) concerning control of
open flows was that it was very likely that each linear
global mode needed to be stabilized by a separate ac-
tuator/sensor pair. The present paper has shown that,
with the proper control algorithm, this is in fact not the
case. The present control strategy stabilizes six linear
global modes with a single actuator/sensor pair.

Significant fundamental questions still remain unan-
swered. What is the best position for the actuator and
the sensor to obtain an overall best performance, and
what is the new maximum Reynolds number and num-
ber of global modes which can be stabilized? How is
the ‘‘stabilizability limit’’ of the system characterized in
terms of its eigenmodes? What is the limiting factor
preventing stabilization at higher Re? Under what con-
ditions is the linear control effective on the nonlinear
equation in the synchronized, self-sustained, limit-
cycling behavior? What is the effect of the noncoopera-
tive aspect of the ‘‘robust’’ formulation on this problem?
What filtering technique is most appropriate for esti-
mation of the nonlinear equation? These questions are
currently under active investigation by the authors, and
will be reported in future work.

Fig. 4. Linear control of the nonlinear GL equation for Re ¼ 100: time

evolution of the amplitude 4 diameters downstream of the cylinder

under white noise conditions. TheH2 control is switched on at t ¼ 150

and quickly drives the oscillating state to zero.
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