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Spermatozoa flagella are known to synchronize when swimming in close proximity. We use a model
consisting of two-dimensional sheets propagating transverse waves of displacement to demonstrate
that fluid forces lead to such synchronization passively. Using two distinct asymptotic descriptions
�small amplitude and long wavelength�, we derive the synchronizing dynamics analytically for
arbitrarily shaped waveforms in Newtonian fluids, and show that phase-locking will always occur
for sufficiently asymmetric shapes. We characterize the effect of the geometry of the waveforms and
the separation between the swimmers on the synchronizing dynamics, the final stable
conformations, and the energy dissipated by the cells. For two closely swimming cells,
synchronization always occurs at the in-phase or opposite-phase conformation, depending solely on
the geometry of the cells. In contrast, the work done by the swimmers is always minimized at the
in-phase conformation. As the swimmers get further apart, additional fixed points arise at
intermediate values of the relative phase. In addition, computations for large amplitude waves using
the boundary integral method reveal that the two asymptotic limits capture all the relevant physics
of the problem. Our results provide a theoretical framework to address other hydrodynamic
interactions phenomena relevant to populations of self-propelled organisms. © 2011 American
Institute of Physics. �doi:10.1063/1.3532954�

I. INTRODUCTION

An often observed yet surprising physical phenomenon
is the synchronization of the pendulums of grandfather
clocks. When two such clocks are located in close proximity,
forces transmitted through a medium connecting the two
clocks can lead to their beating in perfect synchrony.1 Simi-
lar synchronization can easily be obtained at home using two
connected metronomes, with spectacular results. Still more
fascinating is the many examples of synchrony which occurs
in the natural world, from pacemaker cells in a heart,2 to
synchronously flashing fireflies.3

One particularly interesting example of synchronization
occurring in nature is the observed phase-locking of the fla-
gella of swimming eukaryotes such as spermatozoa.4–7 These
cells, typically tens of microns long, actuate slender flagella
beating periodically in order to propel themselves in viscous
fluids.8–10 As illustrated in Fig. 1 in the case of two bull
spermatozoa, when two such cells swim in close proximity,
their flagella are often observed to beat in synchrony—so
much so that in Fig. 1�c� the two flagella cannot even be
distinguished.4 This synchronization is biologically signifi-
cant because it is observed to lead to an increased swimming
speed for the co-moving cells, thereby providing a competi-
tive advantage over cells which are not synchronized.4,11

This behavior can arise purely passively, as is the case with
the pendulums, but here the medium transmitting the forces
is the fluid between the cells. While large systems of many
bodies may be too complicated to address rigorously, and
idealizations such as the Kuramoto model must be

employed,12 in this paper we consider the simple case of a
pair of co-swimming two-dimensional cells. We show that
the coupling between the bodies can be obtained directly by
solving analytically and numerically the field equations for
the surrounding flow and find the occurrence of passive hy-
drodynamic synchronization for all but the most symmetric
flagellar waveforms.

Taylor13 first studied synchronizing flagellated cells by
modeling them as two-dimensional sheets propagating sinu-
soidal waves of transverse displacement. With this model, he
found that, for a given swimming gait, swimming in-phase
synchronously is the conformation in which the cells swim
while doing the least amount of work against the surrounding
fluid. Left open was the question of whether the synchroni-
zation would occur passively from a random initial phase
shift between co-swimming cells. Subsequent numerical
works using an immersed boundary method and multiparticle
collision dynamics seem to indicate that indeed synchroniza-
tion could occur due to hydrodynamic forces alone.7,14,15

The phase-locking of flagellated microorganisms is
closely related to another important observed synchrony in
nature, that of eukaryotic cilia. Cilia are short flagella typi-
cally lining the surface of a larger body and are found to beat
in unison with a small constant phase difference giving rise
to a collective motion described as metachronal waves.9 This
motion provides various biological functionality including
fluid transport and locomotion.16 Several models with vary-
ing complexity have indicated that the synchronization
which manifests as metachronal beating can occur due to
fluid forces alone17–20 although, since individual cilia are not
free-swimming but are attached to a substrate, synchroniza-
tion can only occur with a load-dependent force generation.
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Similarly to cilia, there is an observed synchronization of the
pairs of flagella used for propulsion on the alga
Chlamydomonas.21 Beyond eukaryotic flagella and cilia, hy-
drodynamic interactions in bacterial flagella lead to the cre-
ation of flagella bundles propelling the cells forward as they
swim, as well as the disruption of such bundles when the
cells change their swimming direction.22–24

In this paper we return to the two-dimensional model
first proposed by Taylor �detailed in Sec. II�, to describe the
phase-locking of swimming flagellated cells. The simplicity
of such a model allows one to address the problem analyti-
cally, to extract the relevant properties that such waves must
possess in order to give rise to synchronization, and to deter-
mine precisely what states of dynamic equilibrium will oc-
cur. We first present geometrical arguments which show that
Taylor’s purely sinusoidal sheet cannot dynamically synchro-
nize due to an excess of symmetry which, when coupled with
the kinematic reversibility of the Stokes equations, prevents
any relative motion between free-swimming cells �Sec III�.
Real flagella possess a front-back asymmetry and we show
that this feature leads to the occurrence of synchronization.
We accomplish this by allowing the sheets to pass com-
pletely general waveforms in our model. We then solve the
problem analytically for two asymptotic limits, first when the
amplitude of the waves is much smaller than their wave-
length �Taylor’s limit, Sec. IV�, and then when the mean
distance between the waves is much smaller than the wave-
length �lubrication limit, Sec. V�. We also solve the problem
numerically using the boundary integral formulation of the
Stokes equations to demonstrate the validity of the analytic
formulae and to address the synchronization of large ampli-
tude waveforms �Sec. VI�.

Our results show precisely how the geometry of the
waveforms governs the synchronizing dynamics of the sys-
tem �Sec. VII�. We obtain simple formulas that dictate the
time-evolution of the phase and the energy dissipation, and
which indicate that while swimming in-phase results in a
minimum of viscous dissipation it does not necessarily coin-
cide with an equilibrium state, and indeed a dynamically
stable state may maximize energy dissipation. In addition to
the geometry of the waveforms, we demonstrate the impor-
tance of the separation of the sheets on the dynamics of the
system. We show that the stable conformations �and the
number of them� may change with the distance between the
cells. Notably swimming cells with front-back asymmetry
are shown synchronize into either a stable in-phase or
opposite-phase conformation when in close proximity, while

some cells when further apart are shown to synchronize with
a fixed finite phase difference, reminiscent of ciliary phase-
locking. A discussion and summary of these results is offered
in Sec. VIII.

II. SETUP

Our system, as illustrated in Fig. 2, consists of two par-
allel and identical infinite sheets, which we will call swim-

mers, separated by a mean distance h̄. The sheets both propa-
gate waves of transverse displacement in the positive z
direction, with amplitude a and speed c=� /k, where � is the
wave frequency and k is the wavenumber, and have an initial
phase difference �0=k�z0 �denoted positive when the bot-
tom sheet is shifted by �0 along the positive z direction with
respect to the top sheet�. By passing these waves the swim-
mers propel themselves in the −z direction.13 We consider the
frame of reference moving with the bottom sheet, at speed U,
and write the relative speed of the top sheet in the z direction
as U�.

The instantaneous positions of the bottom �y1� and top
�y2� sheets are thus given by

y1 = ag�k�z − ct�� , �1�

y2 = h̄ + ag�k�z − ct + �z0 − �
0

t

U��t��dt�	
 , �2�

where g a function describing the arbitrary waveform of
the swimmers, and z is the axial coordinate in a frame
moving with the lower sheet. We use the following dimen-
sionless variables z�=zk, t�= t�, u�=u /c, and v=v /�c,
with the ratio of the amplitude of the waves to their wave-
length given by �=ak. For convenience we use the wave
variable x�=z�− t� and the instantaneous phase difference

�=�0−k�0
t�U�

� �t��dt�. Consequently the positions of the
sheets in the moving frame are given simply by

y1
� = �g�x�� , �3�

y2
� = h̄� + �g�x� + �� , �4�

where the arbitrary 2�-periodic function g can be written
using Fourier series as

FIG. 1. �a�–�c� Time-sequence showing the synchronization of two swim-
ming bull spermatozoa. Scale bar is 25 �m. Reproduced/adapted with per-
mission from Woolley et al. �Ref. 4�.
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FIG. 2. �Color online� System of parallel and identical 2D infinite sheets in
a frame moving with the lower sheet. The sheets are separated vertically by

a mean distance h̄. The top sheet, behind the bottom sheet by a phase � as
measured along the z axis, moves to the right with a relative velocity U�.
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g�x�� = �
n=1

�

	n cos�nx�� + �
n=1

�


n sin�nx�� . �5�

Since we are concerned with the synchronization of mi-
croorganisms, we are in a very low Reynolds number
regime9 �Re
10−3 for the spermatozoa in Fig. 1 �Ref. 4��
where the fluid between the sheets is inertia free, and thus
mechanical equilibrium for the stress tensor, ��, is written as
� ·��=0. Assuming an incompressible Newtonian flow we
obtain the Stokes equations for the dimensionless velocity
field, u�= �u� ,v��, and dynamic pressure, p�= p�2 /��, as

�2u� = �p�, �6�

� · u� = 0. �7�

Physically, if the sheets are not permitted to move rela-
tive to one another, i.e., if we set U�

� =0, then there may arise
a horizontal hydrodynamic force fx acting on the swimmers.
Conversely, if we let the sheets move freely under the
constraint that they are force free then there may be a non-
zero evolution of the phase in time, given geometrically as
U�

� =−d� /dt. These two problems are of course related, as
we will see, by the mobility M, as U�=Mfx. In the case of
a purely sinusoidal swimmer �i.e., 
1=1, 
n=0 n�1, and
	n=0∀n�, Taylor13 derived the swimming speed of a single
sheet �the outer problem� and obtained

U� = − 1
2�2�1 − 19

16�2� + O��6� . �8�

In the rest of the paper we drop the � notation for conve-
nience.

III. SYMMETRY

Before calculating the hydrodynamic forces between the
swimmers, it is insightful to first consider the various sym-
metry properties of the problem, and their consequences on
force generation and synchronization.

Suppose first that we have two swimmers, g1 and g2

�two-dimensional �2D� or three-dimensional �3D�, finite or
infinite�, whose shapes are such that g2 is obtained from g1

by a vertical axis reflection plus a horizontal axis reflection
and a phase shift � �which depends on the location of the
vertical axis�, i.e., g2�x�=−g1�−x+��. In that case there can
be no horizontal hydrodynamic force acting between the
swimmers, and fx=0. To prove this result, let us assume that
a force f acts on the top sheet with U�=0 �since � ·�=0 the
force on the bottom sheet must be equal and opposite in
sign�. We then perform a reflection of the entire conforma-
tion about the vertical axis then horizontal axis, followed by
a reversal of the kinematics �see Fig. 3 for an example�. The
resulting system is identical except the sign of the force has
reversed, f→−f, a contradiction unless f=0 �then fx=0�.
In particular, if the sheets are identical, then there can
be no synchronization if the identical shapes of the
waveforms satisfy g�x�=−g�−x+��. A subset of these
shapes is sheets that are invariant under both vertical axis
reflection g�x�=g�−x+�� and horizontal axis reflection g�x�
=−g�x+��; the simplest example of such shape is a pure sine
wave �
1=1, 
n=0 n�1 and 	n=0 ∀n�, which is Taylor’s

original geometry.13,14 Since such an arrangement has both
vertical and horizontal axis symmetry it will not passively
synchronize in a Stokesian flow.25 Similar excessive geo-
metrical symmetries have also been observed to curb any
phase-locking in other swimmer models.26–28

A further generalization of the argument may be ob-
tained by noting that in two dimensions the outer problem
can balance no force and hence each side of the swimmer
must be force free. This decoupling of the inner and outer
problem means that it is only the fluid between the two
sheets that drives synchronization, if any. Thus if two swim-
mers do not phase-lock, a similar arrangement of more than
two swimmers will not either—a result that cannot be ob-
tained by symmetry alone.

In order to possibly obtain a passive synchronization be-
tween the swimmers we must therefore either �1� have a
geometry such that g�x��−g�−x+��, or �2� remove the ki-
nematic reversibility of the flow equations. Since we are con-
sidering here microorganisms in a Newtonian fluid, the latter
is a property of the problem that we cannot escape. If our
model were at finite Reynolds number, or in a viscoelastic
fluid, then this constraint would naturally be removed and
symmetric swimmers could synchronize.29 In a Stokesian
flow we must thus have a geometrical asymmetry.

Most swimming microorganisms, such as spermatozoa,
possess a cell body and thus have a very natural front-back
asymmetry. In addition, some spermatozoa pass waves along
their flagella which increase in amplitude from head to tail,
leading to another type of front-back asymmetry.30 In con-
trast, swimmers whose flagellar waveforms or body is asym-
metric with respect to the horizontal axis experience viscous
torques, and thus cannot swim straight. It is therefore natural
for us to focus on waveforms which are symmetric about the
horizontal axis, but not the vertical. As a result of this hori-
zontal axis symmetry, the horizontal component of a force
between the swimmers must be an odd function of the phase
�, fx�−��=−fx���, and thus there must always be a fixed
point at �=0, i.e., f�0�=0. In addition, because the force is
2�-periodic, then �=� must also be another fixed point, i.e.,
f���=0.

As a side note, we observe that because of the kinematic
reversibility of the Stokes equations, a change in the direc-
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FIG. 3. �Color online� A system of two identical and parallel swimmers
which have a stabilizing force �top left� becomes destabilizing �bottom left�,
under two reflections—first about the vertical axis �Rv� then about the hori-
zontal axis �Rh�—combined with an application of kinematic reversibility
�KR�, yet the boundary conditions remain identical, hence the force must be
zero. Symmetric waveforms can thus not synchronize.
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tion of wave propagation yields a reversal of forces f→−f.
Reversing the direction of wave propagation is geometrically
equivalent to reversing the front-back asymmetry of the
waveforms which must therefore also reverse the forces on
the swimmer.

In order to gain physical intuition in the synchronization
process, we now characterize the force generation and sub-
sequent synchronization between the two sheets analytically
by focusing on two asymptotic limits. We first consider in
Sec. IV the limit in which the amplitude of the traveling
waves is much smaller than their wavelength. The limit in
which the distance between the swimmers is much smaller
than their wavelength will then be considered in Sec. V. Ad-
ditionally we solve the problem numerically using the
boundary integral formulation of the Stokes equations in Sec.
VI to validate our asymptotics and address large amplitude
swimming.

IV. SMALL AMPLITUDE EXPANSION

Because the model is 2D we may introduce the stream
function formulation and write u= ��
 /�y ,−�
 /�x�. In this
manner the continuity equation is automatically satisfied and
the Stokes equations reduce to a biharmonic equation in the
stream function

�4
 = 0. �9�

We assume in this section that the amplitude of the trav-
eling wave is much smaller than their wavelength, ��1, and
look to solve this problem by seeking a regular perturbation
expansion in powers of �, 
=��m
m. Because of the sym-
metry of the problem there is no difference in the boundary
conditions if we change �→−� as this is equivalent to taking
x→x+�, this then naturally precludes the possibility of a
synchronizing force appearing at all odd powers in �.

A. Boundary conditions

We wish to prescribe a wave of transverse displacement
to each sheet. However, doing so requires the material com-
posing the sheets to be extensible as material points will
accelerate relative one another. If we wish to forbid this rela-
tive motion, we may require the sheet to pass waves in an
inextensible fashion. This may be visualized as material
points moving along a conveyor of static shape, when ob-
serving the sheet in the wave frame.31,32

For extensible sheets the boundary conditions are given
simply by the time derivatives of the waveforms, namely

u�y=y1
= 0, �10a�

v�y=y1
= �y1/�t , �10b�

u�y=y2
= 0, �10c�

v�y=y2
= �y2/�t . �10d�

For inextensible sheets the boundary conditions are
given by

u�y=y1
= 1 − ṠR cos ��y=y1

, �11a�

v�y=y1
= − ṠR sin ��y=y1

, �11b�

u�y=y2
= 1 − ṠR cos ��y=y2

+ U�, �11c�

v�y=y2
= − ṠR sin ��y=y2

. �11d�

where the angle � is defined by tan �=�y /�x hence

cos � =
1

�1 + �y��2
, �12�

sin � = y� cos � �13�

and the material velocity �in the wave frame�, ṠR, is ratio of
the length of the sheet to its wavelength multiplied by the
wave speed, or

ṠR =
1

2�
�

0

2��1 + � �y

�x
�2

dx . �14�

B. Expansion

Since we know that an expansion can yield a synchro-
nizing force only at even powers in amplitude one would
hope to see a relative force generated at order �2. We show
that for any waveform g�x�, the force is zero at order �2, and
hence a perturbation expansion must carried out to order �4

in order to obtain the synchronizing dynamics.
The solution at each order m in the expansion �O��m�� is

given generally by


m = am,0�y� + �
n=1

�

�am,n�y�cos�nx� + bm,n�y�sin�nx�� .

�15�

The mean is given by

am0�y� = yum0 + Dm,0y3 +
y2�U�m − 3Dm,0h̄2 + umh − um0�

2h̄
,

�16�

where Dm,0 is an unknown constant and where we define

um0 =
1

2�
�

0

2� � �
m

�y
�

y=0
dx , �17a�

umh + U�m =
1

2�
�

0

2� � �
m

�y
�

y=h̄

dx �17b�

as the mean components of the horizontal boundary condi-
tions. The vertical boundary conditions cannot have a mean
component and therefore do not contribute to the zeroth Fou-
rier mode of the solution. The mean component is of particu-
lar interest as it is the only mode at any given order to con-
tribute to the dynamics and in turn in order to solve for Dm,0

we must employ dynamical considerations.
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To compute the force on the bottom sheet we note that
we are free to move the integral along the surface of the
sheet S, to any surface parallel to the x axis. This can be
shown by integrating � ·�=0 over the area between the
sheet and any such surface and using the periodicity of the
problem. Alternatively, this can be shown by expanding as
follows

fx = ex · �
S

� · ndS

= �
0

2�

��xy − �g��x��xx�y=y1
dx

= �
0

2� ��xy + �
n=1

�

�n �

�x
�n − 1

n!
gn�n−1�xx

�yn−1 �	
y=0

dx

= �
0

2�

�xy�y=0dx . �18�

We will use the result given by Eq. �18� repeatedly through-
out the paper.

Using the above we find that the force on the bottom
sheet of O��m� is

fmx�y=y1
= �

0

2� �� �2
m

�y2 −
�2
m

�x2 ��
y=0

dx = 2�am,0� �0�

= − 6�h̄Dm0 +
2�

h̄
�U�m + umh − um0� �19�

while the force on the upper sheet is similarly

fmx�y=y2
= − 2�am,0� �h̄�

= − 6�h̄Dm0 −
2�

h̄
�U�m + umh − um0� . �20�

Hence we see that only the second derivative of the zeroth
Fourier mode contributes to the force.

Finally, integrating mechanical equilibrium, � ·�=0, be-
tween the two sheets leads to the equality

f�y=y1
+ f�y=y2

= 0, �21�

where f=�S� ·ndS. Taking the x-component we find
fmx �y=y1

=−fmx �y=y2
at all orders and in order to satisfy this

relationship we must have Dm,0=0.
The force on the upper sheet is then

fmx =
2�

h̄
�um0 − umh − U�m� . �22�

Setting U�=0 gives rise to a phase-locking force in the static
case, fx

s �we use the superscript s to avoid confusion�. In
Appendix A we show details of the perturbation expansion
order by order, importantly we show that for any g�x� the
phase-locking force is zero at second order and that leading
order contribution to the force arises at fourth order in am-
plitude and hence the static force is given by

fx
s = �42�

h̄
�u40 − u4h� + O��6� . �23�

For free-swimming we thus see that the relative swimming
sped is given by

U� =
h̄

2�
fx

s . �24�

Noting that d� /dt=−U� we therefore get an equation for the
time-evolution of the phase as

d�

dt
= −

h̄

2�
fx

s = �4�u4h − u40� + O��6� . �25�

In Sec. VII these analytical results for both the phase-locking
force and the dynamical problem are compared with a full
numerical solution using the boundary integral formulation.

C. Energy dissipation

The energy dissipation rate between two sinusoidal
sheets was originally computed by Taylor at leading order in
the wave amplitude.13 Here we restate his results for a gen-
eral traveling wave. The energy dissipation per unit width in
the fluid is equal to the rate of work of the sheets against the
fluid

Ė = − �
S

�u · � · n��y=y1
dS − �

S

�u · � · n��y=y2
dS . �26�

Expanding the integral in � we find to leading order

Ė = �2�
0

2�

g��x���− p1 + 2
�v1

�y
��

y=0
dx

− �2�
0

2�

g��x + ����− p1 + 2
�v1

�y
��

y=h̄

dx . �27�

Expressing the pressure in terms of the stream function and
integrating by parts yields

Ė = − �2�
0

2�

g�x�� �3
1

�y3 �
y=0

dx

+ �2�
0

2�

g�x + ��� �3
1

�y3 �
y=h̄

dx . �28�

We already know the form of these integrals �indeed they are
equal� from the analysis of the force at O��2�, and we find

Ė = ��2�
n=1

�

�	n
2 + 
n

2�

� �Qn��0� − 2Pn��h� − cos�n���Qn��h� − 2Pn��0��� ,

�29�

which we can evaluate to get

Ė = 2��2�
n=1

�

n3�	n
2 + 
n

2��A�nh̄� − cos�n��B�nh̄�� , �30�

where
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A��� =
2� + sinh 2�

sinh2 � − �2 , �31a�

B��� =
2� cosh � + 2 sinh �

sinh2 � − �2 . �31b�

Setting 
1=1 and all other coefficients to zero in the above
yields Taylor’s result for pure sine waves.13

In the limit �→�, we see that A→2, B→0, and the
ratio B /A decays exponentially. This tells us what we intu-

itively expect: When h̄ is large, the phase difference has little
effect on the energy dissipation, and also the phase differ-
ence has a weaker effect on the energy dissipated by higher
Fourier modes. Conversely, we expect that when the separa-
tion is small, the phase angle would have an large influence
on the rate of working of the swimmers, and indeed when
�→0, we see B /A→1 as both A ,B→12�−3 �keeping in

mind that we have implicitly assumed �� h̄�.
Importantly, because A and B are both positive and

monotonically decaying functions with �, we know that in-
phase swimming, �=0, is a global minimum for the energy
dissipated in the fluid. In addition, given that we have the
symmetry g�x+��=−g�x�, this restricts us to odd Fourier
modes, and thus the out-of-phase configuration, �=�, is a
global maximum. Taylor’s dissipation argument13 extends
thus to arbitrary waveforms.

V. LUBRICATION LIMIT

A second insightful limit to consider is the one in which
the sheets are so close together that their mean separation is

much smaller than the wavelength of the oscillations, h̄��.
In this lubrication limit the Stokes equations are substantially
simplified, permitting analytical solutions. The main results
of this section were previously summarized in a letter by the
authors.25

A. Lubrication equations

In order to facilitate this limit we must rescale the gov-
erning equations. We nondimensionalize vertical distances

by y�=y / h̄, and horizontal distances z�=kz, while assuming

that �=kh̄�1. The instantaneous position of the sheets is
therefore given by y1

�=a�g�x�� and y2
�=1+a�g�x�+��, where

a�=a /h and again x�=z�− t� is the wave variable. Nondimen-
sionalizing the continuity equation we find that if the hori-
zontal velocity is given by u=cu� then the vertical velocity
must be v=�cv�. The Stokes equations then yield the lubri-
cation equations to leading order in �

�u�

�x�
= −

�v�

�y�
, �32�

�p�

�y�
= 0, �33�

dp�

dx�
=

�2u�

�y�2 , �34�

where p�=�2p /��. Forces �per unit depth� are nondimen-
sionalized as f�= f� /�c, while energy dissipation rate per

unit depth is Ė�=�2Ė /��ch̄. We note that if g approaches a
singular geometry we would leave the realm of validity of
the lubrication approximation.33,34 We now drop the � nota-
tion for convenience.

We look to solve this problem in a frame moving with
the wave speed of the bottom sheet. The boundary conditions
in the lubrication limit are then given by

u�x,y = y1� = − 1, �35a�

v�x,y = y1� = − y1�, �35b�

u�x,y = y2� = U� − 1, �35c�

v�x,y = y2� = − y2�. �35d�

Hence we see that in the lubrication limit the boundary con-
ditions are identical to those of an extensible sheet. The full
problem, regardless of whether extensible or inextensible
boundary conditions are used, will collapse to the following
lubrication results in the limit ��1.

Given the above boundary conditions, the solution for
the velocity field is found to be

u�x,y� =
1

2

dp

dx
�y − y1��y − y2� + U�

y − y1

y2 − y1
− 1. �36�

If one integrates the continuity equation one finds

�
y1

y2 �u

�x
dy = y2� − y1� �37�

which then gives

dQ

dx
= U�

dy2

dx
· �38�

If no relative motion, U�=0, then the flow rate Q between
the sheets is constant.

B. Hydrodynamic force

We first characterize the force generated when U�=0 in
order to determine the location and nature of the fixed
points for the phase difference between the swimmers. With
U�=0 then Q=const., and we find

Q = �
y1

y2

udy = −
1

12

dp

dx
h3 − h , �39�

where h=y2−y1. We now exploit the periodicity of the sys-
tem to obtain the value of Q by noting that

�
0

2� dp

dx
dx = − 12�

0

2� 1

h2dx − 12Q�
0

2� 1

h3dx = 0. �40�

We thus have
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Q = −
I2

I3
, �41�

where

Ij = �
0

2�

h−jdx . �42�

The pressure gradient is therefore given by

dp

dx
= 12� I2

h3I3
−

1

h2� · �43�

The force per unit depth on the upper sheet is given by

fx = ex · �
S

� · ndS , �44�

where the curve S is defined by y=y2. Evaluating Eq. �44�
gives

fx = �
0

2� �dy2

dx
�− p + 2�2�u

�x
� − � �u

�y
+ �2�v

�x
�	

y=y2

dx .

�45�

We keep only the O�1� terms in the lubrication limit ��1
which yields

fx = − �
0

2� �dy2

dx
p +

�u

�y
�

y=y2

dx . �46�

Exploiting the periodicity of the problem through integration
by parts35 allows us to recast the force as

fx = �
0

2� ��y2
dp

dx
−

�u

�y
��

y=y2

dx . �47�

Substituting in Eqs. �36� and �43�, and noting any constant
multiplying the pressure gradient may be discarded, we find
the force to be given by

fx = 6a�
0

2� � I2

h3I3
−

1

h2��g�x + �� + g�x��dx . �48�

C. Fixed points

By symmetry, we found earlier that there are
always fixed points at �=0,�. This is easily confirmed by
evaluating Eq. �48�. For �=0, h is constant, and thus
I2 /h3I3−1 /h2=0, leading to fx=0; for �=�, we have
g�x+��+g�x�=0 by symmetry, and again fx=0.

In order to determine their stability, we can expand the
force, Eq. �48�, about these fixed points. Letting �=�0+��
where ���1 we obtain near the in-phase fixed point,
�0=0,

fx0
= − 72a4��3�

0

2�

g�x�g��x�3dx + O���4� . �49�

In contrast, near the opposite-phase fixed point, �0=�, we
get

fx�
= 6a3��3�

0

2� g��x�3

�1 − 2ag�x��4� 1

�1 − 2ag�x��
J2

J3
	dx

+ O���4� , �50�

where we have defined

Jn = �
0

2�

�1 − 2ag�x��−ndx . �51�

If we then assume a�1 then Eq. �50� reduces to

fx�

 72a4��3�

0

2�

g�x�g��x�3dx + O���4� . �52�

We see then that for small amplitude waves, and small de-
viations in phase about the fixed points, the force about the
in-phase configuration ��0=0� is equal and opposite to the
force about the out-of-phase configuration ��=��. Unless
both of them are neutrally stable �which is the case if the
waveforms are too symmetric, see Sec. III� we therefore ob-
tain the important result that, for a given waveform, one
fixed point will always be stable, while the other one
will always be unstable. To determine which one is the
stable point, one has to evaluate the geometric integral,
A=�0

2�gg�3dx. If A�0 then the fixed point at �=0 is stable,
while it is the one at �=� in the case A�0. Stable passive
hydrodynamic synchronization thus always takes place for
swimmers with asymmetric waveforms.

As a side note, we can also expand the force Eq. �48� in
powers of a�1, and we see that the leading order contribu-
tion is fourth order in amplitude, given for general � as

fx 
 − 36a4�
0

2�

�g�x + �� + g�x���g�x + �� − g�x��3dx

�53�

plus terms at O�a6�. We see that in the small amplitude limit
there are only two fixed points for nontrivial waveforms g.
The fourth-order scaling of the hydrodynamic force, Eqs.
�49�, �52�, and �53�, is reminiscent of the small amplitude
calculations from Sec. IV showing that no force can occur at
second order in the wave amplitude, but a nonzero force does
come at fourth order.

D. Energy dissipation

The energy dissipated by viscous stress in the volume V
of fluid between the sheets by is given by

Ė = �
V

�:�udV . �54�

In the lubrication limit, assuming unit width, the energy dis-
sipation over one wavelength is then

Ė = �
0

2� �
y1

y2 � �u

�y
�2

dydx �55�

and given Eq. �36� we have
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Ė =
1

12
�

0

2�

h3�dp

dx
�2

dx �56�

which is explicitly

Ė = 12�
0

2� 1

h
� I2

I3h
− 1�2

dx . �57�

We see the energy dissipation is non-negative and identically
zero when �=0 �i.e., when h is constant� and hence this must
be a global minimum.

If we let �=�0+�� where ���1, we find near the in-
phase conformation, �0=0

Ė0 = 12a2��2�
0

2�

g��x�2dx + O���4� , �58�

and the energy increases quadratically with the slope of the
wave from zero when �=0. Near the opposite-phase confor-
mation, �0=�, we get

Ė� = 12�J1 −
J2

2

J3
� − 12��2�

0

2� � g��x�2

�1 − 2ag�x��3

� �1 +
6

�1 − 2ag�x��
J2

J3
� 1

�1 − 2ag�x��
J2

J3
− 1
�dx	

+ O���4� . �59�

If we further assume that a�1 we see that

Ė� 
 12a2�
0

2�

�4g�x�2 − g��x�2��2�dx �60�

hence for any waveform g�x� the energy dissipated between
the sheets is maximum in the opposite-phase conformation,
�=�.

Finally, if we expand the energy dissipation, Eq. �57�, in
small amplitude for general �, we find

Ė = 12a2�
0

2�

�g�x + �� − g�x��2dx + O�a3� . �61�

We can see clearly again that the energy dissipation is a
global minimum when �=0 and maximum when �=� due
to the g�x+��→−g�x� symmetry of the waveform; this is in
agreement with the previous small amplitude results for ar-
bitrary separation.

An important consequence of the previous results is that,
although the nature of the fixed points depends on the
swimmer waveform, the location of the minimum of energy
dissipation does not. The conformation of minimum energy
dissipation is not necessarily stable: depending on the wave-
form geometry, the opposite-phase conformation, �=�, may
be stable �specifically, when A�0� yet it is the one corre-
sponding to a maximum of energy dissipation.

Experimental evidence shows that spermatozoa cells
synchronize at the in-phase conformation �and indeed A�0
for the linearly increasing sine waves indicated by
Rikmenspoel30�. However, we find at least one instance, in
the figures in Ref. 11, which show spermatozoa flagella

seemingly synchronized in opposite-phase �although no
mention of phase difference is reported in the text�.

E. Dynamics

After calculating the hydrodynamic force, we now look
to solve for the time- evolution of the phase. We thus assume
that the sheets are force free, fx=0, and find the correspond-
ing value of U�. From Eq. �38� we know

�

�x
�

y1

y2

udy = U�

dy2

dx
· �62�

Integrating in x and evaluating the integral in y gives an
expression for the pressure gradient as

dp

dx
=

6U� − 12

h2 −
12U�y2 + C

h3 , �63�

where C is a constant of integration. We find this constant by
exploiting the periodicity of the pressure field, leading to

C = �6U��I2 − 2K� − 12I2�/I3, �64�

where K=�0
2�y2h−3dx.

The force on the upper sheet is given by

fx = �
0

2� �1

2

dp

dx
�y2 + y1� −

U�

h
	dx . �65�

We then solve for U� by enforcing that the sheets are force
free. It is worth noting that when we set U�=0, we retrieve
the force from the static case given by Eq. �48�, which we
label here fx

s to avoid confusion. Now since U�=−d� /dt we
find that the phase evolves in time according to

d�

dt
= − Mfx

s , �66�

where the mobility, M, is given by

M−1 = �
0

2� �1

h
− � 1

h2 −
1

h3�2y2 +
I2 − 2K

I3
�	

� 3�y2 + y1�
dx . �67�

As physically expected, the rate at which the phase changes,
Eq. �66�, is proportional to the static force, fx

s, which would
be applied if the sheets where not permitted to move. The
result is a first-order integro-differential equation for �.

Expanding Eq. �66� for small amplitude, a�1, we find

d�

dt



36a4

2�
�

0

2�

�g�x + �� + g�x���g�x + �� − g�x��3dx

�68�

plus terms at order a6. We thus see that d� /dt�−fx
s /2� for

small amplitude, and hence the mobility becomes 1 /2� in
this limit. Notably, the result given by Eq. �68� is the same as
the one given by Eq. �25� after proper dimensional rescaling.

We now expand near the fixed points by letting �=�0

+�� and obtain
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d��

dt
� �

36

�
a4A��3 �69�

with a positive sign for �0=0, and negative �0=�. Solving
this differential equation gives the exact phase dynamics for
small times as

�� =
sgn��i��

��i�
−2 � 72a4At/�

, �70�

where ���t=0�=�i�. In the case of a stable fixed point, we
thus get that the typical time for synchronization scales as
t�1 /a4�A�, and thus the phase-locked state is reached faster
for waves of larger amplitude �a increases�, and larger asym-
metry ��A� increases�. Note that, as a difference, the typical
time for synchronization in viscoelastic fluids scales as the
inverse square of the wave amplitude.29

VI. BOUNDARY INTEGRAL FORMULATION

The boundary integral method may be used to address
numerically the synchronization between the swimmers for
shapes of arbitrary amplitude, as well as confirm our
asymptotic results. We present in this section the principle of
the method and our implementation of it, which is quite simi-
lar to that given by Pozrikidis36 in his study of peristaltic
pumping, and hence will be brief. The equations in the sec-
tion are nondimensionalized similarly to what was done in
Sec. II.

Consider any two solutions to the Stokes equations,
�u ,�� and �ũ , �̃� with no associated body forces for any
closed surface S of outward normal n. The Lorentz recipro-
cal theorem37 gives the equality

�
S

�u · �̃ − ũ · �� · ndS = 0. �71�

If we take for ũ and �̃ in Eq. �71� the fundamental solutions
for 2D Stokes flow

ũ�x� =
1

4�
G�x̂� · f̃�x0� , �72�

�̃�x� =
1

4�
T�x̂� · f̃�x0� �73�

for the velocity and the stress at the field point x, due to the

point force f̃ at x0, where x̂=x−x0 and the 2D Stokeslet G
and stresslet T are given by

G = − I ln��x̂�� +
x̂x̂

�x̂�2
, �74�

T = − 4
x̂x̂x̂

�x̂�4
�75�

then one obtains the boundary integral formulation of the 2D
Stokes equations for the velocity field within the fluid do-
main, V, and on the boundary, S, respectively

u�x0��x0�V =
1

4�
�

S

�u�x� · T�x̂� · n − b�x� · G�x̂��dS�x� ,

�76�

u�x0��x0�S =
1

2�
�

S

�u�x� · T�x̂� · n − b�x� · G�x̂��dS�x� ,

�77�

where we have used b=� ·n.
Since the problem we consider is 2�-periodic, we can

reduce the domain of integration S to a single period by
using an infinite sum of periodically placed Stokeslets and
stresslets

Gp = �
n=−�

�

− I ln��x̂n�� +
x̂nx̂n

��x̂n��
, �78�

Tp = �
n=−�

�

− 4
x̂nx̂nx̂n

�x̂4�
, �79�

where x̂n= �x̂0+2�n , ŷ0�.38 As shown in Ref. 39 these may be
expressed in closed form by using the summation formula

B = �
n=−�

�

ln��x̂n�� =
1

2
ln�2 cosh�ŷ0� − 2 cos�x̂0�� . �80�

We can then construct the elements of Gp and Tp using B
and its derivatives as follows

Gxx
p = − B − �yB + 1,

Gxy
p = y�xB ,

Gyy
p = − B + y�yB ,

Txxx
p = − 2�2�xB + y�xyB� , �81�

Txxy
p = − 2��yB + y�yyB� ,

Txyy
p = 2y�xyB ,

Tyyy
p = − 2��yB − y�yyB� ,

where the Stokeslet and stresslet are invariant under permu-
tation of its indices.38

Following the approach outlined by Higdon,40 the
boundary S �the surface of each sheet as the sides cancel� is
discretized into 2N straight line elements Sn. We assume the
stress b and the velocity u are linear functions over a par-
ticular interval �b→bn, u→un� and then collocate x0 at each
of the 2N segments, x0→xm, to obtain a system of N equa-
tions with N unknowns. The periodic Stokeslet and stresslet
are regularized by subtracting off from them their nonperi-
odic counterparts and then adding back the difference; the
2D Stokeslet and stresslet are then integrated analytically.
Hence we have
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u�xm� =
1

2�
�
n=1

2N ��
Sn

un · �Tp − T� · nndSn

− �
Sn

bn · �Gp − G�dSn + �
Sn

un · T · nndSn

− �
Sn

bn · GdSng	 . �82�

The regularized integrals have a removable singularity at
x=xm which is obtained by Taylor expansion. The boundary
integral formulation is thereby reduced to a linear system
that can be inverted using standard techniques to obtain the
stress b. The force on the top sheet is then given by integrat-
ing the stress

fx = �
n=N+1

2N �ex · �
Sn

bndSn	 . �83�

In order to solve for the dynamical problem we let the
boundary condition be represented by a sum of a surface
deformations and an unknown rigid body motion, u→un

+U�ex, on the upper sheet. The additional unknown, U�, is
found by enforcing that the sheets are force free, fx=0.

The numerical procedure was validated through conver-
gence tests and by reproducing previous results for shear
flow over sinusoidal surfaces.39 A large number of elements
�2N� is needed when the sheets are close together, or if they
are far apart and the amplitude is small, but in both these
regimes we can use the asymptotic formulas from the previ-
ous sections as further validation.

VII. RESULTS

We now present in this section the results of both our
asymptotic and numerical calculations to address the syn-
chronization of specific waveforms. For illustrative purposes
we restrict ourselves here to the family of waveforms de-
scribed by the function

g�x� = sin x + � cos 3x �84�

i.e., 
1=1, 	3=�, and all other modes equal to zero, as illus-
trated in Fig. 4. In essence these shapes are geometric per-
turbations �small for small �� to Taylor’s sinusoidal swim-
ming sheet. They have a broken front-back symmetry when
� is nonzero. Reversing the sign of � is equivalent to reflect-
ing the geometry of each wave about the vertical axis,
��→−��= �x→−x+��, which itself is equivalent to revers-
ing the kinematics of the problem. In other words, changing
the sign of � changes the sign of the forces on the sheets
which leads to stable fixed points becoming unstable, and
vice versa. In addition, the simple form of g�x� allows us to
obtain some explicit formulae from the general theory pre-
sented in Secs. IV and V.

In the lubrication limit, the geometric parameter
A=�0

2�gg�3dx=−2�� controls the evolution of the phase
near fixed points. We see that ��0 gives A�0, which leads
a stable fixed point at �=0 and unstable at �=�. By sym-
metry, ��0 necessarily gives A�0, and thereby exchanges

the location of the stable and unstable fixed points. In addi-
tion, from Eq. �53�, we have that when a�1 the phase-
locking force is given by

fx = 144�a4� sin3 � �85�

which is linear in the asymmetry and quartic in the ampli-
tude, and leads to a time-evolution of the phase as

d�

dt
= − 72a4� sin3 � . �86�

The energy dissipation in the lubrication limit, for
a�1, Eq. �61�, is

Ė 
 24�a2�1 − cos � + �2�1 − cos 3��� . �87�

Similarly, in the small amplitude limit, Eq. �30� yields

Ė 
 2��2�A�h̄� − B�h̄�cos � + 33�2�A�3h̄�

− B�3h̄�cos 3��� , �88�

where the functions A and B, given by Eq. �31�, introduce a
dependence on the separation h, and Eq. �88� reduces to

Eq. �87� when h̄ is small �after accounting for the separate
scalings�.

We see clearly that the energy dissipation rate is invari-
ant under �→−� and further, when we are assuming that �
is a small, the change in the energy dissipation due to the
asymmetry is also small, O��2�.

A. Comparison between asymptotic and numerical
methods

In the small amplitude limit �IV� we have explicitly as-

sumed that ��1, and also implicitly that �� h̄. The lubrica-
tion limit �V� effectively captures the physics of the problem
when the sheets are quite close together, i.e., the limit

h̄�2�. If we want in addition the phase, �, to be able to
span the range of all possible values then we also get the

x/π

g(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1.5

−1

−0.5

0

0.5

1

1.5

FIG. 4. Illustration of the waveform g�x�=sin x+� cos 3x for varying asym-
metry. The dashed line corresponds to �=0.05, solid line �=0.1, and dash-
dot line �=0.2.
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geometrical constraint �� h̄ /2 �or, in terms of lubrication
variables, a�1 /2�. There exists therefore a regime in
which both asymptotic approaches are valid, namely, the
limit ��h�1.

As a validation of our methods we plot the analytical
results from both asymptotic limits, together with the nu-
merical results, for such a regime in Fig. 5 �top�. The static
force on the top sheet, fx

s, is shown for the waveform of
Eq. �84� with an asymmetry of �=0.1 and wave amplitude
�=0.01 �in this plot the forces have been scaled for display
purposes only, see caption�. The solid lines represent the
small amplitude limit, dashed lines the lubrication limit,
and symbols are for the numerical data obtained from the

boundary integral method. The results from all three methods
agree quantitatively for small swimmer-swimmer separation,

h̄. As the value of h̄ increases, the lubrication results start to
deviate, but the small amplitude results remains accurate �re-
call that ��1 in all cases�.

For larger values of the separation distance between the
swimmers, the lubrication results cannot be applied, but the
small amplitude asymptotics, Eq. �23�, remain valid as long
as the wave amplitude is small. The value of the static force
is compared to the numerical results in Fig. 5 �bottom� for

large separation, h̄=1, and as function of the wave ampli-
tude, �. The agreement between the two is excellent for �
=0.1, but they deviate quantitatively for larger wave ampli-
tudes �although the correct order of magnitude, and depen-
dence on �, is obtained�.

B. Stability

When we introduce a variable separation between the

swimmers, h̄, and thus go beyond the small h̄ limit from the
lubrication approximation, we get that the number of fixed
points and their nature does not depend solely on the wave-
form geometry, but actually also on the swimmer-swimmer
distance. In Fig. 6 �top� we show the dependence of the static
force on the phase, for an amplitude �=0.1 and an asymme-
try �=0.1, as we vary the separation between the swimmers

h̄ �line: small amplitude asymptotics; symbols: boundary in-
tegral computations�. A fixed point is a conformation with
phase difference � such that fx���=0; if the slope of the
force is positive the fixed point is stable, while a negative
slope indicates an unstable fixed point. What we see in Fig. 6
�top� is that increasing the separation between the sheets

from the small h̄ values in the lubrication limit gives rise to
an additional fixed point. In the case illustrated in Fig. 6
�top�, this new fixed point is always unstable. It first appears
near �=� �leading to the fixed point at �=� becoming
stable�, moves toward �=0 when the separation distance be-
tween the swimmers increases, and eventually merges with
�=0, which then turns to an unstable point, at a critical value

of h̄.
In Fig. 7 we display the location of the fixed points

explicitly as a function of h̄ in the small amplitude limit for
��0. In this limit, the force is linear in the asymmetry, �,
therefore the location of the fixed points is invariant under a
linear scaling of the asymmetry, �→b� where b�0, while
the nature of the fixed points changes with a change of the
sign of �. The appearance of a new fixed point, described in

the previous paragraph, is apparent. As h̄ tends asymptoti-
cally to zero, �=0 is stable �blue solid line� while �=� is
unstable �red dashed line�, which is the lubrication result. For

intermediate values of h̄, both 0 and � are stable, and the

new fixed point moves from � to 0 as h̄ increases. It merges
with �=0 for a critical distance between the swimmers

�h̄
5.65 for our choice of waveform�, at which point �=0

becomes unstable, and remains so for larger values of h̄. As
expected, upon a reversing the sign of �, stable fixed points
become unstable and vice versa.
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FIG. 5. �Color online� Force fx vs phase difference �, for an asymmetry of
�=0.1, in the lubrication limit �dashed lines, top figure only�, small ampli-
tude limit �solid lines, both figures�, and using the boundary integral method
�symbols, both figures�. Top: fixed amplitude, �=0.01, and varying

swimmer-swimmer distances, h̄; circles �blue online�: fx, h̄=0.2; squares

�red online�: 10fx, h̄=0.4; diamonds �green online�: fx /�, h̄=0.6; triangles

�gray online�: 2fx /�, h̄=0.8. Bottom: Fixed separation distance h̄=1 and
varying waveform amplitudes; circles �green online�: �fx /�, �=0.1; squares
�red online�: �fx with �=0.2; diamonds �blue online�: fx, �=0.4. We observe
a gradual breakdown of the lubrication approximation for increased separa-

tion, h̄ �top�, and of the small amplitude expansion for increased amplitude
� �bottom�. Note that forces have been scaled for display purposes.
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Further analysis of the equations of motion shows that

the additional fixed point that arises when h̄ is past the lubri-
cation limit is a direct consequence of the inextensible
boundary conditions. In the lubrication limit, the boundary
conditions are extensible insofar as there is only a vertical
component, however away from this limit there arises hori-
zontal motion to maintain inextensibility, and it is precisely
this horizontal motion which leads to the additional dynamic
complexity. Conversely for extensible boundary conditions,
Eq. �10a�, the fixed points remain unchanged from those in
the lubrication limit.

Using the boundary integral formulation it is possible to
extend these results to large amplitude waves. In Fig. 6

�bottom� we show the horizontal force on the upper sheet as
a function of the phase between the swimmers for various
mean swimmer-swimmer separation but now with �=1. The
results are qualitatively similar to those obtained in the small
amplitude limit, with the occurrence of a new fixed point,
unstable, and moving from �=� to �=0 as the separation
increases. A difference we do observe between small and
large amplitudes is that the location of the fixed point is no
longer invariant under a change in the asymmetry factor, �.
In Fig. 8 �top� we show that an increase in the asymmetry
factor leads to a small, but nonzero, migration of the mobile
fixed point toward �. A similar drift is obtained with an
increase in the waveform amplitude �Fig. 8, bottom�.

C. Dynamics

The time-evolution of the phase is given in general by
the integro-differential equation

d�

dt
= − M���fx

s��� . �89�

As noted above, in the small amplitude limit the mobility

becomes independent of the phase, M= h̄ /2�, hence in that
case the dynamics is completely set by the static force. Note
that the mobility is never zero so no additional fixed points
arise from Eq. �89�.

In the lubrication limit we know that there exist only two
fixed points, and the location of the stable fixed point de-
pends only on the waveform asymmetry. In Fig. 9 we plot
the time-evolution of the phase in this limit. We see that if
the system is symmetric ��=0�, indicated by the dotted line,
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FIG. 6. �Color online� Dependence of the force fx on the phase � for

varying separation h̄ with an asymmetry �=0.1. Top: small dimensionless
amplitude, �=0.1. The solid lines are obtained in the small amplitude limit
while symbols are for boundary integral computations; circles �blue online�:
�fx, h̄=1; squares �red online�: 2fx, h̄=2; diamonds �green online�: �fx /2�,

h̄=3; down triangles �purple online�: fx /�2, h̄=4; up triangles �orange on-

line�: fx /�3, h̄=5; stars �gray online�: fx /��4, h̄=6. Increasing the distance
between the sheets introduces an additional fixed point not present in the

lubrication limit, and its position moves with h̄. Bottom: numerical results
using the boundary integral method �solid line and symbols� in the case of

high amplitude waves, �=1. triangles: fx, h̄=3; diamonds �red online�: 2�fx,

h̄=4; squares �green online�: 10�fx, h̄=5; circles �blue online�: 100fx, h̄
=6. Forces have been scaled for display purposes.
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then the phase remains constant in time. This corresponds to
the no-synchronization situation discussed in Sec. III. When
we introduce an asymmetry, ��0, then the two swimmers
phase-lock over time. When ��0 then A�0 and the system
evolves to a stable in-phase conformation, and opposite-
phase for the converse. Given that the amplitude, a, is rea-
sonably small for all curves �we have the geometrical con-
straint a�1 /2�, we observe roughly the same dependence of
the typical time scale for phase-locking, t, on the wave asym-
metry and amplitude as in the small amplitude limit �for
which t�a−4�−1, see Eq. �69��.

We have seen above that with an increase in h̄ comes
additional fixed point, and thus we expect the phase dynam-

ics to depend similarly on h̄. In Fig. 10 we plot the time-
evolution of the phase in the small amplitude limit for vari-

ous values of the swimmer-swimmer distance in the case
where ��0. Given that the phase mobility, M, is indepen-
dent of the asymmetry, and that the force is linear in �, we
find that the time scale for synchronization scales with the
inverse of the asymmetry factor, i.e., t��−1, as it does when

h̄�1. The final stable swimmer-swimmer conformation can
be understood simply by recalling the force plot in Fig. 7. If
the initial conformation is to the left of the moving unstable
point, then the sheets evolve to �=0, while they start to the
right they evolve to �=�. If we reverse the asymmetry of
the waveforms, ��0, then the converse is true, the fixed
point which varies with separation represents the only stable

conformation for intermediate values of h̄ and we obtain syn-
chronization to a fixed finite phase difference, 0����, as
is observed in the metachronal beating of cilia.

A similar plot is shown in Fig. 11 in the case of large
amplitude waves, using the boundary integral method, start-
ing from an initial relative phase of �=3� /4 and with a
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FIG. 8. �Color online� Plot of the force on the top swimmer, fx, as a function

of the phase difference, �, using the boundary integral method with h̄=4.
Top: �=1 for varying asymmetry; circles �blue online�: �=0.05; squares
�green online�: �=0.1; diamonds �red online�: �=0.2; triangles �black on-
line�: �=0.3. We see that for large amplitude waves the force is no longer
linear with asymmetry as evidenced by the moving of the middle fixed
point. Bottom: �=0.1 for varying large amplitude waves; diamonds �blue
online�: 10�fx, �=0.5; squares �green online�: 2�fx, �=1; circles �red on-
line�: fx, �=1.5. We see that for ��1 the location of the middle fixed point
remains close to the small amplitude limit, while it has drifted significantly
for �=1.5. Forces have been scaled for display purposes.
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positive asymmetry, ��0. Again the essential physics is
well captured by the small amplitude expansion: there exists
a critical swimmer-swimmer separation below which the
sheets evolve to the in-phase conformation. This is seen in

Fig. 11 where with h̄=2.4, �=1, and �=0.1 the sheets evolve
to �=0 �in-phase� whereas when the distance is increased to

h̄=4 the sheets evolve to �=� �opposite-phase�. A wave-
form with a larger amplitude, �=1.5, leads to a faster evolu-
tion of the phase than for �=1 for equal asymmetry
��=0.1�, which in turn evolves faster than for equal ampli-
tude, �=1, but lower asymmetry �=0.05. We note however
that for large amplitude waves, the effect of increasing the
amplitude on the rate of phase change is drastically reduced;
in the small amplitude limit the rate of evolution is quartic
with the wave amplitude and here we see an effect which is
less than cubic. Despite the reduction, the effect of amplitude
is still strong and we observe drastically faster synchroniza-
tion for order one amplitudes.

To illustrate the flow driving the synchronizing dynamics
shown in Fig. 11, we produce snapshots of the flow field for

the h̄=2.4, �=1, and �=0.1 conformation in Fig. 12. We
display the out-of-plane vorticity, �, in Fig. 12�a� and the
squared velocity field, �u�2, in Fig. 12�b�. Both plots are over-
laid with arrows indicating the velocity vector field. The
darker regions indicate higher vorticity and velocity in each
plot, respectively. Time increases from top to bottom, and we
show the instances where the phase angle is given by
�= �3� /4,� /2,� /4,0�, corresponding to relative velocity
of the sheets, U�= �0.0325,0.1223,0.1097,0�.

VIII. DISCUSSION

A. Summary of results

In this paper we have considered, as a model for the
synchronization of flagellated cells, the relative motion of
two free-swimming planar parallel sheets propagating waves
of transverse displacement. We showed that due to the kine-

matic reversibility of the Stokes equations, waveform confor-
mations with both vertical and horizontal axis symmetry
could not yield synchronizing dynamics. When we break ver-
tical axis symmetry, the phase of the system evolves to stable
dynamic equilibria whose position is entirely dependent on
the geometry of flagellar waveforms, and the distance be-
tween them.

When the swimmers are close together we are able to
make use of the lubrication equations and find two fixed
points: in-phase and opposite-phase. The location of the
stable point depends on the nature of the asymmetry, which
is measured by an integral over the waveform geometry. If
the front-back asymmetry of the geometry is reversed it is
equivalent to reversing the kinematics of the problem which
yields a reversal of forces. In other words, stable points be-
come unstable and vice versa. In contrast, the energy dissi-
pation is always a minimum for the in-phase conformation,
and indicates the possibility of phase-locking into a confor-
mation of maximum energy dissipation.

An expansion in small amplitude is utilized to introduce
inextensible boundary conditions and order one distances be-
tween the organisms. In this case there arises additional fixed
points, whose location and nature depend on the cells geom-
etry and separation. Among the possibilities is synchroniza-
tion at a stable intermediate phase between in-phase and
opposite-phase.

Finally, we presented numerical results for large ampli-
tude waves using the boundary integral method. The compu-
tational results indicate that between the lubrication limit and
the small amplitude expansion, all the relevant physics can
be captured analytically. However, since the phase-locking
force depends strongly on waveform amplitude, we observe
much faster synchronization for large amplitudes, as might
be expected.

B. 2D modeling and collective locomotion

The 2D model used here is admittedly too simple to
provide quantitative predictions for real microorganisms.
However the simplicity allows analytic formulas to be de-
rived and a mathematical structure elucidating the interaction
between the bodies due to the Stokesian flow to be obtained,
and gives an explicit description of the effect of symmetry-
breaking. The intuition garnered here may then be useful for
more complex models, with finite 3D bodies, that must be
solved entirely numerically.

We first note that, as a result of the 2D approach, the
viscous mobility of the cells in the direction perpendicular to
that of the wave propagation is strictly equal to zero �addi-
tionally there is no dynamic component to the vertical force
as shown in Appendix B�. For real microorganisms however
this is not the case and hence fluid forces will determine the
separation between the swimmers dynamically. Since swim-
ming cells are force free, the far-field velocity is typically a
force dipole. In particular spermatozoa have a positive force
dipole �so-called pushers10�. Far-field interactions between
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FIG. 11. �Color online� Time-evolution of the phase, from �0=3� /4, for
large amplitude waves using the boundary integral method. The circles �blue

online� indicate h̄=4, �=0.1, and �=1.5; squares �green online�: h̄=4,
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pushers tend to both align the major axes of pushers and
drive them together. Accordingly experimental evidence sug-
gests that as spermatozoa synchronize they come together
very tightly4 �see also Fig. 1�. In light of this, the lubrication
limit is perhaps the relevant physical limit to consider for the
phase-locking of swimming cells. In contrast, eukaryotic
cilia are attached to a substrate at a fixed distance which
depends on the organism.9

In addition, the 2D limit offers one particularity, which is
that the fluid between the swimmers �inner problem� does
not communicate with that outside the swimmers �outer
problem�. The outer problem, that addressed by Taylor, is
purely kinematic, in the sense that the speed of the sheet
relative to the flow at infinity is uniquely determined without
resorting to a balance of forces, unlike the inner problem.

Further to this, because the outer problem cannot impose a
force on the outer surface of the sheet, the forces are indi-
vidually zero for the inner problem and therefore the inner
problem �or even arbitrarily many inner problems� may be
solved separately. Now if a rigid body motion U=U�ex �due
to the inner problem� is added to the surface deformations of
the outer problem it has the sole effect of adding a plug flow
solution to the swimming problem; in the zero Reynolds
number limit a rigid body motion of 2D surface diffuses to
infinity instantaneously. An interesting consequence of this is
that when there arises a nonzero relative velocity, the idea of
collective motion loses meaning, even for identical sheets, as
in the frame moving with lower sheet �see Fig. 2� we find
different values for the flow at infinity, U when y→−� and
U+U� when y→�. Further, if the sheets are different, then
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even if the inner problem demands U�=0, the outer problem
on either side produces flows at infinity �in the frame moving
with the sheets� which are distinct. However even in the 3D
case, the hydrodynamic forces between the swimmers will
dominate when the cells are close to each other, and thus we
expect to garner leading order physical behavior from our
analysis of the inner problem.

C. Avenues for future work

In the problem considered in this paper, we have
prescribed a front-back asymmetry in the waveforms propa-
gated in our model of flagellated cells in order to give
rise to synchronization. Real eukaryotic flagella deform
under applied �internal� forces, and this deformation may
provide an additional mechanism of symmetry-breaking.
Indeed recent experiments using rotating paddles suggest
that elastic deformation is a key requirement to obtain
synchrony for a geometry that is otherwise too symmetric
to yield stable fixed points.41 Flagella flexibility might
thus be an important physical ingredient in the synchroniz-
ing dynamics, and we will address its relevance in future
work.
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APPENDIX A: FOURTH ORDER EXPANSION

In this appendix we present details of the solution of the
stream function by means of a regular perturbation expan-
sion in small amplitude � as outlined in Sec. IV.

1. Flow at O„�…

The governing equation at O��� is

�4
1 = 0 �A1�

and the boundary conditions are given by

�
1�y=0 = �g�x� , �A2a�

�
1�y=h̄ = �g�x + �� + eyU�1, �A2b�

where ey denotes the unit vector in the y direction. We note
that the boundary conditions at O��� are the same for both
extensible and inextensible motions.

The biharmonic equation can be solved by repeated
separation of variables. The general solution may be ex-
pressed as


1�x,y� = A1,0 + B1,0y + C1,0y2 + D1,0y3

+ �E1,0 + F1,0y + G1,0y2 + H1,0y3�x

+ �
n=1

�

��A1,n + B1,ny�sinh�ny�

+ �C1,n + D1,ny�cosh�ny��cos�nx�

+ �
n=1

�

��E1,n + F1,ny�sinh�ny�

+ �G1,n + H1,ny�cosh�ny��sin�nx� , �A3�

where for the constants A through H, the first subscript refers
to the order in the expansion �here, first order� and the sec-
ond refers to the corresponding Fourier mode. We can imme-
diately discard the terms linear in x due to the periodicity of
the problem.

From the first order boundary conditions, Eq. �A2a�, we
get that the solution to the biharmonic equation may be writ-
ten analytically as


1 = a1,0�y� + �
n=1

�

�a1,n�y�cos�nx� + b1,n�y�sin�nx�� , �A4�

where

a1,0�y� =
�U�1 − 3D1,0h̄2�y2

2h
+ U�1y3, �A5�

a1,n�y� = 2Pn�y��	n cos�n�� + 
n sin�n��� + 	nQn�y� ,

�A6�

b1,n�y� = 2Pn�y��
n cos�n�� − 	n sin�n��� + 
nQn�y� ,

�A7�

and

Pn�y� = � n2h̄y cosh�nh̄� + sinh�nh̄�ny

2n2h̄2 − 2 sinh2�nh̄�
	cosh�ny�

− ��1 + h̄n2y�sinh�nh̄� + hn cosh�nh̄�

2n2h̄2 − 2 sinh2�nh̄�
	sinh�ny� ,

�A8�

Qn�y� = � 2nh̄ + 2ny sinh2�nh̄� + sinh�2nh̄�

2n2h̄2 − 2 sinh2�nh̄�
	sinh�ny�

+ �1 −
2h̄n2y + ny sinh�2nh̄�

2n2h̄2 − 2 sinh2�nh̄�
	cosh�ny� . �A9�

The force on the top sheet is

f1x = −
2�

h̄
U�1. �A10�

If U�1=0 then there is no phase-locking force. Conversely if
the sheets are force free then U�1=0. There is thus no syn-
chronization at O���, as expected from the �→−� symmetry.
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2. Flow at O„�2
…

The governing equation at O��2� is

�4
2 = 0 �A11�

while the boundary conditions are given by

�
2�y=0 = − g�x� � �� �
1

�y
��

y=0

+
ey

2 �g��x�2 −
1

2�
�

0

2�

g��x�2dx	 , �A12�

�
2�y=h̄ = eyU�2 − g�x + �� � �� �
1

�y
��

y=h̄

+
ey

2 �g��x + ��2 −
1

2�
�

0

2�

g��x + ��2dx	 ,

�A13�

where the terms in the square brackets represent the contri-
bution from the inextensibility constraint.

The solution to the biharmonic equation is written


2 = a2,0�y� + �
n=1

�

a2,n�y�cos�nx� + �
n=1

�

b2,n�y�sin�nx� .

�A14�

The zeroth mode is given by

a2,0�y� = u20y +
�U�2 + u2h − u20�y2

2h̄
. �A15�

The force on the top sheet is then given as

f2x =
2�

h̄
�u20 − u2h − U�2� . �A16�

The mean components of the horizontal boundary conditions
must then be evaluated, the lower

u20 =
1

2�
�

0

2� �− g�x��� �2
1

�y2 ��
y=0

+
1

2�g��x�2 −
1

2�
�

0

2�

g��t�2dt	
dx . �A17�

The term in the square brackets clearly integrates to zero
hence we are left with

u20 = −
1

2�
�

0

2�

g�x��� �2
1

�y2 ��
y=0

dx �A18�

which, using orthogonality of Fourier modes, gives

u20 = −
1

2�
n=1

�

�	na1,n� �0� + 
nb1,n� �0�� . �A19�

Similarly u2h is given by

u2h = −
1

2�
�

0

2�

g�x + ���� �2
1

�y2 ��
y=h̄

dx �A20�

which may be evaluated to give

u2h = −
1

2�
n=1

�

��	na1,n� �h̄� + 
nb1,n� �h̄��cos�n��

+ �
na1,n� �h̄� − 	nb1,n� �h̄��sin�n��� . �A21�

Further, by considering Pn and Qn, given by Eqs. �A8� and

�A9�, respectively, and observing that 2Pn��h̄�=−Qn��0� and
2Pn��0�=Qn��h� it can be shown that

u20 − u2h =
1

2�
1

�

�	n
2 + 
n

2��2Pn��h̄� − Qn��0� − cos�n��

��2Pn��0� − Qn��h̄��� = 0 �A22�

as each term in the sum is zero for all n.
The force on the top sheet is then equal to

f2x = −
2�

h̄
U�2. �A23�

Here again we see that when we allow the swimmers to
move in a force free manner then U�2=0 and hence there is
no synchronization at O��2�. Note that we have not specified
the Fourier coefficients of the of the waveform, and this re-
sult is therefore valid for any waveform g�x�.

Sadly, due to the �→−� symmetry of the model there
cannot be any force at O��3�, and therefore we expect the
force to arise at best at O��4�.

3. Flow at O„�3
…

The third order component of Eq. �9� is

�4
3 = 0. �A24�

With the third order boundary conditions

�
3�y=0 = − g�x����� �
2

�y
� +

g�x�
2

� � �2
1

�y2 �	�
y=0

− ex
g��x�

2 �g��x�2 −
1

2�
�

0

2�

g��x�2dx	 , �A25�

�
3�y=h̄ = eyU�3 − g�x + ������ �
2

�y
�

+
g�x + ��

2
� � �2
1

�y2 �	�
y=h̄

− ex
g��x + ��

2

� �g��x + ��2 −
1

2�
�

0

2�

g��x + ��2dx	 .

�A26�

The force again takes the form
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f3x =
2�

h̄
�u30 − u3h − U�3� . �A27�

If the swimmers are force free we see U�3=u30−u3h but
due to the �→−� symmetry of the geometry we must have
U�3=0 �in the example we consider in Sec. VII u30=u3h=0�.

4. Flow at O„�4
…

The fourth order component of Eq. �9� is

�4
4 = 0. �A28�

The boundary conditions at fourth order are given by

�
4�y=0 = − g�x����� �
3

�y
� +

g�x�
2

� � �2
2

�y2 �
+

g�x�2

6
� � �3
1

�y3 �	�
y=0

− ey
g��x�2

4

��3

2
g��x�2 −

1

2�
�

0

2�

g��x�2dx	
+

ey

16�
�

0

2�

g��x�4dx , �A29�

�
4�y=h̄ = − g�x + ������ �
3

�y
� +

g�x + ��
2

� � �2
2

�y2 �
+

g�x + ��2

6
� � �3
1

�y3 �	�
y=h̄

− ey
g��x + ��2

4

��3

2
g��x + ��2 −

1

2�
�

0

2�

g��x + ��2dx	
+ eyU�4 +

ey

16�
�

0

2�

g��x + ��4dx . �A30�

We note that to compute the force on the upper sheet, given
by

f4x =
2�

h̄
�u40 − u4h − U�4� �A31�

the solution of 
4 is not required. Setting U�4=0 gives rise to
a phase-locking force in the static case and for free-
swimming we set f4x=0 and solve for U�4. As at all previous
orders the force and swimming speed are identically zero, the
fourth order results are the leading order terms in the
asymptotic expansion.

Importantly, the formulas for u40 and u4h, defined in Eq.
�17a�, are too unwieldy for the most enterprising appendix
even for simple g�x�, and hence are not stated explicitly �al-
though straightforward to obtain with a symbolic calculation
package�.

APPENDIX B: VERTICAL FORCE

In a manner similar to the horizontal force, the integral
for the vertical force on the bottom sheet may be expanded to
the x-axis as follows

fy = �
0

2� ��yy + �
n=1

�

�n �

�x
�n − 1

n!
gn�n−1�xy

�yn−1 �
y=0
	dx . �B1�

The term in the sum is a perfect derivative and hence zero for
all n, where have therefore

fy�y� = − �
0

2� �p + 2
�2


�x � y
�

y=0
dx . �B2�

The second term is a perfect derivative in x, and hence in a
2� periodic system gives zero when integrated over a period.
We thus have

fy = − �
0

2�

pdx . �B3�

Upon integrating the Stokes equations using the Fourier form
of the stream function �15� and matching we arrive at

fy = − 2�C , �B4�

where C is an unknown constant of integration. This indi-
cates that there is no dynamic contribution to the vertical
force.
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