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Cells swimming in viscous fluids create flow fields which influence the transport of relevant

nutrients, and therefore their feeding rate. We propose a modeling approach to the problem of

optimal feeding at zero Reynolds number. We consider a simplified spherical swimmer deforming

its shape tangentially in a steady fashion (so-called squirmer). Assuming that the nutrient is a pas-

sive scalar obeying an advection-diffusion equation, the optimal use of flow fields by the swimmer

for feeding is determined by maximizing the diffusive flux at the organism surface for a fixed rate

of energy dissipation in the fluid. The results are obtained through the use of an adjoint-based nu-

merical optimization implemented by a Legendre polynomial spectral method. We show that, to

within a negligible amount, the optimal feeding mechanism consists in putting all the energy

expended by surface distortion into swimming—so-called treadmill motion—which is also the so-

lution maximizing the swimming efficiency. Surprisingly, although the rate of feeding depends

strongly on the value of the Péclet number, the optimal feeding stroke is shown to be essentially in-

dependent of it, which is confirmed by asymptotic analysis. Within the context of steady actuation,

optimal feeding is therefore found to be equivalent to optimal swimming for all Péclet numbers.
VC 2011 American Institute of Physics. [doi:10.1063/1.3642645]

I. INTRODUCTION

Swimming microorganisms can be found in a variety of

environments, and encompass a wide range of size and loco-

motion mechanisms.1,2 For bacteria, motility is important to

achieve many biological functions, including location and

migration toward regions rich in nutrients, oxygen or light,3,4

swimming against gravity, or escaping aggressions.5,6 Motil-

ity is also essential to reproductive success, in particular for

mammals.7 Recently, the collective motion of dense

swimmer suspensions was the focus of a number of studies

emphasizing instabilities and increased mixing.8–12 In order

to swim in a viscous fluid, a microorganism must undergo

sequences of active and non-time-reversible deformations of

its body surface.13,14 This surface deformation sequence will

be referred to in the following as the stroke, which could be

either a swimming stroke (leading to a net displacement of

the swimmer center of mass), or non-swimming.

As such a swimmer performs work against the surround-

ing fluid, it creates a flow field and can thus modify its imme-

diate environment in an important fashion, affecting in

particular the transport of nutrients. The metabolism of many

microorganisms relies on the absorption at their surface of

various particles or molecules which are both diffusing and

being advected by the swimmer-induced flow. Depending on

the organism considered, these can range from dissolved

gases or low-weight molecules, to complex proteins, organic

compounds, small particles, or even sometimes heat. This is

true from the behavior of small bacteria all the way to large

organisms such as the protozoon Paramecium which feeds

on smaller bacteria, whose typical random walk motion is

equivalent to a diffusive process at the scale of the larger

organism.15–17 For simplicity, all these cases will be referred

to as “nutrients.”

An interesting transport problem in the dynamics of

swimming cells concerns the coupling between the flow cre-

ated by the swimmer and the transport of nutrients. This cou-

pling can be essential for larger cells or cell colonies to

achieve feeding rates matching their metabolic needs.18 If j
is the diffusivity of the nutrient of interest, and a the

typical size of the organism, the impact of the stroke on feed-

ing is characterized by the value of the Péclet number,

Pe¼ sdiff/sdef, where sdef is the characteristic time scale for

the shape deformation (stroke) and sdiff¼ a2/j is the diffu-

sive time scale around the organism.

At small Péclet number, the concentration gradients cre-

ated by the stroke-induced flow are immediately homoge-

nized by diffusion, and therefore shape changes affect only

marginally the instantaneous feeding rate. In that case, swim-

ming can still affect feeding indirectly by allowing to access

regions of higher nutrient concentration.13 At large Péclet

number, however, the advective transport by the flow created

by the swimming stroke can significantly modify the nutrient

concentration field. In that case, swimming directly impacts

feeding both by creating large concentration gradients near

the body surface and by increasing the swimmer ability to

scan a large volume of fluid.19

The purpose of the present paper is to quantify the

impact of the swimming stroke on the feeding ability of an
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organism and to determine the optimal stroke maximizing

the nutrient uptake. A priori, the optimal stroke should

depend on the problem of interest through the value of the

Péclet number. In nature, the relevant value of Pe varies by

several orders of magnitude, due to the large variety of sizes

and time scales observed for different microorganisms (from

less than 1 lm for the smallest bacteria to several hundred

micrometers for larger eukaryotes) and the range of diffu-

sivity coefficients for the nutrients of interest (in aqueous

solutions, jT� 10� 7 m2s� 1 for heat, jO2
� 3 10�9 m2s�1

for oxygen and small molecules, and j� 10� 11–10� 10

m2s� 1 for larger proteins). For a given organism, the optimal

stroke to maximize, for example, heat fluxes might, there-

fore, not be the same as the one maximizing the absorption

of a large protein.

Performing the swimming stroke has an energetic cost

for the organism. In this paper, we will consider the portion

of the energy budget which includes the rate of working

against the fluid, which is instantaneously dissipated in

the form of heat in the fluid. The organism’s metabolism

imposes a restriction on the maximum energy available for

motility, and assuming that energy losses other than hydro-

dynamic can be embedded in a fixed metabolic efficiency,

optimizing the swimming stroke for feeding is a mathemati-

cal problem which can be formulated as follows: For a given

amount of energy available to a particular microorganism to

create a flow, what is the optimal stroke (possibly a non-

swimming one) that maximizes the nutrient uptake?

In Stokes flow, both body and fluid inertia are negligible

compared to viscous forces.2 The displacement of the micro-

organism and the hydrodynamic efficiency are then entirely

determined by the shape change sequence and not by the rate

at which this sequence is performed. Solving for the stroke-

induced swimming motion and the corresponding velocity

field around the organism can be tedious for complex geome-

tries, as it generally involves the flapping motion of a few or

many flexible flagella or cilia.1 Most of the available litera-

ture focuses on two possible modeling approaches. In the

first one, each flexible appendage or body element is mod-

eled individually using slender body theory1,20 or singularity

methods.21 The second approach, to which this work

belongs, considers a simplified geometry for which the

Stokes equations can be solved exactly. This is the case for

the classical spherical squirmer model considered here,22,23

an envelope model for the dynamics of ciliated microorgan-

isms that has been used previously to study hydrodynamics

interactions,24 suspension dynamics25,26 and optimal loco-

motion.27 For this model, the linearity of Stokes equations

can be exploited to linearly decompose the stroke in a super-

position of swimming and non-swimming modes, which can

then be optimized to maximize the organism displacement

for a given energetic cost.27–30 In recent work,27 we showed

that the optimal time-periodic swimming strokes, i.e., the

ones leading to the largest swimming speed for a given

amount of available viscous dissipation, exhibit wave pat-

terns reminiscent of the metachronal waves observed on the

surface of ciliated microorganisms.31

The effect of swimming on the transport of passive sca-

lars has been studied in the past both from Lagrangian and

Eulerian points of view. In the Lagrangian approach, the cap-

ture or drift induced on a given particle by the swimming

motion of the organism is explicitly solved for.19,32,33 In the

Eulerian approach, the organism is modeled as being sus-

pended in a continuous concentration field of nutrients, and

the focus is on the absorption flux on the swimmer

body.30,34,35 The feeding of a model squirmer was recently

addressed for steady and unsteady tangential surface motions

described by the superposition of one swimming and one

non-swimming mode.34,35 The nutrient uptake was observed

to be strongly dependent on the value of the Péclet number

as well as the relative intensity of the non-swimming and

swimming modes.

In the current paper, we propose to determine the opti-

mal feeding stroke for a squirmer, namely the one maximiz-

ing the uptake of a nutrient by the organism for a given

hydrodynamic energetic cost. We consider the simplest

swimmer geometry (a sphere) and focus, as our first attempt

to solve the problem, on the case of a steady stroke where

the imposed surface velocity is time-independent. Such an

assumption is obviously a simplification as cilia tips display

periodic and unsteady displacements. As recently

observed,27 the optimal unsteady stroke for locomotion can

in fact be interpreted as the periodic regularization of the

solution to the steady optimal problem. It was also shown35

that for some particular limit of large Pe and infinitesimal

deformation, the average feeding by the unsteady stroke is

defined at leading order by the result of a modified steady

problem. Our determination of the optimal steady feeding

stroke is thus expected to provide important physical

insights on the relation between swimming and feeding for

microorganisms. In addition, although results are presented

here for an idealized organism shape, the optimization

framework detailed in this paper is applicable to more

complex geometries and is therefore relevant to a wide

class of advection-diffusion problems near self-propelled

organisms.

In this steady framework, the problem at stake is the

optimal distribution of the available hydrodynamic energy

between the different actuation modes of the swimmer, ei-

ther swimming modes that produce locomotion or non-

swimming modes that only produce stirring of the surround-

ing fluid. To answer this question, the general framework of

the steady feeding problem is presented in Sec. II. After con-

sidering an organism of arbitrary shape, the equations are

introduced for the particular case of the squirmer and solved

numerically for some specific strokes using a spectral

method, allowing us to gain qualitative understanding of the

effect of the swimming stroke on the concentration field and

nutrient uptake. In Sec. III, we derive an adjoint-based opti-

mization procedure to determine the optimal stroke for a

general swimmer, and we apply it to characterize computa-

tionally the optimal stroke for the squirmer as a function of

the Péclet number. We show that, to within a negligible

quantitative difference, optimal feeding is equivalent to opti-

mal swimming for all Péclet numbers. Our numerical results

are compared successfully to predictions of asymptotic anal-

ysis, at both large and small Péclet numbers. Finally, we

close by a discussion in Sec. IV.
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II. NUTRIENT TRANSPORT AROUND A SWIMMING
MICROORGANISM

A. Advection-diffusion of a passive scalar near a
general swimming microorganism

We consider the transport of a passive scalar field

around a microorganism which stirs the surrounding fluid—

and possibly swims as well—by imposing a steady tangential

velocity along its surface, described by u
S. The surface S

and the shape of the organism are therefore assumed to

remain independent of time. Throughout this paper, a body-

fixed reference frame is considered. The Reynolds number,

Re¼qUa/l is assumed to be small, where U and a are the

typical swimming velocity and length scale of the swimmer,

and q and l are the density and dynamic viscosity of the

fluid medium. For Re� 1, fluid and solid inertia can be

neglected and the velocity field u around the swimmer is so-

lution of the incompressible Stokes problem

�rpþ lr2u ¼ 0; (1)

r � u ¼ 0; (2)

u ¼ uS for x 2 S; (3)

u! �ðUþ X� xÞ for x!1: (4)

In Eq. (4), the translation and rotation velocities, U and X,

define the organism swimming motion and are determined

by imposing the free-swimming conditions of zero net

hydrodynamic force and torque,36

ð
S

r � n dS ¼ 0; (5a)

ð
S

x� ðr � nÞ dS ¼ 0; (5b)

where r ¼ �pIþ l ruþrTuð Þ is the stress tensor in the

fluid, and n the unit normal vector pointing into the fluid.

The steady swimming problem in Eqs. (1)–(5) is linear with

respect to uS and its solution for the swimming velocities and

fluid velocity fields can therefore be rewritten formally as

ðU;XÞ ¼L � uS; u ¼ L � uS; (6)

where L and L are linear operators depending solely on the

swimmer geometry.

The hydrodynamic cost of the swimming motion, P, is

defined as the rate of work performed by the swimmer sur-

face against the fluid, and equal to the energy dissipation rate

by viscous stresses in the entire fluid domain Vf,

P ¼
ð

Vf

ðr : dÞ dV ¼ �
ð
S

uS � ðr � nÞ dS; (7)

where d ¼ ruþruTð Þ=2 is the fluid strain rate tensor. In

the following, the equations are non-dimensionalized using a
and

ffiffiffiffiffiffiffiffiffiffiffi
P=la

p
as reference length and velocity scales,

respectively.

The microorganism is assumed to be suspended in an

unbounded nutrient solution with concentration C¼C1 in

the far-field. The nutrient is assumed to be totally absorbed

by diffusion through the swimmer surface, and C¼ 0 is

imposed on S. Note that for a real swimmer, this assumption

is only valid if the nutrient flux at the surface is smaller than

the cell’s metabolic processing rate (see Ref. 34 for a discus-

sion of a more realistic boundary condition).

For convenience, the nutrient concentration is rescaled

as c¼ (C1�C)/C1. With this rescaling, c� 1 corresponds

to near-ambient nutrient concentrations in the far-field, while

c� 1 corresponds to nutrient-depleted regions near the orga-

nism. The rescaled concentration field c(x) is the solution of

the steady advection-diffusion problem

Pe u � rc ¼ r2c; (8)

c ¼ 1 for x 2 S; (9)

c! 0 for x!1; (10)

where u is the velocity field solution of the swimming prob-

lem in Eqs. (1)–(5), and

Pe ¼ 1

j

ffiffiffiffiffiffi
Pa

l

s
; (11)

is the Péclet number defined using the characteristic length

and velocity scales and the nutrient diffusion constant, j.

The flux of nutrient on the swimmer’s surface is purely

diffusive and thus defined in non-dimensional form as,

U ¼ � 1

Pe

ð
S

@c

@n
dS; (12)

where @c=@n ¼ n � rc and n is the normal unit vector to the

solid boundary pointing into the fluid domain. When uS¼ 0,

the organism (a rigid body) does not create any flow field

and the energy consumption is P ¼ 0. Then Pe¼ 0, and the

nutrient uptake is the solution to the purely diffusive problem

in Eqs. (8)–(10), with a corresponding nutrient flux U0.

Rather than the absolute nutrient uptake U resulting from a

given stroke, we are interested here in its increase relative to

the rigid body reference case, namely J¼U/U0¼Sh/2,

where Sh is known as the Sherwood number.34

The problem solved in this paper can be formulated as

follows. For a given amount of energy available to the orga-

nism to stir the fluid (measured in a dimensionless fashion

by Pe), what is the stroke (i.e., the surface velocity field uS)

that maximizes the relative nutrient uptake J? Note that non-

dimensionalizing the problem using the energy used by the

organism rather than its swimming velocity allows for both

swimming (U= 0) as well as non-swimming strokes

(U¼ 0).

B. The squirmer model

The general framework of Sec. II A is now applied to

the particular case of a spherical swimmer prescribing axi-

symmetric and steady surface velocities. By symmetry, the

swimming motion of this so-called squirmer is at best a pure

translation along a fixed direction ex, and using spherical po-

lar coordinates with respect to this axis centered on the

101901-3 Optimal feeding is optimal swimming Phys. Fluids 23, 101901 (2011)



swimmer, all fields (velocities, pressure, nutrient concentra-

tion) only depend on r and l¼ cos h, where h is the polar

angle with respect to ex (Figure 1). By taking a to be the

sphere radius, the swimmer surface is the unit sphere r¼ 1,

and the surface velocity, uS ¼ uS
heh, can be decomposed into

modes as23

uS
hðlÞ ¼

X1
n¼1

anKnðlÞ; (13)

with

KnðlÞ ¼
ð2nþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
nðnþ 1Þ L0nðlÞ; (14)

where Ln(l) is the n-th Legendre polynomial. The swimming

stroke is fully characterized by the values of the constant

coefficients an (n � 1). The pressure p and streamfunction w
can be computed at any point of the fluid domain as23,27

pðr; lÞ ¼ p1 þ
X1
n¼2

anPnðr; lÞ; (15)

Pnðr; lÞ ¼ �
4n2 � 1

nþ 1

� �
LnðlÞ
rnþ1

; (16)

and

wðr; lÞ ¼
X1
n¼1

anWnðr; lÞ; (17)

Wnðr; lÞ ¼
2nþ 1

nðnþ 1Þ ð1� l2ÞL0nðlÞwnðrÞ; (18)

w1ðrÞ ¼
1� r3

3r
; wnðrÞ ¼

1

2

1

rn
� 1

rn�2

� �
: (19)

The velocity field is easily recovered from w as

u ¼ � 1

r2

@w
@l

er �
1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p @w
@r

eh; (20)

and the swimming velocity is U¼ a1. Using this relation as

well as Eqs. (17)–(20), the linear operators L and L can be

expressed in terms of l-projections on the Legendre

polynomials.

In the squirmer model, the swimming stroke uS is thus

entirely determined by the values of the different mode

amplitudes an, or equivalently the vector a. Note that the

non-dimensonalization based on the rate of energy dissipa-

tion leads to the normalization,23

X1
n¼1

b2
n ¼ 1; (21)

with b1¼ a1, and

bn ¼
ð2nþ 1Þ anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3nðnþ 1Þ
p for n � 2: (22)

With this rescaling, all possible strokes correspond to a vec-

tor b on the unit hypersphere (in the remainder of the paper,

a and b will be used equivalently to characterize the swim-

ming stroke). Note, that for mathematical convenience, the

definition of the Péclet number in Eq. (11) was modified to

Pe ¼ 1

j

ffiffiffiffiffiffiffiffiffiffiffi
Pa

12pl

s
� (23)

The particular and so-called “treadmill” squirmer must now

be pointed out. That swimmer only includes one squirming

mode (bn¼ dn1) and maximizes the distance traveled by the

swimmer for a given amount of energy.27,28 For a general

squirmer, the first mode (n¼ 1) entirely defines the swim-

ming velocity, and as such is referred to in the following as

the swimming mode, as opposed to all the other modes

(n= 1) which do not produce any swimming motion. The

second mode (n¼ 2) defines the local stress applied by the

swimmer on the surrounding fluid.8,24

For a given stroke a, the rescaled nutrient concentration

c satisfies the advection-diffusion problem

Pe
X1
n¼1

an
@Wn

@r

@c

@l
� @Wn

@l
@c

@r

� �
¼ @

@r
r2 @c

@r

� �

þ @

@l
ð1� l2Þ @c

@l

� �
; (24a)

cð1; lÞ ¼ 1; (24b)

cð1; lÞ ¼ 0: (24c)

The reference nutrient flux U0 corresponds to the case of a

non-stirring squirmer (i.e. a rigid sphere with an¼ 0 for all

n) for which the solution of Eqs. (24) is simply c0¼ 1/r.

From Eq. (12), U0¼ 4p/Pe, and the relative nutrient uptake J
takes therefore the simple form

J ¼ � 1

2

ð1

�1

@c

@r
ð1; lÞ dl: (25)

C. Numerical computation of the concentration field:
the Legendre polynomial spectral method (LPSM)

In this section, we outline the numerical method used to

solve for the advection-diffusion problem, Eqs. (24), and

compute the nutrient uptake for a given stroke a. The method

is based on the expansion of the different fields using

FIG. 1. Squirmer model and spherical polar coordinates used in the paper.

On the surface of the swimmer (r¼ 1), the fluid velocity is purely tangential

u ¼ uS
h lð Þeh. In the far-field, u ��Uex with U the swimming velocity of

the organism.
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Legendre polynomials in l and generalizes the approach pre-

sented in Ref. 34 to the entire stroke space.

The nutrient concentration c(r, l) is decomposed onto

Legendre polynomials as

cðr; lÞ ¼
X1
m¼0

CmðrÞLmðlÞ: (26)

Substituting Eq. (26) into Eqs. (24) leads after projection on

the p-th Legendre polynomial (p � 0) to a system of coupled

Ordinary Differential Equations (ODEs) in r

Pe
X1
m¼0

X1
n¼1

an

�
Amnp

dCm

dr
wn þ BmnpCm

dwn

dr

�

¼ r2 d2Cp

dr2
þ 2r

dCp

dr
� pðpþ 1ÞCp; (27)

Cpð1Þ ¼ dp1; (28)

Cpð1Þ ¼ 0; (29)

where the functions wn(r) are defined in Eq. (19) and Amnp

and Bmnp are third order scalar tensors defined in Appendix

A. The relative nutrient flux is then obtained simply as

J ¼ � dC0

dr
ðr ¼ 1Þ: (30)

In the numerical simulations, the summations in Eq. (27) are

truncated at a finite number N of squirming modes to

describe the swimming stroke (1 � n � N), and M Legendre

polynomial modes are used to describe the azimuthal varia-

tions of c (0 � m � M� 1). Adapting the technique used in

Ref. 34, the system of ODEs in r is discretized on a stretched

grid obtained by mapping as r¼ e/(n) a uniformly spaced

grid of Nr points in n. The choice of an exponential stretch-

ing allows to cover both far-field and near-field concentra-

tions. The function / is a third-order polynomial in n such

that a fixed fraction of the total number of points are con-

tained within the expected concentration boundary layer at

intermediate and high Pe number. The discretized system

(27) can then be rewritten as

H � C ¼ R; (31)

where C is a Nr�M vector containing the values of Cm(rj)

on the different grid points, and H is a M�M block-matrix,

each block being tridiagonal of size Nr�Nr. The block struc-

ture of H is tightly banded: H is diagonal if N¼ 0, tridiago-

nal if N¼ 1, pentadiagonal if N¼ 2, etc. The contribution to

the right-hand side R arises from the non-homogeneous

boundary condition on the swimmer surface for the first

mode C0(r). This large linear system is solved using a direct

block-Gaussian elimination technique taking advantage of

the sparse structure of H.

D. Results

The Legendre polynomial spectral method (LPSM) pre-

sented in Sec. II C is now used to compute, for different val-

ues of Pe, the nutrient concentration around a squirmer for

simple steady swimming strokes including only the first two

squirming modes. In Fig. 2, the concentration field is shown

for three different values of Pe (1, 10, and 100) and three dif-

ferent swimming strokes: the pure treadmill (bn¼ dn1), a

combination of modes 1 and 2, and a pure mode-2 stroke.

Note that in the latter case, the organism is not swimming.

The corresponding relative nutrient uptake J is given for

each case, and the streamlines (independent of the value of

Pe) are also shown for each stroke.

At low Pe (typically Pe � 1), the concentration distribu-

tion is close to isotropic, and only a few Legendre modes are

necessary to compute c(r, l) accurately. The far-field behav-

ior is reached rapidly, so /(nmax)¼ 8 is sufficient with

Nr� 80–100 to achieve errors of at most 0.1–0.5% on the nu-

trient uptake. Note from Fig. 2 that the nutrient concentration

is not very sensitive to the swimming stroke, resulting in

similar relative nutrient uptake J. In that regime, the typical

diffusion time is much shorter than the advective time,

resulting in the homogenization of the concentration field

and a weak front-back asymmetry along the swimming

direction.

As the value of Pe is increased, the concentration distri-

bution develops a stronger angular asymmetry as a nutrient-

depleted wake (c close to 1) develops in the region “behind”

the organism. Molecular diffusion is not rapid enough to ho-

mogenize the sharper advection-induced gradients as both

processes now act on the same time scale. This applies for

swimming (b1= 0) as well as non-swimming strokes

(b1¼ 0).

For Pe	 1, a boundary layer develops for the nutrient

concentration in the region where the flow impinges on the

swimmer surface. In the regions where the radial flow leaves

the swimmer surface (wake of the treadmill swimmer or

upward direction for the pure stresslet swimmer), a nutrient-

depleted region forms where molecular diffusion processes

do not have the time to smooth out the sharp concentration

gradients induced by the velocity field. Numerically, more

Legendre modes are required (typically M� 100 for Pe� 10

up to M� 400 for Pe� 400), and one needs to extend the

r-grid further in the far-field (up to /(nmax)� 18–20 for the

highest values of Pe considered) and increase its resolution

(up to Nr� 400 for the highest values of Pe considered).

Figure 2 shows that for a given stroke the relative nutri-

ent uptake, J, is an increasing function of Pe, emphasizing

the systematic benefit of the swimming or stirring motion on

the feeding process. For a fixed Pe (i.e., constant energy

cost), it also shows that the treadmill swimmer always per-

forms better than the two other strokes considered. The pure

treadmill and pure mode-2 strokes share the existence of a

sharp nutrient-depleted ejection zone. However, one notices

easily that the gradients at the surface of the organism are

stronger in the former case due to the swimming motion of

the organism toward a nutrient-rich zone. Swimming appears

therefore, in these preliminary results, to be a more efficient

process than simple stirring. The intermediate stroke is char-

acterized by a recirculation region that tends to create at high

Pe a zone of homogenized nutrient concentration in the wake

of the swimmer, thereby reducing the radial gradients in that

region as well as the nutrient uptake.
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To confirm this optimality of the treadmill swimmer,

Fig. 3 shows the value of the nutrient uptake for all possible

swimming strokes obtained with only the first three squirm-

ing modes (b1, b2, b3) (this consists of a two-dimensional

space because of the constant energy constraint, Eq. (21)).

We see in Fig. 3 that, within this three-parameter family of

flow profiles, the optimal feeding swimmer is located around

b2�b3� 0, corresponding to the treadmill swimmer.

III. OPTIMAL FEEDING BY A STEADY SQUIRMER

The results of Sec. II suggest that the treadmill swimmer

(bn¼ dn1) is a feeding optimum at all Péclet numbers. In this

section, this result is confirmed by considering the formal opti-

mization problem of the relative nutrient flux J with respect to

the swimming stroke a. We start in Sec. III A by presenting

the general framework of adjoint-based optimization for a

swimmer of time-independent arbitrary shape S prescribing

tangential surface velocities uS on its boundaries. Although the

results presented in the remainder of the paper correspond to

the simplest geometry (a sphere), this framework can be

applied to organisms of arbitrary shapes and is of interest for a

large variety of advection-diffusion problems. We then focus

on the particular squirmer configuration in Sec. III B, and pres-

ent our optimization results in Sec. III C. We show that the

optimal feeding stroke is essentially the same as the optimal

swimming one, a result true for all values of the Péclet num-

ber. These numerical results are also confirmed using asymp-

totic analysis predictions outlined in Appendices B and C.

A. Nutrient uptake gradient for a general swimmer

To derive the optimal swimmer, the gradient of J with

respect to the swimming stroke must be mathematically

determined. This gradient indicates the changes to make in

the swimming stroke in order to increase J, leading to a

natural computational implementation of the optimization

search.

FIG. 2. (Color online) Nutrient concentration around the swimmer for Pe¼ 1, 10 and 100 (from top to bottom) and b2/b1¼ 0, 5 and1 (from left to right), all

the other bj being taken equal to zero. Far from the swimmer c¼ 0, while c¼ 1 at the swimmer surface. The dimensionless nutrient flux J is quoted for each

case. On the bottom row, the streamlines are displayed for each stroke.
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The gradient is obtained using variational analysis as in

Ref. 27. Considering a small variation duS of the swimming

stroke, and the corresponding change in the flow velocity

field du ¼ L � duS (see Eq. 6), the resulting change dU is

given by

dU ¼ � 1

Pe

ð
S

@ðdcÞ
@n

dS; (32)

where n is the outward normal unit vector to the surface of

the swimmer and, at leading order, dc is the solution of

Pe u � rdc�r2dc ¼ �Pe du � rc; (33a)

dc ¼ 0 for x 2 S and x!1: (33b)

Multiplying Eq. (33a) by a test function g and integrating

over the entire fluid domain Vf, one obtains after integration

by part that, at leading order,

dU ¼ �
ð

Vf

cðL � duSÞ � rg dV; (34)

provided that the function g satisfies the adjoint equation

Pe u � rg ¼ �r2g; (35a)

g ¼ 1 for x 2 S; (35b)

g! 0 for x!1: (35c)

Equation (34) defines the gradient of the absolute nutrient

uptake with respect to the swimming stroke. Since U0 does

not depend on the imposed surface velocity, the gradient of

the relative nutrient uptake J is obtained similarly. Note that

the adjoint field g satisfies the same advection-diffusion

equation as the original passive scalar after replacing Pe

by�Pe (or alternatively uS by� uS), so the same analytical

or numerical methods can be implemented to solve for both

fields.

B. Nutrient uptake optimization for a squirmer

In the particular case of a squirmer, the gradient of the

relative nutrient uptake J with respect to the swimming

stroke a is obtained from Eq. (34) as

@J

@an
¼ �Pe

2

ð1
1

ð1

�1

cðr; lÞ @Wn

@r

@g

@l
� @Wn

@l
@g

@r

� �
dldr: (36)

Numerically, both the concentration and adjoint fields are

determined for a given swimming stroke a using the method

outlined in Sec. II C. The relative nutrient uptake J is then

obtained from C0(r) as in Eq. (30). Its gradient with respect

to an is computed as

@J

@an
¼� Pe

X1
m¼0

X1
p¼0

Amnp

2pþ 1

ð1
1

Cpwn

dGm

dr
dr

�

þ Bmnp

2pþ 1

ð1
1

Cp
dwn

dr
Gm dr

�
; (37)

where the functions Gm(r) are defined in analogy with Cm(r)

from the adjoint field g(r, l). All the above integrals are well

defined, taking into account the far-field behavior of c and g
and the definitions of Amnp and Bmnp.

In the following, the optimal steady swimming stroke

for a given energy consumption is determined (i.e., the opti-

mal a or b at given Pe). Starting from a random initial condi-

tion b(0) on the unit hypersphere, the following steepest

ascent algorithm is applied:

1. At step k, for a given stroke b(k), the LPSM is used to

solve for the concentration field c and its adjoint g. The

value of the corresponding nutrient flux J(k) is also com-

puted from Eq. (30).

2. From Eqs. (22) and (37), the gradient rbJ of the relative

nutrient flux is computed.

3. At fixed Pe, b(k) � b(k)¼ 1 and the gradient tangential to

the unit hypersphere is obtained by projection,

rkJ ¼ rbJ � bðkÞ � rbJ
� �

bðkÞ: (38)

4. rkJ defines the steepest ascent direction on the unit

hypersphere in b-space and the next iteration is carried at

a new guess for the optimal b

FIG. 3. (Color online) Variations of the relative nutrient flux, J, within the

(b2, b3)-plane for (a) Pe¼ 5 and (b) Pe¼ 200 (b1 is adjusted so thatP
b2

j ¼ 1). Nutrient flux isolines are also shown for clarity and correspond

to the values indicated on the right. The crosses indicate the position of the

treadmill swimmer in the (b2, b3)-plane.
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bðkþ1Þ ¼
bðkÞ þ srkJ
jbðkÞ þ srkJj

; (39)

until convergence is reached to a local maximum when it

is not possible to find a new guess with J(kþ 1)> J(k) using

this procedure, even in the limit s! 0.

C. Results

1. Optimal squirmer for various Péclet numbers

The preliminary results obtained in Sec. II D suggest

that the treadmill swimming stroke corresponds to the opti-

mal feeding mechanism at all Péclet numbers. This result is

confirmed here using the numerical optimization techniques

outlined above. An arbitrary stroke is characterized by an

infinite number of coefficients bn; for numerical purpose,

this description must be truncated to the first N squirming

modes, thereby exploring a reduced stroke-space. The

results of the stroke optimization are presented below for

the cases N¼ 3 and N¼ 8. Computations performed for

larger values of N led essentially to the same optimal

strokes and feeding rates.

For given values of N and 0.01 � Pe � 300, several

optimization runs were performed starting with different ran-

dom initial strokes. In each run, a rapid convergence was

observed toward an optimal stroke, only marginally different

from the treadmill swimmer (pure mode 1).

The variation of the optimal feeding rate with the Péclet

number, Pe, is shown in Fig. 4(a) and emphasizes the strong

gain in feeding rate associated with the performance of the

swimming and/or stirring motion. As J¼ 1 corresponds to

the case of a rigid sphere (Pe¼ 0), the quantity plotted on

Fig. 4(a), J� 1, is a measure of the excess rate of feeding

induced by the surface motion. Figure 4(a) also compares the

results of the computational optimization procedure for two

different values of N with the feeding rate obtained for the

treadmill swimmer. The main observation is that although

the rate of feeding is strongly dependent on the value of the

Péclet number, the numerical optimal is undistinguishable at

FIG. 5. Dependence on the Péclet number, Pe, of the orientation angle in b-

space, topt¼ cos� 1b1, of the optimal swimming stroke. As in Fig. 4, results

are presented when the optimization is performed on N¼ 3 modes (crosses)

and N¼ 8 modes (square). The dashed line corresponds to the prediction of

the asymptotic analysis at Pe� 1 obtained in Appendix B.

FIG. 6. Dependence with the Péclet number, Pe, of the nutrient flux gradient

@J/@bn with respect to the first four odd modes n¼ 1 (stars), n¼ 3 (squares),

n¼ 5 (circles), and n¼ 7 (triangles) and evaluated at the treadmill (the even

mode gradients are equal to zero by symmetry). The power law dependence

of each component is indicated by a dashed line.

FIG. 4. (a) Optimal stroke-induced nutrient flux J� 1 and (b) relative differ-

ence in nutrient flux, DJ/J, between the optimal swimmer and the treadmill

swimmer as functions of the Péclet number, Pe. Numerical results of the

optimization procedure are presented for N¼ 3 (crosses) and N¼ 8

(squares). Several sets of calculations were performed for each value of Pe

and N. In (a), the solid line corresponds to the treadmill swimmer. In (a) and

(b), the dashed and dotted lines correspond to the asymptotic results for the

treadmill swimmer at Pe� 1 and Pe	 1 obtained in Appendices B and C.
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this scale from that of the treadmill swimmer for all values

of the Péclet number. The asymptotic scalings for the tread-

mill nutrient uptake Jtreadmill are obtained in Appendices B

and C (see also Ref. 34),

Jtreadmill � 1þ Pe

2
for Pe � 1; (40)

Jtreadmill �
ffiffiffiffiffiffiffiffi
2Pe

p

r
for Pe 	 1; (41)

and show an excellent agreement with the numerical results

(Fig. 4(a)).

The relative difference in nutrient flux, DJ/J, between

the numerical optimal and that of the treadmill swimmer is

shown in Fig. 4(b). We see that it is always small—below

10� 3—across the investigated range of Péclet numbers and

is maximum around Pe 
 10. A clear power-law scaling can

be observed at low Pe for DJ/J; for Pe � 1, this power-law

behavior is in excellent agreement with the predictions of the

asymptotic analysis (see Appendix B),

DJ

J
� 2161

1034880

� �2

Pe7 
 4:36 10�6 Pe7: (42)

As a side note, the computational results above are presented

only for Pe � 0.05. Below this value, the optimization algo-

rithm is unable to find optimal strokes performing better than

the treadmill swimmer. This does not rule out the existence

of a different optimum, but indicates that this optimum dif-

fers from the treadmill swimmer by an amount smaller than

the round-off error of our computations.

We now turn to the description of the optimal swimming

stroke. In the b-space where the stroke is represented by a

point on the unit hyper-sphere, the difference to the treadmill

swimmer is measured using the angle topt¼ cos� 1b1 between

the optimal stroke b and the treadmill stroke. The fraction of

the stroke energy cost not dedicated to the swimming veloc-

ity, i.e., the energy of the non-swimming modes, is sin2topt

and is directly related to the swimming efficiency g of the

stroke27: topt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g
p

. The variation of topt with Pe is

shown on Fig. 5. For all Pe, the difference between the tread-

mill and optimal strokes remains small, with topt � 0.02, cor-

responding to an energy in the non-swimming modes

accounting to less than 0.04% of the total energy cost. How-

ever, this small difference depends strongly on Pe (see Fig.

5). At low Pe, topt scales as Pe3, and for Pe � 1 the numerical

results are in excellent agreement with the predictions of the

asymptotic analysis (see Appendix B),

topt �
2161

517440
Pe3 
 0:00418 Pe3: (43)

For Pe	 1, topt scales as topt�Pe� 1/3 (Fig. 5). Note that the

similarity in shape of Figs. 4(b) and 5 is a direct result of

topt � 1, as explained below.

2. Gradient near the treadmill

The optimal feeding squirmer is essentially, but not

exactly, identical to the treadmill swimmer. Therefore, its

properties and feeding rate are expected to be determined by

the nutrient flux gradient rJ in the stroke space, evaluated at

the treadmill. For t� 1, the swimming stroke,

b ¼ cos t b1 þ sin t bk; (44)

is a perturbation of the stroke from the pure treadmill, b1, in

the direction bk, such that bk � b1 ¼ 0 (i.e. non-swimming

stroke). Then, the nutrient flux can be expanded near b1 as

J ¼ J1 þ t
@J

@bk

 !
1

þ t2

2

@2J

@b2
k

 !
1

� @J

@b1

� �
1

" #
þ Oðt3Þ;

(45)

where derivatives with a 1 subscript are evaluated at the

treadmill. The nutrient flux is therefore maximum for the

treadmill if and only if:

@J

@bk

 !
1

¼ 0 and
@2J

@b2
k

 !
1

<
@J

@b1

� �
1

� (46)

More generally, the optimal value of t and corresponding

flux are given at leading order by

topt �
@J=@bk
� �

1

@J=@b1ð Þ1 � @2J=@b2
k

� �
1

; (47a)

DJ

J
�

@J=@bk
� �

1

h i2

2J1 @J=@b1ð Þ1 � @2J=@b2
k

� �
1

h i � (47b)

These results emphasize the critical role of the nutrient flux

gradient @J/@bj in the localization of the optimal feeding

stroke with respect to the treadmill. Integrating Eq. (36) by

part, the gradient can be rewritten as

@J

@an
¼� Pe

4

ð1
1

ð1

�1

@Wn

@r
c
@g

@l
� g

@c

@l

� ��

þ @Wn

@l
g
@c

@r
� c

@g

@r

� ��
dl dr: (48)

Using the parity properties in l of Wn, one easily obtains that

for the treadmill, g(r, l)¼ c(r,�l), and consequently,

8p � 1;
@J

@b2p

 !
1

¼ 0: (49)

The variation with Pe of the first four odd (and non-trivially

zero) gradient components of J at the treadmill is plotted in

Fig. 6. Clear scalings are identified for Pe� 1 and we obtain

by regression,41

@J

@b1

� �
1


 0:49 Pe ;
@J

@b3

� �
1


 0:0020 Pe4; (50)

and more generally
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@J

@b2pþ1

 !
1

¼ OðPe2pþ2Þ for p � 1: (51)

These results are in good agreement with the predictions of

the asymptotic analysis at low Pe (see Appendix B)

@J

@b1

� Pe

2
;

@J

@b3

� 2161

1034880
Pe4 
 0:0021 Pe4: (52)

Figure 6 also shows that the gradient along the third

mode always dominates by at least one order of magnitude

the gradients in the other directions, for all Pe. The differ-

ence between the optimal and treadmill strokes is therefore

expected to be dominated by the third squirming mode

which is confirmed by the fact that the results presented in

Sec. III C 1 are only marginally modified between N¼ 3 and

N¼ 8.

For large Pe, @J=@b2pþ1 � @J=@b1, which is consistent

with the asymptotic result that the feeding rate only depends

on b1 at leading order (see Appendix C).

IV. DISCUSSION

In this paper, the steady spherical squirmer model was

used to determine optimal feeding strategies at zero Reyn-

olds number. For a nutrient following an advection-diffusion

equation, we showed computationally and theoretically that,

for a fixed amount of energy dissipated in the fluid, the opti-

mal feeding mechanism is essentially equivalent to the opti-

mal swimming problem, and its solution maximizes the

swimming velocity.

Perhaps surprisingly, the result that optimal feeding

is optimal swimming does not depend on the value of the

Péclet number, which is confirmed by asymptotic analysis.

At low Péclet, the improvement in feeding rate as compared

to quiescent fluid environment (pure nutrient diffusion) is, as

expected, small and, it increases as Pe. This linear

scaling arises from the proportionality between the gain

in nutrient uptake and the volume swept by the swimming

organism, which itself is proportional to its surface area

times its swimming speed. In the high Péclet regime, the de-

velopment of concentration boundary layers means that the

volume swept by the swimming organism decreases, and the

relative nutrient uptake shows a slower increase with Pe than

linear.

One interesting feature of the optimal feeding (equiva-

lently, optimal swimming) solution is that it is vorticity free.

This surface treadmill solution corresponds indeed to the only

surface distribution of velocity which leads to potential flow

Stokesian swimming. This result could very well be a simple

consequence of our emphasis on energy cost, as the presence

of vorticity always increases the rate of energy dissipation.37

Note that the occurrence of a Pe-independent optimal

feeding stroke in our simulations is reminiscent of results on

optimal tracer mixing obtained for all Pe using flows directed

from sources to sinks.38 Here, the optimal stroke corresponds

to the swimmer (a sink) maximizing its velocity toward the

sources of nutrients in the far-field.

One of the major assumptions of our modeling

approach is the restriction of the study to steady surface

motion. In the case of our work on locomotion optimiza-

tion,27 we showed that although the treadmill swimmer is

itself not physical (due to the non-periodicity of the trajec-

tories), the unsteady optimum was found to be a superposi-

tion of the treadmill solution with periodic shock-like

recovery strokes where material elements on the organism

surface were brought back to their initial position. We con-

jecture that the same will be true in the case of feeding, and

that the solution to the optimal feeding for periodic surface

motion will be a combination of the optimal steady (tread-

mill) with regularization to enforce periodicity at a rate

allowed by the energetic constraints. Ongoing work in this

direction, technically more complex as it requires solving

for the spatio-temporal evolution of both the concentration

field and the adjoint field, will be reported in the future.
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APPENDIX A: DEFINITION OF THE Amnp AND Bmnp

TENSORS

The coefficients Amnp and Bmnp used in Sec. II C are

defined in terms of the Legendre polynomials as follow:

Amnp ¼
ð2pþ 1Þð2nþ 1Þ

2

ð1

�1

Lm Ln Lp dl; (A1)

Bmnp ¼
ð2pþ 1Þð2nþ 1Þ

2nðnþ 1Þ

ð1

�1

ð1� l2ÞL0m L0n Lp dl: (A2)

They are easily computed using

Am0p ¼ dmp; Bm0p ¼ 0: (A3)

and the following recursive relations for n � 1,

Amnp ¼
2nþ 1

n
� n� 1

2n� 3
Am;n�2;p þ

mþ 1

2mþ 1
Amþ1;n�1;p

�

þ m

2mþ 1
Am�1;n�1;p

�
; (A4)

Bmnp ¼
2nþ 1

nðnþ 1Þ
ðn� 2Þðn� 1Þ

2n� 3
Bm;n�2;p

�

þmðmþ 1Þ
2mþ 1

Am�1;n�1;p � Amþ1;n�1;p

	 
�
: (A5)

APPENDIX B: ASYMPTOTIC ANALYIS: OPTIMAL
FEEDING FOR Pe� 1

In this appendix, we focus on the treadmill stroke

bj¼ dj1, and determine the concentration field c, nutrient flux

J and nutrient flux gradient for Pe� 1 using asymptotic

analysis.

1. Concentration field around the treadmill

For Pe� 1, c(r, l) is sought in the form of a regular

perturbation expansion in Pe,
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cðr; lÞ ¼
X1
p¼0

Pepcpðr; lÞ; (B1)

with c0¼ 1/r, the rigid sphere (Pe¼ 0) solution. However,

this expansion is not uniformly valid over the entire fluid do-

main and one must consider a boundary layer at infinity for

Pe> 0.34,39 In the near-field (outer solution), c must satisfy

the advection-diffusion equation

1

r2

@

@r

�
r2 @c

@r

� �
þ @

@l
ð1� l2Þ @c

@l

� ��

¼ �Pe l 1� 1

r3

� �
@c

@r
þ 1� l2

r
1þ 1

2r3

� �
@c

@l

� �
; (B2)

as well as c ¼ 1 on the swimmer surface. In the boundary

layer Cðq; lÞ ¼ cðr; lÞ, with q¼Pe r, must instead satisfy

the boundary-layer equation as

1

q2

@

@q

�
q2 @C

@q

� �
þ @

@l
ð1� l2Þ @C

@l

� ��
þ l

@C

@q

þ 1� l2

q

� �
@C

@l
¼ Pe3

q3
l
@C

@q
� 1� l2

2q
@C

@l

� �
; (B3)

as well as C! 0 for q!1.

Both c and C are sought as regular perturbation series in

Pe. Using matched asymptotic expansion,40 both solutions

are computed up to order O(Pep) (p¼ 1, 2, 3) and integration

constants at each order are obtained by identifying the two

solutions up to terms O(Pep, Pep� 1/r,...,1/rp) over a matching

region Pe�p=ðpþ1Þ � r � Pe�1.

The final solution valid up to O(Pe4) is given by

cðr; lÞ ¼
X3

p¼0

Pe p
Xp

q¼1

cq
pðrÞLqðlÞ; (B4)

valid for 1 � r � Pe�1 and

Cðq; lÞ ¼ Pe þ Pe2

2

�
þ Pe3 17

80
þ 3l

8
1þ 2

q

� �� ��

� 1

q
exp �ð1þ lÞq

2

� �
; (B5)

valid for Pe1=ðpþ1Þ � q, where the functions cq
p rð Þ are

defined in Appendix D. Using Eq. (30), the nutrient flux is

then obtained as

J ¼ 1þ Pe

2
� 13 Pe 2

80
þ 7 Pe 3

80
þ OðPe 4Þ: (B6)

2. Gradient computation

Using the previous expansion and Eq. (36), one can

compute @J/@bn at the treadmill. Using the front-back sym-

metry of the treadmill velocity field, the asymptotic expan-

sion of the adjoint field is obtained as g(r, l)¼ c(r,� l) and

Gðr; lÞ ¼ Cðr;�lÞ. Splitting the integral in r in Eq. (36)

between inner and outer regions, one obtains

@J

@an
¼ � Pe

2
Iint þ IBLð Þ; (B7)

Iint ¼
ðPe�7=8

1

dwn

dr
Fn c

@g

@l

� �
þ wnF

�
n c

@g

@r

� �� �
dr; (B8)

IBL ¼
ð1

Pe1=8

dwn

dq
Fn C

@G

@l

� �
þ wnF

�
n C

@G

@q

� �� �
dq; (B9)

where Fn and F�n are projection operators on the Legendre

polynomials

Fn½f �ðrÞ ¼
2nþ 1

nðnþ 1Þ

ð1

�1

f ðr; lÞð1� l2ÞL0nðlÞ dl; (B10)

F�n½f �ðrÞ ¼ ð2nþ 1Þ
ð1

�1

f ðr; lÞLnðlÞ dl: (B11)

For n¼ 3, the integral in Eq. (B9) is at least O(Pe4). Using

Eq. (B4) and the definition of cq
p in Appendix D, the gradient

with respect to the third mode is then computed as

@J

@b3

¼ 2161

1034880
Pe4 þ OðPe5Þ: (B12)

Following a similar approach, the gradient with respect to b1

is computed as

@J

@b1

¼ Pe

2
þ OðPe2Þ: (B13)

Note that a similar but longer approach consists in comput-

ing the gradients directly from the expansion of c for an arbi-

trary combination of two modes.34 This calculation, omitted

here for clarity, also provides the second derivative @2J=@b2
3

evaluated at the treadmill,

@2J

@b2
3

¼ 27

7840
Pe2 þ OðPe3Þ: (B14)

Using the results of Sec. III C 2, J has a maximum in the (b1,

b3)-space at bopt
3 corresponding to a relative increase DJ/J of

the nutrient flux,

bopt
3 �

2161

517440
Pe3 
 0:00418 Pe3; (B15a)

DJ

J
� 2161

1034880

� �2

Pe7 
 4:36 10�6Pe7: (B15b)

APPENDIX C: ASYMPTOTIC ANALYSIS: OPTIMAL
FEEDING AT Pe	 1

As shown in Fig. 2, the feeding problem at Pe	 1 is

characterized by the formation of a boundary layer in the

concentration distribution near the squirmer’s surface, whose

thickness scales as Pe� 1/2 due to the balance between tan-

gential advection and radial diffusion near the swimmer’s

surface. Generalizing the analysis in Ref. 34 to arbitrary

strokes, Eq. (8) becomes at leading order in 1=
ffiffiffiffiffiffi
Pe
p

,
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@2c

@R2
¼ f0ðlÞR @c

@R
� fðlÞ @c

@l
; (C1)

with R ¼
ffiffiffiffiffiffi
Pe
p
ðr � 1Þ and f the axial component of the tan-

gential surface velocity,

fðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
uS

hðlÞ: (C2)

A self-similar solution is sought for the previous equation in

terms of the variable g¼R/g(l), where g(l) represents the

boundary layer thickness. Equation (C1) then becomes

@2c

@g2
¼ g

@c

@g
fðlÞgðlÞg0ðlÞ þ gðlÞ2f0ðlÞ
n o

: (C3)

Provided that

fðlÞgðlÞg0ðlÞ þ gðlÞ2f0ðlÞ ¼ �2; (C4)

a self-similar solution compatible with the boundary condi-

tions Eqs. (9)–(10) exists, given by

cðR; lÞ ¼ 2ffiffiffi
p
p
ð1

R=gðlÞ
e�g2

dg: (C5)

Equation (C4) can be solved for g(l) with the additional con-

straint that the boundary layer thickness g(l) is finite at

l¼ 1

gðlÞ ¼ 2

fðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1

l
fðtÞ dt

s
: (C6)

If the surface velocity uS
h is positive everywhere (i.e., there

are no recirculation regions), then g(l) remains finite for all

l >� 1, and the boundary layer solution above is valid over

the entire surface of the squirmer. This condition is satisfied

by the treadmill swimmer, and in some vicinity of it. At

l ¼� 1, g(l)¼1 and the boundary layer separates into the

wake observed on Fig. 2.

The nutrient flux at the surface of the squirmer is then

obtained from Eqs. (25) and (C5) as

J ¼
ffiffiffiffiffiffi
Pe

p

r ð1

�1

dl
gðlÞ þ Oð1Þ; (C7)

and can be computed exactly from Eq. (C6) as

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe

p

ð1

�1

fðlÞ dl

s
þ Oð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b1Pe

p

r
þ Oð1Þ: (C8)

One observes that at leading order J depends on b1 only.

APPENDIX D: DEFINITION OF THE FUNCTIONS cq
p ðrÞ

The functions cq
p rð Þ in Eq. (B4) are given by

c0
1 ¼

1

2

1

r
� 1

� �
; (D1)

c1
1 ¼ �

1

2
þ 3

4r2
� 1

4r3
; (D2)

c0
2 ¼

r

6
� 1

4
þ 7

80r
þ 1

24r2
� 1

16r4
þ 1

60r5
; (D3)

c1
2 ¼

r

4
� 1

4
þ 1

8r2
� 1

8r3
; (D4)

c2
2 ¼

r

12
� 1

4r
þ 5

24r2
þ 3

56r3
� 1

8r4
þ 5

168r5
; (D5)

c0
3 ¼�

r2

24
þ r

12
� 17

60
þ 11

240r
þ 1

48r2
� 1

96r4
þ 1

120r5
; (D6)

c1
3 ¼ �

3r2

40
� r

8
� 23

160
� 3

40r
þ 527

1120r2
� 11

320r3

� 3

112r4
� 3

560r5
þ 3

160r6
� 9

2240r7
; (D7)

c2
3 ¼ �

r2

24
þ r

24
� 1

12r
þ 5

48r2
� 5

336r3
� 1

48r4
þ 5

336r5
;

(D8)

c3
3 ¼ �

r2

120
þ 3

80
� 1

20r
� 9

560r2
þ 3

40r3
� 9

224r4

� 9

1120r5
þ 1

80r6
� 1

420r7
: (D9)
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