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Dynamic mechanisms for apparent slip on hydrophobic surfaces
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Recent experimently. Zhu and S. Granick, Phys. Rev. Le®7, 096105(2001)] have measured a large,
shear-dependent fluid slip at partially wetting fluid-solid surfaces. We present a simple model for such a slip,
motivated by the recent observations of nanobubbles on hydrophobic surfaces. The model considers the
dynamic response of bubbles to change in hydrodynamic pressure, due to the oscillation of a solid surface.
Both the compression and diffusion of gas in the bubbles decrease the force on the oscillating surface by a
“leaking mattress” effect, thereby creating an apparent shear-dependent slip. With bubbles similar to those
observed by recent atomic force microscopy, the model predicts a force decrease consistent with the experi-
mental measurements of Zhu and Granick.
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[. INTRODUCTION [25—-29 and their existence points to a possible picture for
such a large slip19,22.

The validity of the no-slip boundary condition is at the  Itis well known that there is in general a nonzero velocity
center of our current understanding of fluid mechanics. It a liquid-gas interface, and therefore it is natural to wonder
remains, however, an assumption whose microscopic validityhether the existence of such a gas layer at the solid surface
has been widely debatdd]. The widespread acceptance of 1S s'ufflment'tq explain the experiments. When.a fluid of vis-
the no-slip condition is based on a historical record of out-COSity 7, adjoins a layer of fluid of thickneds with smaller
standing agreement between theories and experiments. It Y$SCOSity 7., the discontinuous strain rate at the fluid-fluid
commonly agreed that the no-slip condition results from in-interface results in an apparent slip with slip length
evitable microscopic roughness, which causes enough vis- m
cous dissipation to effectively bring the fluid to rest near the A= h( - 1) (1)
surface[2—4]. Remarkably, this explanation is independent 2
of the nature of the solid and the liquid, contrary to ideas firstChoosing 7,/ 7,=50 appropriate for a gas-water interface
proposed by Girardsee Ref[1]). leads to slip lengths as large as 500 nm. This estimate is,

The development of small devices has recently promptetiowever, independent of the interfacial shear and therefore
a reexamination of fluid slip on length scales of nanometersinable to explain rate-dependent results from squeeze flow
and micrometers, both experimentalB;,5-13 and theoreti- experiments; it also overestimates the slip length in the case
cally [13—-19. The degree of slip is usually quantified by a of bubbles, as is discussed in Sec. Ill. Note, however, that
slip lengthA=U,/ y, whereU, is the slip velocity andy is the  similar arguments are consistent with data from pressure-
liquid strain rate evaluated at the surface; equivalentlis  driven flow experiments where reported slip lengths to date
the distance below the solid surface where the velocity exare essentially shear independgh,11,18,30-3R
trapolates linearly to zerf20]. In experiments, slip is usually In this article, we will assume bubbles exist on hydropho-
found when the liquid partially wets the solid surface; mea-bic surfaces and will calculate thedynamicresponse to an
sured slip lengths span four orders of magnitude, from moimposed oscillatory shear. In an oscillatory squeeze flow ex-
lecular sizes to micrometers, and are usually shear dependgueriment[8], we argue that the pressure fluctuations in the
in squeeze flow experiments, withan increasing function fluid cause the bubbles to act as a “leaking mattress,” with
of v. In particular, Zhu and Granick8] reported squeeze both the compression and the dilatation of the gas in the
flow experiments, in which two crossed cylinders oscillatebubble, as well as the diffusion of gas int@nd out of the
about a fixed average distance. By measuring the viscousubble. As the solid sphere oscillates, this periodic in-phase
resistance, Zhu and Granick extracted the slip length over eesponse of the bubbles sizes reduces the amount of liquid
wide range of oscillation amplitudes. These experiments leadecessary to be squeezed out of the gap, and thereby the
to the largest shear-dependent slip lengths @@ to  force on the moving sphere, creating an apparent slip. Our
~2 um). calculations indicate that the magnitude of this apparent slip

The origin of this large shear-dependent slip is heretoforés consistent with the observations of Zhu and Granick. We
mysterious. Nanobubbles have recently been observed quresent the details of our model in the next section and dis-
hydrophobic surfaces, using atomic force microscopy, withcuss the comparison with the experiment in Sec. Ill.
typical thicknessh~ 10 nm, typical radiusR~50-100 nm,
and high surface coverag@1-24. Although the origin of
these bubbles is unclear and skepticism remains in the com-
munity about their existence, they have been often invoked A typical oscillatory squeeze flow experiment is shown in
as a possible origin of the so-called hydrophobic attractiorFig. 1. A sphere of radiua oscillates with velocitys in a

II. INFLUENCE OF BUBBLES ON FORCE
MEASUREMENTS
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_ Fy,, due to pressure fluctuations inside the bubbles and acting
& dsinwy on an areapS. The total force is therefore given by
: F(t)=(1-¢)Fp+ ¢Fy, (4)
HERigs z « - where

r ht — -

e v Fr=(p-po)S Fu=(Py PegS (5)

'iR 7 < : Here, p and p, (P, and pe denote the(equilibrium) pres-

. ' sures in the liquid and the bubbles, respectively. Moreover,

sinceD <a, the surfaceS is given byS= maD.

FIG. 1. A typical squeeze flow experiment: a solid sphere of

radiusa is oscillated in a liquid at a distand@<a of a smooth B. Lubrication force
solid surface with amplitude<D and frequencyw. The surfaces Let us first calculate the hydrodynamic for€g,. The
are covered by microscopic gas bubbles of contact adgid  rasence of bubbles modifies E8) in two ways. First, flow
radius of curvatur&,. The set of bubbles is approximated by a 9as ¢ s over a distribution of bubbles located on an otherwise
layer of time evolving thickness(t). no-slip surface, so the viscous force is reduced by an amount

_ o _ _ _ fsip given by Eq(3), where\ is the appropriate effective slip
viscous liquid of viscosityn at a distanceD of a planar |ength for flow over a distribution of bubbldg48,34.
surface(equivalently, the surfaces can be two crossed cylin- Second, the size of the bubbles changes in time in re-
ders. The two surfaces are assumed to have the same physjponse to pressure fluctuations in the liquid. This volume
cochemical properties. If no bubbles are present and the neffect will modify the amount of liquid necessary to be
slip boundary condition is satisfied on both surfaces, then thequeezed out of the gap at each cycle of the oscillations,
lubrication force opposing the motion of the sphere is giverhence the viscous force. Consequently, bubble dynamics

by the Reynolds equation have to be subtracted from the forciig and the hydrody-
6 > namic lubricationF,, force is now given by a modified Rey-
T N .
Fit)=e,-F(t)=- Vs2 Fiyp. (2)  nolds equation
. . 6mna’ dh
If, however, flow occurs on the surfaces with a slip length Frn=—fgp—= | Vs~ 2d— , (6)
the viscous force is decreased by an amdygt[33] given D t
by whereh is an average bubble thickness on each surface and
the factor 2 accounts for the fact that each surface is covered
D D DN .
fap=5[ |1+ |Inl1+—|-1 (3)  with bubbles.
3\ DN D
Equation(3) is used experimentally to infer effective slip C. Rate of change of bubble height

lengths: the experimental viscous foreg,, is compared to
the theoretical no-slip result,,, and any difference is inter-
preted as fluid slip, with a slip length corresponding to

In order to calculate lo/ dt in Eq. (6), let us now consider
the dynamics of the bubbles. We assume the bubbles are
undeformed by viscous stresses and remain spherical, with
fsiip=Fexp/ Fiup- radius of curvatureR(t) and interior anglg7—6) (see Fig.

peg&%ﬁﬁ?ﬁﬁﬂﬂ?ﬁ:bsl?tlai& :(::riglcf; izgg\:je;edr%"ima 1). We also neglect interactions between bubbles. We expect
how the bubbles modify the dynamic respénse. Although thig(t) to depend explicitly on the forcing on the bubbles, i.e.

assumption has been made by previous authors®
[19,22,26—-29 the physical mechanism responsible for such
bubbles is unknown. Simple estimates indicate that smal
bubbles are shortlived in solutiof34]. However, stable

At the small frequencies typical of squeeze flow experi-
ents(1-100 H3, the gas is isothermal, so the pressure in
he bubble changes via the ideal gas law

bubbles could arise from any number of possibilities that are POV _ PeqVo
known to prolong bubble lifetimes, including surfactants, m(t) = m (7)

surface heterogeneities, or local supersaturation of dissolved

gas[35]. In this paper, we are interested in understandingvhereV andm denote the volume and the mass of a single

whether the dynamic response of hypothesized bubbles Bubble. The average thickness of the gas layer is defined as

sufficient to rationalize slip experiments. h(t)=n\(t), wheren is the number density of bubbles on the
solid surface, so that E@7) can be rewritten as

o ) ) Pp(H(t) _ Pedo

The total forceF(t) resisting the oscillatory motion of the W = my
areaS of the sphere has two component$) a viscous lu-

brication forceFy, due to hydrodynamic pressure fluctuations Combining the time derivative of Eq@8) with Fp=(p,

and acting on an argd - ¢)S, and(2) an elastic bubble force —pey)S and linearizing aroundpy,h,m}~{peq, ho, Mo}, We

A. Total force

(8
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obtain the equation for the rate of change of the mean bubble- L/Pq“2 is the typical (shear-dependentadial gradient
heighth length scale. Equatiofi?2), together with Henry’s law, leads,
therefore, to a linear relation between the rate of change
% - E‘jj_m __ho dFy (99  and the bubble force
t t
Mo dt Peg d _ dm,  «<R2(6)c
We thus have that the rate of changéha$ the sum of a rate o =- TF
of change governed by gas diffusion, plus a second contri- Po
bution due to the gas compressibility. Combiningmy = pohg/n with Egs.(9), (11), and(13), we
We now consider the rate of gas diffusion from the finally obtain the result that the mean bubble heilyisatis-
bubble. In our model for the oscillatory squeeze flow experifies the differential equation
ments[2,6,8, bubbles lose mass by both vertical diffusion
across the liquid layer and radial diffusion along the appara- dn =—k.F. -k dFy (14)
tus; because of the scale separatidrca, these two pro- dt e T2 gt
cesses require separate treatment.
Let us first consider the case of vertical diffusion. Since

b (13)

where(k,k,) are given by

for most common gases~ 10°° m?/s, the vertical Peclet n«R2I(6)c,

number Pg=D?w/ x is much smaller than unity: on the ex- Kj=—" < — (15
perimental time scale™, the bubbles are approximately in PoPoSky

instantaneous vertical diffusive equilibrium. The dissolved

gas concentration above the bubble is therefore uniform i, = Solo (l+Cw(D—2ho)) (16)
throughout the liquid gap and is given, in the case of small 2 C.PoS poho '

amplitude oscillations, by Henry’s lae~ p,C../ peg, Wherec,,

is the far-field dlssglved gas .concentrano.n. The mTaSS.f _ D. Bubble force

gas necessary to fill the liquid gap at this concentration is ] ]

equal to the gap thickne$B - 2h), times the change in con- We finally need to calculate the bubble forggin order

to close the system of equatio® and(14). This, in gen-
eral, requires understanding tfequilibrium or nonequilib-
rium) mechanism responsible for the presence of these long-
lived bubbles. However, we can bypass this unknown
physics by assuming without loss of generality that the pres-

centrationc..(p,/ peg— 1), times the area in the liquid that is
influenced by the bubble, i.e. &/ Linearizing aroundh
~hy and combining withpey/C..=po/Co, We get thatm is
proportional to the bubble force,:

. Co(D=2hyp) sure fluctuations in the bubbles and in the liquid are propor-
Mm=————"Fp. (10 fional
npeS
Consequently, the total rate of changenofs given by Ap,=aAp, (17)
dm dm  co(D - 2hy) dFy, wherea is an unknown constant. Hence, bubble and hydro-
ot = at T)SE (1) dynamic forces are proportiong|,=aFy, and the total force
on the sphere can be expressed as
where dn,/dt is the rate of change in the bubble mass gov- 1-p+ad
erned by gas diffusion in théslowly varying radial direc- F=(1-¢+a¢) Fy= <—a)|:b, (19
tion of the apparatus; let us now evaluate this contribution. ed

In contrast to the vertical case, the radial oscillatory Peclet
number, Pe=L%w/k=aDw/ k, is of order unity or larger, so E. Total force on the sphere
that radial diffusion has to be accounted for explicitly. As-
suming the dissolved gas is in vertical diffusive equilibrium,
the time rate of change of the mass of a gas bubbigddt is
given by a flux integral on the bubble surfaBg

d P
mf:Kf n-VcdS= kR2(6) 25, (12)
S ar

We can now combine Eqg6), (14), and(18) to express
the total force opposing the motion of the sphéreWe
obtain

bl F(t)=- g(l —¢+ a¢)(Vs+ 2k, Fy, + Zkz%) , (19
dt
_ _ . where5=12mna*ty;,/D. SinceF andF, are related by Eq.
where the assumption of the spherical cap bubble |mplle§18), Eq. (19) can be transformed into an ordinary differen-
that |(6)=’7T[2(7T— 0)+sin 29]/2 tial equation forF,

In general, the radial concentration of dissolved gast)
verifies an advection-diffusion equation with shear-
dependent diffusivity37]. However, for the small amplitude
oscillation in Ref.[8], both advection and Taylor dispersion —~
are negligible, ana(r,t) satisfies a pure diffusion equation. whereVs=(1-¢+a¢$)Vs For an oscillating sphere velocity
We finally approximate the radial concentration gradient by avs=d(d sin wt)/dt, the periodic solution to Eq20) is given
simple linear lawdc/dr=(c,—c)/L,, whereL,=~(k/w)? by [44]

S~ dF
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TABLE |. Summary of experimental data on nanobubbles as found in R2is-24 by atomic force
microscopy: projected area of each bubble on the solid surfaces, height above the dyfaedtus of
curvatureR,, surface coverageh, and macroscopic and microscopic contact angle. The radius of curvature
and microscopic contact angles were inferred from the other data assuming spherical cap nanobubbles.

Ishidaet al.  Tyrrell and Attard  Tyrrell and Attard ~ Steitzet al.

[21] [22] [23] [24]
Projected aregnnv) 3.3x10° 4-6X10° 4-7Xx10° 2-11x 10°
Height hy (nm) 40 20-30 20-30 <18
Radius of curvaturé, (nm) 1300 ~50 40-60 30-100
Surface coverage ~20% ~100% ~100% 89%
Macroscopic contact angle 110 10r 10r >9o0°
Microscopic contact anglé 166 ~120¢ 117-130 130°-147
F(t) (1- ¢+ ad)(1 - dak,) through the frequency dependence in E2Q): higher fre-
= sl t d therefore higher shear rates lead to a larger ap-
Fuo  SP(1+ Saky)?+ (dwaky)? quency and. gnhe gerap
tub ( aky)”+ (Swaks) parent slip, in agreement with Ref,7,8. The model was
owak, derived under the assumption of small amplitude oscillations
————sinwt]|. (21) . : i
1+ Sak, d, and consequently it does not appear in the final formula
for f*.
Equation (23) implies that the apparent slip effect in-
F. What is the value of a? creases with the fluid viscosity, in agreement with experi-

By comparing our mode{21) to the results of squeeze me_nts[?,_10_|. It also increases with thg size of the sphare _
flow experiments, we find that the only choice consistentVhich might account for the large slip lengths reported in
with available data at large separation distances=sl. Ref. [8] (centimeter-sized sphepess opposed to other

To see this, consider Eq1) in the limit of large separa- Sdueeze flow experlments(usually micrometer-sized
tions between the sphere and the planar surfacgince Eq. spheres _The model predicts that the mea_sur_ed_ overall ap-
(3) shows thatf,,~1 whenD is large, we gets~ DL parent sl_lp length is therefore not only a solid/liquid property,
Moreover,S~ D so that, from Eqs(15) and(16), we obtain  Put that it depends on the system sj2é].
ok, ~ D2 and sk,~ DL, Consequently, in the limit of large We finally note from Ea2y that the total pressure forcg
separations, we obtain that the ratio of the measured forc@" the sphere=(t) also contains a nonzero component in
out of phase with the sphere displacement, to the expectdg1ase with the displacement of the sphere, and therefore out
no-slip force(2) is given by of phase with its velocity. If we denote lgy the ratio of this

in-phase response to the expected no-slip no-bubbles out-of-

F .

im (_) —1-¢+ad 22) phase response, we obtain

D lub % — 5(1)k2 _ 5(1)'(2 fx 24
Within experimental errors, this ratio is always measured to 9" = (1+0k)2+ (Swky)? P~ 146k 24

be unity [2,7-9,12, i.e., the expected lubrication no-slip , ) o ] o

force is recovered for large separation distances. We ther&auation(24 is a prediction of the effective elasticity pro-
fore need 1+ag¢~1 or a~1. We emphasize that this vided by the bubbles to the surface, which would occur in
conclusion is reached because agsumehat the model pre- addition to other in-phase contributions such as intermolecu-
sented in Sec. Il is the major physical mechanism respon!—ar forces, and is experimentally testable. The values of the

sible for the force decrease observed in experiments such 4&Phase responses of the forces were unfortunately not re-
in Ref. [8]. ported by Zhu and Granicf8].

G. Final formula for the force ratio

We obtain from Eq(21) that the ratiof* of the peak force ) ) ) L .
out of phase with the sphere displacement to that expected We Present in this section a quantitative comparison of

Ill. COMPARISON WITH EXPERIMENTS

with no slip and no bubble) is given by our model with the experimental results of Zhu and Granick
in the case of de-ionized water, namely the four sets of data

f*(w) 1 presented in Fig. 2 of Ref8]. The macroscopic water/solid

fsiip B (wdky)? " (23) contact angle in this case was 2l@he sphere radius was
1+{ ok + l+—6k1 a=2 cm, and we assumed that the liquid was saturated with

0, at 25°C and 1 atm(c..=Co), for which py=1.28 kg/n#,
The “leaking mattress” model therefore leads to an apparerd,=8.3x 102 kg/m® and k=2x 10° m?/s. As a matter of
slip effect, of dynamic origin. The effect is shear dependentomparison, we have also summarized in Table | the experi-
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FIG. 2. A comparison between the experimental data of Zhu andio’
Granick (200D and the dynamic mod&PR3) with Ry=10 nm and
»=9%%. (a) Small amplitude experimental data$ ): measure- .
ments ford=0.5 nm, w=1 Hz; dashed-dotted line: model far
=177; (I>): measurements fod=1.6 nm, =10 Hz; solid line:
model for §=132. (b) Large amplitude experimental data$ ):
measurements fod=6 nm, w=1 Hz; dotted line: model forf
=168; (»): measurements fod=6 nm, =10 Hz; dashed line:
model for 6=90°.

mental results 0f21-24 on the typical size, distribution, ‘ .
and morphology of bubbles observed by atomic force mi- 10' D (nm) 10°
croscopy.

The_“leaklng mattress” model we have preseljted n t_he FIG. 3. A comparison between the experiment from H8f.
preceding sections has three free parameters which we fit {0 4=1 6 nm andw=10 Hz (>) and the model for different
the experimental dataa) the arga fraction of th? bubbles on bubble sizes, contact angles, and surface cove(agéfluence of
the surface, & ¢=1, (b) the size of the spherical bubbles, pypple size; model with surface coverage0.99, contact angle
described by their radius of curvatuRg, and(c) the micro-  g=15@, and bubble size®R,=1 nm (dotted ling, 25 nm (solid
scopic contact angle at the bubble level, which signifi- |jine), and 50 nm(dashed ling (b) Influence of contact angle; model
cantly differs from the macroscopic contact angle because afith surface coverage=0.99, bubble siz&,=10 nm, and contact
both intermolecular and electrical forces at the nanometesingles#=120 (dashed ling 140° (solid line), 160° (dotted ling,
scale. Note thaip is related to the area fractiom by the  and 170°(dashed-dotted line (c) Influence of surface coverage;
formula ¢=nm Rg Sir? 6. model with bubble siz&,=10 nm, contact anglé=12C, and sur-

Furthermore, in order to present a meaningful fit to avail-face coveragep=0.1 (dashed-dotted line ¢=0.25 (dotted ling,
able data, we require that in each experiment, the two layerg=0.5(solid line), and ¢=0.99 (dashed ling
of bubbles fit in the gap between the sphere and the plane for
all separation distance. This is a geometrical constraint writ-
ten as hy=2R,(1+cosh) <min(D) [45]. expected from the linearity of our model, the fit to the low

The model23) can be well fit to the experimenf8] with ~ amplitude data of Ref{8] is better than that obtained for
appropriate parameter choices. The best fits are obtainegscCillations of larger amplitude.
when we choosdRy~10 nm. This is illustrated in Fig. 2 We explore the influence of the three parameters of our
where the fits are compared the force ratio from the model ténodel (¢,Ry,6) in Figs. 3a)-3(c) for the measurements
the small(a) and large(b) amplitude data from Zhu and from Ref.[8] with d=1.6 nm andw=10 Hz.

Granick[8]; the values of the angleswere chosen for each We first find that the results of our model depend weakly
curve to be the best in a least-square sensedan@®. As  on the bubble sizes: the results in Figa3are consistent
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with the experimental data for a large range of bubble sizesye propose should also apply to squeeze flow experiments
Ry~1 — 50 nm. These sizes are in agreement with the experformed on superhydrophobic surfaces such those reported
perimental evidence of bubbles in Ref21-24, as summa- in Ref.[41] with small air bubbles trapped on fractal surfaces
rized in Table |, although somewhat smaller. As a matter ofsee also Ref{42]).
comparison, the data in RgR23] show a large standard de-  Assuming the presence of bubbles, the calculations on the
viation (up to 70% for the bubble area. model have been performed with several simplifying as-
As a difference, we find that the results of our modelsumptions and, in particular, additional contributions to the
depend on both the assumed microscopic contact ahghel  sets of coefficients(k;,k,) could come from bridging
coverage of the surface by the bubblgsWe observe varia- bubbles, large amplitude oscillations of the solid sphere or
tions in the contact angles leading to best fit to the fourbubble interactions, deformation, or displacement on the
experimentgFig. 2) and also note that we obtain a departuresolid surface.
from the best fit when the angle is chosen to be significantly We have then presented a comparison between the results
different[Fig. 3(b)]. In three out of four experiments, we find of our model and the experiments of Zhu and Granick. We
that the microscopic contact is larger than the macroscopifound that our model gives results that are in agreement with
contact angle 110characterizing the wetting of deionized the force decrease measured experimentally, for bubble fea-
water on the surfaces used in RE8]. This result is consis- tures that are consistent with available experimental data on
tent with the data in Table | where, in all cases, bubbles wer@anobubbles(bubble size Ry~ 10 nm, large microscopic
found experimentally to be flat with microscopic contactcontact angles, large surface covenadenally, a formula
angles larger than the macroscopic wetting angles. Thlas been proposed for thadditiona) effective elasticity
fourth set of data from Ref8] is found to be consistent with provided by the bubbles to the solid surface.
a microscopic angle of about 90Although this is different We note that our study does not rule out the possibility of
from the data in[21-24, it is consistent with theoretical bubbles with dynamically selected sizes. It has been reported
studies which show that intermolecular forces lead to microexperimentally in Ref[43] that the jump-in distance be-
scopic contact angles that are always closer totBan their  tween two hydrophobic surfaces in water, believed to be due
macroscopic counterpafi38]. Furthermore, we note that to the presence of bubbles, depended on the history of the
electrical effects are known to have significant impact onsample; performing the experiment several times led to
contact angles of bubbles and drd9,4Q. changes in the jump-in distances over time, which was found
Finally, we find that our model is consistent with the ex-to remain constant only after a few periods. A similar sce-
perimental data when the surface coverage is assumed to hario could be envisioned in experiments such as F3f.
large and almost equal to 100pgee Fig. 8)]. This result To conclude, we present a simple prediction based on the
compares well with the available data on bubbles where, imesults of our model. If a squeeze flow experiment was per-
three out of four studief22-24, the bubbles were found to formed with two different surfaces, say a hydrophobic plane
cover almost entirely the solid surface. As a difference, theand a hydrophilic sphere, force ratio measurements display-
pictures in Ref[21] show bubbles with lower surface cov- ing shear-dependent results should be able to test whether the
erage. We also note that our previous study of slip inideas put forward in this paper are valid. Indeed, if the force
pressure-driven flow experiments led to a similar conclusiondecreases were really due, not to bubbles, but to a change in
in order for surface-attached bubbles to be responsible fathe hydrodynamic boundary condition for flow past the hy-
the measured effective slip, surface coverage of almost 100%rophobic surface, the maximum force decrease one could
was necessarjl8]. expect to obtain is 1/4 for the case of a perfectly slipping
surface(see Ref[33] for the calculation; this result can also
IV. CONCLUSION be found by symmetry about the plane where slip ooclirs

) ) alternatively, the measurements are due to a “leaking mat-
We have explored in this paper the consequences of thgass” effect similar to the one we propose here, ).

presence of nanobubbles on the surfaces where squeeze fIQWould also applywith different prefactorsand therefore so
experiments are performed. We have shown that, within thes £q (23): consequently, force ratio smaller than 1/4 should
framework of a simple stabilizing model, the time dynamicspe ghtained in this case. This proposition for an experiment,

of bubbles always leads naturally to a shear-dependent dgsgether with the prediction for the in-phase response of the
crease in the measured viscous force by a “leaking mattresg;

- A : : orce (24), would allow our model to be tested experimen-
effect. The effect was found to increase with the viscosity Oftally.
the fluid and the size of the sphere, in agreement with earlier
experimental results.

We emphasize that this mechanism isdghamicorigin,
and is not a consequence of the microscopic slip at the The data from Ref[8] have been kindly provided by
bubble surfaces; in particular, we argue that this is whySteve Granick. We are grateful to Jacquie Ashmore, José
shear-dependent slip lengths have not been reported by iiGordillo, Steve Granick, Jacob Israelachvili, Todd Squires,
vestigations of slip in pressure-driven flow experiments toand Howard Stone for useful discussions. This research was
date, where no oscillatory pressure is present to trigger agupported by the Harvard MRSEC and by the NSF Division
effect similar to the one proposed here. Also, the mechanisrof Mathematical Sciences.
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