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Recent experiments[Y. Zhu and S. Granick, Phys. Rev. Lett.87, 096105(2001)] have measured a large,
shear-dependent fluid slip at partially wetting fluid-solid surfaces. We present a simple model for such a slip,
motivated by the recent observations of nanobubbles on hydrophobic surfaces. The model considers the
dynamic response of bubbles to change in hydrodynamic pressure, due to the oscillation of a solid surface.
Both the compression and diffusion of gas in the bubbles decrease the force on the oscillating surface by a
“leaking mattress” effect, thereby creating an apparent shear-dependent slip. With bubbles similar to those
observed by recent atomic force microscopy, the model predicts a force decrease consistent with the experi-
mental measurements of Zhu and Granick.
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I. INTRODUCTION

The validity of the no-slip boundary condition is at the
center of our current understanding of fluid mechanics. It
remains, however, an assumption whose microscopic validity
has been widely debated[1]. The widespread acceptance of
the no-slip condition is based on a historical record of out-
standing agreement between theories and experiments. It is
commonly agreed that the no-slip condition results from in-
evitable microscopic roughness, which causes enough vis-
cous dissipation to effectively bring the fluid to rest near the
surface[2–4]. Remarkably, this explanation is independent
of the nature of the solid and the liquid, contrary to ideas first
proposed by Girard(see Ref.[1]).

The development of small devices has recently prompted
a reexamination of fluid slip on length scales of nanometers
and micrometers, both experimentally[2,5–12] and theoreti-
cally [13–19]. The degree of slip is usually quantified by a
slip lengthl=Us/ ġ, whereUs is the slip velocity andġ is the
liquid strain rate evaluated at the surface; equivalently,l is
the distance below the solid surface where the velocity ex-
trapolates linearly to zero[20]. In experiments, slip is usually
found when the liquid partially wets the solid surface; mea-
sured slip lengths span four orders of magnitude, from mo-
lecular sizes to micrometers, and are usually shear dependent
in squeeze flow experiments, withl an increasing function
of ġ. In particular, Zhu and Granick[8] reported squeeze
flow experiments, in which two crossed cylinders oscillate
about a fixed average distance. By measuring the viscous
resistance, Zhu and Granick extracted the slip length over a
wide range of oscillation amplitudes. These experiments lead
to the largest shear-dependent slip lengths yet(up to
,2 mm).

The origin of this large shear-dependent slip is heretofore
mysterious. Nanobubbles have recently been observed on
hydrophobic surfaces, using atomic force microscopy, with
typical thicknessh,10 nm, typical radiusR,50−100 nm,
and high surface coverage[21–24]. Although the origin of
these bubbles is unclear and skepticism remains in the com-
munity about their existence, they have been often invoked
as a possible origin of the so-called hydrophobic attraction

[25–29] and their existence points to a possible picture for
such a large slip[19,22].

It is well known that there is in general a nonzero velocity
at a liquid-gas interface, and therefore it is natural to wonder
whether the existence of such a gas layer at the solid surface
is sufficient to explain the experiments. When a fluid of vis-
cosity h1 adjoins a layer of fluid of thicknessh with smaller
viscosity h2, the discontinuous strain rate at the fluid-fluid
interface results in an apparent slip with slip length

l = hSh1

h2
− 1D . s1d

Choosingh1/h2=50 appropriate for a gas-water interface
leads to slip lengths as large as 500 nm. This estimate is,
however, independent of the interfacial shear and therefore
unable to explain rate-dependent results from squeeze flow
experiments; it also overestimates the slip length in the case
of bubbles, as is discussed in Sec. III. Note, however, that
similar arguments are consistent with data from pressure-
driven flow experiments where reported slip lengths to date
are essentially shear independent[10,11,18,30–32].

In this article, we will assume bubbles exist on hydropho-
bic surfaces and will calculate theirdynamicresponse to an
imposed oscillatory shear. In an oscillatory squeeze flow ex-
periment[8], we argue that the pressure fluctuations in the
fluid cause the bubbles to act as a “leaking mattress,” with
both the compression and the dilatation of the gas in the
bubble, as well as the diffusion of gas into(and out of) the
bubble. As the solid sphere oscillates, this periodic in-phase
response of the bubbles sizes reduces the amount of liquid
necessary to be squeezed out of the gap, and thereby the
force on the moving sphere, creating an apparent slip. Our
calculations indicate that the magnitude of this apparent slip
is consistent with the observations of Zhu and Granick. We
present the details of our model in the next section and dis-
cuss the comparison with the experiment in Sec. III.

II. INFLUENCE OF BUBBLES ON FORCE
MEASUREMENTS

A typical oscillatory squeeze flow experiment is shown in
Fig. 1. A sphere of radiusa oscillates with velocityVS in a
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viscous liquid of viscosityh at a distanceD of a planar
surface(equivalently, the surfaces can be two crossed cylin-
ders). The two surfaces are assumed to have the same physi-
cochemical properties. If no bubbles are present and the no-
slip boundary condition is satisfied on both surfaces, then the
lubrication force opposing the motion of the sphere is given
by the Reynolds equation

Fstd = ez ·Fstd = −
6pha2

D
VS, Flub. s2d

If, however, flow occurs on the surfaces with a slip lengthl,
the viscous force is decreased by an amountfslip [33] given
by

fslip =
D

3l
FS1 +

D

6l
DlnS1 +

6l

D
D − 1G . s3d

Equation (3) is used experimentally to infer effective slip
lengths: the experimental viscous forceFexp is compared to
the theoretical no-slip resultFlub and any difference is inter-
preted as fluid slip, with a slip lengthl corresponding to
fslip=Fexp/Flub.

Let us nowassumethat the solid surface is covered with a
percentagef of identical gas bubbles(Fig. 1), and determine
how the bubbles modify the dynamic response. Although this
assumption has been made by previous authors
[19,22,26–29], the physical mechanism responsible for such
bubbles is unknown. Simple estimates indicate that small
bubbles are shortlived in solution[34]. However, stable
bubbles could arise from any number of possibilities that are
known to prolong bubble lifetimes, including surfactants,
surface heterogeneities, or local supersaturation of dissolved
gas [35]. In this paper, we are interested in understanding
whether the dynamic response of hypothesized bubbles is
sufficient to rationalize slip experiments.

A. Total force

The total forceFstd resisting the oscillatory motion of the
areaS of the sphere has two components:(1) a viscous lu-
brication forceFh, due to hydrodynamic pressure fluctuations
and acting on an areas1−fdS, and(2) an elastic bubble force

Fb, due to pressure fluctuations inside the bubbles and acting
on an areafS. The total force is therefore given by

Fstd = s1 − fdFh + fFb, s4d

where

Fh = sp − p0dS, Fb = spb − peqdS. s5d

Here, p and pb (p0 and peq) denote the(equilibrium) pres-
sures in the liquid and the bubbles, respectively. Moreover,
sinceD!a, the surfaceS is given byS<paD.

B. Lubrication force

Let us first calculate the hydrodynamic forceFh. The
presence of bubbles modifies Eq.(2) in two ways. First, flow
occurs over a distribution of bubbles located on an otherwise
no-slip surface, so the viscous force is reduced by an amount
fslip given by Eq.(3), wherel is the appropriate effective slip
length for flow over a distribution of bubbles[18,36].

Second, the size of the bubbles changes in time in re-
sponse to pressure fluctuations in the liquid. This volume
effect will modify the amount of liquid necessary to be
squeezed out of the gap at each cycle of the oscillations,
hence the viscous force. Consequently, bubble dynamics
have to be subtracted from the forcingVS and the hydrody-
namic lubricationFh force is now given by a modified Rey-
nolds equation

Fh = − fslip
6pha2

D
SVS− 2

dh

dt
D , s6d

whereh is an average bubble thickness on each surface and
the factor 2 accounts for the fact that each surface is covered
with bubbles.

C. Rate of change of bubble height

In order to calculate dh/dt in Eq. (6), let us now consider
the dynamics of the bubbles. We assume the bubbles are
undeformed by viscous stresses and remain spherical, with
radius of curvatureRstd and interior anglesp−ud (see Fig.
1). We also neglect interactions between bubbles. We expect
hstd to depend explicitly on the forcing on the bubbles, i.e.
Fb.

At the small frequencies typical of squeeze flow experi-
ments(1–100 Hz), the gas is isothermal, so the pressure in
the bubble changes via the ideal gas law

pbstdVstd
mstd

=
peqV0

m0
, s7d

whereV andm denote the volume and the mass of a single
bubble. The average thickness of the gas layer is defined as
hstd=nVstd, wheren is the number density of bubbles on the
solid surface, so that Eq.(7) can be rewritten as

pbstdhstd
mstd

=
peqh0

m0
. s8d

Combining the time derivative of Eq.(8) with Fb=spb

−peqdS and linearizing aroundhpb,h,mj,hpeq,h0,m0j, we

FIG. 1. A typical squeeze flow experiment: a solid sphere of
radiusa is oscillated in a liquid at a distanceD!a of a smooth
solid surface with amplituded!D and frequencyv. The surfaces
are covered by microscopic gas bubbles of contact angleu and
radius of curvatureR0. The set of bubbles is approximated by a gas
layer of time evolving thicknesshstd.
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obtain the equation for the rate of change of the mean bubble
heighth

dh

dt
=

h0

m0

dm

dt
−

h0

peqS

dFb

dt
. s9d

We thus have that the rate of change ofh is the sum of a rate
of change governed by gas diffusion, plus a second contri-
bution due to the gas compressibility.

We now consider the rate of gas diffusion from the
bubble. In our model for the oscillatory squeeze flow experi-
ments[2,6,8], bubbles lose mass by both vertical diffusion
across the liquid layer and radial diffusion along the appara-
tus; because of the scale separationD!a, these two pro-
cesses require separate treatment.

Let us first consider the case of vertical diffusion. Since
for most common gases,k,10−9 m2/s, the vertical Peclet
number Pev=D2v /k is much smaller than unity: on the ex-
perimental time scalev−1, the bubbles are approximately in
instantaneous vertical diffusive equilibrium. The dissolved
gas concentration above the bubble is therefore uniform
throughout the liquid gap and is given, in the case of small
amplitude oscillations, by Henry’s lawc=pbc` /peq, wherec`

is the far-field dissolved gas concentration. The massm̃ of
gas necessary to fill the liquid gap at this concentration is
equal to the gap thicknesssD−2hd, times the change in con-
centrationc`spb/peq−1d, times the area in the liquid that is
influenced by the bubble, i.e. 1/n. Linearizing aroundh
<h0 and combining withpeq/c`=p0/c0, we get thatm̃ is
proportional to the bubble forceFb:

m̃=
c0sD − 2h0d

np0S
Fb. s10d

Consequently, the total rate of change ofm is given by

dm

dt
=

dmr

dt
−

c0sD − 2h0d
np0S

dFb

dt
, s11d

where dmr /dt is the rate of change in the bubble mass gov-
erned by gas diffusion in the(slowly varying) radial direc-
tion of the apparatus; let us now evaluate this contribution.

In contrast to the vertical case, the radial oscillatory Peclet
number, Per =L2v /k=aDv /k, is of order unity or larger, so
that radial diffusion has to be accounted for explicitly. As-
suming the dissolved gas is in vertical diffusive equilibrium,
the time rate of change of the mass of a gas bubble dmr /dt is
given by a flux integral on the bubble surfaceSb,

dmr

dt
= kE

Sb

n · ¹ cdS= kR2Isud
] c

] r
, s12d

where the assumption of the spherical cap bubble implies
that Isud=pf2sp−ud+sin 2ug /2.

In general, the radial concentration of dissolved gascsr ,td
verifies an advection-diffusion equation with shear-
dependent diffusivity[37]. However, for the small amplitude
oscillation in Ref.[8], both advection and Taylor dispersion
are negligible, andcsr ,td satisfies a pure diffusion equation.
We finally approximate the radial concentration gradient by a
simple linear law]c/]r <sc`−cd /Lr, where Lr <sk /vd1/2

<L /Per
1/2 is the typical (shear-dependent) radial gradient

length scale. Equation(12), together with Henry’s law, leads,
therefore, to a linear relation between the rate of changeṁr
and the bubble force

dmr

dt
= −

kR0
2Isudc0

p0SLr
Fb. s13d

Combiningm0 = r0h0/n with Eqs.(9), (11), and(13), we
finally obtain the result that the mean bubble heighth satis-
fies the differential equation

dh

dt
= − k1Fb − k2

dFb

dt
, s14d

wheresk1,k2d are given by

k1 =
nkR0

2Isudc0

r0p0SLr
, s15d

k2 =
c0h0

c`p0S
S1 +

c`sD − 2h0d
r0h0

D . s16d

D. Bubble force

We finally need to calculate the bubble forceFb in order
to close the system of equations(6) and (14). This, in gen-
eral, requires understanding the(equilibrium or nonequilib-
rium) mechanism responsible for the presence of these long-
lived bubbles. However, we can bypass this unknown
physics by assuming without loss of generality that the pres-
sure fluctuations in the bubbles and in the liquid are propor-
tional

Dpb = a Dp, s17d

wherea is an unknown constant. Hence, bubble and hydro-
dynamic forces are proportionalFb=aFh, and the total force
on the sphere can be expressed as

F = s1 − f + afd Fh = S1 − f + af

a
DFb. s18d

E. Total force on the sphere

We can now combine Eqs.(6), (14), and (18) to express
the total force opposing the motion of the sphereF. We
obtain

Fstd = −
d

2
s1 − f + afdSVS+ 2k1Fb + 2k2

dFb

dt
D , s19d

whered=12pha2fslip/D. SinceF andFb are related by Eq.
(18), Eq. (19) can be transformed into an ordinary differen-
tial equation forF,

Fstd = −
d

2
SVS̃+ 2ak1F + 2ak2

dF

dt
D , s20d

whereVS̃=s1−f+afdVS. For an oscillating sphere velocity
VS=dsd sin vtd /dt, the periodic solution to Eq.(20) is given
by [44]
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Fstd
Flub

= fslip
s1 − f + afds1 − dak1d
s1 + dak1d2 + sdvak2d2Scosvt

+
dvak2

1 + dak1
sin vtD . s21d

F. What is the value of a?

By comparing our model(21) to the results of squeeze
flow experiments, we find that the only choice consistent
with available data at large separation distances isa<1.

To see this, consider Eq.(21) in the limit of large separa-
tions between the sphere and the planar surfaceD. Since Eq.
(3) shows thatfslip,1 when D is large, we getd,D−1.
Moreover,S,D so that, from Eqs.(15) and(16), we obtain
dk1,D−2 anddk2,D−1. Consequently, in the limit of large
separations, we obtain that the ratio of the measured force,
out of phase with the sphere displacement, to the expected
no-slip force(2) is given by

lim
D→`

S F

Flub
D = 1 −f + af. s22d

Within experimental errors, this ratio is always measured to
be unity [2,7–9,12], i.e., the expected lubrication no-slip
force is recovered for large separation distances. We there-
fore need 1−f+af<1 or a<1. We emphasize that this
conclusion is reached because weassumethat the model pre-
sented in Sec. II is the major physical mechanism respon-
sible for the force decrease observed in experiments such as
in Ref. [8].

G. Final formula for the force ratio

We obtain from Eq.(21) that the ratiof* of the peak force
out of phase with the sphere displacement to that expected
with no slip and no bubbles(2) is given by

f * svd
fslip

=
1

1 +Sdk1 +
svdk2d2

1 + dk1
D . s23d

The “leaking mattress” model therefore leads to an apparent
slip effect, of dynamic origin. The effect is shear dependent

through the frequency dependence in Eq.(23): higher fre-
quency and therefore higher shear rates lead to a larger ap-
parent slip, in agreement with Refs.[2,7,8]. The model was
derived under the assumption of small amplitude oscillations
d, and consequently it does not appear in the final formula
for f*.

Equation (23) implies that the apparent slip effect in-
creases with the fluid viscosity, in agreement with experi-
ments[7,10]. It also increases with the size of the spherea,
which might account for the large slip lengths reported in
Ref. [8] (centimeter-sized spheres) as opposed to other
squeeze flow experiments(usually micrometer-sized
spheres). The model predicts that the measured overall ap-
parent slip length is therefore not only a solid/liquid property,
but that it depends on the system size[18].

We finally note from Eq.(21) that the total pressure force
on the sphereFstd also contains a nonzero component in
phase with the displacement of the sphere, and therefore out
of phase with its velocity. If we denote byg* the ratio of this
in-phase response to the expected no-slip no-bubbles out-of-
phase response, we obtain

g * =
dvk2

s1 + dk1d2 + sdvk2d2 fslip =
dvk2

1 + dk1
f * . s24d

Equation(24) is a prediction of the effective elasticity pro-
vided by the bubbles to the surface, which would occur in
addition to other in-phase contributions such as intermolecu-
lar forces, and is experimentally testable. The values of the
in-phase responses of the forces were unfortunately not re-
ported by Zhu and Granick[8].

III. COMPARISON WITH EXPERIMENTS

We present in this section a quantitative comparison of
our model with the experimental results of Zhu and Granick
in the case of de-ionized water, namely the four sets of data
presented in Fig. 2 of Ref.[8]. The macroscopic water/solid
contact angle in this case was 110°, the sphere radius was
a=2 cm, and we assumed that the liquid was saturated with
O2 at 25°C and 1 atmsc`=c0d, for which r0=1.28 kg/m3,
c0=8.3310−3 kg/m3 and k=2310−9 m2/s. As a matter of
comparison, we have also summarized in Table I the experi-

TABLE I. Summary of experimental data on nanobubbles as found in Refs.[21–24] by atomic force
microscopy: projected area of each bubble on the solid surfaces, height above the surfacesh0, radius of
curvatureR0, surface coveragef, and macroscopic and microscopic contact angle. The radius of curvature
and microscopic contact angles were inferred from the other data assuming spherical cap nanobubbles.

Ishidaet al.
[21]

Tyrrell and Attard
[22]

Tyrrell and Attard
[23]

Steitzet al.
[24]

Projected areasnm2d 3.33105 4–63103 4–73103 2–113103

Height h0 (nm) 40 20–30 20–30 ,18

Radius of curvatureR0 (nm) 1300 ,50 40–60 30–100

Surface coveragef ,20% ,100% ,100% 89%

Macroscopic contact angle 110° 101° 101° .90°

Microscopic contact angleu 166° ,120° 117°–130° 130°–147°
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mental results of[21–24] on the typical size, distribution,
and morphology of bubbles observed by atomic force mi-
croscopy.

The “leaking mattress” model we have presented in the
preceding sections has three free parameters which we fit to
the experimental data:(a) the area fraction of the bubbles on
the surface, 0øfø1, (b) the size of the spherical bubbles,
described by their radius of curvatureR0, and(c) the micro-
scopic contact angleu at the bubble level, which signifi-
cantly differs from the macroscopic contact angle because of
both intermolecular and electrical forces at the nanometer
scale. Note thatf is related to the area fractionn by the
formula f=np R0

2 sin2 u.
Furthermore, in order to present a meaningful fit to avail-

able data, we require that in each experiment, the two layers
of bubbles fit in the gap between the sphere and the plane for
all separation distance. This is a geometrical constraint writ-
ten as 2h0=2R0s1+cosudøminsDd [45].

The model(23) can be well fit to the experiments[8] with
appropriate parameter choices. The best fits are obtained
when we chooseR0<10 nm. This is illustrated in Fig. 2
where the fits are compared the force ratio from the model to
the small (a) and large(b) amplitude data from Zhu and
Granick[8]; the values of the anglesu were chosen for each
curve to be the best in a least-square sense andf=99%. As

expected from the linearity of our model, the fit to the low
amplitude data of Ref.[8] is better than that obtained for
oscillations of larger amplitude.

We explore the influence of the three parameters of our
model sf ,R0,ud in Figs. 3(a)–3(c) for the measurements
from Ref. [8] with d=1.6 nm andv=10 Hz.

We first find that the results of our model depend weakly
on the bubble sizes: the results in Fig. 3(a) are consistent

FIG. 2. A comparison between the experimental data of Zhu and
Granick (2001) and the dynamic model(23) with R0=10 nm and
f=99%. (a) Small amplitude experimental data;sLd: measure-
ments for d=0.5 nm, v=1 Hz; dashed-dotted line: model foru
=177°; sxd: measurements ford=1.6 nm, v=10 Hz; solid line:
model for u=132°. (b) Large amplitude experimental data.sld:
measurements ford=6 nm, v=1 Hz; dotted line: model foru
=168°; scd: measurements ford=6 nm, v=10 Hz; dashed line:
model foru=90°.

FIG. 3. A comparison between the experiment from Ref.[8]
with d=1.6 nm andv=10 Hz sxd and the model for different
bubble sizes, contact angles, and surface coverage.(a) Influence of
bubble size; model with surface coveragef=0.99, contact angle
u=150°, and bubble sizesR0=1 nm (dotted line), 25 nm (solid
line), and 50 nm(dashed line). (b) Influence of contact angle; model
with surface coveragef=0.99, bubble sizeR0=10 nm, and contact
anglesu=120° (dashed line), 140° (solid line), 160° (dotted line),
and 170°(dashed-dotted line). (c) Influence of surface coverage;
model with bubble sizeR0=10 nm, contact angleu=120°, and sur-
face coveragef=0.1 (dashed-dotted line), f=0.25 (dotted line),
f=0.5 (solid line), andf=0.99 (dashed line).
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with the experimental data for a large range of bubble sizes,
R0,1 – 50 nm. These sizes are in agreement with the ex-
perimental evidence of bubbles in Refs.[21–24], as summa-
rized in Table I, although somewhat smaller. As a matter of
comparison, the data in Ref.[23] show a large standard de-
viation (up to 70%) for the bubble area.

As a difference, we find that the results of our model
depend on both the assumed microscopic contact angleu and
coverage of the surface by the bubblesf. We observe varia-
tions in the contact angles leading to best fit to the four
experiments(Fig. 2) and also note that we obtain a departure
from the best fit when the angle is chosen to be significantly
different[Fig. 3(b)]. In three out of four experiments, we find
that the microscopic contact is larger than the macroscopic
contact angle 110° characterizing the wetting of deionized
water on the surfaces used in Ref.[8]. This result is consis-
tent with the data in Table I where, in all cases, bubbles were
found experimentally to be flat with microscopic contact
angles larger than the macroscopic wetting angles. The
fourth set of data from Ref.[8] is found to be consistent with
a microscopic angle of about 90°. Although this is different
from the data in[21–24], it is consistent with theoretical
studies which show that intermolecular forces lead to micro-
scopic contact angles that are always closer to 90° than their
macroscopic counterpart[38]. Furthermore, we note that
electrical effects are known to have significant impact on
contact angles of bubbles and drops[39,40].

Finally, we find that our model is consistent with the ex-
perimental data when the surface coverage is assumed to be
large and almost equal to 100%[see Fig. 3(c)]. This result
compares well with the available data on bubbles where, in
three out of four studies[22–24], the bubbles were found to
cover almost entirely the solid surface. As a difference, the
pictures in Ref.[21] show bubbles with lower surface cov-
erage. We also note that our previous study of slip in
pressure-driven flow experiments led to a similar conclusion:
in order for surface-attached bubbles to be responsible for
the measured effective slip, surface coverage of almost 100%
was necessary[18].

IV. CONCLUSION

We have explored in this paper the consequences of the
presence of nanobubbles on the surfaces where squeeze flow
experiments are performed. We have shown that, within the
framework of a simple stabilizing model, the time dynamics
of bubbles always leads naturally to a shear-dependent de-
crease in the measured viscous force by a “leaking mattress”
effect. The effect was found to increase with the viscosity of
the fluid and the size of the sphere, in agreement with earlier
experimental results.

We emphasize that this mechanism is ofdynamicorigin,
and is not a consequence of the microscopic slip at the
bubble surfaces; in particular, we argue that this is why
shear-dependent slip lengths have not been reported by in-
vestigations of slip in pressure-driven flow experiments to
date, where no oscillatory pressure is present to trigger an
effect similar to the one proposed here. Also, the mechanism

we propose should also apply to squeeze flow experiments
performed on superhydrophobic surfaces such those reported
in Ref. [41] with small air bubbles trapped on fractal surfaces
(see also Ref.[42]).

Assuming the presence of bubbles, the calculations on the
model have been performed with several simplifying as-
sumptions and, in particular, additional contributions to the
sets of coefficientssk1,k2d could come from bridging
bubbles, large amplitude oscillations of the solid sphere or
bubble interactions, deformation, or displacement on the
solid surface.

We have then presented a comparison between the results
of our model and the experiments of Zhu and Granick. We
found that our model gives results that are in agreement with
the force decrease measured experimentally, for bubble fea-
tures that are consistent with available experimental data on
nanobubbles(bubble sizeR0,10 nm, large microscopic
contact angles, large surface coverage). Finally, a formula
has been proposed for the(additional) effective elasticity
provided by the bubbles to the solid surface.

We note that our study does not rule out the possibility of
bubbles with dynamically selected sizes. It has been reported
experimentally in Ref.[43] that the jump-in distance be-
tween two hydrophobic surfaces in water, believed to be due
to the presence of bubbles, depended on the history of the
sample; performing the experiment several times led to
changes in the jump-in distances over time, which was found
to remain constant only after a few periods. A similar sce-
nario could be envisioned in experiments such as Ref.[8].

To conclude, we present a simple prediction based on the
results of our model. If a squeeze flow experiment was per-
formed with two different surfaces, say a hydrophobic plane
and a hydrophilic sphere, force ratio measurements display-
ing shear-dependent results should be able to test whether the
ideas put forward in this paper are valid. Indeed, if the force
decreases were really due, not to bubbles, but to a change in
the hydrodynamic boundary condition for flow past the hy-
drophobic surface, the maximum force decrease one could
expect to obtain is 1/4 for the case of a perfectly slipping
surface(see Ref.[33] for the calculation; this result can also
be found by symmetry about the plane where slip occurs). If,
alternatively, the measurements are due to a “leaking mat-
tress” effect similar to the one we propose here, Eq.(6)
should also apply(with different prefactors) and therefore so
is Eq. (23); consequently, force ratio smaller than 1/4 should
be obtained in this case. This proposition for an experiment,
together with the prediction for the in-phase response of the
force (24), would allow our model to be tested experimen-
tally.
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