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Stokesian jellyfish: viscous locomotion of bilayer vesicles
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Motivated by recent advances in vesicle engineering, we consider theoretically the locomotion of shape-

changing bilayer vesicles at low Reynolds number. By modulating their volume and membrane

composition, the vesicles can be made to change shape quasi-statically in thermal equilibrium. When

the control parameters are tuned appropriately to yield periodic shape changes, which are not time-

reversible, the result is a net swimming motion over one cycle of shape deformation. For two classical

vesicle models (spontaneous curvature and bilayer coupling), we numerically determine the sequence of

vesicle shapes through an enthalpy minimization, as well as the fluid-body interactions by solving

a boundary integral formulation of the Stokes equations. For both models, net locomotion can be

obtained either by continuously modulating fore-aft asymmetric vesicle shapes or by crossing

a continuous shape-transition region and alternating between fore-aft asymmetric and fore-aft

symmetric shapes. The obtained hydrodynamic efficiencies are similar to those of other low Reynolds

number biological swimmers and suggest that shape-changing vesicles might provide an alternative to

flagella-based synthetic microswimmers.
I. Introduction

The preeminence of viscous dissipation over inertial effects at

low Reynolds numbers leads to many interesting consequences

for life and engineering efforts at the micron-scale. In particular,

swimming at zero Reynolds number is impossible using time-

reversible motions, a result known as the Scallop theorem.1 As

a result, at least two actuation degrees of freedom are necessary

to generate locomotion. The breaking of this time-reversal

symmetry has been studied both from a mathematical point of

view, and in the context of modeling real organisms.2–6 Unlike in

high Reynolds number flows, such as those relevant in describing

the swimming of fish and flying of birds, fluid motion at low

Reynolds numbers is set almost instantaneously by the time-

dependent geometries of the immersed bodies. Thus, it is natural

to inquire about the shapes of immersed (and possibly fluctu-

ating) cell membranes, and their relationships to locomotion.

Membranes composed of lipid bilayers are ubiquitous in

nature, and the study of bilayer vesicles as a model system for

biological cells has yielded significant insight into their

behavior.7,8 In addition to the biological relevance of lipid bilayer

vesicles, or liposomes, advances in self-assembly have paved the

way for other types of vesicles to be developed experimentally.9,10

Vesicles assembled from block copolymers,11 liquid crystal

amphiphiles,12 and membranes with embedded proteins or

anchored polymers13–17 all have tunable material properties,

which can be manipulated with unprecedented control.18,19 It is

also well known that many biological cells actively modify or

maintain the shapes of their membranes,20,21 either for develop-

mental22 or locomotive processes.23,24
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Recently, synthetic microswimmers inspired by the locomo-

tion of eukaryotic cells have been successfully designed in

experiments,25 exploiting the planar beating of a flagellum-like

organelle. Beyond biomimetic engineering, other small-scale

synthetic swimmers or swimming strategies have also been

proposed, both theoretically and experimentally.1,6,26–32 One

recently-studied example is a self-propelled colloidal particle,

which exploits asymmetrically-distributed chemical reactions to

swim in a viscous fluid.33,34

In the same spirit, we consider theoretically in this paper

a novel swimming mechanism based on prescribed shape trans-

formations of a bilayer vesicle. By modulating only its volume

and membrane composition, the vesicle can be made to change

shape quasi-statically in thermal equilibrium. For two different

theoretical vesicle models, we numerically determine the vesicle

shapes through an enthalpy minimization, and the fluid-body

interactions by solving a boundary integral formulation of the

Stokes equations. When the control parameters are appropri-

ately tuned to yield periodic, but not time-reversible, shape

changes, we show that net locomotion can be obtained. Swim-

ming arises either by continuously modulating fore-aft asym-

metric vesicle shapes or by crossing a continuous shape-

transition region and alternating between fore-aft asymmetric

and fore-aft symmetric shapes. In addition, the calculated

hydrodynamic efficiencies are shown to be similar to those of

other common low Reynolds number propulsive mechanisms.

Our paper is organized as follows. We begin with a general

discussion of the practical realization of controlled shape-

changing vesicles, in particular the relevant time scales and the

possible actuation mechanisms. Two classical curvature-medi-

ated vesicle models (spontaneous curvature and bilayer coupling)

are presented, and the formulations used for the shape calcula-

tion and the numerical fluid-interaction model are introduced.

We then discuss examples of vesicle shape cycles that yield

a swimming motion, examine the fluid flow that develops around
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the vesicles during their deformation cycles, and compute the

corresponding swimming speeds and hydrodynamic efficiencies.
Fig. 1 A schematic illustration of a possible control mechanism for

vesicle shape-change and swimming: an axisymmetric bilayer vesicle with

embedded reactive polymers and polymers grafted to its surface. (a) /

(b): Short frequency light impinges on the vesicle, catalyzing a de-poly-

merization reaction amidst the particle chains and increasing the fluid

volume available to the vesicle. (b) / (c): A second frequency of light

induces the grafted polymers to coil up, inducing an entropic repulsion

from the membrane and changing the macroscopic morphology. (c) /

(d): The dispersed particles begin to polymerize back to their initial

configuration, deflating the vesicle. (d) / (a): A third frequency of light is

used to uncoil the polymers, relaxing the entropically induced curvature

and returning the vesicle to its initial state.
II. A roadmap to vesicle locomotion

A vesicle immersed in a viscous fluid experiences a highly coupled

array of forces, such as those generated by membrane tension,

internal pressure, membrane (bending) elasticity, and the

surrounding viscous fluid dynamics. In the microscopic, viscous

environments relevant to our consideration, the Reynolds

number, Re, is very small: Re¼ rUcLc/m� 1, where r is the fluid

density, m is the fluid shear viscosity, and Uc and Lc are charac-

teristic velocity and length scales of the vesicle. The fluid

behavior at low Reynolds number is highly dependent upon the

immersed boundary geometry, and the resultant forces include

not only local, but also non-local responses to its motion.

A general study of vesicle dynamics should take non-equilib-

rium shapes into account, as even simple liposomes that can be

created in situ can interact relatively quickly with the environ-

ment. It is possible to design experiments where carefully con-

structed initial conditions and lipid species lead to equilibrated

vesicle shapes that are non-trivial, but in order to apply

morphological changes and induce locomotion, a reversible

parameter-changing mechanism is desirable.

For our first approach to vesicle swimming, we consider in this

paper a ‘‘stiff membrane’’ regime. The characteristic time of

membrane relaxation in a viscous fluid is given by trel ¼ mr0
3/k,

where k is the elastic bending modulus of the membrane, and r0 is

a characteristic radius of curvature. If we choose the maximum

radius of the vesicle for the characteristic length scale Lc, then r0

( Lc. For parameter variation significantly slower than the

membrane relaxation rate, i.e. for a cycle time scale tcycle [ trel,

we operate safely within the decoupled regime. In this case, we

may assume that there are no hydrodynamically induced shape

changes and that the shapes are determined quasi-statically at

equilibrium. Using this time scale trel, we can also set a maximum

swimming velocity scale, Uc ¼ k/mr0
2. Similar scaling arguments

have been made in refs 35 and 36. For biologically relevant

systems in water, k z 100 kBT, m z 10�3Pa s, r¼ 1 g cm�3, and r0

( 1–10 mm, leading to Lc z 1–10 mm, Uc z 1–10 mm s�1, trel z
0.01–1 s and Re z 10�4. For a vesicle with length scale Lc ¼ 10

mm, diffusive time scales are approximately 104 s, and thus

negligible for the time being. In addition, we neglect thermal

fluctuations in the determination of the vesicle shape, as they

come in as a perturbation about the mean equilibrium shape of

order (kBT/k)2, which is very small under most conditions.7

There are a number of different physical means by which

a vesicle shape can be changed in a controlled fashion, and the

methods could be different depending on the type of vesicle

considered. We will consider two such means, internal volume

changes and local membrane compositional changes.

One experimentally feasible example of a possible volume-

changing mechanism is a light-induced osmotic change. In an

ordinary biological membrane, the bilayer is embedded with

numerous proteins, many of which are sensitive to mechanical

forces, chemical gradients, or light. The protein bacteriorho-

dopsin, for example, is sensitive to green light, and in response to

a signal the protein opens and closes like a valve.37 The presence

of such ion channels or active proteins on the surface of
1738 | Soft Matter, 2010, 6, 1737–1747
a membrane can cause osmotic changes of the fluid volume

contained within the vesicle.19 Recently, vesicle volume control

was demonstrated via pH modulation of block copolymer

networks along the surface of a membrane.38 The vesicles in this

study were well separated from regimes associated with

morphological transition, and thus changes in osmotic pressure

induced only a volume change, leading to a ‘‘breathing’’ vesicle.

Adjusting the membrane composition requires a more indirect

experimental approach. Some bilayers are composed of different

species of constituent parts, leading to an inherent mismatch

between the intrinsic curvatures. In other words, there is an

intrinsic curvature that would develop across the bilayer in the

absence of other considerations. Because of the inherent diffi-

culty in measuring these quantities it is likely to be more difficult

to specify an exact change from one value of intrinsic curvature

to another. However, the actual process of changing the intrinsic

curvature can be achieved through inducing chemical changes of

the lipid constituents of the membrane,38 or by conformational

changes of polymers grafted to the surface of the vesicle.39

By combining two shape-changing mechanisms, it would in

theory be possible to achieve a periodic shape cycle, which is not

time-reversible, yielding a net locomotion. One of many possible

configurations that could produce a cycle in shape space is dis-

played schematically in Fig. 1, where we consider a bilayer vesicle

with embedded reactive polymers and with polymers grafted to
This journal is ª The Royal Society of Chemistry 2010



its surface. In the first step (Fig. 1a / b), a photo-chemical

polymerization reaction is catalyzed by green (short wavelength)

light, and the polymer chains in the interior of the vesicle disperse

into a solution of particles, thus increasing the available volume

within the vesicle. At a later time, another frequency of light (red,

or longer wavelength) impinges on the vesicle, and the grafted

polymers change from a distended to a coiled conformation,

inducing an entropic repulsion and changing the curvature of the

membrane (Fig. 1b / c). Over time the dispersed particles will

polymerize and return the vesicle to its original volume (Fig. 1c

/ d), and finally a third frequency of light (blue or very short

wavelength) can be used to change the conformation of the

polymers to distended once more, returning the vesicle to its

original state (Fig. 1d / a).

While osmotic volume change or chemically-induced compo-

sition alteration are two possible experimental methods, not only

do these examples in no way constitute the full set of possibilities,

but also they might be difficult to implement experimentally.

Other experimental techniques already exist (see refs 19 and 38)

or may be developed in the near future that could be more suited

to controlled two-parameter change.

Rather than suggest a specific experimental methodology,

whose details would depend not only on the particular material

of the bilayer vesicles, but also on the parameter alternation

methods, we adopt in this paper a simplified modeling approach

that highlights the qualitative pieces that are required in order to

transform a motionless vesicle into a locomotive cargo-carrier. In

parallel to the various practical mechanisms that could be used to

implement such shape changes experimentally, it is of funda-

mental interest to ask theoretically the question of prediction and

performance. Would shape change indeed lead to locomotion of

the vesicle? How efficient would it be? Can we quantitatively

predict the resulting swimming speed and the work done against

the fluid to achieve it? This is the approach taken in this paper.

Considering two simplified vesicle models, and for slow modu-

lations of the vesicle shapes, we introduce below a computational

framework able to quantitatively predict swimming kinematics

and performance.
III. Dynamics of the coupled fluid-body system

A. Vesicle physics

While real biological membranes have multiple constituents, all

interacting in non-trivial ways, minimal models can still help to

illuminate the fundamental physics of such systems. For length

scales on which a membrane is approximately flat, a Monge

parameterization can be employed,40–42 but for a closed bilayer

vesicle the curvatures can become very large and the small

geometric gradient assumption may break down. In order to

characterize the shapes of such objects, an enthalpy must be

extremized and the full nonlinear shape equations, so generated,

must be solved. There are many models that could be used to

describe the physics of curvature-mediated vesicle morphology.

In this paper we will consider two classical models as case studies.

These formulations, known respectively as the spontaneous

curvature and bilayer coupling models, have both been used in

classical work43 and correspond to different interaction dynamics

between the membrane monolayers. Both of these models also
This journal is ª The Royal Society of Chemistry 2010
include exactly two free parameters, which enable us to explore

the breaking of the Scallop theorem, and the generation of

locomotion via a change in morphology.

The enthalpy functional, F, in the spontaneous curvature

model takes the following form43

F ¼ k

2

ð
SðtÞ
ðC1 þ C2 � C0Þ2dS þ SAþ PV (1)

where C1 and C2 are the principal membrane curvatures, and S

and P are Lagrange multipliers, which constrain the surface area

A and volume V (physically they correspond to the membrane

tension and pressure difference across the interface). In eqn (1),

S(t) denotes the time-dependent surface boundary, and C0 is the

spontaneous curvature, which introduces an inherent mismatch

in the equilibrium preference of the membrane curvature. This

quantity, along with a fixed volume and surface area, completely

specifies the ensemble. Thus, the spontaneous curvature model

has area, volume, and integrated spontaneous curvature con-

strained, and we select as the control parameters the volume V

and the spontaneous curvature C0 (the fixed surface area merely

selects the overall size of the vesicle).

In contrast, in the bilayer coupling model, the enthalpy func-

tional G assumes the area difference DA between the membrane

monolayers to be constant. One possible representation of this

area difference is in terms of the integrated mean curvature,

M ¼
ð

S(t)
(C1 + C2)dS (2)

Then the area difference is DA¼ 2hM + O(h2/A), where h is the

distance between monolayers.43 The enthalpy then takes the form

G ¼ k

2

ð
SðtÞ
ðC1 þ C2Þ2dS þ S

0
Aþ P V þQ M (3)

where S0, P, and Q are Lagrange multipliers associated with A

(area), V (volume) and M (integrated mean curvature), respec-

tively. We select as control parameters the volume V and the

integrated mean curvature M.

It is important to note that the functionals F and G are related

via a Legendre transform, (S0,Q) / (S + k (C2)2/2,�2kC0), and

thus describe the same system in a different ensemble. Physically,

the spontaneous curvature model corresponds to a bilayer in

which the monolayer admits stretching or compression during

bending, and thus finds an equilibrium distribution that has

a preferred curvature. If the bilayer is composed of more than

one species of lipid, each of which has a different preferred

curvature (i.e. radius of gyration), it is likely that the membrane

will actually prefer to be in a non-flat state. Conversely, the

bilayer coupling model corresponds to a system that dictates that

both monolayers are incompressible. The area difference

between monolayers stays approximately constant on the time-

scales relevant to our consideration and, as long as the distance

between layers remains very small, this implies that the inte-

grated mean curvature also remains constant.
B. Determination of the vesicle shape

Assuming an axisymmetric vesicle shape, the body surface S(t) is

parameterized at each time t, as illustrated in Fig. 2. The arc-

length measured along the surface in the x-z plane is denoted by s
Soft Matter, 2010, 6, 1737–1747 | 1739



Fig. 2 Parameterization of an axisymmetric bilayer vesicle. We assume

axisymmetry about the z-axis. The surface is described by ~x ¼ (r(s, t),

z(s, t)) in cylindrical coordinates, with s an arc-length parameter, t̂ the

unit tangent vector, n̂ the outward pointing normal vector, and j the

angle between the x-axis and t̂.
˛ [0, L], with t̂ the unit tangent vector, n̂ the outward pointing

normal vector, and j the angle between the x-axis and t̂. The

body surface is represented in cylindrical polar coordinates,

x(s,f,t) ¼ ~x(s,f,t) + z0(t)ẑ

¼ (r(s,t)cos(f),r(s,t)sin(f),z(s,t) + z0(t)) (4)

where f ˛ [0, 2p) is the azimuthal angle, the surface ~x is taken to

have its center of volume at the origin, and z0(t) is a translation of

that center of volume, which depends upon the fluid interaction.

Under this parameterization, the principal membrane curvatures

are C1 ¼ vj/vs and C2 ¼ sin j/r. Inserting into either of the

enthalpy functionals F or G, and performing a variational

extremization, we obtain the following system of first-order

ordinary differential equations to describe the energetically

stationary vesicle shapes at time t.43

js ¼ K (5)

Ks ¼ �
K

r
cos jþ g

r
sin jþ cos j sin j

r2
þ 1

2
Pr cos j (6)

gs ¼
ðK � C0Þ2

2
� sin2

j

2r2
þ Pr sinjþ S (7)

rs ¼ cosj. (8)

Here, K is an auxiliary function used to make the system of

equations first-order (physically it corresponds to the curvature),

g is the Lagrange multiplier that enforces the interdependence of

j and r, and the subscript s denotes a derivative with respect to

the arclength. The vesicle shape at time t is set by eqn (5)–(8),

subject to the four boundary conditions r(0, t) ¼ r(L, t) ¼ j(0, t)

¼ 0 and j(L, t) ¼ p. Once the angle j is determined from the

above, z(s, t) is set by an integration of zs ¼ sin(j), where the

constant of integration is chosen such that the center of volume

of the surface ~x is at the origin. The vertical position z0(t) has no

bearing on the vesicle shape determination, and we hold off

further discussion of its dynamics until the following section.

For the spontaneous curvature model, constraints on the

unknown integration length L, the surface area A, the volume V,

and the two constant Lagrange multipliers P and S are imposed as
1740 | Soft Matter, 2010, 6, 1737–1747
As ¼ 2pr, Vs ¼ pr2 sinj, Ps ¼ 0 (9)

Ss ¼ 0, Ls ¼ 0, (10)

Defining R0 as the radius of the sphere with surface area A, the

boundary conditions for the five constraint equations above are

A(0) ¼ V(0) ¼ 0, A(L) ¼ 4pR0
2, V(L) ¼ 4pR0

3v/3, where v is

a dimensionless ‘‘reduced volume’’. Due to the Lagrange func-

tion being independent of the arc-length s, the ‘‘Hamiltonian’’ is

a conserved quantity and we have g(0) ¼ 0 (see refs 43 and 44).

Also, defining a reduced spontaneous curvature c0 ¼ C0R0,

we finally obtain the vesicle morphology as set by the two

parameters (v, c0).

In the bilayer coupling model, eqn (5)–(10) are solved with two

additional constraints. First, the integrated mean curvature M is

controlled, Ms ¼ p(rK + sinj), and second, a new Lagrangian

constraint enters, Qs ¼ 0. The system is now closed,

with boundary conditions on the integrated mean curvature:

M(0) ¼ 0 and M(L) ¼ 4pR0Da, where Da is the reduced surface

area difference between monolayers, Da ¼ DA/8pR0h. In this

case, the vesicle morphology is set by the two parameters (v, Da),

and the reduced spontaneous curvature c0 has been removed

from the shape equations via the Legendre transform given

above.

Eqn (5)–(10) are solved numerically. Due to coordinate

singularities in the derivatives of r and z at the poles, the shape is

determined on the contracted interval s ˛ [L d, L (1� d)] for (Ld)

� 1, and Taylor-expanded versions of the boundary conditions

are applied. For example,

r(Ld, t) ¼ r(0, t) + (Ld) rs(0, t) + O((Ld)2) ¼ (Ld) rs(Ld, t)

+ O((Ld)2) ¼ (Ld) cos(j(Ld)) + O((Ld)2) z Ld. (11)

To compute the shapes using either model, the arc-length is

discretized using m uniformly spaced grid points, si, with s1 ¼ Ld

and sm ¼ L(1 – d). A collocation method is then applied in

a formulation and implementation similar to those recently used

by Jiang et al. 44 We employ a standard continuation scheme in

order to interpolate solutions from one point in the parameter

space (v, c0) or (v, Da) to neighboring points.

By extremizing the enthalpies F or G, the shape equations give

only stationary solutions, not necessarily the lowest energy

solutions. A numerically determined shape may correspond to an

energy saddle point, maximum or minimum. Although it is

possible that the lowest energy state may not be achievable for

a non-equilibrium shape change, for our purposes we will

examine the minimum energy shapes, and thus a ‘‘phase

diagram’’ for the possible shapes is of great use. Just as in a more

conventional phase transition, shape transformations corre-

spond to transitions between different symmetry states. Since we

consider only axisymmetric shapes here, spherical solutions have

the highest symmetry state. For small perturbations around

spherical shapes, the solution can be represented as

rðs; tÞ ¼ R0

 
1þ

XN
l¼0

Bl0Y 0
l ðqðsÞ;f ¼ 0; tÞ

!
(12)

where the functions Yl
0 are the spherical harmonics, and the

constants Bl0 can generate symmetry breaking. Because we

consider only axisymmetric vesicles, only the m ¼ 0 spherical
This journal is ª The Royal Society of Chemistry 2010



harmonics (of the Yl
m) contribute to the sum, and the angle q is

given by tanq ¼ r/z. While it is not possible to produce an

analytical solution using this formulation, it is useful for

understanding the morphological transitions in terms of

symmetry breaking. For example, breaking l ¼ 2 symmetry

(B20 s 0) leads to a prolate or oblate shape, while breaking l > 2

symmetry can give more complicated shapes, such as the

so-called ‘‘pear’’ or ‘‘stomatocyte’’ shapes.7 In our numerical

investigation, symmetry is frequently exploited in order to effi-

ciently compute the equilibrium shape. In regions of multiple

stability, the solution branches that correspond to lowest energy

shapes must be chosen and, by numerically inserting an initial

symmetry breaking, the algorithm used can more readily

converge upon the appropriate solution.
C. Fluid-body interaction

Modulation of the dimensionless parameter set (v, c0) or (v, Da)

generates quasi-static deformations which in turn lead to motion

in the surrounding fluid medium. Given that the Reynolds

number is small, the dynamics of the fluid surrounding the vesicle

is effectively governed by viscous dissipation and is well modeled

by the incompressible Stokes equations,

V$s ¼ 0, V$u ¼ 0 (13)

where s ¼ �pI + 2mE is the Newtonian stress tensor with p the

pressure, u the fluid velocity, and E the symmetric rate-of-strain

tensor, E ¼ 1

2
ðVuþ ðVuÞT Þ. The fluid equations are made

dimensionless by scaling velocities upon Uc, lengths upon Lc, and

time upon trel ¼ Lc/Uc. Since the surface area A ¼ 4pR0
2 is

constant, we define the characteristic length scale by this radius,

i.e. Lc ¼ R0. Henceforth, the swimming velocity is understood to

be dimensionless, and each shape cycle occurs over a unit in

dimensionless time.

A no-slip condition is applied to the body surface. For a given

path through the parameter space (v, c0) or (v, Da), the resulting

sequence of instantaneously determined shapes uniquely set the

‘‘surface deformation velocity’’ ud(x, t); namely,

udðxðs;f; tÞ; tÞ ¼
v~x

vt
ðs;f; tÞ (14)

In addition, the surface moves as a rigid body along the ẑ

direction due to axisymmetry, with velocity U¼Uẑ¼ z0
0(t)ẑ. The

no-slip condition is thus written as u(x,t) ¼ Uẑ + ud(x,t).

To close the system of equations describing the fluid-body

interaction, we assume that no external forces are acting upon

the vesicle, and thus the force and torque balance to giveð
S(t)

s(x)$n̂(x)dS ¼ 0,

ð
S(t)

x � [s(x)$n̂(x)]dS ¼ 0. (15)

The computation of the swimming velocity is performed using

a standard double-layer boundary integral formulation of the

Stokes equations. The details of this formulation and numerical

method are presented in the appendix.

In addition to computing the swimming velocity, we consider

a possibly more important quantity, the hydrodynamic effi-

ciency. This swimming efficiency is defined as (see ref. 45)
This journal is ª The Royal Society of Chemistry 2010
hH ¼
hU,Fi*ð

SðtÞ
ðUþ udÞ,f dS

+ ¼ hU,Fi*ð
SðtÞ

ud ,f dS

+ (16)

where f¼�s$n̂ is the force density acting on the fluid at the body

surface, h$i denotes a time-average over a full shape cycle, and

F ¼ 6pmaUẑ is the force required to move a sphere of radius a at

a speed U. At each time we use the maximum vesicle radius,

a(t) ¼ |r(s, t)|N. The first term in the denominator of eqn (16)

integrates to zero due to the zero-net force condition (eqn (15)).

The computation of the fluid stress s is significantly more

involved than the computation of the swimming velocity. We

employ a numerical method for computing s based on the

evaluation of a hypersingular integral, which may be derived

from the double-layer formulation of the fluid velocity. The

framework and numerical approach are described in the

appendix, and a more detailed description of the method and

examples of its use will be featured in a subsequent paper.

Physically, hH measures the proportion of work done by the

vesicle against the surrounding fluid that is used for swimming

purposes, and is typically on the order of 1% for biological cells.

Note that the swimming efficiency only measures the hydrody-

namic efficiency, not the total efficiency. For example, the

bending energy of the vesicle is not captured in this measure. The

inclusion of bending costs into swimming efficiency measures has

recently been proposed to study optimal locomotion strategies in

flagellated cells, but presents an avenue of inquiry beyond the

scope of this paper.46
IV. Vesicle locomotion by shape-change

As stated in the introduction, due to the linearity and time-

reversibility of eqn (13), any time-reversible geometrical surface

deformations cannot result in a net locomotion. This result is

known as the Scallop theorem, in reference to the only time-

reversible motions available to a small scallop (opening and

closing).1 As a consequence of this constraint, a single degree of

freedom is insufficient for swimming. Two degrees of freedom

are however sufficient to generate a swimming motion, as first

described in ref. 1, and as we shall show presently for the systems

of interest.
A. Spontaneous curvature model

We begin by presenting a characteristic shape cycle that can be

generated by adjusting the reduced volume and spontaneous

curvature, (v, c0), in a periodic fashion. By selecting a specific

elliptical path in the (v, c0) parameter space, namely v(t) ¼ 0.425

+ 0.125 cos(2pt), c0(t) ¼ �0.1 + 0.3 sin(2pt), the resulting shape

cycle is not time-reversible; hence, the constraints of the Scallop

theorem are bypassed, and locomotion may be achieved. For

these parameters, the vesicle shapes are always stomatocytes, and

the neck separating the internal sphere of fluid from the external

fluid is very small. Fig. 3 shows the corresponding minimal

energy vesicle shapes at four times, along with the vorticity

generated in the surrounding fluid by the body deformation, u¼
V � u. Positive vorticity, corresponding to counter-clockwise

rotation, is shown in red, and negative vorticity, corresponding
Soft Matter, 2010, 6, 1737–1747 | 1741



Fig. 3 The stomatocyte shapes and vorticity profiles produced using

the spontaneous curvature model, with v(t)¼ 0.425 + 0.125cos(2pt), c0(t)

¼ �0.1 + 0.3 sin(2pt). Positive vorticity, corresponding to counter-

clockwise rotation, is shown in red and negative vorticity, corresponding

to clockwise rotation, is shown in blue. Hollow arrows indicate the

instantaneous swimming velocity. During one cycle, the vesicle experi-

ences net locomotion in the �ẑ direction.
to clockwise rotation, is shown in blue. Hollow arrows indicate

the instantaneous swimming velocity of the vesicle, while the

plain arrows indicate the direction of time. At zero Reynolds

number the swimming velocity, external flow, and swimming

efficiency are determined uniquely by the time-dependent surface

geometry and surface deformation velocity, so we need not

consider the internal flow dynamics (which may in general

depend upon the means of modulating the parameters (v, c0)).

From t¼ 0 to t¼ 1/4, the vesicle volume is decreasing while the

spontaneous curvature is increasing. The decrease in volume

draws fluid into the stomatocyte cavity, while the surface material

near the opening to the cavity moves inward nearly tangentially to

the surface itself. While the deformation velocity is normal to the
Fig. 4 (a) A phase diagram for the spontaneous curvature model in the (v,

denote morphological transitions, while the dashed lines are qualitative, and ad

paths through parameter space indicated in (a), with the largest velocities ach
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surface near the north and south poles (s ¼ 0 and s ¼ p), the

deformations are elsewhere primarily tangential, and vorticity is

created as the fluid is sheared accordingly. At t ¼ 1/2, the vesicle

volume is minimal and the fluid volume inside the stomatocyte

cavity is beginning to decrease. From t¼ 1/2 to t¼ 3/4, the vesicle

volume increases, while the spontaneous curvature continues to

decrease to its minimum value. This can best be understood by

observing that when c0 < 0 the membrane prefers a total negative

curvature and, as can be seen at t ¼ 3/4, the internal cavity of the

vesicle takes its smallest value, maximizing negative curvature.

The increasing volume expels fluid from the cavity, and leads to

a reversing of the sign of the vorticity. The overall sequence of

asymmetric shapes is not time-reversible, leading to a net swim-

ming velocity taking place in the �ẑ direction.

A phase diagram for the minimal energy shapes using the

spontaneous curvature model is presented in Fig. 4a. The limit

lines correspond to discontinuous morphological transitions,

and therefore cannot be crossed in our quasi-static shape-change

approach. One critical line corresponds to vesicles whose north

and south poles self-intersect, and a second line corresponds to

stomatocyte shapes that have a vanishing opening between the

external fluid and the cavity within (i.e. the shapes are two

spheres, one contained entirely within the other). A third line

marks the discontinuous phase transition between stomatocyte

and oblate shapes. More details may be found in ref. 43.

Beyond the symmetry constraints imposed by the Scallop

theorem, other symmetry breaking is necessary in order for

a body to achieve a net motion from a periodic shape cycle.

Namely, the body surface must express fore-aft asymmetry in

order to swim preferentially in any direction. Hence, parameter

paths in the regions of phase space corresponding to prolate or

oblate vesicle shapes cannot yield a net motion. However, paths

that correspond to stomatocyte or pear shapes are fore/aft

asymmetric and can swim. Since the area in phase space that

contains pear shapes is very small, we will only examine the

swimming stomatocytes. The largest elliptic path shown in

Fig. 4a corresponds to the shape cycle shown in Fig. 3. The

associated time-evolution of the vesicle center of mass velocity is

shown in Fig. 4b, along with two other velocities corresponding

to elliptic paths enclosing smaller areas in Fig. 4a.
c0) parameter space. Solid lines are our numerically-calculated lines that

apted from ref. 43. (b) Three velocity profiles corresponding to the elliptic

ieved along the elliptic path enclosing the greatest area.
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We see in Fig. 4 that the larger the area of the cycle in

parameter space, the faster the vesicle swims. In fact, the mean

velocity roughly scales as the square-root of the area enclosed by

the elliptic path of phase space. Drawing on an analogy with

thermodynamics, cycles with larger area in the appropriate

ensemble space do more work, and thus we might expect that the

transduction of shape deformation into mechanical work would

exhibit similar behavior. Although our equivalent to an equation

of state is too complicated to show a simple relationship between

swimming velocity and the area enclosed in this phase space, the

basic idea appears to remain valid.

We finally note that the net translation during each shape cycle

in each case is small compared to the amplitude of the motion,

and even smaller when compared to the maximum vesicle radius.

The swimming velocities and hydrodynamic efficiencies of shape

cycles in the spontaneous curvature model are also small.

The maximum velocity achieved for the cycles shown is

hUi ¼ �0.008, while we calculate an efficiency of hH ¼ 0.4%.
Fig. 6 The vesicle shape cycle using the bilayer coupling model, with

v(t) ¼ 0.775 + 0.075sin(2pt), Da(t) ¼ �0.14cos(2pt) + 0.89, corre-

sponding to the lower cycle of Fig. 5a. This vesicle does not change

morphological symmetry states during the swimming cycle and remains

within the stomatocyte domain. Hollow arrows denote the instantaneous

swimming velocity.
B. Bilayer coupling model

We now consider the bilayer coupling model, for which a sche-

matic phase diagram is shown in Fig. 5a. Although in the

spontaneous curvature model there are no continuous transitions

between oblate and stomatocyte shapes, the interesting feature of

the bilayer coupling model is the presence of a continuous sto-

matocyte-oblate transition. The upper (solid) line in Fig. 5a

denotes a limit line between oblate and prolate shapes, while the

lower (dashed) line represents a continuous transition between

stomatocyte and oblate shapes.

In order to examine how breaking or restoring oblate (l ¼ 2)

symmetry relates to swimming, we now consider two shape cycles

with equal enclosed areas in phase space, as shown in Fig. 5a.

The upper cycle crosses the continuous transition line, while the

lower cycle remains in the stomatocyte region.
Fig. 5 (a) A phase diagram for the bilayer coupling model in the (v, Da) para

transition, while the solid line indicates a limit shape. Both lines are shown sch

The two elliptical cycles considered enclose the same area in phase space, but o

a function of time, for the two shape cycles shown in (a). The squares denote th

what we observed for the spontaneous curvature model. The circles correspo

a portion of the cycle during which the vesicle has zero swimming velocity du
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The vesicle shapes in the lower cycle of Fig. 5a are displayed in

Fig. 6. They correspond to a modulation of the volume and

surface area difference between monolayers for the vesicle as

v(t)¼ 0.775 + 0.075sin(2pt), Da(t)¼�0.14cos(2pt) + 0.86. From

t ¼ 0 to t ¼ 1/4 the vesicle volume is increasing, expelling fluid
meter space, adapted from ref. 43. The dashed line indicates a continuous

ematically in order to exaggerate the difference between the shape cycles.

ne crosses the transition line. (b) The swimming velocity of the vesicle, as

e continuously varying velocity of the lower cycle in (a), which is similar to

nd to the upper cycle in (a) and involves a shape transition, and there is

e to fore-aft symmetry.
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Fig. 7 The vesicle shape cycle using the bilayer coupling model across

a continuous phase transition, with v(t)¼ 0.775� 0.075 sin(2pt), Da(t)¼
0.14 cos(2pt) + 0.89, and corresponding to the upper cycle of Fig. 5a.

This vesicle is oblate for a small part of the cycle, precluding swimming by

symmetry, but a net locomotion occurs over the entire cycle. Hollow

arrows denote instantaneous swimming velocity.
from the cavity and pushing fluid away from the surface of the

membrane. Due to the larger amount of surface area facing the

aft end of the vesicle, the net motion during this quarter-cycle is

forward. From t ¼ 1/4 to t ¼ 1/2, the ‘‘lobes’’ of the vesicle move

downwards, propelling the vesicle upwards, albeit at a decreasing

rate. This portion of the motion resembles the characteristic

undulatory shape of a jellyfish, albeit one at zero Reynolds

number. Between t ¼ 1/2 and t ¼ 3/4, the vesicle deflates and the

lobes begin to move upwards again, with the material points of

the lobes moving almost completely tangentially to the surface.

This creates a vortex dipole at the lobes, leading to the stagnation

point that can be seen in the figure. Finally, in the last quarter

cycle, the vesicle encloses itself and returns to the starting posi-

tion. We calculate a mean swimming velocity of hUi ¼ �0.048,

and a hydrodynamic efficiency of hH ¼ 0.6%.

The upper elliptical cycle of Fig. 5a, with shapes illustrated in

Fig. 7, follows the parameter path v(t) ¼ 0.775 + 0.075 sin(2pt),

Da(t) ¼ �0.14 cos(2pt) + 0.89, which lies above the continuous

stomatocyte-oblate phase transition line from t z 0.45 to t z
0.55. During this portion of the cycle, the vesicle has exactly zero

swimming velocity due to the fore/aft symmetry of oblate shapes.

Between t ¼ 0 and t ¼ 1/4, the volume and area differences are

decreasing, leading the nearly oblate shape into a clearly sto-

matocyte configuration. For our purposes, we will not address

the spontaneous symmetry breaking that is associated with

crossing a transition line, but simply assume that once broken,

the cycle will break the symmetry in the same way during each

cycle. In the example shown, the stomatocyte inflates as it

assumes a more oblate shape, expelling fluid from the cavity and

producing vorticity along the lobes. As the vesicle continues to
1744 | Soft Matter, 2010, 6, 1737–1747
deflate from t ¼ 1/4 to t ¼ 1/2, the lobes sweep downwards,

moving the stomatocyte upwards as it assumes a perfectly oblate

shape. At t z 0.42, the shape transitions into an oblate shape,

precluding any net swimming by symmetry. The swimming

velocity as a function of time is shown in Fig. 5b. As the oblate

vesicle deflates, at t z 0.58, the stomatocyte symmetry state is

entered once more, the lobes sweep upwards, and the vesicle

moves downwards. Despite the presence of a becalmed period

during which the vesicle does not move, the cycle that involves

the shape transition yields a larger mean velocity than the lower

cycle, hUi ¼ �0.055, and an increased hydrodynamic efficiency,

hH ¼ 0.7%.

As previously noted, crossing the shape transition line between

stomatocyte and oblate shapes indicated in Fig. 5a yields

a continuous shape change. However, if we exploit the analogy

with phase transitions, we note that some quantities must be

discontinuous across the transition. Without exploring the

details of a dynamic phase transition in the context of vesicle

locomotion, although the order parameter is continuous, deriv-

atives of the order parameter need not be so. In other words, the

material at a given point s along the boundary experiences

a continuous positional change and a discontinuous velocity

relative to the center of mass of the body as the parameters are

varied continuously through the transition line. The discontin-

uous relative material velocity then generates the discontinuous

swimming velocity seen in Fig. 5b for the body that exhibits the

oblate shapes for part of its periodic cycle.

Interestingly, even though the area enclosed in phase space by

the two cycles illustrated in Fig. 5a is the same, the relationship

between parameter space, efficiency, and swimming velocity is

not evident. The upper cycle shown in Fig. 7 has a larger mean

swimming speed and is more efficient than the cycle shown Fig. 6,

suggesting that the vesicle can increase its efficiency by passing

through a phase transition.
V. Discussion

In this paper, we have shown numerically that it is possible for

a bilayer vesicle to swim under a prescribed shape change using

two different vesicle models. By modulating the vesicle volume

and either its preferred curvature (spontaneous curvature model)

or the surface area difference between membrane monolayers

(bilayer coupling model), the vesicle can be made to undergo

deformations that are not time-reversible, yielding a net swim-

ming motion. Net locomotion can be obtained either by

continuously modulating fore-aft asymmetric vesicle shapes

(stomatocytes) or by crossing a continuous shape-transition

region with fore-aft symmetric shapes, and therefore alternating

between fore-aft asymmetric and fore-aft symmetric shapes.

At first sight, the swimming efficiencies obtained in this paper

appear to be low. For the swimming stomatocyte shown in Fig. 4,

the efficiency is on the order of 0.4%, while for the bilayer

coupling model we calculate an efficiency of 0.6% for a non-

transitioning vesicle and 0.7% for a vesicle that undergoes

a transition from stomatocyte to oblate. However, it is known

from many theoretical studies that the hydrodynamic efficiency

of swimming microorganisms, such as flagellated bacteria or

spermatozoa, is on the order of 1 to 2% (see ref. 6 and the

references therein). Our results indicate therefore that the
This journal is ª The Royal Society of Chemistry 2010



equilibrium morphologies of bilayer vesicles, together with their

appropriate modulations lead to locomotion which is almost as

efficient as the swimming of biological cells. Hence, this means of

locomotion might provide an interesting alternative to flagella-

based synthetic micro-swimmers. Further optimization of the

size and shape of the cycle in parameter space is likely to lead to

the swimming vesicle outperforming the efficiency of flagellated

cells. In addition, a swimming vesicle has the advantage that the

swimmer and the cargo can be one and the same.

Let us now discuss the typical time and velocity scales obtained

in our simulations. A typical vesicle size is approximately 10 mm,

and for liposomes k z 10�19 Nm. Except for very curved vesicles,

the typical radius of curvature r0 is approximately 10 mm as well,

leading to a velocity scale of 10 mm s�1. This gives calculated

mean velocities of the order of 0.1 mm s�1 for the spontaneous

curvature model, and 0.5 mm s�1 for the bilayer coupling model.

Translational and rotational diffusion constants for vesicles this

size at room temperature are D z 10�14 m2 s�1 and Dr z 10�3 s�1,

respectively. This implies a time scale for translational diffusion

of approximately 104 s, and a time scale for diffusive reor-

ientation of approximately 103 s. Since the actuation proposed in

this paper can be implemented faster than both of these time

scales, significant diffusion will take place only after many

actuation cycles. For time scales much larger than Dr
�1, the

effective vesicle diffusion will then be given by Deff z U2/Dr,
47

which accounts for both swimming and orientation loss. The

ratio Deff/D z 103 is large, which implies that locomotion will

lead to a substantially enhanced diffusion of the vesicles over

long time scales.

We have considered only two minimal models for vesicle shape

change, and many possible avenues exist to expand upon this

basic model, including a study of non-axisymmetric vesicles,

more advanced curvature models, and arc length-dependent

spontaneous curvature. Since we have assumed a quasi-static

deformation, non-equilibrium effects would also have to be

taken into account for fast deformations, and the shape should

be fully determined as a balance between elastic and fluid forces.

In addition, swimming is just one example of behavior that could

be exhibited by a membrane that is actively deformed. It is

perhaps the simplest transduction of geometrical deformation

into mechanical work, and one that we hope provides further

inspiration for the combined study of membrane physics and low

Reynolds number fluid mechanics.
Velocity and stress computation

The swimming velocity is computed at each time by solving

a standard boundary integral formulation of the Stokes equa-

tions. As an application of the Lorentz reciprocal identity, the

solution to eqn (13) may be written for a point x in the fluid as

integrations upon the surface velocity and the fluid stress,

uðxÞ ¼ 1

8pm

ð
SðtÞ

Gðx; yÞ,
�
sðyÞ,n̂ðyÞ

�
dSy

þ 1

8p

ð
SðtÞ

uðyÞ,Tðx; yÞ,n̂ðyÞ dSy (17)

where
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Gijðx; yÞ ¼
dij

jx� yj þ
�
xi � yi

��
xj � yj

����x� yj3
(18)

and

Tijkðx; yÞ ¼ �6

�
xi � yi

��
xj � yj

�
ðxk � ykÞ��x� yj5

(19)

are the singular Stokeslet and Stresslet tensors, respectively (see

ref. 48). By introducing a complementary flow u0, which has the

same values of the surface force s$n̂ as the flow u on the surface

S(t), eqn (17) may be written solely in terms of the second,

double-layer integral,
u(x) ¼
ð

S(t)
q(y)$T(x,y)$n̂(y) dSy (20)

where q(x) is an unknown density of the singular Stresslet tensor.

In the limit as x approaches the body surface S(t), inserting the

no-slip condition for the surface velocity there, we find the

expression
U + ud(x) ¼
ð

S(t)
(q(y) � q(x))$T(x,y)$n̂(y)dSy. (21)

The vertical swimming velocity U ¼ U$ẑ is related to the

Stresslet density as

U ¼ �4p

A

ð
SðtÞ

ẑ,qðxÞ dS (22)

(recall that A is the vesicle surface area). Eqn (21) is a well-posed

Fredholm integral equation of the second kind for the unknown

density q(x), and has a unique solution. This approach is

numerically better conditioned than those based on first-kind

equations.

The Stresslet integral operator in eqn (21) has a six-dimen-

sional nullspace corresponding to rigid body motion, and in the

presence of external body forces or torques this representation

must be closed by a range completion technique (see ref. 49).

However, in the swimming problem, where the deformation

velocity ud(x) is specified and there are no body forces or torques,

eqn (21)–(22) are closed and uniquely prescribe the swimming

velocity U.

The integrand in eqn (21) is discontinuous at the singularity

but finite, so that the integrals are computed to second-order in

the surface mesh element size using a standard trapezoidal

quadrature (setting the quadrature weight to zero at the singu-

larity). The axisymmetry of the problem is inserted into the

definition of the body surface as well as the density q(x). The

number of grid points is chosen to be sufficiently large such that

further resolution does not significantly alter the density q(x) or

the swimming velocity U.

At each time, the curve (r(s, t), z(s, t)) is discretized uniformly

in s. Application of a Nystr€om collocation method produces

a linear system of equations for the density q(x) at the grid-

points, which is then solved iteratively using the generalized

minimal residual method (GMRES),50 with an inversion error

tolerance such that the only errors are due to discretization.

Finally, the body position z0(t) is updated at each time using
Soft Matter, 2010, 6, 1737–1747 | 1745



a second-order Runge–Kutta method. Both convergence tests

and comparison with known exact solutions were used to

validate the code,50–54

Computing the hydrodynamic or swimming efficiency

(which requires pointwise information about the stress s) is

more difficult. Here we compute s(x) using the approach

outlined below, though a more detailed description of the

method and examples of its use will be featured in a subse-

quent paper.

Many common methods for computing the stress are devel-

oped using a first-kind boundary integral formulation of the

Stokes equations, and hence can suffer from the ill-posedness of

the underlying equations.48 Instead, we solve for the surface

stress by evaluating a hypersingular integral which may be

derived from the second-kind integral equation for the velocity

(see ref. 48),

1

m
simðxÞ ¼

ð
S

qjðyÞLijkmðx; yÞn̂kðyÞdsy; (23)

where

Lijkmðx; yÞ ¼ �4
dimdjk��x� y

��3
� 6

�
xk � yk

��
djmðxi � yiÞ þ dijðxm � ymÞ

�
��x� yj5

� 6

�
xj � yj

�
½dmkðxi � yiÞ þ dikðxm � ymÞ���x� yj5

þ 60

�
xi � yi

��
xj � yj

�
ðxk � ykÞðxm � ymÞ��x� yj7

(24)

and we have set S(t) ¼ S for clarity. The expression Lijkm(x,y) is

achieved by differentiating the double-layer integral for the fluid

velocity and including the pressure term, which may also be

written as an integration against q(x), with s ¼ �pI + m(Vu +

VuT) (see ref. 48). The stress is determined on the same spatial

grid as that used to determine the swimming velocity, a uniform

discritization in s of the curve (r(s, t), z(s, t)) (with polar angle

f ¼ 0). The integration of eqn (23) is performed in local polar

coordinates, and the singular contributions are handled

analytically as follows. The procedure follows the work of

Guiggiani et al.55

The integration of eqn (23) is performed on a modified surface
~S ¼ s3 + (S�e3) and is taken in two parts: the portion of a sphere

of radius 3 centered at the singular point x, which is internal to

the body surface (s3) and intersects the surface S at its boundary,

and the body surface punctured by the sphere (S � e3). The

modified surface limits to the body surface S as 3 / 0. For

a point x ˛ S, eqn (23) is written as a small 3 limit,

1

m
simðxÞ ¼ lim

3/0

�ð
S�e3

qjðyÞLijkmðx; yÞn̂kðyÞdSy;

þ
ð

S3

qjðyÞLijkmðx; yÞn̂kðyÞdSy

�
(25)

Under the assumption that q(x) is differentiable, with a deriv-

ative that is H€older continuous, we subtract and add the density

q(x) and its gradient at the singular point in the second integral of

eqn (25),
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1

m
simðxÞ ¼ lim

3/0

�ð
S�e3

qjðyÞLijkmðx; yÞn̂kðyÞdSy (26)

þ
ð

S3

�
qjðyÞ � qjðxÞ

� ðxh � yhÞqj;hðxÞ
�
Lijkmðx; yÞn̂kðyÞdSy

(27)

þqj;hðxÞ
ð

S3

ðxh � yhÞLijkmðx; yÞn̂kðyÞdSy (28)

þqjðxÞ
ð

S3

Lijkmðx; yÞn̂kðyÞdSy;

�
(29)

where qj,h ¼ vqj/vxh. As shown in ref. 55, the above integration

may be reduced to a final formula upon the introduction of

a local polar coordinate system (r, h) about the target point x(s,

f), with

f0 ¼ f + r cos(h), s0 ¼ s + r sin(h) (30)

where h ˛ [0, 2p), r ˛ [0,�r(h)], and

dSy ¼ J(s0)ds0 df0 ¼ J(s0(r, h))r dr dh (31)

with J(s0) ¼ |x0s � xf|, the surface Jacobian. r ¼ �r(h) is the

equation in the local polar coordinate system of the edge of the

semi-periodic domain, (s, f) ˛ ([0, L] � [0, 2p]). The integration

is assisted by the extra factor of r in the surface area element, and

the final expression for the fluid stress may be reduced to

1

m
simðxÞ ¼

ð2p

0

ð�rðhÞ

0

(
Fijkðr; hÞ �

"
F
ð�2Þ
ijk ðhÞ

r2
þ

F
ð�1Þ
ijk ðhÞ

r

#)
dr dh

(32)

þ
ð2p

0

�
F
ð�1Þ
ijk ðhÞln

�����rðhÞ
����� F

ð�2Þ
ijk ðhÞ

	
1

�rðhÞ


�
dh (33)

where Fijk(x,y) ¼ qi(x)Lijk(x,y)n̂k(y).55. The functions Fijk
(�1)(h)

and Fijk
(�2)(h) are the singular parts of an expansion of Fijk(r, h)

about r ¼ 0. All of the integrals above have finite integrands and

are treated using adaptive quadrature methods.

Convergence tests and comparisons with known exact solu-

tions were used to validate the code.52 In particular, we have

checked to ensure that the surface deformation relation of

Samuel and Stone (1996) is satisfied.54 With the stress s in hand,

the efficiency hH (eqn (16)) is determined to be second-order in

the grid-spacing by a simple trapezoidal quadrature. The stress

need only be computed for f ¼ 0 due to axisymmetry.

As a final note, at zero Reynolds number the swimming

velocity and efficiency are entirely determined by the surface

deformation velocity. Other more general measures of energetic

expenditure and total efficiency have been considered for other

swimming systems (see ref. 46), but in this case the total effi-

ciency will depend significantly upon the means used to produce

the vesicle shape-change. In addition, should there be an

internal fluid in the vesicle, for example, internal dissipation

costs would be relevant in a more general measure of energetic

expenditure.
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