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Most bacteria swim through fluids by rotating helical flagella which can take one of twelve

distinct polymorphic shapes. The most common helical waveform is the “normal” form,

used during forward swimming runs. To shed light on the prevalence of the normal form

in locomotion, we gather all available experimental measurements of the various polymor-

phic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form

is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a

significant margin – a conclusion valid for both the peritrichous and polar flagellar families,

and robust to a change in the effective flagellum diameter or length. The hydrodynamic op-

timality of the normal polymorph suggests that, although energetic costs of locomotion are

small for bacteria, fluid mechanical forces may have played a significant role in the evolution

of the flagellum.

PACS numbers: 47.63.-b, 47.63.Gd, 87.17.Jj, 87.23.Kg

The shapes and sizes of life in all its diversity are ever changing as form meets function, intimately

tuned to nature’s diverse environments. Bacteria evolved to swim through fluids by rotating a single

helical flagellum (“monotrichous”, or polar, bacteria), or in the case of such organisms as Salmonella

and Escherichia coli, several rotating helical flagella emanating from their cell membranes (“peritrichous”

bacteria). Each flagellum is assembled through the polymerization of a flagellin protein, and has been

met with great interest both in and outside the scientific community due to its astoundingly complex

construction [1]. Due to the various possible arrangements of polymerized flagellin, it has been postulated

that the flagellar filaments can take only twelve distinct polymorphic forms [2–4], of which nine have been

characterized experimentally [5] (Fig. 1a).

The most common helical waveform is the left-handed “normal” form, used during forward swimming

“runs.” Upon counterclockwise (CCW [when viewed from the flagellum’s distal end]) co-rotation of the

flagella by rotary motors, a flagellar bundle forms behind peritrichous bacteria, driving fluid backward

and propelling the cell forward. To change their swimming directions, these bacteria undergo “tumbling”

events. As shown in Fig. 1b-e, a quick direction reversal to clockwise (CW) motor rotation produces

a twisting torque which temporarily transforms the associated individual flagellum from a left-handed

normal form to a right-handed “semi-coiled” form, leading to an unwinding of the bundle and a change

in cell orientation, followed by a transition to a right-handed “curly” form which persists until the next

reversal in motor direction [6–8]. The other forms are not generally used for locomotion.

Mechanical stresses, such as the twisting and viscous torques present during swimming, are not the only

means by which the flagellar shape might shift from one waveform to another. Filaments can also transform

reversibly in response to amino acid replacements, chemical or temperature changes, or the addition of

alcohols or sugars [10–17]. Other authors have considered the elastic rigidity of different polymorphs and

its relationship to shape selection [7, 18–20]. The motion of a helical body through a viscous fluid has seen
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extensive theoretical treatment [21–25].

In this letter we present a physical rationalization of the prevalence of the normal polymorphic form

in bacterial swimming. We gather all available experimental measurements of the various polymorphic

flagellar waveforms [26] along with the twelve theoretical forms [3], and compute the intrinsic hydrodynamic

efficiency of each geometry. We show that the normal form is the most hydrodynamically efficient of the

twelve polymorphic forms by a significant margin, a result true for both peritrichous and monotrichous

(polar) flagellar families. This conclusion is robust as the flagellum length is varied, or its effective diameter

is increased to represent a bundle of flagella. The hydrodynamic optimality of the normal helical form

therefore suggests a role for fluid mechanical forces in the evolution of the flagellum.

We begin with a short description of the hydrodynamics of swimming bacteria. At the exceedingly

small length and velocity scales on which bacteria swim, viscous dissipation overwhelms any inertial

effects, and the fluid motion is accurately described by the Stokes equations [27–29]. In this regime, there

is a linear relation between the net forces and torques on an immersed flagellum, (F,N), and its associated

translational and rotational velocities, (U,ω) (rigid body motion is assumed). Consider a rotating helix

driving a cell body, as is the case for the swimming runs of flagellated bacteria. In this case, the net forces

and torques on the rotating flagellum (or flagella) must balance those of the fluid on the body. Assuming

that the cell is axisymmetric about x̂ and swims directly along this axis, we write the body’s translational

(swimming) velocity as U = U x̂ and its rotational velocity as Ω = Ω x̂. The corresponding fluid force and

torque on the cell body are denoted by F = −A0U x̂ and N = −D0Ω x̂, respectively. A linear mobility

relation for the flagellum may then be written as(
A B
C D

)(
U

ω

)
=

(
−A0U

−D0Ω

)
, (1)
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Both MotA and MotB span the cytoplasmic membrane. MotA has four
membrane-spanning !-helical segments (54–56). The rest of the molecule (about
two-thirds) is in the cytoplasm. MotB has one membrane-spanning !-helical

Figure 3 An E. coli cell with one flagellar filament, visualized by fluorescence
microscopy. The recording was made at 60 Hz, but only every other field is shown.
The numbers are in units of 1/60 s. When the motor switched from CCW to CW after
field 2, the filament changed its shape from normal to semicoiled, 10, and then to
curly 1, e.g., 20. When the motor switched back to CCW after field 26, the filament
relaxed back to normal, 30. Initially, the cell swam toward 7 o’clock. After the
normal to semicoiled transformation, it swam toward 5 o’clock. Flagellar filaments
can also be visualized by dark-field or interference-contrast microscopy (259, 260),
but fluorescence has the advantage that one can see the filaments all the way to the
surface of the cell with reasonable depth of field. (From Reference 3, Figure 6.)
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membrane-spanning !-helical segments (54–56). The rest of the molecule (about
two-thirds) is in the cytoplasm. MotB has one membrane-spanning !-helical

Figure 3 An E. coli cell with one flagellar filament, visualized by fluorescence
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Figure 3 An E. coli cell with one flagellar filament, visualized by fluorescence
microscopy. The recording was made at 60 Hz, but only every other field is shown.
The numbers are in units of 1/60 s. When the motor switched from CCW to CW after
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normal to semicoiled transformation, it swam toward 5 o’clock. Flagellar filaments
can also be visualized by dark-field or interference-contrast microscopy (259, 260),
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surface of the cell with reasonable depth of field. (From Reference 3, Figure 6.)
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microscopy. The recording was made at 60 Hz, but only every other field is shown.
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surface of the cell with reasonable depth of field. (From Reference 3, Figure 6.)
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The numbers are in units of 1/60 s. When the motor switched from CCW to CW after
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curly 1, e.g., 20. When the motor switched back to CCW after field 26, the filament
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can also be visualized by dark-field or interference-contrast microscopy (259, 260),
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FIG. 1 (a) All twelve theoretical peritrichous polymorphic waveforms, including two straight forms [3];
left-handed (resp. right-handed) helices are denoted by filled (resp. empty) symbols. (b) One flagellum of an
E. coli cell displays a normal waveform; (c) semi-coiled; (d) curly; (e) normal again. Adapted with permission
from Turner, L., Ryu, W.S., and Berg, H.C., J. Bacteriol., 182 2793 (2000). Copyright c© (2000), American
Society for Microbiology [9].
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where we have written the translational and rotational velocities of each point on the flagellum as U = U x̂

and ω = ω x̂, and neglected hydrodynamic interactions between the flagellum and the body. It can be

shown that C = B [27, 30]. Torque balance requires that the body rotation rate Ω and the flagellar

rotation rate ω are oppositely signed, so that the cell body counter-rotates with respect to the motion of

the flagellum. The rotary motor at the base of the flagellum attached to the cell body therefore rotates

with angular speed Ωm = ω − Ω.

In order to compare the performance of various polymorphic forms, a hydrodynamic efficiency E∗ is

now defined following the work of Purcell [30]. The power output of the motor, NΩm, is compared to the

least power that would be required to move the cell body at speed U by any means of propulsion, namely

A0 U
2, and so E∗ = (A0 U

2)/(N Ωm). Expressions for U and N in terms of the rotation rate Ωm may be

deduced from Eq. (1), and various approximations valid for the relative length and velocity scales observed

in swimming bacteria may be made (for example B2 � AD, and ω � Ω) [30]. Assuming the ability to

rescale the propeller dimensions, for a given cell body the maximum value of the swimming efficiency can

then be found to be given by E = B2/(4AD); E is the intrinsic propeller efficiency, and is a function of its

shape alone [30, 31]. Note that the expression for E could also be reached using a dimensional approach,

as B indicates the correlation between motor torque and forward swimming, while A and D are indicative

of the fluid friction (via Eq. 1); the ratio above (or factors thereof) are the only such dimensionally proper

arrangements.

To determine the intrinsic efficiency E for a given experimentally measured or theoretical waveform, we

need only compute the three coefficients A,B and D. To do so accurately, we perform computations using

a non-local slender body theory for viscous flows [32, 33]. We consider a single rigid flagellar filament

of length L and circular cross-section of radius ε L r(s), where r(s) is dimensionless, ε � 1 is the aspect

ratio of the flagellum (ε . 10−2 for bacteria), and s ∈ [0, L] is the arc-length parameter. For a given

translational velocity U x̂ and rotational velocity ω x̂ about a point x0, the fluid force f(s) on the filament

is given implicitly via

8πµ[U x̂ + ω x̂× (x(s)− x0)] = −Λ[f(s)]−K[f(s′)](s), (2)

where µ is the shear viscosity of the fluid, x(s) denotes the centerline position at a station s, and

Λ[f ](s) = [c(I + ŝŝ) + 2(I− ŝŝ)] f(s), (3)

K[f(s′)](s) = (I + ŝŝ)

∫ L

0

f(s′)− f(s)

|s′ − s| ds′ +
∫ L

0

(
I + R̂R̂

|R(s′, s)| −
I + ŝŝ

|s′ − s|

)
f(s′) ds′, (4)

where c = − ln(ε2e), R(s′, s) = x(s′)− x(s), R̂ = R/|R|, ŝ is the local unit tangent vector at the point s,

and ŝŝ is a dyadic product [33, 34]. Henceforth x0 is set at the origin. In order to obtain numerically the

distribution of forces, f(s), accurately to order ε2, it is required that r(s) decays no slower than O(
√
s)

near the filament endpoints, and we have chosen for simplicity r(s) =
√

4s(L− s)/L as in Ref. [34]. The

flagellum diameter d at the midpoint s = L/2 is 2 ε L. The waveforms considered are modeled as perfect

helices with centerlines x(s) = P K s x̂ + (D/2) [sin(2πKs) ŷ + cos(2πKs) ẑ], with K = 1/
√

(πD)2 + P 2,

P the pitch, and D the helical diameter.
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FIG. 2 A normal waveform undergoes pure CCW rotation about the major helical axis x̂, with
(P,D) = (2.3µm, 0.4µm), L = 10 µm, and d = 20 nm. (a) Velocity vectors through a cross section at
s = L/2. A dark arrow indicates both the direction of rotation of the flagellar filament, as well as the location
on the filament which intersects the cross-sectional plane. (b) The lengthwise velocity u (the fluid velocity
through the cross-sectional plane), normalized by the velocity of the flagellum in the cross-sectional plane,
ωD/2.

We solve Eq. (2) numerically for f(s) using a Galerkin method [35], in which f(s) is written as a finite

sum of Legendre polynomials, and Eq. (2) is required to hold under inner products against the same basis

functions. The first integral in the operator K[f ] is diagonalized in this space [34, 36]. With f(s) in hand,

we define F ′ = x̂ ·
∫ L
0 f(s) ds and N ′ = x̂ ·

∫ L
0 (x(s)−x0)× f(s) ds. Then, setting (U, ω) = (1, 0) we recover

A = F ′; setting (U, ω) = (0, 1) we recover B = F ′ and D = N ′. Based on the mathematical accuracy of

the method, we estimate that the numerical errors in computing the fluid flow and efficiency calculations

for a specified geometry are below 0.1% of the reported values.

The velocity field, u(x), at a point x in the fluid can be recovered using the representation

8πµu(x) = −
∫ L

0

(
I + R̂R̂

|R(s′)| +
ε2

2

I− 3R̂R̂

|R(s′)|3

)
f(s′) ds′, (5)

where now R(s′) = x − x(s′) [34, 36]. We show in Fig. 2a the velocity field so computed through a

cross section of a normal flagellar waveform which is undergoing pure CCW rotation at rate ω. The flow is

primarily restricted to the plane, rotating along with the flagellum (due to the no-slip condition there), and

decaying in magnitude away from the intersection point. There is a small lengthwise fluid motion through

this plane, so that fluid is slowly shuttled backward along the axis of rotation. This lengthwise velocity

u is displayed in Fig. 2b, normalized by ωD/2; it is zero at the flagellum boundary (due to the no-slip

condition), and increases to a maximum of u ≈ 0.2ωD/2 on the circular helical perimeter approximately

opposite the point where the flagellum intersects the vertical plane.

For each of the experimentally measured waveforms reported in the literature [26] and the theoretically

predicted waveforms [3], we compute the intrinsic efficiency E using the method described above. In

each case we assume a flagellum length L = 10 µm and diameter d = 20 nm. Figure 3a compiles the

efficiency results, further detailed in Fig. 3b-e, overlaid upon efficiency contours in the circumference-pitch

(C-P) plane (C = πD). Different symbols represent the various polymorphic forms (see Fig. 1), and

experimental data show averages ± one standard deviation, with peritrichous (resp. polar) data in black
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FIG 3. (a) Efficiency contours in the circumference-pitch (C-P) plane (P < 0 for left-handed helices, as in
diagram), assuming a flagellum diameter (resp. length) of 20 nm (resp. 10 µm), combining the information
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dashed for P > 0. Data points and bars indicate the mean computed efficiency ± one standard deviation for
the peritrichous (black), polar (blue), and theoretical (red, from Ref. [3]) waveforms. Dotted lines indicate
the curves C = ±P . (b) Waveform geometries from experimental data for the peritrichous flagella (see Tables
S1-S4 in the supplementary material and symbols from Fig. 1). Each color represents a different data set. (c)
Hydrodynamic efficiencies for each of the peritrichous waveforms as a function of the mean pitch angle, as in
(a). Two curves indicate the efficiencies measured continuously along the large circle in the C-P plane in (a);
the dashed curve again corresponds to P > 0 (right-handed helices), and the solid curve to P < 0
(left-handed helices). (d,e) Same as in (b,c), but for the polar flagellar family [37]. The normal form in each
family is the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin.

(resp. blue). As the helix becomes infinitely large (or as the filament becomes infinitesimally slender),

Eq. (2) returns E = y2/(8y4 + 20y2 + 8), with y = P/C. In this limiting case, the efficiency-maximizing

geometry has C = |P | (pitch angle ψ = 45◦), indicated in Fig. 3a by dotted lines, and E = 2.8%. However,

at the biologically relevant length scales and aspect ratio as studied here, for a given pitch P the optimal

geometry has C ≈ (7/8) |P | (pitch angle ψ ≈ 40◦).

We plot in Fig. 3b the geometrical data in the (C-P) plane which allows the different members of the

peritrichous flagellar family to be distinguished [37]. Each color represents a different data set [26]. The

mean hydrodynamic efficiencies (± one standard deviation) of flagellar polymorphs in the peritrichous

family are shown in Fig. 3c as a function of the average helical pitch angle, 〈ψ〉, for measured (black)

and theoretically predicted (red) waveforms; the numerical values of the efficiencies for each waveform are

noted in the supplementary material. The normal waveform is found to be the most hydrodynamically

efficient of the twelve helical forms by a significant margin (with 〈E〉 = 0.96%) over 23% more efficient

than the next most efficient forms, the curly and semi-coiled waveforms (which are both used by bacteria

during change-of-orientation events [6–8]). Two curves indicate the efficiencies measured along the large

circle in the C-P plane in (a); the larger efficiencies are achieved along this circle when P < 0. The leftward

skew of the theoretical C-P relationship is thus seen to play an important role in the left-handed normal
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FIG. 4 (a) Change in efficiency for the peritrichous family by varying the flagellar diameter from d = 20 nm
to 40 nm. Greater percentage-wise gains in efficiency is obtained for thicker propellers. (b) Varying the
flagellar length L. The efficiency ordering remains nearly the same through the biologically relevant length
scales. (c) The mean efficiencies of the normal, coiled, semi-coiled, curly, and curly II waveforms as functions
of the mean pitch angle for three different lengths. (d) Same as (b), but for the polar flagellar family.

form being more efficient than its right-handed counterparts.

A different flagellar family can be distinguished by examining the circumference-pitch curve for different

measurements, and is shown in Fig. 3d. These are monotrichous (polar) flagella, assembled from a different

flagellin protein than peritrichous flagella, but which follow a similar polymorphic sequence of twelve forms

[37]. Similarly to the peritrichous family, the normal form is the most hydrodynamically efficient one (with

〈E〉 = 1.03%; Fig. 3e), a 25% increase over the next most efficient shape, a right-handed curly waveform.

To address the robustness of our results against geometrical variations, we changed both the flagellum

diameter and length in our computations. We show in Fig. 4a the mean efficiency computed for the

peritrichous waveforms as a function of the flagellum diameter, as a model for the increased effective

filament size of flagellar bundles. The efficiency decreases steadily as the filament size increases, but the

efficiency of each polymorph decays at a similar rate, and thus the efficiency ordering from Fig. 3c is

unchanged. The greatest percentage benefit in efficiency when using the normal form is found when the

flagellar diameter is large, e.g. for bundles of many flagella. Varying the flagellar length also shows that

the efficiency ordering is not modified, as shown in Figs. 4b-c, and the greatest percentage increase in the

efficiency of the normal form is achieved for longer filaments. We also changed the lengths used in the

computations for the polar flagellar family, with the results shown in Fig. 4d, again showing no change in

order. For both peritrichous and polar flagellar families, the efficiency orderings shown in Figs. 3c-e are

therefore robust throughout the biologically relevant parameter space.

Finally, we find that less accurate resistive force theories, which linearly relate body velocities to fluid

forces, and are the most widely used approaches for modeling slender bodies in fluids [38, 39], do not
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predict the efficiency ordering found using the full non-local hydrodynamics (see also Refs. [24, 40]) [26].

Hydrodynamic interactions between different parts of the helical propeller are thus essential in order to

conclude on the relative efficiencies of flagellar polymorphs.

In conclusion, by examining all available experimental data on the geometry of bacterial flagella, we

found that both peritrichous and monotrichous bacteria employ, among the discrete number of available

flagellar shapes, the hydrodynamically optimal polymorph in order to swim in viscous fluids. In contrast to

simple estimates showing that locomotion accounts for a negligible portion of a bacterium’s metabolic costs

[41], our results suggest that fluid mechanical forces may have played a significant role in the evolution of

the flagellum

We thank H. C. Berg for discussions, and permission to reproduce the figure from Ref. [9]. We ac-

knowledge the support of the NSF through grant CBET-0746285.

Supplementary material

I. Experimental data and computed efficiencies

Table S1 shows a compilation of measurements from studies on various strains of Salmonella ty-

phimurium, along with the data sources and the colors used to create Fig. 3b in the main text. Here

we have reproduced the measured helical pitch P [µm] and the helical diameter D [µm] from the cited

sources in the form (P,D). Table S2 contains similar measurements obtained for the organism Escherichia

coli, also included in Fig. 3b. Fujii et al. [37] have considered measurements of a large number of organisms

along with their different polymorphic measurements, which we report below as Table S3. These authors

have detected different flagellar families corresponding to peritrichous (Family I), monotrichous (or polar)

(Family II), lateral (Family III), and some exceptional flagellar filaments; these families are distinguished

in the table, and the color schemes match those used to create Figs. 3(b,d). Family I flagellin, Family II

flagellin, and Family III flagellin each lead to different circles in the circumference-pitch (C-P) plane, the

first two of which are shown in Figs. 3(a,b,d). Table S4 shows the computed data for all the possible theo-

rized waveforms from Calladine’s model [3], and from a theoretical calculation performed by Hasegawa et

al. [4], which we have included in red in Fig. 3c to show the negligible efficiencies of the more uncommon

theoretical polymorphs; note that the unnamed polymorphic forms in Fig. 1a have been obtained in a

laboratory setting [5], but are not generally observed in nature. Finally, Table S5 indicates the numerical

values of the efficiencies plotted in Figs. 3(c,e).
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Source 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

a (2.30, 0.42) (0.53, 1.16) (1.15, 0.31) (0.89, 0.2)

b (2.28, 0.38) (0.9, 1.4) (1.16, 0.51) (1.1, 0.3) (0.9, 0.2)

c (0.93, 0.32) (0.90, 0.18)

d (2.17, 0.42) (0.79, 1.06) (1.07, 0.6)

e (2.2, 0.5) (1.1, 0.4)

f (2.2, 0.53) (0.91, 0.29)

g (2.3, 0.45) (0.69,1.52) (1.24, 0.52) (1.14, 0.3)

h (2.2, 0.5) (1.10, 0.36)

i (2.3, 0.45)

j (2.49, 0.34) (1.36, 0.23) (1.08, 0.13)

k (2.55, 0.6) (1.29, 0.5) (1.20, 0.2) (1.00, 0.15)

Waveform Measurements (P, D) for Salmonella from the following sources (organism strain

noted in parentheses if reported). P is the helical pitch, and D is the helical diameter. a

- Kamiya & Asakura (strain SJ670) [13], b - Kamiya & Asakura (SJ25) [13], c - Kamiya &

Asakura (SJ30) [13], d - Darnton & Berg (SJW1103) [22], e - Iino (SW577) [33], f - Iino &

Mitani (SJ30) [6], g - Hotani [19] and Washizu Hotani?, h - Iino, Oguchi & Kuroiwa [9], i -

Macnab & Ornston [18], j - Asakura [1], k- Fujii, Shabata & Aizawa [31].

III. FLUID-BODY INTERACTION AND HYDRODYNAMIC EFFICIENCY

Bacteria swim at exceedingly small length and velocity scales. Taking the flagellum length

L as a characteristic length scale, and the wave speed C as a characteristic velocity scale, a

Reynolds number characterizing the fluid motion is Re = C L/ν � 1, with ν = 10−2cm2/s

the dynamic viscosity of the surrounding fluid [37]. Hence the viscous dissipation vastly

overwhelms any inertial effects, and the fluid motion is well-captured by solving the Stokes

equations, ∇ · σ = 0,∇ · u = 0, with u the fluid velocity, σ = −pI + µ(∇u + ∇uT ) the

Newtonian stress tensor, µ the kinematic viscosity, and p the pressure (see [37–39]).

A. Slender body theory

In order to compute the maximal hydrodynamic efficiency for the various polymorphic

waveforms, we solve a slender body approximation to the Stokes equations. Specifically,

we consider the fluid-body interaction of a single flagellar filament of length L and circular

cross-section of radius �L r(s), where � � 1 and r(s) are dimensionless, and s ∈ [0, L] is

the arc-length parameter. The non-local slender body theory of Johnson [30] is employed,

which gives a very accurate representation of the fluid velocity everywhere with error O(�2).

Namely, the rigid body velocity U and rotational velocity ω about a point x0 are given as

4

TABLE S1. Waveform measurements of the form (helical pitch P [µm], helical diameter D [µm]) for
Salmonella from the following sources (organism strain noted in parentheses if reported): a - Kamiya &
Asakura (strain SJ670) [11], b - Kamiya & Asakura (SJ25) [11], c - Kamiya & Asakura (SJ30) [11], d -
Darnton & Berg (SJW1103) [7], e - Iino (SW577) [42], f - Iino & Mitani (SJ30) [43], g - Hotani [15], h - Iino,
Oguchi & Kuroiwa [44], i - Macnab & Ornston [12], j - Asakura [2], k - Fujii, Shabata & Aizawa [37]. Colors
correspond to those in Fig. 3b.

7

Source 2 (Normal) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

a (2.3, 0.35) (1.1, 0.5) (1.0, 0.25) (0.9, 0.16)

b (2.2, 0.41)

c (2.2, 0.41) (0.92, 0.261)

TABLE II. Waveform data for E. coli. a - Turner, Ryu & Berg [10], b - Matsuura, Kamiya & Asakura [11], c - Fujii, Shabata
& Aizawa [9].

Flagellum 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

S. typhurium (2.55, 0.6) (1.29, 0.5) (1.20, 0.2) (1.00, 0.15)

E. coli (2.2, 0.41) (0.92, 0.261)

E. cartovora (2.13, 0.57) (0.76, 0.169)

Y. enterocolitica (2.55, 0.55) (1.04, 0.3)

P. mirabilis (1.83, 0.47) (0.87, 0.35)

B. subtilis (2.06, 0.42) (0.91, 0.18)

E. faecalis (2.40, 0.5) (1.11, 0.15)

I. loihiensis (1.32, 0.33) (1.18, 0.48) (0.93, 0.25)

P. aeruginosa (1.38, 0.392) (1.0, 0.57) (0.92, 0.22)

P. syringae (1.59, 0.43) (1.04, 0.82) (1.49, 0.668) (0.75, 0.229)

X. axonopodis (1.41, 0.392) (1.42, 0.69)

V. para-haemolyticus (1.21, 0.239)

B. japonicum pof (0.79, 0.62) (1.16, 0.36)

A. brasilense pof (1.08, 0.341)

V. para-haemolyticus (0.47, 0.11)

B. japonicum laf (0.71, 0.2)

A. brasilense laf (0.66, 0.2)

S. meliloti (2.27, 0.57) (0.61, 0.44) (0.49, 0.29)

R. sphaeroides (2.04,0.44) (0.78, 0.2)

C. crescentus (0.85, 0.261)

TABLE III. Waveform Data (P, D) from Fujii, Shabata & Aizawa [9].

Source 1 (Hyperextended) 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I)

a (1.9715,0.48) (0.2686,0.92) (1.08,0.55) (1.0945,0.29)

b (1.576,0.08) (2.233,0.392) (0.901,1.026) (1.429,0.7) (1.361,0.302)

6 (Curly II) 7 8 9 10

a (0.7893,0.093) (0.6736,0.0514) (0.5805,0.027) (0.5046,0.0104) (0.9336,0.161)

b (0.881,0.088) (0.733,0.048) (0.621,0.024) (0.535,0.01) (1.087,0.16)

TABLE IV. a - Calladine (?), b - Hasegawa et al. (computed).
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data1
data2
data3
data4

TABLE S2. Waveform measurements (P [µm], D [µm]) for E. coli.: a - Turner, Ryu & Berg [45], b -
Matsuura, Kamiya & Asakura [46], c - Fujii, Shabata & Aizawa [37]. Colors correspond to those in Fig. 3b.
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Organism 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

Peritrichous

S. typhurium (2.55, 0.6) (0,1.0) (1.29, 0.5) (1.20, 0.2) (1.00, 0.15)

E. coli (2.2, 0.41) (0,1.51) (0.92, 0.261)

E. cartovora (2.13, 0.57) (0,1.20) (0.76, 0.169)

Y. enterocolitica (2.55, 0.55) (1,1.20) (1.04, 0.3)

P. mirabilis (1.83, 0.47) (0,1,27) (0.87, 0.35)

B. subtilis (2.06, 0.42) (0,1.17) (0.91, 0.18)

E. faecalis (2.40, 0.5) (0,1.25) (1.11, 0.15)

Polar

I. loihiensis (1.32, 0.33) (0,0.69) (1.18, 0.48) (0.93, 0.25)

P. aeruginosa (1.38, 0.392) (0,0.95) (1.0, 0.57) (0.92, 0.22)

P. syringae (1.59, 0.43) (1.04, 0.82) (1.49, 0.668) (0.75, 0.229)

X. axonopodis (1.41, 0.392) (0,0.86) (1.42, 0.69)

V. para-haemolyticus (1.21, 0.239)

B. japonicum pof (0,1.06) (0.79, 0.62) (1.16, 0.36)

A. brasilense pof (1.08, 0.341)

Lateral

V. para-haemolyticus laf (0.47, 0.11)

B. japonicum laf (0.71, 0.2)

A. brasilense laf (0.66, 0.2)

Exceptions

S. meliloti (2.27, 0.57) (0,1.05) (0.61, 0.44) (0.49, 0.29)

R. sphaeroides (0,1.17) (2.04,0.44) (0.78, 0.2)

C. crescentus (0.85, 0.261)

Waveform Data (P, D) from Fujii, Shibata & Aizawa [31]. Family I: Peritrichous, Family II:

Polar, Family III: Lateral. Family I flagellin, Family II flagellin, Family III flagellin each lead to

different P-D circular radii and hence described different families. WTF WITH COILED????!!!

III. FLUID-BODY INTERACTION AND HYDRODYNAMIC EFFICIENCY

Bacteria swim at exceedingly small length and velocity scales. Taking the flagellum length

L as a characteristic length scale, and the wave speed C as a characteristic velocity scale, a

Reynolds number characterizing the fluid motion is Re = C L/ν � 1, with ν = 10−2cm2/s

the dynamic viscosity of the surrounding fluid [37]. Hence the viscous dissipation vastly

overwhelms any inertial effects, and the fluid motion is well-captured by solving the Stokes

equations, ∇ · σ = 0,∇ · u = 0, with u the fluid velocity, σ = −pI + µ(∇u + ∇uT ) the

Newtonian stress tensor, µ the kinematic viscosity, and p the pressure (see [37–39]).
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TABLE S3. Waveform measurements (P [µm], D [µm]) from Fujii, Shibata & Aizawa [37], for organisms in
the peritrichous, polar, and lateral flagellar families, along with a few exceptions. For polar, lateral, and
exceptional flagellar families, the “Normal” form refers to small-Normal and very-small-Normal forms (see
Ref. [37]). Colors correspond to those in Fig. 3b (peritrichous) and Fig. 3d (monotrichous, or polar).
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Source 2 (Normal) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

a (2.3, 0.35) (1.1, 0.5) (1.0, 0.25) (0.9, 0.16)

b (2.2, 0.41)

c (2.2, 0.41) (0.92, 0.261)

TABLE II. Waveform data for E. coli. a - Turner, Ryu & Berg [10], b - Matsuura, Kamiya & Asakura [11], c - Fujii, Shabata
& Aizawa [9].

Organism 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I) 6 (Curly II)

S. typhurium (2.55, 0.6) (1.29, 0.5) (1.20, 0.2) (1.00, 0.15)

E. coli (2.2, 0.41) (0.92, 0.261)

E. cartovora (2.13, 0.57) (0.76, 0.169)

Y. enterocolitica (2.55, 0.55) (1.04, 0.3)

P. mirabilis (1.83, 0.47) (0.87, 0.35)

B. subtilis (2.06, 0.42) (0.91, 0.18)

E. faecalis (2.40, 0.5) (1.11, 0.15)

I. loihiensis (1.32, 0.33) (1.18, 0.48) (0.93, 0.25)

P. aeruginosa (1.38, 0.392) (1.0, 0.57) (0.92, 0.22)

P. syringae (1.59, 0.43) (1.04, 0.82) (1.49, 0.668) (0.75, 0.229)

X. axonopodis (1.41, 0.392) (1.42, 0.69)

V. para-haemolyticus (1.21, 0.239)

B. japonicum pof (0.79, 0.62) (1.16, 0.36)

A. brasilense pof (1.08, 0.341)

V. para-haemolyticus (0.47, 0.11)

B. japonicum laf (0.71, 0.2)

A. brasilense laf (0.66, 0.2)

S. meliloti (2.27, 0.57) (0.61, 0.44) (0.49, 0.29)

R. sphaeroides (2.04,0.44) (0.78, 0.2)

C. crescentus (0.85, 0.261)

TABLE III. Waveform Data (P, D) from Fujii, Shabata & Aizawa [9].

Source 1 (Hyperextended) 2 (Normal) 3 (Coiled) 4 (Semi-Coiled) 5 (Curly I)

a (1.9715,0.48) (0.2686,0.92) (1.08,0.55) (1.0945,0.29)

b (1.576,0.08) (2.233,0.392) (0.901,1.026) (1.429,0.7) (1.361,0.302)

6 (Curly II) 7 8 9 10

a (0.7893,0.093) (0.6736,0.0514) (0.5805,0.027) (0.5046,0.0104) (0.9336,0.161)

b (0.881,0.088) (0.733,0.048) (0.621,0.024) (0.535,0.01) (1.087,0.16)

TABLE IV. a - Calladine (?), b - Hasegawa et al. (computed).
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data4TABLE S4. Theoretical waveform data (P [µm], D [µm]) from: a - Calladine [3], and b - Hasegawa et al. [4].

Colors correspond to those in Fig. 3b.
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Peritrichous 〈ψ〉 ± σψ [degrees] 〈E〉 ± σE (measured) E (theoretical) [3]

1 (Hyper-extended) 9.1 1.1 · 10−3

2 (Normal) 32.4± 4.5 9.6 · 10−3 ± 1.3 · 10−3 1.06 · 10−2

3 (Coiled) 79.6± 3.9 9.3 · 10−4 ± 6.9 · 10−4 7.5 · 10−4

4 (Semi-Coiled) 55.4± 3.3 7.8 · 10−3 ± 1.0 · 10−3 6.9 · 10−3

5 (Curly) 39.0± 7.7 7.8 · 10−3 ± 1.1 · 10−3 8.6 · 10−3

6 (Curly II) 28.4± 5.0 5.9 · 10−3 ± 1.0 · 10−3 6.0 · 10−3

7 20.3 3.4 · 10−3

8 13.5 1.4 · 10−3

9 8.3 3.4 · 10−4

10 3.7 5.1 · 10−5

Polar

(Normal) 38.6± 4.0 1.03 · 10−2 ± 1.0 · 10−3

(Coiled) 68.0 3.9 · 10−3

(Semi-Coiled) 58.4± 6.3 7.0 · 10−3 ± 2.3 · 10−3

(Curly) 41.7± 3.2 8.2 · 10−3 ± 0.7 · 10−3

TABLE S5. Mean pitch angles and efficiencies ± one standard deviation (when available) for the peritrichous
flagellar family (as in Fig. 3c) for measured and theoretical waveforms [3], and for measured waveforms from
the polar (or monotrichous) family (as in Fig. 3e).
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II. Waveform geometries and resistive force theory predictions

The primary results found from comparing the hydrodynamic efficiencies of the polymorphic forms

were reported in the main text. Most notably, the normal polymorphic form was found to be the most

efficient waveform by a significant margin for both peritrichous and monotrichous (polar) flagellar families.

Figures 3(b,d) showed the geometries of the waveforms considered in the helical circumference-pitch (C-P)

plane (with C = πD). Here we provide a different standpoint from which to visualize the geometries;

Fig. S1 shows the geometrical relations in pitch angle ψ vs. circumference C for the peritrichous and

monotrichous (polar) flagellar families. The normal, semi-coiled, and curly forms all occupy nearby regions

of parameter space in pitch angle ψ. However, compared to the other polymorphs, the normal waveforms

have a significantly larger helical circumference for a given pitch angle.

Peritrichous Polar(b)(a)
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FIG. S1. Geometrical data for the (a) peritrichous and (b) monotrichous polar flagellar families (see Fig. 1a
for symbol legend). The normal, semi-coiled, and curly forms all occupy nearby regions of parameter space in
pitch angle ψ. However, compared to the other polymorphs, the normal waveforms have a significantly larger
helical circumference for a given pitch angle.

Finally, resistive force theories, which are valid only at O(log 1/ε)−1 and relate local body velocities to

local fluid forces, are the most widely used approaches for modeling slender bodies in fluids, dating in the

case of highly viscous flow back to the seminal work of Gray & Hancock [38]. However, we note that the

local resistive force theory achieved by ignoring the non-local integral operator K[f(s′)](s) in Eq. (2) in the

main text (see also Ref. [38]), and even the more appropriate resistive force theory for helical geometries

due to Lighthill [39] do not predict the efficiency ordering found using the full non-local slender body

theory. A related study by Chattopadhyay and Wu also suggests the importance of solving for the full

nonlocal fluid interactions in such systems [40]. Figures S2(a,b) show the efficiencies computed using these

local theories for the peritrichous flagellar family data. The first approximation significantly overestimates

the efficiencies, and the curly and semi-coiled forms are the most efficient. The second approximation

(using Lighthill’s resistive coefficients) significantly underestimate the efficiencies, and again the curly and

semi-coiled forms are computed to be the most efficient. Hydrodynamic interactions between different

parts of the flagella, which are captured by our slender-body approach but not in resistive force theory,

are thus essential in order to conclude on the relative efficiencies of flagellar polymorphs.
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FIG. S2. Mean efficiencies computed using two local resistive force models; namely, (a) the local theory
achieved by simply neglecting the non-local term K[f(s′)](s) in Eq. (2) in the main text, and (b) the local
theory of Lighthill for helical waveforms [23]. Neither local theory predicts the correct efficiency ordering of
the polymorphic forms for biologically relevant parameters.
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