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Abstract

Inverse problems in subsurface flow are generally challenging due to the need for a large number of
expensive numerical solutions to partial differential equations (PDEs). Inverse modeling typically
consists of generating realizations of the unknown model parameters and matching the corresponding
model’s prediction to the measurements. Model errors, measurement errors, and data scarcity
require one to quantify predictive uncertainty in model predictions, which further exacerbates the
computational cost of inverse modeling. The latter can be ameliorated either by devising inversion
frameworks that require fewer forward model runs to converge, or by constructing a much more
efficient forward surrogate model that replaces the PDE solver. In this dissertation, we pursue
these two strategies and apply them to three inverse problems of practical importance in subsurface
applications. The common thread in this investigation is the use of deep neural network (DNN)
surrogates that accelerate forward modeling by several orders of magnitude.

We first present a study on identification of the statistical parameters of a discrete fracture
network (DFN). These parameters are field-scale properties of fractured rocks, which play a crucial
role in many subsurface problems. In this study, we develop an inversion technique to infer two
such parameters, fracture density and fractal dimension of a DFN, from cross-borehole thermal
experiments data. Our approach relies on a particle-based heat-transfer model, whose evaluation
is accelerated with a DNN surrogate that is integrated into a grid search. The DNN is trained on
a small number of heat-transfer model runs, and predicts the cumulative density function of the
thermal breakthrough time. The latter is used to compute fine posterior distributions of the (to-be-
estimated) parameters. Our synthetic experiments reveal that fracture density is well constrained by
data, while fractal dimension is harder to determine. Adding non-uniform prior information related
to the DFN connectivity improves the inference of this parameter.

We further focus on a higher-dimensional inverse problem on contaminant source identification.
The reconstruction of contaminant release history from sparse observations of solute concentration is
a key component of the design of an efficient subsurface remediation strategy. Markov chain Monte
Carlo (MCMC), the most general method for this task, is rarely used in practice because of its high
computational cost associated with multiple solves of contaminant transport equations. We investi-

gate two MCMC variants: delayed rejection adaptive Metropolis (DRAM) and Hamiltonian Monte
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Carlo (HMC), in which a transport model is replaced with a fast and accurate surrogate model in the
form of a deep convolutional neural network (CNN). The CNN-based surrogate is trained on a small
number of the transport model runs based on the prior knowledge of the unknown release history.
Thus reduced computational cost allows one to diminish the sampling error associated with con-
struction of the approximate likelihood function. As all MCMC strategies for source identification,
our method has an added advantage of quantifying predictive uncertainty and accounting for mea-
surement errors. Our numerical experiments demonstrate that our method’s accuracy is comparable
to that of MCMC with the forward transport model, but carries a fraction of the computational
cost of the latter.

Finally, we expand the unknown parameter dimension and tackle a realistic three-dimensional
inverse problem, in which both a heterogeneous conductivity field and the contaminant release
history are identified from sparse observations. Achieving these two goals with limited and noisy
hydraulic head and concentration measurements is notoriously challenging. The obstacles include the
large dimensionality of the parameter space of such inverse problems and the high computational cost
of a numerical solution to the PDEs describing fluid flow and solute transport in porous media. In
this study, we use a convolutional adversarial autoencoders (CAAE) to parameterize heterogeneous
non-Gaussian conductivity fields with a low-dimensional latent representation. Additionally, we
train a three-dimensional dense convolutional encoder-decoder (DenseED) network to perform as
the forward surrogate for the flow and transport processes. Combining the CAAE and DenseED
forward surrogates, ensemble smoother with the multiple data assimilation (ESMDA) algorithm is
used to sample from the Bayesian posterior distribution of the unknown parameters, forming our
CAAE-DenseED-ESMDA inversion framework. We compare the inversion results of the CAAE-
ESMDA with the physical flow and transport simulator with those of the CAAE-DenseED-ESMDA
to demonstrate that the latter yields accurate reconstruction results at the small fraction of the cost

of the former.
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Chapter 1

Introduction

1.1 Inverse Problems and their Challenges

The number of unknown parameters in a given problem determine the dimensionality of the inverse
model. The higher the model’s dimensionality, the harder it is to solve. Many, if not all, inversion
strategies scale poorly with the dimension. Inversion frameworks fall into two categories, determin-
istic and probabilistic. Regardless of whether physical/chemical/biological phenomena of interest
are deterministic or stochastic, and regardless of which inversion framework is adopted, inverse mod-
eling unavoidably requires a large number of forward model solves. In each solve, a realization of
unknown parameters is used to obtain the model response, and the latter is compared with the
measurements. The computational cost of an individual forward run can be so high as to render the
cost of an accurate solution to a real-world inverse problem prohibitive.

As challenging as they might be, inverse problems are still tractable if two complementary strate-
gies are integrated. The first aims to reduce the number of forward model runs that are required for
an inversion algorithm to converge. The second aims to reduce the computational cost of each for-
ward run by constructing an efficient surrogate model and/or to reparameterize the high-dimensional

inputs.

1.2 Inversion Frameworks

Inverse problems are often ill-posed, as the available observations are sparse and sensitive to random
measurement errors. The goal of reducing the number of forward simulations needed relies on
the development of advanced inversion algorithms. Among them, deterministic or optimization-type
methods (e.g., maximum likelihood estimators) look for a “best” estimate of the parameters, without
attempting to quantify the predictive uncertainty inherent in such estimations. Rather than seeking

to obtain a unique solution, probabilistic methods provide a distribution of such solutions, so that
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each estimate comes with the associated probability of being correct or a confidence interval. This
thesis deals with the latter type of inversion algorithms.

Among probabilistic inversion frameworks, Markov chain Monte Carlo (MCMC) and ensemble-
based methods are two of the most prevalent alternatives in subsurface inverse modeling [105]. Both
frameworks provide an approximation of the Bayesian posterior distribution of unknown parame-
ters. A very beneficial feature of MCMC is its ability to handle general prior distributions of the
parameters. However, even the mathematical properties of MCMC guarantee the convergence of a
Markov chain of samples to the posterior distribution after a “sufficient” number of samples is assim-
ilated, this number can easily exceed 10° in groundwater applications [143, 138]. Parallelization of
MCMC [55] does not vastly improve its efficiency, because each Markov chain needs to be long enough
for the “burn in” stage samples to be discarded. Search for MCMC variants with improved efficiency
has led to the development of the delayed rejection (DR) sampling and the adaptive Metropolis (AM)
sampling, which slightly increase the sample acceptance rate; the Hamiltonian Monte Carlo (HMC)
sampling based on the gradient, which integrates a Hamiltonian physical system. In theory, HMC
is applicable to high-dimensional problems, because the acceptance rate would reach 100% if the
Hamiltonian dynamics are simulated properly. Yet, the use of the gradients required in this sam-
pling method preclude its use in many high-dimensional applications. The ensemble-based methods
include ensemble Kalman filter (EnKF) [31, 32], restart EnKF (rEnKf) [134], iterative local up-
dating ensemble smoother (ILUES) [140], and ensemble smoother with multiple data assimilation
(ESMDA). Such methods use a two-stage prediction/correction procedure to update the ensemble
of the parameter realizations drawn from a prior distribution. ESMDA and ILUES have shown
the ability to deal with nonlinear state-space models and high-dimensional problems [54, 94]. The
“rule of thumb” in ESMDA or ILUES is to use an ensemble that consists of O(10%) samples, and
to update the ensemble for O(10) iterations. Because the forward simulations in each ensemble are
uncorrelated, they are trivially parallelizable. This property, which is often referred to as “embar-
rassingly parallel” or “pleasingly parallel” [48], is a great advantage of these methods over MCMC.
A geostatistical parameter estimation framework: quasilinear inversion [117, 62, 63] also falls in the
type of inversion frameworks that require the gradient information, or referred to as sensitivity of
measurements to unknowns, and hence, suffers from the same curse-of-dimensionality[37]. Adjoint-
state sensitivity analysis enables the implementation of this method, but loses the attractiveness
since the forward model can not be used as a “black-box”. Kigenspectrum-based compression de-
veloped for geostatictical inversion methods [64, 75] could preserve the feasibility of a “black-box”
forward model, and largely reduce the effort of the computation of these gradients with a matrix-free

approach, yet is still constrained to the best linear unbiased estimation.
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1.3 Swurrogate Models

There are at least two ways to reduce the computational cost of a single forward model run. The first
seeks to replace expensive forward PDE-based simulations of flow and transport processes with their
cheap surrogate, emulator, or reduced-order model [19, 85, 84]. Examples of such surrogates include
polynomial chaos expansions [138, 19] and Gaussian processes [29, 139]. These two approaches, and
many others, suffer from the so-called curse of dimensionality, which refers to the degradation of
their performance as the number of random inputs becomes large. Various flavors of deep neural
networks (DNNs) have attracted attention, in part, because they remain robust for large numbers of
inputs and outputs [95, 58]. Another benefit of DNNs is that their implementation in open-source
software is portable and can be accelerated with advanced computer architectures, such as graphics
processing units (GPUs) and tensor processing units (TPUs), without significant coding effort from
the user. On the downside, unlike some other surrogate models (e.g., polynomial chaos, which can
predict a solution at any time), most DNN surrogates of flow and transport models predict only the
model states for a short period, and do not generalize to further predictions.

The second way of using surrogates, which is not directly related to a forward model, is to
obtain an efficient parameterization of high-dimensional variables. This technique is often referred
to as reduced-order modeling (ROM). DNN-based based ROM methods include autoencoders such as
variational autoencoders [61] and adversarial autoencoders based on a generative adversarial network
(GAN) [40]. In the context of subsurface modeling the resulting DNN learns the two-way mapping
between a training conductivity field and the random latent variable. A realization of the latter can
be decoded to a realization of the conductivity field that is similar to those from the training data
set. Besides significantly reducing the number of the unknown parameters, variational autoencoders
enable one to tackle the latent variable distribution. That is because the latter is usually formed as
a standard normal distribution. This simplicity further facilitates the inverse problem solving with

ensemble methods.

1.4 Overview of the Dissertation

This dissertation is organized as follows. In Chapter 2, we present a Bayesian inference strategy to
estimate characteristics of a Discrete Fracture Network (DFN) from thermal experiments. A DNN
surrogate is used to accelerate simulations of heat tracer migration, facilitating exploration of the
parameter space. We show that prior knowledge about DFN properties sharpens their estimation,
yielding a parameter-space region wherein they lie with high probability. This work was submitted
to Water Resources Research and is available as a preprint on ArXiv [144].

In Chapter 3, a two-dimensional contaminant source identification problem is tackled with two
MCMC variants, DRAM sampling and HMC sampling. We integrate a CNN surrogate model with
the DRAM/HMC sampling to identify the contaminant release locations and strengths. DRAM
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sampling of the forward flow and transport model, implemented in black-box simulators MOD-
FLOW [47] and MT3DMS [141], is performed to obtain the benchmark results. These are used
to test the performance of DRAM sampling and HMC sampling with the CNN surrogate. The
comparison of the inversion accuracy and the computational cost is reported. Part of this work
(DRAM sampling with physics-based model and CNN surrogate model) is published in Stochastic
Environmental Research and Risk Assessment [143].

In Chapter 4, we tackle a three-dimensional problem of contaminant source identification in
a heterogeneous subsurface environment whose hydraulic conductivity is unknown. The latter is
parameterized with a convolutional adversarial autoencoder (CAAE), which reduces the dimension-
ality of the inverse problem, and maps its complex (non-Gaussian, possibly multimodal) distribution
onto a standard normal distribution that is much easier to handle. A forward surrogate model with
a convolutional dense encoder-decoder (DenseED) neural network architecture is used in place of
the PDE-based model of subsurface flow and transport. Ensemble smoother with multiple data as-
similation (ESMDA) is used to approximate the posterior distribution of 931 unknown parameters,
including the conductivity field parameterized with CAAE, and the contaminant release history. We
compare the accuracy and computational efficiency of the PDE-based CAAE-ESMDA inversion with
that of the CAAE-DenseED-ESMDA inversion. This work is under preparation to be submitted to

a peer-reviewed journal.



Chapter 2

Fractured Rock Delineation via

Thermal Experiments

In this chapter, we aim to estimate two Discrete Fracture Network (DFN) characteristics, the fracture
density and fractal dimension, from thermal experiments. Bayesian inference is conducted together
with a DNN surrogate to alleviate the computational burden of the forward model of fluid flow and

heat transfer.

2.1 Introduction

Characterization of fractured rock is a critical challenge in a wide variety of research fields and
applications, such as extraction, management and protection of water resources. In fractured-rock
aquifers, fractures can act as preferential flow paths that increase the risk of rapid contaminant
migration over large distances. While the resource is generally stored in the surrounding matrix,
fractures often determine the spatial extent of the extraction area (the cone of depression or well
capture zone). Similar considerations play an important role in (oil/gas and geothermal) reservoir
engineering, carbon sequestration, etc.

Various characterization techniques provide complementary information about fractured rocks.
These typically rely on direct observation data, surface and borehole data acquired with geophysical
techniques, and borehole data collected during hydraulic and tracer experiments [10, 24, 25, 23, 109].
We focus on the latter because they provide information that is directly related to the hydrogeolog-
ical structures that drive flow and transport processes. For example, measurements of vertical flow
velocities in a borehole under ambient and forced hydraulic conditions are used to estimate the prop-
erties of individual fractures that intersect the borehole [67, 100, 108], and piezometric data collected

in observation boreholes allow one to evaluate features of complex fracture configurations [33, 73, 83].



CHAPTER 2. FRACTURED ROCK DELINEATION VIA THERMAL EXPERIMENTS 6

Chemical tracer experiments, typically comprising the interpretation of breakthrough curves, yield
information on the short and long paths in the fractured rock; these characterize the discrete fracture
network (DFN) and matrix block properties, respectively [110, 45].

Heat has also been utilized to identify the presence of fractures intersecting boreholes [103, 106],
to estimate their properties [65], and to study flow channeling and fracture-matrix exchange at
the fracture scale [22, 66]. Most of these thermal experiments employ advanced equipment, which
deploys the active line source (ALS) to uniformly modify water temperature in a borehole [102] and
the distributed temperature sensing (DTS) to simultaneously monitor the resulting temperature
changes in observation boreholes [106]. Thermal tracer experiments offer several advantages over
their chemical counterparts. They do rely on neither localized multilevel sampling techniques nor
localized tracer injection in boreholes; they interrogate larger area because heat conduction covers
larger area than solute diffusion; and they are not restricted by environmental constraints whereas
chemical tracers may remain in the environment for a long time [2, 104].

Without exception, the interpretation of hydraulic and tracer experiments involves inverse model-
ing. The choice of a strategy for the latter depends on the properties of interest, the data considered,
the models available to reproduce the data, and the prior information about the studied environ-
ment. For fracture configurations between two boreholes, (semi-)analytical and numerical models
can be applied to the cross-borehole flow-meter experiments mentioned above to evaluate the trans-
missivity and storativity of the fractures that intersect the boreholes at known depths [67, 100, 108];
the inversion consists of the gradient-based minimization of a discrepancy between the model’s pre-
dictions and the collected data. Large-scale systems with complex fracture configurations require
the use of sophisticated inversion strategies designed for high volumes of data. Most of such studies
generate data via hydraulic and/or tracer tomography experiments, and use the inversion to iden-
tify the geometrical and hydraulic properties of a fracture network [33, 73, 119]. Studies attempting
to infer the statistical characteristics of a DFN, such as fracture density and scaling exponents in
distributions of length, orientation and aperture [52, 53] are limited. Electric potential and electri-
cal resistivity data were used to identify the fractional connected area(FCA) in [88, 87], where the
fractal dimension was also characterized, showing relatively high uncertainty of this parameter; yet
fractal density was not identified due to the freedom of spatial distribution of the fractures.

Yet, more detailed statistics are necessary to quantify uncertainty in predictions of hydraulic and
transport processes in fractured rocks. Their identification rests on ensemble-based computation,
which involves repeated solves of a forward model. Two complementary strategies for making the
inversion feasible for large, complex problems are: i) to reduce the number of forward solves that
are necessary for the inversion algorithm to converge, and ii) to reduce the computational cost of
an individual forward solve. The former strategy includes the development of accelerated Markov
chain samplers, Hamiltonian Monte Carlo sampling, iterative local updating ensemble smoother,

ensemble Kalman filters, and learning on statistical manifolds [7, 12, 11, 58, 143]. The latter strategy
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aims to replace an expensive forward model with its cheap surrogate/emulator/reduced-order model
[19, 85, 84]. Among these techniques, various flavors of DNNs have attracted attention, in part,
because they remain robust for large numbers of inputs and outputs [143, 95, 58]. Another benefit
of DNNs is that their implementation in open-source software is portable to advanced computer
architectures, such as graphics processing units and tensor processing units, without significant
coding effort from the user.

We combine these two strategies for ensemble-based computation to develop an inversion method,
which makes it possible to infer the statistical properties of a fracture network from cross-borehole
thermal experiments (CBTEs). To alleviate the high cost of a forward model of hydrothermal exper-
iments, we use a meshless, particle-based method to solve the two-dimensional governing equations
for fluid flow and heat transfer in DFNs (Section 2.2). These solutions, obtained for several realiza-
tions of the DFN parameters, are used in Section 2.3 to train a DNN-based surrogate. The latter’s
cost is so negligible as to enable us to deploy a fully Bayesian inversion (Section 2.4) that, unlike
ensemble Kalman filter, does not require our quantity of interest to be (approximately) Gaussian. To
do so, we generate two-dimensional synthetic fractal fracture network models in which hydrothermal
experiments are simulated with fluid flow and heat transfer physically-based models. The computa-
tional burden of the forward models is overcome by determining neural network surrogate models
that are used for inversion analysis. The inverse problem aiming at evaluating the fracture density
and fractal dimension of the fracture networks from this data, is conducted with Bayesian inference,
which is well suited for low-dimensional problems. The structural and physically-based forward
models are presented in Section 2.2, the neural network model formulation in Section 2.3 and the
inversion strategy in Section 2.4. Numerical experiments are conducted in Section 2.5, showing
that our approach is four orders of magnitude faster than the equivalent inversion based on the
physics-based model. These synthetic experiments also reveal that the CBTE data allow one to
obtain accurate estimates of fracture density, while the inference of a DFN’s fractal dimension is less
robust. Main conclusions of this study are summarized in Section 2.6, together with a discussion of

alternative strategies to improve the estimation of fractal dimension.

2.2 Models of Fracture Networks and Transport Phenomena

A forward model of CBTEs consists of a fracture network model and those of fluid flow and heat

transfer. These models are described in Sections 2.2.1, 2.2.2, and 2.2.3, respectively.

2.2.1 Model of Fracture Networks

To be specific, we conceptualize a DFN via the fractal model of [50],

N, =Cr P, (2.1)



CHAPTER 2. FRACTURED ROCK DELINEATION VIA THERMAL EXPERIMENTS 8

that postulates a power-law relationship between the number of fractures, N,, and their dimen-
sionless relative length r (normalized by smallest fracture length rp), in a domain of characteristic
length L. The parameters C' and D denote fracture density and fractal dimension, respectively.
If a network’s smallest fracture has length rg, then the number of classes in the fracture model is
Ny = int(C/r{) and the relative length of fractures in the ith class is r; = (C/i)Y/P (i = 1,..., Ny).
This formulation is equivalent to the model [21] that expresses fracture density n(l, L) = «LPI=% in
terms of fracture length [ and domain size L, if one sets « = CD/Ny, D =D, and a = D + 1. The
latter model reproduces self-similar structures observed in numerous studies [113, Chapter 6.6.8],
allowing one to represent realistic fracture networks with the minimal number of parameters.

To generate a synthetic data set, we consider fractures arranged at two preferred angles #; = 25°
and Ay = 145° in a 100 x 100 m? domain. Fracture centers are randomly distributed over the whole
domain, and their aperture is set to 5 x 107* m, as in [38]. The resulting DFN is simplified by
removing the fractures that are not, directly or indirectly through other fractures, connected to the
domain’s perimeter. An example of such a DFN is shown in Figure 2.1. Fluid flow and heat transfer

are modeled on this fracture network.

ﬂnj Tim Tobs

100 m

100 m

Figure 2.1: Fracture networks example. In a geothermal system, the red rectangle on the left of
the domain represents the injection well, the right rectangle represents the extraction well. The
injecting, extracting, and initial temperature are Tinj, Tobs, Tin respectively.
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2.2.2 Model of Fluid Flow in Fracture Networks

We deploy a standard model of single-phase steady-state laminar flow in a DFN, which assumes
the ambient rock matrix to be impervious to fluid. The flow of an incompressible fluid is driven
by a hydraulic head gradient, J, due to constant hydraulic heads imposed on the left and right
boundaries, the top and bottom boundaries are impermeable.

The fracture extremities and intersections of the DFN, whose construction is detailed above,
form the network nodes and a fracture connecting two adjacent nodes are referred to as the network
edge. Flow rate in each edge is computed as the cross-sectional average of the Poiseuille velocity
profile. Thus, the flow rate, u;;, of flow from node ¢ to node j is u;; = —b%/(lQV)J,‘j, where v is
the fluid’s kinematic viscosity, b;; is the aperture of the fracture connecting the nodes 7 and j, and
Jij = (hj — h;)/l;; is the hydraulic head gradient between these nodes with [;; the distance between
these nodes. The hydraulic heads at the DFN nodes, h; (i =1,2,...), are computed as the solution
of a linear system built by enforcing mass conservation at each node: Zke N, briur; = 0, where N

is the set of the neighboring nodes of node i (see, e.g., [38, 145] for details).

2.2.3 Model of Heat Transfer in Fractured Rock

The DFN constructed in Section 2.2.1 is further pruned by removing the edges representing the
fractures with negligible flow velocities, e.g., u;; < 1071% m/s used in the subsequent numerical
experiments. This leads to removing the “dead-ends” of the fracture networks, which correspond to
fracture segments for which one of the extremities has only one neighboring node. Convection in the
resulting fracture network and conduction in the host matrix rock are modeled via the particle-based
approach [38]. The computational cost of this method is significantly lower than that of its mesh-
based alternatives because it discretizes only the fracture segments, while the matrix is not meshed.
The particle displacement is associated with conduction and convection times in the fracture and
the matrix, respectively. The latter time is defined from analytical solutions to a transport equation
for fracture-matrix systems, and truncated according to the probability pyy for the particle to reach
a neighboring fracture by conduction through the matrix. The fracture segment discretization is
defined through the parameter pj;,, that denotes this probability. Complete mixing is assumed at the
fracture intersections, implying that the probability for a particle to enter into a fracture depends
only on the flow rate arriving at the considered node.

CBTEs are simulated by uniformly injecting Npar¢ particles on the left side of the domain and
recording their arrival times on the right side. The cumulative distribution functions (CDFSs) of
these arrival times describe the changes in the relative temperature T* observed at distance L from
the heat source, assuming complete mixing in the vertical direction at the observation position. The
relative temperature is defined as T* = (Tobs — Tin)/(Tinj — Tin), where Tj, is the initial (at ¢ = 0)
fluid temperature in the system, and Ti,; and To1,s the temperature at the injection and observation

positions, respectively [38].
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2.3 Neural Network Model Formulation

2.3.1 Forward surrogate model

We define a NN surrogate for the physics-based model described in Section 2.2 with a map,
f:(C,D)— F(x), F(z)=P(X <z), zeR, (2.2)

where (C, D) are the fracture network parameters, and F'(z) is the CDF of a particle’s arrival time X,
i.e., the probability that X does not exceed a certain value x. Since the nonzero probability space of
F(z) varies for different simulations [38, 112, and Section 2.5 below], we find it convenient to work
with the inverse CDF (iCDF) F~!. Because any CDF is a continuous monotonically increasing
function, the iCDF (or quantile CDF) is defined as:

iCDF : Q(p) = F'(p) = min{zx € R: F(x) > p}, pe(0,1). (2.3)
If Q(p) is discretized into a set of Ny quantiles {p1,...,pn, : 0 <p1 < -+ < ppn, < 1}, then
iCDF = {Q(p1), ..., Q(pn,)}, Qp1) < -+ < Q(pny)- (2.4)

2.3.2 Fully connected NNs
Consider a fully connected neural network (FCNN),

NN:m 2% g (2.5)

that describes the forward surrogate model (2.2)—(2.4). The vector m, of length N,,, contains the
parameters to be estimated (in our problems, these parameters are C' and D, so that N, = 2);
and the vector a, of length N4, contains the discretized values of the iCDF computed with the
model NN. This model is built by defining an Ny x N, matrix of weights W, whose values are
obtained by minimizing the discrepancy between the vectors d and the vector d comprising the
output of physics-based model from Section 2.2. Because the relationship between m and d is
likely to be highly nonlinear, we relate m and d via a nonlinear model d = ¢(Wm), in which the
prescribed “activation” function o(-) operates on each element of the vector Wm. Commonly used
activation functions include sigmoid functions (e.g., tanh) and the rectified linear unit (ReLU). The
latter, o(s) = max(0, s), is used in this study due to its proven performance in similar applications
[1, 143, 94].

The nonlinear regression model d = ¢(Wm) = (0 o W)(m) constitutes a single layer in a NN.

A (deep) FCNN model with N; layers is constructed by a repeated application of the activation



CHAPTER 2. FRACTURED ROCK DELINEATION VIA THERMAL EXPERIMENTS 11

function to the input,

d=NN(m;0) = (on,0oWy,—1)0...0 (02 0 Wy)(m). (2.6a)

The parameter set @ = {Wy,..., Wy, _;} consists of the weights W,, connecting the nth and

(n + 1)st layers with the recursive relationships:

S1 = (0’2 o Wl)(m) = Ug(Wlm),
si = (0it1 0 W;)(si-1) = 0341 (Wisi1), 1=2,...,N; =2 (2.6b)

d = (on, 0 Wx,—1)(8n-2) = on (Wh,_18n,_2).

Here, s; is the vector of data estimated in the ith layer; Wy, W; (i = 2,...,N; —2) and Wy,
are the matrices of size di x Ny, d; X d;—; and Ng x dn,—2, respectively, and the integers d;
(i =1,...,N; — 2) represent the number of neurons in the corresponding inner layers of the NN.
Sometime, bias parameters b; with dimension d; x d;_ is added to s; too, these b are included into

x as fitting parameters. The fitting parameters © are obtained by minimizing the discrepancy (or
“loss function”) £(d;,d;) between d and d,

Naata
© =argmin »  £(d;,d;),  d; = NN(m;; ©), (2.7)
©® 4

where Ngata is the number of forward runs of the physics-based model. We use the stochastic
gradient descent optimizer [111] to carry out this step, which is commonly referred to as “network

training”.

2.3.3 Neural network model setting

A choice of the functional form of the loss function £ affects a NN’s performance. Measuring the
goodness of the fitting for the fracture forward model requires a good choice of the loss function L
used in Equation (2.7). This function computes the divergence between the predicted and computed
TICDFs. Studies on measuring quantile divergence, especially for discrete inverse distribution, are
scarce. Measures of the “difference” between probability distributions, such as the Kullback-Leibler
(KL) divergence [69] and the Hellinger distance [72], might or might not be appropriate for inverse
distributions. Thus, while the KL divergence is a popular metric in Bayesian inference [12] and
generative NNs [61, 40], its asymmetry precludes its use in (2.7) as a distance. Consequently, we

quantify the distance between two discrete distributions P = (p1,...,pn,) and P’ = (p,...,py,)
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in terms of the Hellinger distance,

Ni 1/2
Ly(P,P) = LQH\/F— VP s = (; S (i - \/@2) 7 (2.8)
=1

i.e., solve the minimization problem (2.7) with £ = L (Q, Q)

To reduce the training cost and improve the NN’s performance, we specify additional features to
refine the initial guess of input parameters. The relationships between the fractal DFN parameters
in Section 2.2.1, suggest the choice of C'/P, C~P and CD (which are equal to r;i'/P, ro/N]P and
aNy, respectively) and 1/D as extra input features. Given the pair of initial parameters (C, D), the

resulting full set of parameters for the NN is:

myy = (C, D, VP c=P ¢D,1/D)". (2.9)

2.4 Inversion via Bayesian Update

2.4.1 Theoretical background

According to the Bayes rule, the posterior probability density function (PDF) fijq of the parameter

vector m is computed as:

fon (10) (23 )
Ja(d)

faja(in:d) = @ = [ @) d)dm, (200
where d and m are the deterministic coordinates of random variable d and m, respectively; fm
is the prior PDF of m; fg)m is the likelihood function (i.e., the joint PDF of the measurements
conditioned on the model predictions, which is treated as a function of m); and the normalizing
factor fq ensures that fu,q integrates to 1.

We take the likelihood function fqm to be Gaussian,

1 Ly(

fd|m(ﬁlva) = eXp

# ,g(fh))] . (2.11)
oaV2m 2 Jc2i

This PDF has the standard deviation o4 and is centered around the square root of the Hellinger
distance between the data d predicted by the likelihood and the data g() provided by the forward
model g. Addition of prior knowledge of m to the likelihood function is done within the standard
Bayesian framework by assuming that the prior PDF is as important as the data. We explore how
the posterior PDF can be improved by adjusting the impact of the prior. To do so, we treat the
latter as a regularization term with a tunable hyperparameter v that corresponds to the weight

associated with the prior, enabling us to reduce the impact of the prior when its knowledge does not
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seem to be persuasive. The resulting posterior PDF is formulated as
fmld(ﬁl; &) S e—H(rﬁ)7 H(m) = Hops (1) + ’VHreg(rh)v (2.12)

where Hops(1m) = — In( fq|m (m; d)) and Hyeg(1) = — In(fum(m)) are the negative log-likelihood and
log-prior distributions, respectively. This yields:

Fenta (181 d) ¢ fajm (105 d) (fm ()", v € [0,1]. (2.13)

This posterior PDF is computed via the following algorithm.

2.4.2 Numerical Implementation

The efficiency of the neural network model that is previously defined enables us to implement a
robust inverse analysis by computing the posterior distribution of a large number of inputs. The
corresponding Monte Carlo algorithm is implemented as follows. The posterior distribution previ-

ously defined is computed with the following Monte Carlo algorithm:

1. The domains C and D of values for the parameters C' and D are discretized with No and Np
nodes, respectively. The result is a No x Np regular grid for the parameter pair (C, D) with
coordinate vectors m;; = (C;, D;)" (i=1,...,N¢, j=1,...,Np).

2. The iCDF's (2.4) are computed with the forward model g for all pairs m;;.

3. The negative log-likelihood Hops(m) = — In( fq|m (m; d)) is computed via (2.11), with the data
g(m) provided by model g in Step 2.

4. The posterior PDF fi;q is computed via (2.13) by adjusting the weight ~ assigned to the prior
knowledge. (The case v = 0 corresponds to a uniform prior for m, where the unnormalized

posterior PDF is equivalent to the likelihood.)

This brute-force implementation of Bayesian inference is only made possible by the availability of
the FCNN surrogate, whose forward runs carry virtually zero computational cost. In its absence, or
if the number of unknown parameters were large, one would have to deploy more advanced Bayesian

update schemes such as Markov chain Monte Carlo [143, 7] or ensemble updating methods [94, 95].

2.5 Numerical experiments

The synthetic generation of DFNs and breakthrough times, tp,eak, for a heat tracer is described
Section 2.5.1. Generation of the data for CNN training is described in Section 2.5.2, with the
construction of a CNN surrogate for the PDE-based model (Section 2.2) reported in Section 2.5.3.
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In Sections 2.5.4 and 2.5.5, we use this surrogate to accelerate the solution of the inverse problem

of identifying the DFN properties from the breakthrough-time data.

2.5.1 Synthetic Heat-Tracer Experiment

Our synthetic heat tracer experiment consists of injected hot water with temperature Ti,; at the
inlet (z; = 0) and observing temperature changes at the outlet (1 = L). The goal is to infer the
statistical properties of a DFN, C' and D, from a resulting breakthrough curve. A fracture network
with known values of C' and D serves as ground truth, with possible measurement errors neglected.
Consistent with [38], we set the externally imposed hydraulic gradient across the simulation domain
to J = 0.01 and the thermal diffusion coefficient in the matrix to Diperm = 9.16 x 1077 m2/s.

2.5.2 Generation and Analysis of Synthetic Data

To generate data for the CNN training and testing, we considered the fracture networks (2.1) with
C € [2.5,6.5] and D € [1.0,1.3]. These parameter ranges are both observed experimentally [89,
115] and used in previous numerical studies [38, 126]. The parameter space [2.5,6.5] x [1.0,1.3]
was uniformly discretized into Ny, = 10* nodes, i.e., pairs of the parameters (C,D); with i =
1,..., Ngim. The number of injected particles, Npart, representing the relative temperature of the
injected fluid during a CBTE, T},j, varied between 10? and 10%.

Table 2.1 below gives the computational times for estimating the TCDFs of one random fracture
network realization over 10* pairs of the parameters (C, D). The table shows that the average time
required to perform one simulation is smaller than one second when the number of particles is set
to 10? (Simul, Simus, Simu7 and Simul0) or when the fractures are not discretized (Simul, Simu2
and Simu3).

In addition to Npart, the simulation time and accuracy of each forward model run are largely
controlled by the number of elements used to discretize a fracture, which is defined by the parameter
Plim introduced in Section 2.2.3. The simulation time tg, refers to the time (in seconds) it takes to
estimate the CDF of breakthrough times for one random DFN realization and one of the Ny, = 10*
pairs of the parameters (C, D). We found the average tgm not to exceed 1 s if either Npa = 100 or
the fracture is not discretized (Table 2.1); the average is over 20 random realizations of the DFN
obtained with different random seeds for each parameter pair (C, D).

Representative CDF's of breakthrough times of V¢ particles, in each of these 20 DFN realiza-
tions, are displayed in Figure 2.2 and Figure 2.3 for six pairs of the DFN parameters (C, D). The
across-realization variability of the CDFs is more pronounced for Npa.x = 10% then 103 particles,
and visually indistinguishable when going from Ny, = 10 to 10* particles(shown in Figure 2.4).
Likewise, no appreciable differences between the CDFs computed with pj, = 0.5 and 0.2 were ob-
served. Finally, when the random-seed effects are averaged out, the resulting breakthrough-time
CDFss for Npart = 102 and 102 are practically identical (Figure 2.5). Based on these findings, in the
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Figure 2.2: Representative CDF's of the logarithm of breakthrough times (in seconds) of Npary = 100
particles, F(Intpreax), for 20 realizations of the DFN characterized by a given combination of the
DFN parameters (C, D). Each colored curve corresponds to a different random realization, in all
simulations, we set pj;, = 0.5. Corresponding to Simu7 in Table 2.1.
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Figure 2.3: Representative CDF's of the logarithm of breakthrough times (in seconds) of Npa.y = 1000
particles, F(Intpreax), for 20 realizations of the DFN characterized by a given combination of the
DFN parameters (C, D). Each colored curve corresponds to a different random realization, in all
simulations, we set pj;, = 0.5.Corresponding to Simu8 in Table 2.1.
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Figure 2.4: Representative CDFs of the logarithm of breakthrough times (in seconds) of Npa =
10000 particles, F(Intpreax), for 20 realizations of the DFN characterized by a given combination of
the DFN parameters (C, D). Each colored curve corresponds to a different random realization, in

all simulations, we set pj, = 0.5. Corresponding to Simu9 in Table 2.1.
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Figure 2.5: Mean CDFs of the logarithm of breakthrough times (in seconds) of Ny, particles,
F(In tbreak ), averaged over the corresponding DFN realizations in Figure 2.2 and Figure 2.3.
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Simulation name  Npa¢  pim  Computational time

Simu 1 102 - 3.232
Simu 2 103 - 3.294
Simu 8 10¢ - 5.702
Simu 4 102 0.9 5.301
Simu 5 103 0.9 17.365
Simu 6 10 09 100.573
Simu 7 102 05 6.560
Simu 8 103 05 25.676
Simu 9 100 05 191.739
Simu 10 102 0.2 9.804
Simu 11 108 0.2 56.483
Simu 12 10 0.2 420.883

Table 2.1: Computational times, in seconds, over 10* simulations for various values of the number of
particle (Npare) and the fracture discretization (piim = 1/Nais). When piin, is not defined (Ngis = 0),
the fracture is not discretized and the results rely on the assumption of an infinite surrounding
ambient matrix [107, 110]. When pjy, is defined, decreasing the value of this parameter results in
improving the fracture discretization by reducing the size of the discretized fracture elements.

subsequent simulations, we set Npare = 100 and piim = 0.5 in order to obtain an optimal balance
between the computational time and accuracy.

For some parameter pairs (C, D), not every DFN realization (defined by the random seed) hy-
draulically connects the injection and observation boundaries. The number of displayed CDFs is
smaller than 20 because the physically-based transport model could not perform for all the 20 ran-
dom fracture networks. This is usually due to the presence of not connected fracture networks for
which the fluid flow distribution is not defined. Such hydraulically disconnected networks are not
suitable for our flow model (see Section 2.2.2). However, in our numerical experiments, there were at
least 10—and, in the majority of cases, 20—connected fracture networks for each (C, D) pair shown
in Figure 2.7.

The final step in our data generation procedure consists of converting the estimated CDFs F
into corresponding iCDFs F~! (Figure 2.6). The latter form the data set d, different parts of which
are used to train a CNN and to verify its performance.

Before any data is seen, we perform a qualitative sensitivity analysis to gain some presumption
on the inverse modeling results. The sensitivity analysis here are to inspect the injectivity of the

model:

f:X Y,

(2.14)
injectivity of f :Va,be€ X, f(a)= f(b)=a=0

It is observed from the obtained dataset that the function mapping fracture parameters (C, D)

and the particle arrival time density function is not injective. Hence performing inverse analysis
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Figure 2.6: CDFs (left) and corresponding iCDFs (right) of the thermal breakthrough times for a

single realization of the six DFNs characterized by six pairs of the parameters (C, D).
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Figure 2.7: Histogram of connected and successfully simulated realizations over 20 realizations.
Left: simulations with V., = 100, Right: simulations with Np,, = 100. This information is used to
construct the prior distribution of the parameters (C, D) in Figure 2.15.
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would lead to ambiguous results. Figure 2.8 illustrates such non-injectivity, as the cases which result
in very similar output are distributed in a big area in the input space.
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Figure 2.8: Three examples showing that the considered problem is not injective, i.e., different sets
of the parameters (C,D) lead to similar CDFs. In the figures in the first row, the green dot indicates
the reference cases, the red dots are the C,D pairs which result in the most similar CDFs with the
reference case, the lighter the color, the closer the CDF's.

It is interesting to notice from Figure 2.8 that although the forward problem is ill-posed, the
output depends on C' more than D, i.e. the model is more sensitive to C'. This property of the
forward model can be later used in a correlated case where C and D are not independent, s.t. the

inverse analysis is less ill-posed.

2.5.3 FCNN Training and Testing

The data generated above are arranged in a set {myn;,, dl}f\él" with Ngm = 10* and myy defined
in (2.9). We randomly select 8 - 10% of these pairs to train the FCNN NN in (2.5), leaving the
remaining 2-103 for testing. The output data d come in the form of iCDFs, i.e., nondecreasing series
of numbers. Since a NN model is not guaranteed to reproduce this trend, we use the hyperparameter

tuning method [78] to perform the search in the hyperparameter space specified in Table 2.2.
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Parameter name Search region

Number of layers Uu{3,4,5,6}

Number of neurons /{22,232, ...,2%}
Optimizer name U{rms, sgd, ada, adam}
Learning rate, I, logyo (1) ~ U[—4, 2]

Table 2.2: Hyperparameter search space defined by the number of layers, the number of neurons in
each layer, the optimizer names, and (logarithm of) the learning rate. These parameters are uni-
formly sampled from either a discrete set of values, U{-, -, ..., -}, or an interval, U[-,-]. The RMSprop
optimizer [41, 49], rms; the stochastic gradient descent optimizer [121], sgd; the Adagrad optimizer
[27] ada; and the Adam optimizer [60], adam, slightly differ from each other when performing the
parameter gradient descent during the NN training.

The hyperparameter search involved 2500 trials; in each trial, the subset of data {myn;, d; }5°9°
were randomly split into a training set consisting of 6400 pairs {mnn,,d;} and a validation set
comprising the remaining 1600 pairs {myn;, d;}. For each epoch, the 6400 training pairs were used
to optimize the NN parameters, and the NN accuracy is evaluated on the validation set. Each trial
used one of the optimizers in Table 2.2 for at most 10% epochs; the trial was stopped if the validation
loss did not decrease for 10?2 epochs. After completion of all the trials with these rules, the trial
with the smallest validation loss was saved. The optimal FCNN, described in Table 2.3, has 6 layers
between the input and output layers and is obtained using the Adam optimizer with the Adam
optimizer coefficients § = (0.9,0.999) to perform gradient descent. This trial is associated with
a learning rate [, = 0.00403 and the averaged Hellinger loss of 0.0827 on the validation set. This
FCNN was further trained with a learning rate that reduces on plateau of the validation performance
to further fine-tune the model parameters for another 10 epochs; the ending testing Hellinger loss
is 0.0652 and the total training time is 37340 seconds. Figure 2.9 depicts the FCNN predictions of
the iCDFs of the particle breakthrough times in DFNs characterized by different parameter-pairs
(C, D) not used for training. These predictions are visually indistinguishable from those obtained

with the physics-based model g(m) described in Section 2.2.1.

Layer Weights Bias Layer output
Input - - 6

FCl W1 1256 X 6 b1 : 256 SHE 256

FCQ W2164X256 b2264 82264

FC?, W3 : 512 x 64 b3 : 512 S3 ! 512

FCy W, :256 x 512 by :256 s4:256

FC5 W532X256 b5i32 S5I32

FCq Wi 128 x 32 bg: 128 sg: 128
Output Wr7:50x 128 by:50 50

Table 2.3: The best-trial NN architecture consists of six hidden layers, FC; (i = 1,...,6), with the
corresponding weight matrix W; and layer output s; (i = 1,...,6) in (2.6). Bias parameters b; with
dimension d; X d;_1 is added to s; too, these b are included into © as fitting parameters.
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Figure 2.9: Physics-based and FCNN predictions of the iCDFs of the particle breakthrough times
in DFNs characterized by different parameter-pairs (C, D) not used for training. ’truth’ is obtained
with the physics-based iCDFs.
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2.5.4 Bayesian Inversion without Prior Information

We start with the Bayesian data assimilation and parameter estimation from Section 2.4. Taking the
uniform prior, v = 0 in (2.13), and assimilating the Ny, = 10* candidates provided by the physics-
based model g, this procedure yields the posterior PDFs of C and D shown in Figure 2.10 and
Figure 2.11. While this noninformative prior indicates that all values of the parameters (C, D) are
equally likely, the sharpened posterior correctly assigns higher probability to the region containing
the reference (C, D) values. The relatively small number (Ngy, = 10%) of the forward solves of the

physics-based model g manifests itself in granularity of the posterior PDF maps.
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2.840 3.227 2.938
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Figure 2.10: Examples of posterior PDFs of the DFN parameters C' and D, for six experiments
defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian
assimilation of either 10* runs of the physics-based model

Significantly more forward model runs are needed to further sharpen these posterior PDFs around
the true values of (C, D) and to reduce the image pixelation. Generating the significant amounts
of such data with the physics-based model is computationally prohibitive. Instead, we use 107
additional candidates, corresponding to a 10* x 10% mesh of the parameter space, provided by the
FCNN surrogate. Figure 2.10 demonstrates that assimilation of these data (forward runs of the
cheap FCNN surrogate) further reduces the band containing the unknown model parameters (C, D)
with high probability. These distributions are improved as illustrated in Figure 2.11 by using data
points, and resulting in finer distributions that are consistent with the initial distributions shown in
Figure 2.13, 2.14. Generation of such large data sets with the physics-based model is four orders of
magnitude more expensive than that with the FCNN. The availability of a NN surrogates makes a

difference between being able to solve this inverse problem or not.
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Figure 2.11: Examples of posterior PDFs of the DFN parameters C' and D, for six experiments
defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian
assimilation of additional 107 runs of the FCNN surrogate

In addition to improving the quality of the posterior distributions, the computational times
reported in Table 2.4 show that using the surrogate NN model results in reducing by a factor 4 the

inverse analysis time, which is not feasible with the physics-based model g .

Nsim Ttrain Trun Tgrid Ttot
gm)  2x10° 0 1.312-10° 547 1.312-10°
NN(m) 107 37340 1.26 547  3.735-10%

Table 2.4: Computational cost of the Bayesian inversion using the physics-based model g(m) or
the FCNN surrogate NN(m). Each inversion requires Ny, forward runs and takes time Tiot. The
latter comprises time to train the model (Tirain), time to execute the forward runs (T}u,) and time
to define the posterior PDF on the discretized parameter grid (Tgriq). The running time for g(m) is
a projection based on the simulation time of 6560 seconds that was necessary to run 10* simulations.
The FCNN was trained and executed on GPUs provided by GoogleColab. All times are in seconds.

The posterior PDFs displayed in Figure 2.10 show that the fracture density C' is well constrained
and amenable to our Bayesian inversion, whereas the inference of the fractal dimension D is more
elusive. Examples of the DFNs in this study are provided in Figure 2 of [38]. They suggest that,
for the parameter ranges considered, C' impacts the spatial extent of a fracture network, while D
affects the fracture-length distribution. Consequently, C' has a more significant impact on the overall

structures.
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2.5.5 Bayesian Inversion with Data-informed Priors

To refine the inference of parameters C and D from the breakthrough-time CDFs, we add some
prior information. First, we observe that the field data reported in Section 2.5.6 suggest that C and
D are correlated. These data are fitted with a shallow feed-forward NN resulting in the prior PDF
of C' and D shown in Figure 2.12. These data vary over larger ranges than those used for C' and D
in the previous section; at the same time, most values correspond to C' < 2. That is because the
field data come from a large number of different sites and from direct outcrop observations. Figure 9
in [126] shows that a network with C' < 2 would have low connectivity. On the other hand, a DFN
with a large D is very dense, requiring large computational times to simulate and, possibly, being
amenable to a (stochastic) continuum representation. Driven by these practical considerations, and

to ascertain the value of this additional information, we restrict the prior PDF from Figure 2.12 to

0.08
I 0.07

the same range of parameters as that used in the previous section.
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Figure 2.12: Prior joint PDF of C and D inferred from the field-scale data in Section 2.5.6 (left)
and its rescaled counterpart over the parameter range used in our study (right).

The relative importance given to the prior information about the DFN properties C' and D
(Figure 2.12) is controlled by the parameter v in (2.12). Large values of v correspond to higher
confidence in the quality and relevance of the data reported in Section 2.5.6. Figure 2.13, 2.14
exhibits posterior PDFs of C' and D computed via our Bayesian assimilation procedure with v = 0.5
and 1. Visual comparison of Figures 2.10, 2.11, 2.13, and 2.14 reveals that the incorporation of
the prior information about generic (not site-specific) correlations between C' and D sharpens our
estimation of these parameters, i.e., decreases the area in the parameter space where they are
predicted to lie with high probability. Putting more trust in the prior, i.e., using a higher value of ~,

amplifies this trend. However, the increase in certainty might be misplaced, as witnessed by several
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examples the reference parameter values fall outside the high probability regions.
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Figure 2.13: Examples of posterior PDFs of the DFN parameters C' and D in the presence of prior
information, for six experiments defined by the reference parameter values (blue circles). These PDFs
are computed via Bayesian assimilation with the informative prior (Figure 2.12), whose relative
importance is v = 0.5.

Fracture network’s connectivity is another potential source of information that can boost one’s
ability to infer the parameters C' and D from CBTEs. Let Ngon, denote the number of connected
fracture networks among 20 random realizations of a DFN characterized by (C,D);. Figure 2.15
exhibits Neon, for Ngm = 10* DFNs characterized by (C,D); (i = 1,..., Ngm), with the results
interpolated to 10* x 10 mesh of the (C, D) space by means of a shallow NN. We define a prior
PDF for C' and D as:

fra () o< N2 (), Neoy € [0,1,...,20], (2.15)

con

which is properly normalized to ensure it integrates to one. This prior PDF, shown in Figure 2.15,
assigns larger probability to those (C, D) pairs that show higher connectivity in our data set.

The Bayesian inference procedure with this prior yields the posterior joint PDFs of C' and D
in Figure 2.16. These distributions are sharper than those computed with either uninformative
(Figure 2.10) or correlation-based (Figures 2.13 and 2.14) priors, indicating the further increased
confidence in the method’s predictions of C' and D. Adding prior information to our inverse analysis
results in general in reducing the extent of the highest probability zones (dark red zones) in com-
parison with the posterior distributions that are computed without prior information. As before,
assigning more weight to the prior, i.e., increasing -y, reduces the area of the high-probability regions

in the (C, D) space. This increased confidence in predictions of C' and D is more pronounced when
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Figure 2.14: Examples of posterior PDFs of the DFN parameters C' and D in the presence of prior
information, for six experiments defined by the reference parameter values (blue circles). These PDFs
are computed via Bayesian assimilation with the informative prior (Figure 2.12), whose relative
importance is v = 1.0 (bottom).
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Figure 2.15: Number of connected networks, N, averaged over 20 random realizations of the DFN
model with a given parameter pair m = (C, D) (left); and corresponding prior PDF fy, in (2.15)

(right).
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the connectivity-based prior, rather than the correlation-based prior, is used. There is even more

important decrease of the high probability zones since the extent of the red zones decreases from

Figures 2.13 and 2.16 to Figures 2.14 and 2.17. The connectivity information also ensures that

this confidence is not misplaced, i.e., the reference parameter values lie within the high-probability

regions. The location of the reference parameter value is better with the prior defined from the

connectivity of the system as it is still located in the highest probability zones for most of the cases

shown in Figures 2.16 and 2.17.
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Figure 2.16: Examples of posterior PDFs of the DFN parameters C' and D in the presence of prior
information, for six experiments defined by the reference parameter values (blue circles). These PDFs
are computed via Bayesian assimilation with the informative prior (2.15), whose relative importance

increases from v = 0.5.
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Figure 2.17: Examples of posterior PDFs of the DFN parameters C' and D in the presence of prior
information, for six experiments defined by the reference parameter values (blue circles). These PDFs
are computed via Bayesian assimilation with the informative prior (2.15), whose relative importance
increases from v = 1.

2.5.6 Field-scale Observations of Fracture Networks

For the sake of completeness, we report in Table 2.5 the field-scale observations of fracture networks
from [10]. These are accompanied by our calculation of the corresponding values of parameters C
and D in the model of fracture networks. Figure 2.18 shows the paired values of parameters C' and

D that are used in expression (2.1) and reported in Table 2.5.

2.6 Conclusions

We developed and applied a computationally efficient parameter-estimation method, which makes it
possible to infer the statistical properties of a fracture network from cross-borehole thermal experi-
ments (CBTEs). A key component of our method is the construction of a neural network surrogate
of the physics-based model of fluid flow and heat transfer in fractured rocks. The negligible com-
putational cost of this surrogate allows for the deployment of a straightforward grid search in the
parameter space spanned by fracture density C and fractal dimension D. A neural network is trained
with a {(C, D);, I C’DFi}fV:dl: 10000 Jataset to replace the forward transport model for computational
efficiency. The likelihood of a given pair of (C, D) is computed by comparing the output result of
the neural network surrogate model with the ICDF measurement. This likelihood, together with

a uniform or nonuniform prior density of (C, D), determines the Bayesian-like posterior density of
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Ne[] al] S[m?7 bnin [m] o [ D[] C[]

107 1.74 24 0.1 0.60035 0.74 86.80731
121 2.11 25 0.1 0.41703 1.11  45.46014
3499 1.88 2.70-10'' 10° 4.97809-10-¢  0.88  0.01979
120 0.9 825107 40 -1.00582-10~7 -0.1  0.00012
101 1 2.62:107 57 0 0 NaN

300 1.76 NP 7.00-102  NaN 0.76  NaN

380 1.9 34310° 3 0.26777 0.9 113.05832
350 2.1 1.26-108 220 0.00115 1.1 0.36680
1000 3.2 1.60-10° 380 0.65137 2.2 296.07649
1000 2.1 1.65-10%° 2.00-10°  0.00028 1.1 0.25921
800 2.2 250-101  6.00-1072 1.31254 1.2 875.02702
380 21 NP 2.50-102  NaN 1.1 NaN

1700  2.02 1.00-10° 1.00-10°  0.0002 1.02  0.33182
260 1.3 8.7510° 1.00 0.00891 0.3 7.72571
100 1.8  2.10-10°  1.00 0.03809 0.8  4.76190
873 2.64 3.40-10'  5.00-10~%  0.00709 1.64  3.7745
320 2.61 2.07-10"  4.00-10 0.00945 1.61  1.87779
50 1.67 2.90-10"  7.00-10 1.99004-107°  0.67  0.00148
180 1.97 2.80-10°  3.00-10®  0.00016 0.97  0.02925
400 2.21 1.20-108  4.00-10 0.00035 1.21  0.11573
250 2.11  2.50-10**  4.50-10°  1.26005-10~°> 1.11  0.00284
400 2.84 2.90-10"' 5.50-10%  0.01935 1.84  4.20716
70 2.67 3.60-10° 1.60-10®  0.00728 1.67  0.30533
150 2.66 5.10-10° 1.25-10°  0.00675 1.66  0.61021
200 3.07 6.20-10°  1.00-10°  0.10829 2.07  10.46329
1034 2,51 8.70-107  1.00-10 0.00058 1.51  0.39767
40 1.6 2.00-10*  6.00-1072 0.00022 0.6 0.01479
318 2.42  1.69-108  7.00-10 0.00111 1.42  0.24946
291 2.60 1.69-10%  7.00-10 0.00382 1.69  0.65783
78 2.1  1.69-10% 1.00-10> 8.04638-10~° 1.1 0.00570
70 2.67 3.60-10° 1.60-10°  0.00728 1.67  0.30533
150 2.66  5.10-10° 1.25-10°  0.00675 1.66  0.61021
200 3.07 6.20-10°  1.00-10°  0.10829 2.07  10.46329
1034 2,51 8.70-10"  1.00-10 0.00058 1.51  0.39767
40 1.6 2.00-10*  6.00-1072 0.00022 0.6 0.01479
218 2.02  1.00 2.00-1072  4.11251 1.02  878.94881
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0.22519
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NaN
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Table 2.5: Fracture number (N¢), power-law exponent (a), surface area (S), minimum fracture
length (Iyin), and density parameter « for various fracture networks reported in Table 2 in [10]. The
corresponding values of fracture density (C) and fractal dimension (D) in the network model (2.1)
are determined from the parameter relationships in Section 2.2.1.
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Figure 2.18: Correlation between parameters C' and D from the values reported in Table 2.5



CHAPTER 2. FRACTURED ROCK DELINEATION VIA THERMAL EXPERIMENTS 33

(C, D). The posterior distribution on the domain (C, D) € [2.5,6.5] x [1.0,1.3] is obtained on very

fine 10000 x 1000 mesh grids with the method described above. Our numerical experiments lead to

the following major conclusions.

1.

The neural network surrogate provides accurate estimates of an average inverse cumulative
distribution function (iCDF) of breakthrough times, for the fracture network characterized by

given parameters (C, D).

In the absence of any expert knowledge about C and D, i.e., when an uninformative prior
is used, our method—with the likelihood function defined in terms of the Hellinger distance
between the predicted and observed iCDFs—significantly sharpens this prior, correctly iden-

tifying parameter regions wherein the true values of (C, D) lie.

. Incorporation of the prior information about generic (not site-specific) correlations between C

and D sharpens our estimation of these parameters, i.e., decreases the area in the parameter
space where they are predicted to lie with high probability. Putting more trust in the prior,
i.e., using a higher value of -y, amplifies this trend. However, the increase in certainty might
be misplaced, as witnessed by several examples the reference parameter values fall outside the

high probability regions.

Incorporation of the prior information about a fracture network’s connectivity yields the pos-
terior joint PDF's of C' and D that are sharper than those computed with either uninformative
or correlation-based priors, indicating the further increased confidence in the method’s predic-
tions of C' and D.

. The increased confidence in predictions of C' and D is more pronounced when the connectivity-

based prior, rather than the correlation-based prior, is used. The connectivity information also
ensures that this confidence is not misplaced, i.e., the reference parameter values lie within the

high-probability regions.



Chapter 3

MCMC with CNN Surrogates:

Source Identification

In this chapter, we present a DRAM-CNN method to integrate DRAM MCMC sampling with a
CNN surrogate forward model. The method is used to reconstruct a contaminant source in a two-
dimensional domain. The results are compared with their counterparts obtained via the HMC

sampler with the CNN surrogate model.

3.1 Introduction

Identification of contaminant release history in groundwater plays an important role in regulatory
efforts and design of remedial actions. Such efforts rely on measurements of solute concentrations
collected at a few locations (pumping or observation wells) in an aquifer. Data collection can take
place at discrete times and is often plagued by measurement errors. A release history is estimated
by matching these data to predictions of a solute transport model, an inverse modeling procedure
that is typically ill-posed. Alternative strategies for solving this inverse problem [3, 142, 105, 7] fall
into two categories: deterministic and probabilistic. Deterministic methods include least squares
regression [128] and hybrid optimization with a genetic algorithm [5, 77]. They provide a “best”
estimate of the contaminant release history, without quantifying the uncertainty inevitable in such
predictions.

Probabilistic methods, e.g., data assimilation via extended and ensemble Kalman filters [133, 134]
and Bayesian inference based on Markov chain Monte Carlo or MCMC [34], overcome this short-
coming. Kalman filters are relatively fast but do not generalize to strongly nonlinear problems,
sometimes exhibiting inconsistency between updated parameters and observed states [17]. Particle

filters and MCMC are exact even for nonlinear systems but are computationally expensive, and

34
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often prohibitively so. Increased efficiency of MCMC with a Gibbs sampler [92] comes at the cost
of generality by requiring the random fields of interest to be Gaussian. MCMC with the delayed
rejection adaptive Metropolis (DRAM) sampling [44] is slightly more efficient and does not require
the Gaussianity assumption; it has been used in experimental design for source identification [138],
and is deployed as part of our algorithm. Gradient-based MCMC methods, such as hybrid Monte
Carlo (HMC) sampling [7], increase the slow convergence of these and other MCMC variants. How-
ever, the repeated computation of gradients of a Hamiltonian can be prohibitively expensive for
high-dimensional transport problems without special treatment.

With an exception of the method of distribution [11, 12], the computational cost of Bayesian
methods for data assimilation and statistical inference is dominated by multiple runs of a for-
ward transport model. The computational burden can be significantly reduced by deploying a
surrogate model, which provides a low-cost approximation of its expensive physics-based counter-
part. Examples of such surrogates include polynomial chaos expansions [138, 19] and Gaussian
processes [29, 139]. A possible surrogate-introduced bias can be reduced or eliminated altogether
by the use of a two-stage MCMC [139]. Both polynomial chaos expansions and Gaussian processes
suffer from the so-called curse of dimensionality, which refers to the degradation of their performance
as the number of random inputs becomes large.

Artificial neural networks in general, and deep neural networks in particular, constitute surrogates
that remain robust for large numbers of inputs and outputs [96, 94]. Their implementations in open-
source software offer an added benefit of being portable to advanced computer architectures, such as
graphics processing units and tensor processing units, without significant input from the user. Our
algorithm employs a convolutional neural network (CNN) as a surrogate, the role that is related to
but distinct from other uses of neural networks in scientific computing, e.g., their use as a numerical
method for solving differential equations [74, 70].

In Section 3.2 we formulate the problem of contaminant source identification from sparse and
noisy measurements of solute concentrations. Section 3.3 contains a description of our algorithm,
which combines MCMC with DRAM sampling (Section 3.3.1) and a CNN-based surrogate of the
forward transport model (Section 3.3.2). We also show a gradient-based HMC sampling method
with the easily accessible differentiation of the CNN surrogate model. Results of our numerical
experiments are reported in Section 3.4; they demonstrate that our DRAM-CNN method is about
20 times faster than DRAM with a physics-based transport model. HMC-CNN is not really faster
than DRAM with physics-based transport model in terms of the time obtaining each sample, but
the sample chain takes much fewer steps to converge, or “mix well”, hence using fewer samples can
approximate the posterior distribution better than DRAM samplers. Main conclusions drawn from

this study are summarized in Section 3.5.
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3.2 Problem Formulation

Vertically averaged hydraulic head distribution A(x) in an aquifer  with hydraulic conductivity

K (x) and porosity 6(x) is described by a two-dimensional steady-state groundwater flow equation,
V- (KVh) =0, x € Q, (3.1)

subject to appropriate boundary conditions on the simulation domain boundary 9€2. Once (3.1) is

solved, average macroscopic flow velocity u(x) = (u1,u2) " is evaluated as:
K
u=—>Vh (3.2)

Starting at some unknown time ty a contaminant with volumetric concentration c¢s enters the
aquifer through point-wise or spatially distributed sources 5 C . The contaminant continues to
be released for unknown duration 7" with unknown intensity ¢s(x,t¢) (volumetric flow rate per unit
source volume), such that gs(x,¢) # 0 for ¢ < t < ty + T. The contaminant, whose volumetric
concentration is denoted by ¢(x,t), migrates through the aquifer and undergoes (bio)geochemical
transformations with a rate law R(c). Without loss of generality, we assume that the spatiotemporal

evolution of ¢(x,t) is adequately described by an advection-dispersion-reaction equation,

% =V-(6DVc) = V- (fuc) — R(c) + gscs,  x=(z1,22) €Q, t> 1o, (3:3)

although other, e.g., non-Fickian, transport models [99, 120, 116] can be considered instead. If the
coordinate system is aligned with the mean flow direction, such that u = (u = |u|,0)", then the

dispersion coefficient tensor D in (3.3) has components
D11 = GDm + aru, D22 = 0Dm + arTu, D12 = DQl = gDm, (34)

where Dy, is the contaminant’s molecular diffusion coefficient in water; and a; and a7 are the
longitudinal and transverse dispersivities, respectively.

Our goal is to estimate the location and strength of the source of contamination, r(x,t) =
gs(x,t)cs(x,t), by using the transport model (3.1)—(3.4) and concentration measurements ¢, ; =
&(%Xm, ;) collected at locations {x,, }M_; at times {t;}/_,. The concentration data are corrupted by

random measurement errors, such that:
EmJ:C(Xm,ti)‘i’E"”‘, m:1,--~,M, 7’:177Ia (35)

where ¢(x;,,,t;) are the model predictions, and the errors €,,; are zero-mean Gaussian random vari-

ables with covariance E[ep;€,;] = 0;; Rmn. Here, E[-] denotes the ensemble mean; d;; is the Kronecker
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delta function; and R, with m,n € [1, M], are components of the M x M spatial covariance matrix
R of measurements errors, taken to be the identity matrix multiplied by the standard deviation of
the measurement errors. This model assumes both the model (3.1)—(3.4) to be error-free and the

measurements errors to be uncorrelated in time but not in space.

3.3 Methods

Our first algorithm comprises MCMC with DRAM sampling, a CNN-based surrogate of the trans-
port model (3.1)—(3.4), and the second algorithm combines HMC-NUTS sampling with CNN-based

surrogate model. These three components are described below.

3.3.1 MCMC with DRAM Sampling

Upon a spatiotemporal discretization of the simulation domain, we arrange the uncertain (random)
input parameters in (3.1)—(3.4) into a vector m of length N,,; these inputs may include the spa-
tiotemporally discretized source term r(x,t), initial concentration ¢;,(x), hydraulic conductivity
K(x), etc. Likewise, we arrange the random measurements ¢, ; into a vector d of length Ny, and
the random measurement noise €,,; into a vector € of the same length. Then, the error model (3.5)
takes the vector form:

d=g(m)+e, (3.6)

where g(-) is the vector, of length Ny, of the correspondingly arranged stochastic model predictions
¢(Xm, t;) predicated on the model inputs m.
In Bayesian inference, the parameters m are estimated probabilistically from both model predic-

tions and (noisy) measurements by means of the Bayes theorem,

fon (102) ftjm (112; )
fa(d)

fraja(ih:d) = L @) = [ o) fa a0 ) (37)
Here, d is the deterministic coordinate in the phase space of the random variable d; fm 1s a prior
probability density function (PDF) of the inputs m, which encapsulates the information about the
model parameters and contaminant source before any measurements are assimilated; fpq is the
posterior PDF of m that represents refined knowledge about m gained from the data d; fqm
is the likelihood function, i.e., the joint PDF of concentration measurements conditioned on the
corresponding model predictions that is treated as a function of m rather than d; and fq4, called
“evidence”, serves as a normalizing constant that ensures that fu,q(m;-) integrates to 1. Since €

in (3.5) or (3.6) is multivariate Gaussian, the likelihood function has the form:

~ 1
fam(m;d) = W exp <—2VTR_1V) ) v=d-—g(m). (3.8)
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In high-dimensional nonlinear problems (i.e., problems with large N,,), such as (3.1)—(3.4), the
posterior PDF fq);, cannot be obtained analytically and computation of the integral in the evidence
Jfa is prohibitively expensive. Instead, one can use MCMC to draw samples from fi, (1) fq|m (1; (~i),
without computing the normalizing constant f4. A commonly used MCMC variant relies on the
Metropolis—Hastings sampling [34]; this approach uses a zero-mean Gaussian PDF with tunable
variance o2 to generate proposals near a previous sample, which are accepted with the acceptance
rate given by the relative posterior value. The performance of the Metropolis-Hastings sampling
depends on the choice of hyperparameters, such as o2, and on how well the proposal PDF matches
the target PDF. The choice of an inappropriate proposal PDF might cause an extremely slow
convergence.

We deploy the DRAM sampling—specifically its numerical implementation in [93]—to accelerate
the convergence of MCMC. DRAM sampling differs from the Metropolis—Hasting sampling in two
aspects. First, the delayed rejection [42] refers to the strategy in which a proposal’s rejection in the
first attempt is tied to the subsequent proposal that can be accepted with a combined probability
for the two proposals; this rejection delay is iterated multiple times in the sampling process. Sec-
ond, adaptive Metropolis [43] uses past sample chains to tune the proposal distribution in order to
accelerate the convergence of MCMC. The DRAM sampling is more efficient than other sampling

strategies for many problems, including that of source identification [138].

3.3.2 Deep Convolutional Neural Networks

Any MCMC implementation requires many solves of the transport model (3.1)—(3.4) for different
realizations of the input parameters m. We use a CNN surrogate model to alleviate the cost of
each solve. Several alternative input-output frameworks to construct a surrogate model are shown
in Table 3.1. Among these, autoregressive models predict a concentration map only for the next
time step. When measurements are collected at multiple times, an autoregressive model has to be
repeatedly evaluated, for each realization of the inputs m. If the release time, conductivity field,
and porosity are known, then m represents the initial concentration field ¢, (x). Otherwise, m is

the stack of the maps of ¢;,(x), conductivity field K (x), porosity field 0(x), etc.

Model Input  Output Modeling frequency
PDE model m {e(x,t:)} 1
Image-to-image m {e(x,t:)} 1
Image-to-sensors m {c(Xm,ti)} 1
Autoregressive image-to-image ¢(x,t) c¢(x,t + At) 1

Table 3.1: Alternative input-output frameworks for construction of surrogate models. The data are
collected at M locations x,, (m=1,--- ;M) at I times t; (i =1,--- ,I).

We choose an image-to-image regression model, rather than the autoregressive surrogate used in

[94] to solve a similar source identification problem, for the following reasons. First, it is better at
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generalization than image-to-sensors models. Second, although autoregressive surrogates excel at re-
gression tasks [94], they might become computationally expensive when the measurement frequency
is high.

Our image-to-image regression model replaces the PDE-based transport model (3.1)—(3.4) or
g(m) with a CNN N(m) depicted in Figure 3.1, i.e.,

g:m 25 {c(mm,ti)}%”f:l is replaced with N : m RSN {e(x,t:) ). (3.9)

We start by attempting to demystify neural networks, which are spreading virally throughout the
hydrologic community. A simplest way to relate the model output d to the model input m without
having to run the model g is to replace the latter with a linear input-output relation d= Wm,
where W is an Ny X N,,, matrix of weights whose numerical values are obtained by minimizing the
discrepancy between the d and d values that are either measured or computed with the model g or
both. The performance of this linear regression, in which the bias parameters are omitted to simplify
the presentation, is likely to be suboptimal, because a relationship between the inputs and outputs
is likely to be highly nonlinear. Thus, one replaces d = Wm with a nonlinear model d = oc(Wm),
in which a prescribed function o(-) operates on each element of the vector Wm. Examples of this
so-called activation function include a sigmoidal function (e.g., tanh) and a rectified linear unit
(ReLU). The latter is defined as o(s) = max(0, s), it is used here because of its current popularity
in the field. The nonlinear regression model d = o(Wm) = (0 o W)(m) constitutes a single “layer”

in a network.

Output: {eim(x, ) }_;

1000

Input: cin(x)

o0 —

600

CNN surrogate

c(x,tr)

00 1750 2000

0 250 500 750 1000 1250 1500 1750 2000

o(x,t)
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c(x,t1)

250 500 750 1000 1250 1500 1750 2000

Figure 3.1: A surrogate model constructed with a convolution neural network (CNN). The surrogate
takes as input a set of uncertain parameters m, e.g., an initial contaminant concentration field ¢;, (x)
and returns as output temporal snapshots of the solute concentrations c¢(x, t;) in an aquifer.

A (deep) fully connected neural network N¢ comprising N; “layers” is constructed by a repeated

application of the activation function to the input,

d=N¢(m;0) = (on, cWp,_1)0...0 (020 Wy)(m). (3.10a)
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In general, different activation functions might be used in one network. The parameter set @ =
{W1,...,Wpy,_1} consists of the weights W,, connecting the nth and (n + 1)st layers. In this

recursive relation,

S1 = (0‘2 [¢] Wl)(m)

I
)
=
g

S9 = (0'3 OWQ)(Sl) = 0'3(VVQS1)7

(3.10b)

d=(on, 0o Wny,—1)(sn—2) = on,(Wh,—18N,-2),
the weights W form a d; x N, matrix, W5 is a dy X d; matrix, W3 is a d3 X d2 matrix,---, and
Wy, —1 is a Ng X dn,—2 matrix. The integers d, - - ,dn,—2 represent the number of neurons in the

corresponding inner layers of the network. The fitting parameters ® are obtained, or the “network
is trained”, by minimizing the discrepancy between the prediction and the output in the dataset.
The size of the parameter set ® grows rapidly with the number of layers N; and the number of
neurons d,, in each inner layer. When the output layer contains hundreds or thousands of variables
(aka “features”, such as concentrations at observation wells collected at multiple times), this size can
be unreasonably large. By utilizing a convolution-like operator to preserve the spatial correlations in
the input(shown in Figure 3.2 and Equation 3.11), CNNs reduce the size of ® and scale much better

with the number of parameters than their fully connected counterparts. Given a two-dimensional

input x € RT*W " a convolutional layer evolves from x to the feature value ¢ at location (u,v) with
the following relation:
)
Clolru) =0 [ DD whiurioss | (3.11)
i=1 j=1

here, w? € R¥%k> are a series of filters, ¢ = 1, ..., N;. The output feature maps of a convolutional
layer are obtained by sliding filters over the whole input image. ¢ is the activation function mentioned
earlier. With this operation, the resulting output of a convolutional layer consists of N, feature maps.

Each feature map has size H, x W, determined by the input x size H, x W, [28]:

H, +2p, — K,
Hy—[ z T 2p1 1+1:|’
o1 (3.12)
W, + 2ps — kb

Wy, = [ + 1} ,[-] : floor function.

52
p; and s; are padding of 0’ and stride of the kernels respectively in a convolutional operation.

CNNs are widely used to perform image-to-image regression. We refer the interested reader to
[39] for an in-depth description of CNNs. In this study, a CNN is trained to predict the concentration
map at times when the measurements were obtained.

Specifically, we use a convolutional encoder-decoder network to perform the regression with a
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Figure 3.2: A convolutional operation in convolutional neural networks. w is a filters in a convolu-
tional layer, ¢ and x denotes the input and output of the convolutional operation with this filter w.
The size of the output corresponds to Equation 3.12
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Figure 3.3: Contaminant transport surrogate modeling: input-output illustration and the convolu-
tional encoder-decoder network architecture.
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RelLU

Batch norm

T

Figure 3.4: “Conv” layer in Figure 3.3. In each “Conv” layer, there exist three consecutive opera-
tions, batch normalization, ReLLU activation, and a convolutional layer.

Figure 3.5: A dense block in DenseED neural network in Figure 3.3. A dense block consists of
several consecutive small “Conv” layers, with the input of each layer being the concatenation of all
previous inputs.
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coarse-refine process. In the latter, the encoder extracts the high-level coarse features of the input
maps, and the decoder refines the coarse features to the full maps again [94, Fig. 2]. No fully
connected layers are used in the architecture to avoid parameter abuse, instead, dense blocks are
used to create more connection between the layers to let information propagate, and further more
reduce parameters by reusing previous ones. This is done with consecutive convolutional layers with
connections between the preceding layers and the [th layer as shown in Figure 3.5. Three operations
consist each “Conv” layer referred to in Figure 3.3: batch normalization, rectified linear unit (ReLU
activation), and a convolutional layer as shown in Figure 3.4. With all these elements, the whole
architecture is shown in Figure 3.3. The L;-norm loss function, Lo-norm weight regularization, and
stochastic gradient descent [15] are used in the parameter estimation process.

It is worthwhile emphasizing that unlike some surrogate models, e.g., polynomial chaos which
can predict a solution at any time, the CNN used in this study predicts only concentration maps for
a short period. The reason is that for the inverse problem under consideration, only observations at
measurement times are of interest and a model’s ability to predict concentrations at later times is

immaterial.

3.3.3 HMC with NUTS Sampling with CNN surrogate

Following the Bayesian theorem formulated above, we also test Hybrid Monte Carlo sampling. Hy-
brid Monte Carlo (HMC) sampling, brought up in [26], is a MCMC sampling method uniting MH
sampling and Hamiltonian dynamics. This method can be referred to as either Hybrid Monte Carlo
or Hamiltonian Monte Carlo.

In Hamiltonian dynamics, the state of particles can be described by a d-dimensional position vec-
tor, q, and a d-dimensional momentum vector, p. A function of q and p known as the Hamiltonian,
H(q, p) denotes the total energy of the particle with state(q, p)[98].

The partial derivatives of the Hamiltonian determine how the position vector q and momentum
vector p of particles evolve over time 7. The evolution of the position and momentum of particles

can be described with the following Hamilton’s equation:

— 1
dr 8pi ’ (3 3)
dpi OH
—_— = . 14
dr 8qi (3 )

Here we use the letter 7 instead of ¢ to distinguish from the time in the forward flow and contaminant
transport model. 7 is the fictitious time in Hamiltonian dynamics.
Conventionally, the Hamiltonian function of p and q is written as the sum of potential energy

and kinetic energy of the particles at state (g, p).

H(q,p) =U(q) + K(p), (3.15)
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in which U(q) is the potential energy, determined by the position vector q, K(p) is the kinetic

energy, determined by the momentum vector p. The kinetic energy is usually defined as:
K(p)=p"M 'p/2 (3.16)

Matrix M is a symmetric, positive-definite matrix representing the mass of the particles. With the
kinetic energy defined as such, K(p) will be equivalent to the negative log probability density of a
normal distribution with covariance matrix M. This covariance matrix is usually diagonal in many
studies [98].

In Hamiltonian dynamics, the time derivative of total energy(Hamiltonian) H(g,p) is denoted

as:

0H(q,p) _ 0H(q,p)dq , 0H(q,p)dp

= 1
or dq dr + op dr (3.17)
K
_ dU(q)dq , dK(p) dp (3.18)
dq dr dp dr
With the kinetic energy K (p) = p” M ~'p/2,
dK(p) -1
=M .1
i P, (3.19)
dq -1
— =M . .2
7 p (3.20)

The total Hamiltonian, i.e., the total energy of a particle without perturbation from outside, keeps

constant,

0H(q,p)
—5 =0, (3.21)

dU(q)dq  dK(p)dp _

3.22
dq dr dp dr ’ (3.22)
dU(a) \ 1 —1_dp
M M 'p— =0 3.23
da p+M 'p— =0, (3.23)
leading to the constraint:

dUu d

@) _ _dp (3.24)

dq —  dr’

In Hamiltonian dynamics, the mapping T from the state at time 7, (q(7),p(7)) to the state at

7+ s,(q(T + s),p(7 + 8)) is one-to-one. The inverse mapping exists and is denoted as T_s. This

reversibility property ensures MCMC with Hamiltonian dynamics to keep the desired posterior
distribution invariant over time.

In computer programs, the evolution of the state vector of particles is implemented by finite

difference numerical method. For reversibility in fictitious time 7, leapfrog method is usually a good
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choice of the numerical method. With m; = M, ; and M being diagonal,

AT AT U

pi(T + 7) =pi(T) — 2 g, (q(7)), (3.25)
a(T + A7) = (1) + ATpi(TT:_A;) (3.26)
plr+ A7) = pir + 50 = S5l + An)) (3.27)

The symmetry of leapfrog method enables the evolution of the states to be reversed, given that the
kinetic energy K (p) is the same for particles with state p and —p, tracing back through A7 will
leads the solution back to its previous state.

The total Hamiltonian H(q, p) being constant is related to the concept of a canonical distribution.
Given an energy function E(m) for a state variable m in some physical system, the canonical
distribution of states has the PDF

1
P(m) =  exp(~B(m)/T),
In which T is the temperature of the system, Z is the normalizing constant. For a PDF P(m), build
a system with the energy of state m to be E(m), samples generated from this system will then be
equivalent to samples drawn from the its canonical distribution P(m).
In a Hamiltonian system, the total energy of the particle is the Hamiltonian H(q, p), the canonical

distribution is of the following form:

P(a,p) =  exp(~H(a,p)/T), (3.25)

Because the total Hamiltonian is the sum of two forms of energy,

H(q,p) = U(q) + K(p),

the joint PDF of state (q,p) is

P(a,p) = 7 exp(~U(a)/T) exp(—K (p)/ 7). (329)

Now we combine Hamiltonian dynamics with MCMC sampling. Usually, state q represents the
state of variable of interest, the potential energy U(q) is not specified and can be customized for
different problems. The exponential form of the canonical distribution infers the possibility that the

potential energy U(q) is of the form:

U(q) = —In[r(q)L(q|d)], (3.30)
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in which 7(q) is the prior density of q and L(q|d) = P(d|q) is the likelihood function given data d.

With the canonical distribution defined such, MH sampling can be applied with Hamiltonian
dynamics to build the hybrid or Hamiltonian Monte Carlo sampling. For a Bayesian updating
problem, suppose that the desired posterior distribution we want to sample from is P(m|d)
P(m)P(d|m), if further assumptions are made for the likelihood function P(d|m) and the prior
density distribution P(m) to be Gaussian, then the likelihood function and the prior in a logarithm

form is:

P(m|d) «x P(m)P(d|m) (3.31)
mT R 'm

x exp(— 5 ) exp(—Hops(m)) (3.32)
m” R 'm

x exp(—# — Hops(m)), (3.33)

where R is the covariance matrix of the prior of x. Hgps corresponds to the log-likelihood function
denoted in another form in Equation 3.7.

There are two main stages in HMC method. At the first step, for a given sample m, we treat m
as the position vector q in Hamiltonian dynamics, m; = ¢; for i = 1,...,d. Then, we independently

draw a momentum vector from a Gaussian distribution,

p?
P(pi)OCGXp< L ) i=1,....,d,

quj

using the time derivatives,

dq _ .1 dp _ dU(q)

bl S 3.34
dr P dq (3.34)
where U(q) is obtained from Equation (3.33) as:
TRfl
U(q) = +--14 5 44 Hops(a). (3.35)

With the time derivatives of the position vector and momentum vector, state vector (q, p) now can be
evolved in fictitious time 7 with leapfrog numerical method. After “enough” time 7, the Hamiltonian
dynamics is well mixed and due to the invariant of H(q, p), state (q, p) should follow the canonical
distribution in Equation (3.29). At the end of the evolution the states becomes (q*, p*).

At the second step, we apply a MH updating to the end states of the Hamiltonian dynamics.
From last step, a new joint state (q*, p*) was proposed by the Hamiltonian dynamics. Now, whether

the proposed q* is accepted as the next sample depends on how preferable it is in the canonical
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distribution, the acceptance rate is:

Taccp = min{lv exp(—H(q*, p*) + H(q7 p))} (336)
— min{1, exp(~U(q") + U(a) — K(p*) + K(p))}. (337)

The process is to accept the new state (q*, p*) with the probability 7accp, or if it is not accepted, to
set (q,p) to be the next state as in MH sampling. After updating the joint states, simply neglect
the momentum vector p to get the desired new ¢q. Note that in the canonical distribution (3.29), p
and ¢ are independent, neglecting p will keeps q still in the canonical distribution with energy U(q).

Conceptually, evolution of the state (q,p) should keep H(q, p) exactly invariant over 7, so the
acceptance rate should be 1, however, due to numerical errors of leapfrog method, H(q,p) is not
guaranteed to be constant. Therefore, a MH updating mechanism is needed to restrain the samples
in the desired posterior distribution.

Although HMC is conceptually more advanced dealing with complicated distributions than MH
sampling, the fictitious time step A7 and the total time steps in the Hamiltonian dynamics are two
hyperparameters, requiring careful tuning. This can be accomplished with a No-U-Turn-Sampler
(NUTS) [51], which adjusts these two hyperparameters with the two states (q, p) during the evolution
of the Hamiltonian dynamics. HMC with NUTS requires the gradient, g—g, which is often intractable
in forward simulations with PDE solvers, especially for physical processes with nonlinear terms.
Auto-differentiation [68] of neural network surrogates conveniently provides the solution to this
problem: the analytical differentiation % is easy to be extracted from the neural networks.

We use a python package pyro[9] for the HMC NUTS sampling with the CNN surrogate model,

which provides the gradients % needed in Hamiltonian dynamics.

3.4 Numerical Experiments

We use both the CNN-based MCMC with DRAM sampling and CNN-based HMC sampling to
identify a contamination source from sparse concentration measurements. A PDE-based transport
model used to generate synthetic data is formulated in Section 3.4.1. The CNN-based surrogate for
the transport model is developed and analyzed in Section 3.4.2. The performance of our approaches
in terms of the accuracy and efficiency vis-a-vis the PDE-based MCMC with DRAM sampling and
HMC sampling is discussed in Section 3.4.3.

3.4.1 Contaminant Transport Model

Our solute transport model consists of (3.1)—(3.4) with R(c) = 0. A spatially varying hydraulic
conductivity field K(x) is shown in Figure 3.6 for a 1000 m by 2000 m rectangular simulation

domain discretized into 41 x 81 cells. We use the fast Fourier transform (see Algorithm 3 in [71]) to
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Figure 3.6: Hydraulic conductivity K(x) [m/d], in logarithm scale.

generate K (x) as a rescaled realization of the zero-mean multivariate Gaussian random field with

the two-point covariance function:
Clxy) = [ e 2@ || TVidpidpn
]RZ

where (-, -) represents the Euclidean inner product on R? and p = (p1,p2)".

Porosity 6 and dispersivities A\, and Ay are constant. The values of these and other flow and
transport parameters, which are representative of a sandy alluvial aquifer in Southern California [80,
79], are summarized in Table 3.2. Equation (3.4) is used to obtain the dispersion coefficients.

We consider an instantaneous, spatially distributed contaminant release taking place at time
to = 0. This replaces the source term r(x,t) = ¢s(x,t)cs(x,¢) in (3.3) with the Dirac-delta source
r(x,t) = r(x)o(t) or, equivalently, with an unknown initial contaminant distribution ¢y (x). Our
goal is to reconstruct the latter from the noisy concentration data ¢, ; collected at M = 20 locations
{%m ¥M_ at {t;}_, = {3,4,...,18) years after the contaminant release (I = 16).

Parameter Value Units
Porosity, 6 0.3 —
Molecular diffusion, Dy, 1072 m?/d
Longitudinal dispersivity, ar, 10 m
Dispersivity ratio, ar, /ar 10 -

Table 3.2: Values of hydraulic and transport parameters, which are representative of sandy alluvial
aquifers in Southern California [80, 79].

We used Flopy [6], a Python implementation of MODFLOW [47] and MT3DMS [8], to solve
the flow (3.1) and transport (3.3) equations, respectively. With constant hydraulic head values on



CHAPTER 3. MCMC WITH CNN SURROGATES: SOURCE IDENTIFICATION 49

h(x) [m]

@® sensors ﬁ

800 od’ 8
¢l @&

% 400 4

8 6
@3 o
¢
O T T T O
0 500 1000 1500 2000

x1 [m]

Figure 3.7: Hydraulic head distribution h(x) [m] and locations of 20 observational wells. The flow
is driven by constant heads h; = 10 m and hr = 0 maintained at the left and right boundaries,
respectively; no-flow boundary conditions are assigned to the upper and lower boundaries.

T1,1 €21 T1,2 Z22 S 01 Sa 02
Interval  [0,700] [50,900] [0,700] [50,900] [0,100] [13,20] [0,100] [13,20]
Truth 325 325 562.5 625 30 15 50 17

Table 3.3: Prior uniform distributions for the meta-parameters m characterizing the initial contam-
inant plume (3.38), and the true, yet unknown, values of these parameters.

the left and right boundaries, the head distribution h(x) is shown in Figure 3.7, together with the
locations of 20 observational wells.

The initial contaminant distribution consists of N, co-mingling Gaussian plumes,

ol (1 —$11)2+(~T2 —1721)2
Cin(21,22) = Z Siexp |— : 252 - ) (3.38)
i=1 i

each of which has the strength S; and the width o;, and is centered at the point (x;,,22;). The
true, yet unknown, values of these parameters are collated in Table 3.3 for N, = 2; they are
used to generate the measurements ¢,,; by adding the zero-mean Gaussian noise with standard
deviation o, = 0.001. The initial concentration map is shown in Figure 3.8. These data form the 20
breakthrough curves shown in Figure 3.9.

The lack of knowledge about the initial contaminant distribution ¢, (x) is modeled by treating
these parameters, m = (1,4, €24, 05,.5;) with ¢ = 1 and 2, as random variables distributed uniformly
on the intervals specified in Table 3.3. These uninformative priors are refined as the measurements

are assimilated into the model predictions.
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Figure 3.8: True initial concentration c¢;,, the two peaks corresponds to the two Gaussian plumes
constructed with the true parameters in Table 3.3.
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Figure 3.9: Contaminant breakthrough curves ¢(x;,,t) observed in the wells whose locations x,,
(m=1,...,20) are shown in Figure 3.7.
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3.4.2 Construction and Accuracy of CNN Surrogate

As discussed in Section 3.3, although only model predictions at 20 wells are strictly necessary for the
inversion, the use of full concentration distributions ¢(x, ;) as output of the CNN-based surrogate
has better generalization properties. We used N = 1600 solutions (Monte Carlo realizations) of the
PDE-based transport model (3.3) for different realizations of the initial condition ¢, (x) to train
the CNN; another Niest = 400 realizations were retained for testing. These 2000 realizations of
the initial concentration ci,(x) in (3.38) were generated with Latin hyper-cube sampling of the
uniformly distributed input parameters m from Table 3.3. The CNN contains three dense blocks
with N; = 6,12,6 internal layers, uses a growth rate R, = 40, and has Nj, = 64 initial features;
it was trained for 300 epochs. The CNN’s output is 16 stacked maps of the solute concentration

c(x,t;) at t; = (3,4,...,18) years after the contaminant release.

3.572 2.429
2.679 1.822
1.786 a 1214
0.893 0.607
0.000 0.000

3.572 2.429
2.679
1.786
0.893
0.000

1.822
0.301

1.214
0.607
0.000

0.150

0.000

-0.150

-0.301

1.882
1411
0.941
0.470

0.000
1.882

1.411
0.941
0.470 0.364
0.000 0.000

0.212 0.121 0.083
0.106 0.060 0.042
0.000 e 0.000 s |0.000

1.455
1.092
0.728
0.364

0.000
1.455

1.092
0.728

(b) t=41[T]

c(x,t)

é(x,t)

-0.106 -0.060 g -0.042
-0.212 -0.121 -0.083
1.244
0.933
0.622
0.311

0.000

1.244
0.933
0.622 "1
0.311
0.000

0.078

° 0.039
| i |F0.000
© -0.039
-0.078

0.695
0.521
0.347
0.174

0.000
0.695

0.521

0.481
0.361
0.240
0.120

0.000
0.481

0.361

0.762
0.508
0.254

0.000
1.016

0.762
0.508 0.347 0.240
0.254 0.174 0.120

0.000 0.000 0.000
0.039 0.035 0.033

0.019 0.017 0.017

0.000 - | 0.000 0.000
a0 e
-0.019 i 0.017 = il T

c(x,t)

o

é(x,t)

(N t=121T] ulm (g) t=14[T]

-0.039 -0.035 -0.033

Figure 3.10: Temporal snapshots of the solute concentration alternatively predicted with the trans-
port model (¢, top row) and the CNN surrogate (¢, second row) for a given realization of the initial
concentration ¢;,(x). The bottom row exhibits the corresponding errors of the CNN surrogate,
(¢ — ¢). The times in the upper left corner correspond to the number of years after contaminant
release.

Figure 3.10 exhibits temporal snapshots of the solute concentrations alternatively predicted with
the transport model, ¢(x,¢;), and the CNN surrogate, é(x,t;), for a given realization of the initial
concentration cin(x) at eight different times ¢;. The root mean square error of the CNN surrogate,
lle(x,t;) — ¢(x,t;)]|2, falls to 0.023 at the end of the training process. It is worthwhile emphasizing

here that the NV = 1600 Monte Carlo realizations used to train our CNN surrogate are but a small
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fraction of the number of forward solves needed by MCMC.

3.4.3 DRAM/HMC Reconstruction of Contaminant Source

We start by analyzing the performance of MCMC with DRAM sampler of m when the PDE-based
transport model (3.3) is used to generate realizations of c¢(x,t;). Because the model is treated as
exact, this step allows us to establish the best plume reconstruction provided by our implementation
of DRAM. The latter relied on 100000 samples of m, the first half of which was used in the “burn-
in” stage and, hence, are not included into the estimation sample set. Figure 3.11 exhibits sample
chains for each of the six parameters m characterizing the initial plume configuration ¢, (x). Visual
inspection of these plots reveals that DRAM does a good job identifying the centers of mass of the
two co-mingling plumes, (z1,,22,) with ¢ = 1 and 2; identification of the spatial extent, o;, and
strength, S;, of these plumes is less accurate. However, with 100000 samples, these trace plots still
imply the need for more DRAM samples, which is practically prohibitive, shown in the following

sections with the indication for the CPU time of this experiment.
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Figure 3.11: DRAM chains of the parameters m characterizing the initial plume configuration ¢;,(x)
obtained by sampling from the transport model (3.3). Each Markov chain represents a parameter
value plotted as function of the number of iterations (links in the chain). The black horizontal lines
are the true values of each parameter.

Table 3.4 provides a more quantitative assessment of the performance of the PDE-based DRAM.
The standard deviations of the DRAM estimates of the plumes’ centers of mass, (x1,22,), is no
more than 1% of their respective means, indicating high confidence in the estimation of these key
parameters. The standard deviations of the other parameter estimates, relative to their respective
means, are appreciably higher. Also shown in Table 3.4 are Sokal’s adaptive truncated periodogram
estimator of the integrated autocorrelation time 7 [118], and the Geweke convergence diagnostic p
[36]. These quantities are routinely used to diagnose the convergence of Markov chains. The former
provides an average number of dependent samples in a chain that contain the same information as

one independent sample; the latter quantifies the similarity between the first 10% samples and the
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Figure 3.12: The initial concentration ¢, constructed with the two Gaussian plumes computed with
the DRAM MCMC chain(second half) obtained by sampling from the PDE model. The mean values
of the parameters are shown in Table 3.4.

Parameter True value Mean Std T P

Z1,1 325 327.5836 3.3924 1046.3394 0.9991
22,1 325 325.7773 1.6108 1289.5577 0.9929
21,2 562.5 564.3320 1.9967 2218.9018 0.9881
22,2 625 624.7743 0.3203  402.0658  0.9998
S1 30 18.6853  0.5007 1713.8339 0.9699
01 15 19.1371  0.2365 2172.9087 0.9837
So 50 44.3071  2.8493 4441.9589 0.7632
09 17 18.0939  0.5932 4409.0626 0.8832
M,y 20.4244 20.6709 — — —

M, 43.5802 43.74 — — —

Table 3.4: DRAM chain statistics—mean, standard deviation, integrated autocorrelation time 7, and
Geweke convergence diagnostic p—of the parameters m characterizing the initial plume configuration
¢in(X) obtained by sampling from the PDE model. Also shown is the total contaminant mass of the
two co-mingling plumes, M; and M.
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last 50% samples. The initial concentration map constructed with the two Gaussian plumes with
the parameter in this MCMC chain is shown in Figure 3.12.

Although somewhat less accurate, the estimates of the spatial extent, o;, and strength, S;, of
the co-mingling plumes is more than adequate for field applications. Their estimation errors cannot
be eliminated with more computations, as suggested by a very large number of samples used in our

DRAM. Instead, they reflect the relative dearth of information provided by a few sampling locations.
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Figure 3.13: DRAM chains of the parameters m characterizing the initial plume configuration ¢;, (x)
obtained by sampling from the CNN surrogate (3.10). Each Markov chain represents a parameter
value plotted as function of the number of iterations (links in the chain). The black horizontal lines
are the true values of each parameter.
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Figure 3.14: The initial concentration c¢;,, constructed with the two Gaussian plumes computed with
the DRAM MCMC chain(second half) obtained by sampling from the CNN surrogate model. The
mean values of the parameters are shown in Table 3.5.

Next, we repeat the MCMC procedure but using the CNN surrogate to generate samples. Fig-

ure 3.13 exhibits the resulting MCMC chains of the parameters m, i.e., the parameter values plotted
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Parameter True value Mean Std T P

1,1 325 322.3274  9.8827  189.8946 0.9944
22,1 325 328.8859  3.9956  231.9033 0.9992
21,2 562.5 555.4074  4.3167  35.8577  0.9983
22,2 625 623.8933  0.8944  43.2115  0.9999
S 30 28.4441 6.4531 514.4594 0.8100
o1 15 15.9822 1.9291  537.7868 0.9094
So 50 64.6830 12.1613 540.6132 0.9962
o9 17 15.1550 1.6076  543.3779 0.9964
M, 20.4244 21.9306 — — —

M, 43.5802 44.8789 — — —

Table 3.5: DRAM chain statistics—mean, standard deviation, integrated autocorrelation time 7, and
Geweke convergence diagnostic p—of the parameters m characterizing the initial plume configuration
¢in(X) obtained by sampling from the CNN surrogate. Also shown is the total contaminant mass of
the two co-mingling plumes, M; and Ms.

as function of the number of samples N (excluding the first 50000 samples used in the burn-in
stage). Because of the prediction error of the CNN surrogate, the chains differ significantly from
their PDE-based counterparts in Fig. 3.11. They are visibly better mixed, an observation that is
further confirmed by the fact that the integrated autocorrelation times 7 in Table 3.5 are much
smaller than those reported in Table 3.4. The initial concentration map constructed with the two
Gaussian plumes with the parameter in this MCMC chain is shown in Figure 3.14. However, the
standard deviations (Std) for the parameter estimators are slightly larger than those obtained with
the PDE-based MCMC; this implies that the CNN prediction error undermines the ability of MCMC
to narrow down the posterior distributions. The posterior PDFs for the centers of mass of the two
commingling plumes, (x1, T2 ;), are shown in Figure 3.15 and Figure 3.16. The discrepancy between
the actual and reconstructed (as the means of these PDFs) locations is within 7 m; it is of negligible
practical significance.

Comparison of Table 3.4 and Table 3.5 reveal that, similar to the PDE-based sampler, the CNN-
based sampler provides more accurate estimates of the source location (x1 4,2 ;) than of its spread
(0;) and strength (S;). However, in practice, one is more interested in the total mass of the released
contaminant (M) rather than its spatial configuration (characterized by o; and S;). The mass of

each of the commingling plumes in (3.38), My and M, is:
Mi = 9/ Cin(X)dX, Qz : [ml,i + 100] X [xQ,i + 100], L= 1, 2. (339)
Q;

Both the PDE- and CNN-based MCMC strategies yield accurate estimates of M7 and My (Tables 3.4
and 3.5).
We also present the HMC sampling using the CNN surrogate to generate samples and compute

the gradient. Results with only 2000 samples are shown in Figure 3.17, exhibiting the resulting HMC
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Figure 3.15: Probability density functions (solid lines) and histograms (gray bars) of the centers
of mass of the two commingling spills, (11, 2,1) and (21,2, %2,2), computed with MCMC drawing
samples from the PDE-based transport model. Vertical dashed lines represent the true locations.
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Figure 3.16: Probability density functions (solid lines) and histograms (gray bars) of the centers
of mass of the two commingling spills, (z1,1,22,1) and (21,2, 22,2), computed with DRAM drawing
samples from the CNN surrogate. Vertical dashed lines represent the true locations.
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Figure 3.17: HMC-NUTS chains of the parameters m characterizing the initial plume configuration
¢in(X) obtained by sampling from the CNN surrogate (3.10). Each Markov chain represents a
parameter value plotted as function of the number of iterations (links in the chain). The horizontal
lines are the true values of each parameter.
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Figure 3.18: The initial concentration cj,, constructed with the two Gaussian plumes computed
with the HMC chain(second half) obtained by sampling from the CNN surrogate model. The mean
values of the parameters are shown in Table 3.6.
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Figure 3.19: Probability density functions (solid lines) and histograms (gray bars) of the centers of
mass of the two commingling spills, (21,1, 221) and (21,2, z2,2), computed with HMC-NUTS drawing
samples from the CNN surrogate. Vertical dashed lines represent the true locations.
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chains of the parameters m, i.e., the parameter values plotted as function of the number of samples
N (excluding the first 1000 samples used in the burn-in stage). The prediction error of the CNN
surrogate has similar effect on the shape of the trace plots to Figure 3.13, visibly better mixed too.
The PDFs shown in Figure 3.19 with only 2000 samples are already very smooth and concentrated
at the peak location compared to DRAM-CNN results in Figure 3.16. The chain statistics are
summarized in Table 3.6, the estimated mean is slightly farther from the reference value compared
to the DRAM-CNN results shown in Table 3.5, but the standard deviation is an order of magnitude
smaller. The initial concentration map constructed with the two Gaussian plumes with the parameter
in this MCMC chain is shown in Figure 3.18. The autocorrelation 7 for all estimated parameters
are much smaller; the Geweke convergence diagnostic p are all very close to 1. Visualization of
the autocorrelation for the three samplers are shown in Figure 3.20, Figure 3.21, and Figure 3.22.
The autocorrelation of these three chains show clearly that the HMC-CNN sampler with only 2000
samples reaches convergence, saving an order of magnitude samples. These statistics all prove that
the convergence of the HMC-CNN sampler is much faster than that of DRAM sampling with either
PDE based forward model and CNN surrogate forward model. On the other hand, we would like to
indicate that the samples of x; 2, z2 2 did not cover the reference value, as shown in Figure 3.19, the
discrepancy between the reference value and the sample mean is up to 10 m for z; 2 in a field that

is 2000 x 1000 m?, which can be a practical issue in field applications.

Parameter True value Mean Std T P

Z11 325 319.66525 3.3039 1.09175 0.997543
T21 325 328.80032 1.2776 1.24368  0.99958
1,2 562.5 554.15515 1.6658 1.26398  0.99993
2,2 625 623.68756 0.3582 1.19211  0.99994
Sh 30 28.5775  4.8943 3.45711  0.99916
o1 15 15.8092  2.0209 1.88012  0.98740
So 50 62.712563 7.6878 2.42575  0.98592
09 17 13.965155 0.8016 1.16434  0.99879
M, 20.4244 22.1330 - - -

Mo 43.5802 44.0599 - - -

Table 3.6: HMC chain statistics—mean, standard deviation, integrated autocorrelation time 7, and
Geweke convergence diagnostic p—of the parameters m characterizing the initial plume configuration
¢in(x) obtained by sampling from the CNN surrogate. Also shown is the total contaminant mass of
the two co-mingling plumes, M; and Ms.

3.4.4 Computational Efficiency of MCMC with CNN Surrogate

Our CNN-based DRAM is about 20 times faster than DRAM with the PDE-based transport model
(Table 3.7). This computational speed-up can be attributed to either the algorithmic improvement
or the different hardware architecture or both. That is because while the off-the-shelf PDE-based

software utilizes central processing units (CPU), NN training takes place on graphics processing
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Figure 3.20: Auto-correlation plots of the of the parameters m characterizing the initial plume
configuration ¢, (x), computed with DRAM-MCMC drawing samples from the PDE-based transport
model. Half of the chain with 50000 samples are used for these plots.
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Figure 3.21: Auto-correlation plots of the of the parameters m characterizing the initial plume
configuration ¢j,(x), computed with DRAM-MCMC drawing samples from the CNN surrogate.
Half of the chain with 50000 samples are used for these plots.
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Figure 3.22: Auto-correlation plots of the of the parameters m characterizing the initial plume
configuration ¢, (x), computed with HMC-NUTS drawing samples from the CNN surrogate. Half
of the chain with 1000 samples are used for these plots.

units (GPUs), e.g., within the GoogleColab environment used in our study, without much effort on
the user’s part. To disentangle these sources of computational efficiency, we also run the CNN-based
DRAM on the same CPU architecture used for the PDE-based DRAM. Table 3.7 demonstrates that
the CNN-based MCM ran on CPU is about twice faster than the PDE sampler. This indicates that
the computational speed-up of the CNN-based sampler is in large part due to the use of GPUs for
CNN-related computations. One could rewrite PDE-based transport models to run on GPUs, but
it is not practical. At the same time, no modifications or special expertise are needed to run the
Pytorch implementation [101] of neural networks on GPUs. The CNN-based HMC though, takes
much longer time to generate each sample in the HMC chain, notably slower than both PDE-based
DRAM sampler and CNN-DRAM sampler. However, the convergence of the chain is much faster

given that the chain is well-mixed with only 1000 burn in samples.

Trun Ttrain Tave

PDE 101849.0 0 1.01849
CNN on GPU 1101.7  4007.4 0.05109
CNN on CPU 37450.0  4007.4 0.41457

HMC-CNN on GPU  6824.0  4007.4 5.41550

Table 3.7: Total run time (in seconds) of the MCMC samplers, Tiun, based on the PDE-based
transport model and its CNN surrogate. The PDE sampler uses CPUs; the CNN sampler is trained
and simulated on GPUs provided by GoogleColab; for the sake of comparison, also reported is the
run time of the CNN sampler on the CPU architecture used for the PDE-based sampler. In the
first three cases, DRAM consists of Ny, = 10° samples. The average run-time per sample, Tyye, is
defined as Tave = (Trun + Ttrain)/Nsum, where Tipain is the CNN training time. HMC-CNN on GPU
reports the time required for 2000 samples, the CNN surrogate used in this scenario is the same as
the previous two case, and is run on GPU.
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3.5 Conclusions and Discussion

We proposed an MCMC approach that uses DRAM sampling and draws samples from a CNN surro-
gate of a PDE-based model. We also tested the CNN surrogate model with an HMC sampler. The
approach was used to reconstruct contaminant release history from sparse and noisy measurements
of solute concentration. In our numerical experiments, water flow and solute transport take place in
a heterogeneous two-dimensional aquifer; the goal is to identify the spatial extent and total mass of
two commingling plumes at the moment of their release into the aquifer. Our analysis leads to the

following major conclusions.

1. The CNN-based DRAM is able to identify the locations of contaminant release, as quantified

by the centers of mass of commingling spills forming the initial contaminant plume.

2. Although somewhat less accurate, the estimates of the spread and strength of these spills is
adequate for field applications with DRAM samplers. Their integral characteristics, the total

mass of each spill, are correctly identified.

3. The estimation errors cannot be eliminated with more computations. Instead, they reflect both
the ill-posedness of the problem of source identification and the relative dearth of information

provided by sparse concentration data.

4. Replacement of a PDE-based transport model with its CNN-based surrogate increases uncer-

tainty in, i.e., widens the confidence intervals of, the source identification.

5. The CNN-based DRAM is about 20 times faster than MCMC with the high-fidelity transport
model. This computational speed-up is in large part due to the use of GPUs for CNN-related
computations, while the PDE solver utilizes CPUs.

6. The CNN-based HMC sampler is notably slower in terms of obtaining each sample due to
the Hamiltonian dynamics evolution. The convergence of the chain is much faster than both
PDE-based and CNN-based DRAM sampler. However, although the samples of the release
locations are close to the reference value, they did not cover the reference value, which can be

a practical issue in field application.

While we relied on a CNN to construct a surrogate of the PDE-based model of solute transport,
other flavors of NNs could have be used for this purpose. We are not aware of published comparisons
of alternative NNs in the context of image-to-image prediction, which is required by our DRAM
method. In the somewhat related context of spectrum sensing [136], the comparison of a fully
connected neural network (FNN), a recurrent neural network (RNN), and a CNN revealed the FNN
to have small utility for ordered and correlated samples like images; the CNN and RNN to exhibit a
comparable performance in terms of accuracy, and the RNN to be more efficient in terms of memory

requirements.
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In general, the direct comparison of the performance of a FNN and a CNN on the same task is
not helpful and can be misleading because of the freedom of the architecture of each network and
the presence of multiple tuning parameters in both. However, the results reported in Section 3.3.2
suggest that a FNN would contain significantly more parameters given the size of the input and
output images. This applies even to a relatively shallow FNN. Some studies in image classification,
e.g., [18], claim that, relative to FNNs, CNNs require more training data to achieve convergence
and avoid overfitting. Even if this conclusion generalizes to our application it is of little practical
significance, because we found the combined cost of the training-data generation and NN training
to be significantly lower than the cost of MCMC sampling.

Properly trained autoregressive models and RNNs can be a strong competitor to CNNs, because
they perform like a fixed time-step predictor and, consequently, might generalize better. RNNs are
likely to be more expensive because of higher prediction frequency, but require less memory for
each prediction. Our implementation of CNNs utilized a parallel GPU architecture to carry out
convolutional operations. However, since GPUs have become more affordable, this drawback can be
ignored.

Our computational examples deal with an instantaneous contaminant release. Because a CNN
has been shown to provide an accurate surrogate of the PDE-based transport model with temporally
distributed sources [94] and because MCMC is known to accurately reconstruct prolonged contam-
inant release history [7], our CNN-based MCMC is expected to provide comparable computational

gains when used to identify prolonged contaminant releases.



Chapter 4

Joint Conductivity and Source

Identification

In this chapter, we perform inverse modeling to construct the conductivity field and the contaminant
release history with noisy solute concentration and hydraulic head data. We utilize CAAE parame-
terization to obtain a reduced-order representation of the hydraulic conductivity field, and the data
assimilation method ESMDA with CAAE and a DenseED surrogate to obtain an approximation of

the posterior distribution of the model parameters.

4.1 Introduction

Design of regulatory and remedial actions for contaminated soils and aquifers rely on reconstruc-
tion of the contaminant release history. Given subsurface heterogeneity, this task is inseparable
from the need to identify hydraulic and transport properties of the subsurface environment. Both
tasks have to contend with sparse and noisy measurements collected many years or decades after
the contamination event took place. Prior to recent breakthroughs in computer architecture and
algorithmic development, this joint inversion of hydraulic and water-quality data for real-world prob-
lems was so demanding computationally as to defy a solution unless dramatic (and often unrealistic)
simplifications of the problem were made. For example, past efforts to reconstruct a contaminant
release history found it necessary to assume solute migration to be one-or two-dimensional and sub-
surface properties, such as hydraulic conductivity K(x), to be known with certainty [4, 117, 137,
among many others]. Yet, aquifers are seldom, if ever, homogeneous, with K(x) often varying by
orders of magnitude within the same aquifer and exhibiting highly non-Gaussian, multimodal be-
havior [123, 129, 135]. Likewise, while the assumption of two-dimensional groundwater flow is often

valid, accounting for the three-dimensional nature of contaminant migration is essential to prediction
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accuracy.

Our effort in joint inversion of hydraulic conductivity and contaminant release history from error-
prone measurements of hydraulic head and solute concentration revolves around two challenges. The
first is to describe the unknown non-Gaussian heterogeneous conductivity field with an adequate
prior distribution. The second is to estimate a large number of unknown parameters in the inverse
problem.

To tackle the first challenge, a parameterization of the high-dimensional conductivity field with a
low-dimensional latent variable is commonly used [81, 142]. Parameterizations based on the principle
component analysis (PCA) [114, 125] perform well for Gaussian random fields, but require ad-hoc
modifications for non-Gaussian fields [82]. DNN-based parameterizations eliminate the need for
the Gaussianity assumption [16, 82]. Two popular methods of this class are generative adversarial
network (GAN) [40] and variational autoencoders [61]. Both produce a DNN that learns a two-way
mapping between the training conductivity fields and the low-dimensional latent variable. Random
realizations from the latent variable distribution can be decoded to a conductivity field that is
statistically similar to those drawn from the training data set. In addition to the large reduction in
the number of the unknown parameters, such parameterizations make it feasible to tackle the latent
variable distribution, which is typically a standard normal by construction. This simplicity, in turn,
facilitates the solution of the inverse problem with ensemble methods discussed below.

The second challenge, high dimensionality of the parameter space, manifests itself in significant
computational burden of an inversion procedure. Parameter estimation, which lies at the heart
of an inverse problem, is achieved by matching the noisy measurements with the prediction of a
flow and solute transport model. Strategies for solving typically ill-posed inverse problems fall into
two main categories, deterministic and probabilistic. Deterministic methods, such as least square
regression [128] and hybrid optimization with a genetic algorithm [5, 77], seek a “best” estimate
of the unknown parameters, without quantifying the uncertainty inherent in this type of problems.
Probabilistic methods, such as Markov chain Monte Carlo or MCMC [34] and data assimilation via
Kalman filters [31, 32, 133, 134] and their variants [30, 140], overcome this shortcoming of their
deterministic counterparts. Yet, the high cost of necessary repeated forward solves undermines their
utility for large, complex inverse problems, unless dedicated high-performance computing facilities
are available for the task.

Two complementary strategies can be deployed to alleviate this cost. The first aims to reduce
the number of forward simulations needed for an inversion algorithm to converge. The second seeks
to reduce the computational cost of each forward solve. Efforts in the former direction include the
design of efficient MCMC variants, such as delayed rejection adaptive Metropolis (DRAM) sam-
pling [43, 44] which slightly outperforms a random walk Metropolis-Hastings MCMC in terms of
efficiency [138, 143, 132]. Gradient-based MCMC methods, such as hybrid Monte Carlo (HMC)

sampling [7], converges faster than these and other MCMC variants. However, computation of the
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gradient of a Hamiltonian dynamical system is prohibitive for high-dimensional transport problems.
Learning on statistical manifolds provides another possible solution [14, 13]. Ensemble-based in-
version methods are generally faster since they allow nearly perfect parallelization, because of the
independence of samples in the ensemble. Variants of Kalman filters, such as iterative Ensemble
Kalman filter (IEnKF), have been used for estimation of three-dimensional heterogeneous perme-
ability fields [17]. A relatively new variant of Kalman filter, ensemble smoother with multiple data
assimilation (ESMDA) [30], has gained popularity in subsurface flow history matching [122, 59, 54].

In terms of inversion complexity, we subdivide recent groundwater-related studies into three cat-
egories: estimation of hydraulic conductivity from measurements of hydraulic head and, optionally,
of solute concentration [95, 56]; estimation of contaminant release history from concentration mea-
surements, for known flow and transport parameters [143, 138]; and estimation of both contaminant
release history and hydraulic conductivity from hydraulic head and solute concentration data in two-
[94, 134, 58] and three-dimensional [57] aquifers. We briefly discuss the latter category to highlight
the novelty of our approach.

A low-dimensional representation of the random log-normal conductivity obtained via the Karhunen-
Loeve expansion (KLE) in [94] loses its attractiveness if the subsurface environment is highly hetero-
geneous, exhibiting short correlation lengths and multimodal statistics; additionally, this study relies
on a linear transport model. The deep learning-based strategies of ensemble inversion were adopted
in [134, 58] to estimate both a non-Gaussian conductivity field and the source of contamination,
yet their reported accuracy is relatively low. In the adjacent field of petroleum engineering, CNN
post-processing of PCA (CNN-PCA) parameterization and ESMDA were used to estimate both a
channelized permeability and the oil/water rate [122]. However, this application deals with an ob-
servable quantity (the oil/water production rate), while ours has to contend with an unobservable
one (the location and strength of a contaminant release).

To address the shortcomings of the joint inversion strategies mentioned above, we use a convo-
lutional adversarial autoencoders (CAAE) to parameterize a non-Gaussian conductivity field [95],
train a surrogate dense encoder-decoder DNN to replace the PDE-based model of subsurface flow
and transport, and apply the ESMDA inversion framework to identify the spatiotemporally extended
source of contamination and the latent variables representing the conductivity field. We posit that
combination of these three components, which yields the method we refer to as CAAE-DenseED—
ESMDA, provides a fast and robust inversion solution.

In Section 4.2 we formulate the problem of joint reconstruction of hydraulic conductivity field
and contaminant release history from sparse and noisy measurements of hydraulic head and solute
concentration. Our inversion strategy, combining CAAE parameterization of the conductivity field
(Section 4.3.2), a convolutional DNN surrogate of the flow and transport model (Section 4.3.3), and
the ESMDA inversion method (Section 4.3.1), is described in Section 4.3. Results of our numerical

experiments are reported in Section 4.4; they demonstrate that our method is about 8 times faster
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than CAAE-ESMDA with the PDE-based flow and transport model. Main conclusions drawn from

this study are summarized in Section 4.5.

4.2 Problem Formulation

The problem formulation consists of the description of a reactive transport model (Section 4.2.1)

and the specification of a data model (Section 4.2.2).

4.2.1 Contaminant Transport Model

We consider transport of a reactive solute in a three-dimensional steady-state groundwater flow field.
The latter is described by:

V- (KVh) =0, x = (z1,22,23) € QCR3 (4.1)

where K(x) is the hydraulic conductivity of the aquifer 2, and h(x) is the hydraulic head. This
PDE is subject to appropriate boundary conditions on the simulation domain boundary 02. After
the flow equation is solved, the average pore velocity u(x) = (u1,us,u3)' is computed from the
Darcy law,

K

=——Vh 4.2
u HV’ (4.2)

where 6(x) is the aquifer’s porosity.

Starting at some unknown time tg, a contaminant with volumetric concentration ¢y enters the
aquifer through either point-wise or spatially distributed sources €2y C €. The contaminant is
released for unknown duration 7' with unknown intensity gs(x,t) (volumetric flow rate per unit
source volume), such that gs(x,t) # 0 for to <t <ty +T. The contaminant is advected by the flow,
while undergoing hydrodynamic dispersion and sorption to the solid matrix with rate R,. Without
loss of generality, the spatiotemporal evolution of the contaminant’s volumetric concentration c(x, t)

is described by an advection-dispersion-reaction equation:

% =V (0DVe) = V- (fuc) — Rn(c) +gscs,  x €D, t>to, (43)

The dispersion coefficient D, a semipositive second-rank tensor. If the coordinate system is aligned

with the mean flow direction, such that u = (u = |u|,0,0) ", then the components of this tensor are:
D1 =0Dyn+aru, Dy =0Dy+aru, Ds3=0Dn+acu, D;j=0Dy, for i#j, (4.4)

where D,, is the coefficient of molecular diffusion for the contaminant in free water; «y is the

longitudinal dispersivity; and ar and a¢ are transverse dispersivities in the zo and x3 directions,
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respectively. The chemical reactions considered represent sorption of the dissolved contaminant onto

the solid surface of the porous media. Thus, the reaction terms R, (c) has the form:

oc

(4.5)

We assume the system to be in local chemical equilibrium, i.e., sorption to be much faster than
advection and dispersion, We also assume that sorption does not affect the porosity 6, which remains

constant throughout the simulations. With these assumptions, (4.3) reduces to:

dc

R&a =V . (6DVc) — V- (fuc) + gscs (4.6)

wherein R(c) is the dimensionless retardation factor defined as:
R=1+2—. (4.7)

A sorption isotherm defines the relationship between the sorbed concentration, ¢, and the dissolved
concentration, c. Among the popular isotherms—Ilinear, Langmuir, and Freundlich—we adopt the

latter, for the sake of concreteness. According to the Freundlich isotherm,
¢ = Ky, (4.8)

where K is the Freundlich constant, (L*M ~!)%; and a is the Freundlich exponent. The units of all

the transport quantities are summarized in Table 4.1.

Table 4.1: Quantities in the transport model (4.6) and their units.
Term Physical quantity Units

dissolved concentration ML-3

porosity of the subsurface medium -

x; the distance along the respective Cartesian coordinate axis L

D;; hydrodynamic dispersion coefficient tensor L2T-!

Us; pore water velocity LTt

qs volumetric flow rate per volume, sources (+) and sinks (—) T~!

Cs concentration of source or sink flux ML—3

R, chemical reaction term ML—3T-!
Db bulk density of the medium ML~3

c concentration sorbed ML~3

Ky Freundlich constant (L3M~1)e

a Freundlich exponent -
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4.2.2 Parameters of Interests

Our goal is to identify the conductivity field K(x) and the contaminant source gscs(x,t), given
the flow and transport models, (4.1)—(4.8), and measurements of contaminant concentration and
hydraulic head. Other parameters in the transport model, such as porosity, reaction term coefficients,
etc., are assumed to be known. Identification of the source term gscs is tantamount to finding
the location(s), S, and strength, S; € R™«, of the contaminant source; with the elements Ss;
(j =1,..., Ny) of the vector Sy denoting the release strength at jth time interval.

Measurements of hydraulic head, hom = ﬁ(xm), and solute concentration, €,,; = ¢(Xm,t;), are
collected at locations {x,,}M_, at times {t;}._,. In lieu of field observations, we generate these data
by corrupting the solution of (4.1)—(4.8) obtained for the reference parameter values by random

measurement errors € . and €? , such that:

mi

Cm,i = (X, t;) + €5 B, = h(xp) + €; m=1,...,M, i=1,...,1, (4.9)

mi? m?

where ¢(Xm,,t;) and h(x,,) are the model predictions. The zero-mean Gaussian random variables

C
mn?

€ have covariance Eley, ;€5 ] = 055 R, ,,, where E[-] denotes the ensemble mean; d;; is the Kronecker
delta function; and RS, with m,n € [1, M] are components of the M x M spatial covariance matrix
R of measurements errors. To be specific, we set R¢ = o.I, where o, is the standard deviation of the
measurement errors, and I is the (M x M) identity matrix. The hydraulic head measurement errors
el are zero-mean Gaussian random variables with covariance E[e® ¢?] = Rl =~ with m,n € [1, M].
We set R" = ¢,1, where oy, is the standard deviation of the measurement errors.

The error model in (4.9) assumes the flow and transport models (4.1)—(4.8) to be exact and the
measurements errors to be unbiased and uncorrelated in time but not in space. The groundwater
flow equation is solved with MODFLOW [47], and the solute transport equation with with MT3DMS

[141, 8]. We use Flopy [6], a Python implementation of these two packages.

4.3 Methodology

Below we describe the three elements of our inversion framework: ensemble smoother with multiple
data assimilation (ESMDA), convolutional adversarial autoencoders (CAAE) parameterization of
the conductivity field, and a Dense encoder-decoder (DenseED) neural network surrogate of the

forward model.

4.3.1 Ensemble Smoother with Multiple Data Assimilation (ESMDA)

Upon a spatiotemporal discretization, the uncertain (random) input parameters in (4.1)-(4.4) are
rearranged into a vector m of length N,,; these inputs include the discretized source term (S, Ss)

and hydraulic conductivity K (x). Similarly, we arrange the random measurements &, ; and h,, into
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a vector d of length Ny = M (I + 1), and the random measurement noise ¢ ; and €”, into a vector

mi

e of the same length. Then, the error model (4.9) takes the vector form,
d=g(m)+e, (4.10)

where g(-) is the vector, of length Ny, of the correspondingly arranged stochastic model predictions
¢(Xm, t;) and h(x,,) predicated on the model inputs m. Let fy, denote a prior probability density
function (PDF) of the inputs m, which encapsulates the knowledge about the aquifer’s properties
and contaminant source before any measurements are assimilated. Our goal is to improve this prior
by assimilating the measurements d, i.e., to compute the posterior PDF of the model parameters,

Jmja- As we have done in the previous chapters, this task is accomplished via the Bayes rule,

fn (1) fogm (1023 )

fmja(m;d) = Fa(d)

L @ = / Fon (10) oo (40; )i, (4.11)

where fq)m is the likelihood function, i.e., the joint PDF of the concentration and hydraulic head
measurements conditioned on the corresponding model predictions; and fq, is the “evidence” that
serves as a normalizing constant so that fm, q(m;-) integrates to 1.

To compute (4.11), we use ESMDA [30], which is an ensemble updating method similar to
ensemble smoother (ES) [124] or ensemble Kalman filter (EnKF) [31, 32]. To place ESMDA in
the proper perspective, we briefly describe ES. The method is initiated by drawing N, samples
M/ = {m{, ey m{\,e] from the prior PDF fy,. These data are then updated as:

m§ = m] + Cl;p(Chp + Cp) '[duc; —g(m))],  j=1,....Ne, (4.12)
forming M® = [m{,...,m% ], the updated ensemble conditioned on the measurements d. Here,
Cp € RNexNa g the covariance matrix of the measurement errors €; dy.; ~ N(d,Cp) are the
perturbed measurements with the measurement error covariance Cp; CfDD € RNexNa s the auto-
covariance matrix of the model predictions Df = Df = [g(m]),... ,g(m‘]’;e)]; and Cl{,[D € RNmxNa
is the cross-covariance matrix between M7/ and D/. During the update, all the data d are used
once, simultaneously. This global update may cause an unacceptably large mismatch between the
model response and the measurements, which precipitated the development of an iterative ES with
smaller-scale updates.

While ES performs a single large Gauss-Newton correction to the ensemble M/, ESMDA makes
a smaller correction during each update and deploys the inflated covariance matrix Cp to damp the
changes in the ensemble at early iterations [35, 131]. (In the linear Gaussian case, ESMDA and ES
yield identical results.) We use the following algorithm to implement ESMDA.

e Set the number of data assimilation iterations, N,, and the corresponding inflation coefficients

a; 1 = 1,...,N,. Requiring Zf\i’l «; = 1 guarantees the consistency with ES in the linear
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Gaussian case. Generate the initial ensemble m} (j=1,...,N,) from the prior PDF fy,.

o Repeat the following steps for ¢ = 1,..., N,:

1. Run the forward simulation for each member m; (j =1,...,N,), from the parameter
ensemble M/, to obtain the corresponding model predictions (and, in the synthetic case,

observations) g(m§ ).

~ N(d, CVZ'CD).
3. Compute the cross covariance matrix Cy;p and the auto-covariance matrix of the pre-
dicted data Chp.

2. Perturb the measurements with inflated measurement noise: d;,. ;

4. Update the ensemble as in (4.12), but with Cp replaced by «;Cp:

m’ "' = m} + Cyp(Cpp + :Cp) ' [d,. ; — g(m))], j=1,...,N.. (4.13)
The inverse, C;l7 of the matrix C; = Chp + «;Cp is approximated by its pseudo-inverse with

truncated singular value decomposition (TSVD).

4.3.2 CAAE Parameterization of Conductivity Field

Let the matrix k € RW>H*L denote the log-conductivity field In K (x) defined on a three-dimensional
numerical grid, which consists of W, H and D elements in the three spatial directions. We use CAAE
to parameterize the high-dimensional k with a low-dimensional latent variable z. CAAE consists of
two components, a GAN and an AE.

GAN [40] is a DNN strategy for generating data from complex distributions without having
to actually acquire the full PDF. This strategy comprises two networks: a generator G(-) that
generates samples similar to k; and a discriminator D(-) that is trained to distinguish between the
generated samples and the real data samples. By “playing an adversarial game”, the discriminator
D(-) improves its ability to catch flaws in the generated samples, and the generator G(-) improves
its capacity to generate realistic samples that try to trick the discriminator.

AE learns a low-dimensional representation z of the data k, and then generates a reconstruction
k from z that closely matches the original data k. The encoded latent variable z is constructed to
follow a PDF f,(z) that is easy to sample from, e.g., a standard normal PDF A/(0,I). A variational
autoencoders (VAE) [61] forces the empirical PDF of z computed from the samples of k, f,x(2),
to be close to the target PDF f,(z) by adding the Kullback-Leibler divergence KL[f, k|| fz] between
the empirical and target PDFs to the total loss function:

LvaE = Lrec(k, k) + KL[ foucll f2], (4.14)

where Lo (k, f{) is the discrepancy between the data k and their reconstruction R, choices of this

discrepancy function include L; or Ly norm. We use the former to define the average, the average
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reconstruction error L,e. over N training samples,

N
1 ~
Erec - =7 kz - kz 5 4.15
¥ 2l el (a.15)

CAAE differs from VAE in the way it minimizes the discrepancy between the empirical PDF
Jzx(Z) and the target PDF f,(z) of the latent random variable z. Instead of minimizing the KL
divergence KL[f, k| fz], adversarial autoencoders (AAE) employs an adversarial training procedure
to minimize this discrepancy. The training of the encoder G(-), decoder, and the discriminator D(-)
is divided into the reconstruction phase and the regularization phase [90]. Parameters in the encoder

and decoder are updated by minimizing the loss function:
Lep = Lrec + wﬁg. (416)

We use Lg to quantify the decoder’s ability to trick the discriminator,

N
Lo = —5 S {Dig(k)]}. (4.17)

The weight factor w in (4.16) is used to assign relative importance to these two sources of error. In
the simulations reported below, we set w = 0.01.
After the encoder and decoder are updated in the first training phase, the discriminator D(-) is

trained in the second phase to minimize the loss function:

1
o= Zl {0 [D(z)] +1n [1 - DG (x,)] }. (4.18)
By iterating between these two training phases, one obtains the mappings from k to z and from z

to R, and the decoder reaches its goal of constructing realizations k similar to the data k.

4.3.3 DenseED Neural Networks as Forward Model Surrogates

ESMDA inversion requires a large number of forward solves of the PDE-based model (4.1)—(4.8) for
multiple realizations of the parameters m. To alleviate the cost of each forward run, we replace the
PDE-based model with its CNN surrogate.

Several approaches to constructing an input-output surrogate are collated in Table 4.2. We
choose an autoregressive image-to-image (i-to-i) regression model, rather than its image-to-sparse-
observation counterpart, because of its superior generalizability [143]. We choose an autoregressive
i-to-1 model over a one-to-many i-to-i model based on computer-memory considerations: for three-

dimensional problems with I time steps, memory allocated for input and output can be prohibitively
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large; also, the autoregressive scheme reduces the number of DNN parameters needed for the re-

gression task. The source location (S;;) and strength (Sg;) for the release period [t,t + At] are

assembled into a three-dimensional matrix S(x,t) € RP*H*W,
Model Input Output Modeling frequency
PDE model m c(x,t;), h(x)
Image-to-image c(x,t;), h(x)

m
m

~ =

(x,
Image-to-sensors c(xm7 ti), h(xm)
Autoregressive i-to-i  ¢(x,t),In K(x),S(x,t) ¢(x,t+ At), h(x)

Table 4.2: Alternative input-output frameworks for construction of a surrogate model. The data are
collected at M locations x,, (m=1,--- ,M) at I times ¢; ({ =1,---,I). The source location (S;)
and strength (Sg;) for the release period [t,t + At] are assembled into a three-dimensional matrix

S(x,1).

An autoregressive surrogate NN ,uto replaces the PDF-based model:

PDEs M,I

g:m —— {c(zm, t;), h(xm)}m,izl (4.19)
with a CNN that sequentially (I times) predicts the system state at the next time step,
NNauto : ¢(x, 1), K(x), S(x,8;) — {e(x,tis1), h(x)},  i=0,...,]—1. (4.20)

If the three-dimensional simulation domain is discretized with a D x H x W grid, then the autore-

gressive CNN surrogate NN, t, performs the following input-to-output mapping:
NNauto :anxDxHxW %RnnyxHxW, (4.21)

where n, = 3, denotes the three channels representing the concentration c(x,t;) and source terms
S(x,t;) at time ¢;, and the log-conductivity In K(x); and n, = 2 designates the two output channels
representing the concentration c¢(x,t;+1) at time ¢;41 the hydraulic head h(x). A representative
input-to-output example is shown in Figure 4.1.

We use a three-dimensional DenseED architecture to solve the image-to-image regression task
with a coarsen-refine process, with the convolutional operations. The encoder extracts the high-level
coarse features of the input maps, while the decoder subsequently refines the coarse features to the
full maps [94, Fig. 2]. We use the Li-norm loss function, the Lo-norm weight regularization, and
stochastic gradient descent [15] in the CNN training process. A detailed description of this surrogate
model and its training procedure can be found in [94]. We have slightly extended their procedure
by adding the measurement locations to the loss function. This allows us to penalize the prediction

error at these specific locations.
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Figure 4.1: Autoregressive surrogate NN, s, of the PDE-based flow and transport model (4.1)-
(4.8). Each image depicts the flattened three-dimensional field, from the first layer on the top to
the bottom layer. The three input channels (left) correspond to ¢(x,t), S(x,t), and In K (x). The
two output channels (right) correspond to ¢(x,t + At) and h(x).

4.3.4 CAAE-DenseED-ESMDA Inversion Framework

We combine the CAAE parameterization of the conductivity field with the DenseED CNN surrogate
of the forward model to obtain fast and accurate predictions of concentration ¢(x,t) and h(x) for
a given set of inputs. Then, we utilize ESMDA to identify the unknown parameters, including the
conductivity field and the source terms (S, Ss). The CAAE parameterization enables one to estimate
the discretized log-conductivity field k through the latent variable z. Our CAAE-DenseED-ESMDA

inversion framework is implemented in the following algorithm.

1. Train a CAAE; obtain the decoder D that maps the low-dimensional latent variable z back
onto the log-conductivity field k.

2. Train an autoregressive DenseED CNN NN, to predict ¢(x,t) and h(x) for a given conduc-

tivity field and contaminant release history.

3. Generate the initial input ensemble M/ of size N., whose elements rn; (j =1,...,N,) are
defined as mj = (z}, Sl}, SS})T. Here, zj ~ N(0,1,) is the latent variable for the log conduc-
tivity field; and Sl} and Ss} denote respectively the source location and strength in all release

periods, drawn from an appropriate prior distribution.

4. Perform the ESMDA inversion with NV, data assimilation iterations and the inflation coeffi-

clents o; (i =1,...,N,). For i =1,..., Ng,

(a) Obtain the log-conductivity realizations kj = D(z}) with j =1,..., Ne;

(b) Form the release configuration {S} ;, S} into the input matrix S%, and predict ¢(x,t)

Lj> 3
and h(x) at the measurement times and locations, NNy (m}) for all j;

(c) Update the ensemble m’ via ESMDA with «; to obtain m;-'H.

5. The end result, mév ot serves as the final ensemble from which PDFs of the log conductivity

field and the contaminant release parameters are estimated.
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4.4 Numerical experiments

4.4.1 Experimental Setup

A confined heterogeneous aquifer is described as a rectangular cuboid €2 of size 2500 m x 1250 m x
300 m; it is discretized with a mesh consisting of 81 x 41 x 6 cells. Groundwater flow is driven
by constant heads h;, = 30 m and hg = 0 m imposed along the left (x; = 0) and right (z; =
2500 m) facets of the cuboid, respectively; the remaining boundaries are impermeable to flow.
Hydraulic conductivity of this aquifer, K (x), is unknown (except when generating the ground truth);
equiprobable realizations of Y (x) = In K(x) are generated by extracting 81 x 41 x 6 patches from
the 150 px x 180 px x 105 px training image [91] in Figure 4.2, available at https://github.com/
GAIA-UNIL/trainingimages. One such cropped log-conductivity field Y (x) and the corresponding
hydraulic head h(x), obtained as a solution of the groundwater flow equation (4.1), are shown in

Figure 4.3. These fields serve as ground truth.

InK
6.015

4.792
3.569
2.346
1.123
—0.100
—1.323
—2.546

105 pixels

Figure 4.2: Training image, consisting of 150 x 180 x 105 pixels. Equiprobable realizations of log-
conductivity Y (x) = In K(x) are generated by randomly selecting patches of size 81 x 41 x 6 pixels.
Conductivity K is in m/d.
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In K h
5.613 30.00
4.592 25.71
3.571 21.43
2.550 17.14
1.529 12.86
0.508 8.57
—0.513 4.29
—1.534 0.00

Figure 4.3: Log-conductivity Y (x) (left) and the corresponding hydraulic head h(x) (right), which
serve as ground truth and to generate measurements of h at observation wells. Conductivity K is
in m/d and head A in m.

Porosity 6 and bulk density p of the soil; dispersivities oy, ar and a¢; and the parameters
K and a of the Freundlich isotherm are constant. Values of these transport parameters, which are
representative of a sandy alluvial aquifer in Southern California [80], are presented in Table 4.3. The
contaminant enters the aquifer via a point source, whose depth is known (the fourth layer from the
top of the domain) but the location in the horizontal plane (S{* and S}) is uncertain. The contami-
nant release is known to occur during a 20-year period, but its strength is uncertain. Following the
standard practice in groundwater modeling, we divide this time interval into NV, = 5 sub-intervals
(“stress periods” in the MODFLOW/MT3D language) during each of which the release strength
(Ss) is constant. In this configuration, the unknown contaminant release history is represented by
the vector S = (S}, Ss), where S; = (Sf”,Sly)T and S = (55,1,55’2755,3,55,4,5’5,5)—'—. The values of
S used to generate the ground-truth concentrations are reported in Table 4.4. Combined with the
discretized version k of the uncertain log-conductivity field Y (x), this yields 19933 unknowns to be
determined from the measurements of solute concentration c(x, t) and hydraulic head h(x). Expert
knowledge about possible location and strength of the contaminant release is encapsulated in the
uniform (“uninformative”) prior distributions for S; and Sg), which are shown in Table 4.4.

These measurements are collected at observations wells, whose completion allows one to collect
water samples either in each of the model’s six vertical layers or only in one layer (the second, the
forth, or the sixth). We consider two alternative networks of observation wells, whose locations are
depicted in Figure 4.4. During the simulated time horizon of 40 years, the contaminant concentration
is sampled at I = 10 time intervals of four years each, and the hydraulic head is measured once
since the flow is at steady-state. The data at all space-time locations are generated by adding

2% measurement error, € ~ AN{0,(0.02g(m))?}, to the solution g(m) of the flow and transport



CHAPTER 4. JOINT CONDUCTIVITY AND SOURCE IDENTIFICATION 78

Property Value Units

1) 0.3 -
Ky 0.1 (wd/g)
a 0.9 -

p 1587 kg/m3
ay, 35 m
OéT/OzL 0.3 -
ac/or 0.3 -
Dy, 107° m?/d

Table 4.3: Values of the transport parameters for a dissolved contaminant migrating in a generic
sandy alluvial aquifer in Southern California [80].

Slx Sly Ss,l Ss,2 Ss,3 Ss,4 Ss,5
Truth 291 625 224 174 869 201 741
Prior  [125,625] [125,1125] [50,1000] [50,1000] [50,1000] [50,1000] [50,1000]

Table 4.4: Parameters S; = (57, Sly)T and Sg = (Ss1, 55,2, 55,3, Ss.4, 5575)T used to represent, respec-
tively, the location and strength of a contaminant release. Reported as “Truth” are their (unknown)
reference values used to generate ground truth and concentration measurements, and “Prior” the
intervals on which their uniform priors, U[-, -], are defined. The values of S; are in m, and of S in

g/m3.
model (4.1)—(4.8) with the input parameter values identified as “ground truth” above.

4.4.2 CAAE Training for Conductivity Parameterization

We train a CAAE DNN to parameterize the discretized log conductivity field k € R8X41x6 The
end goal is an encoder G(k) that maps an input field k onto a low dimensional latent variable
z € R2*ZXIX21 with standard-Gaussian prior N (0,1), and a decoder De(z) that reconstructs k
from this latent variable. The training is done on 23000 realizations of k, obtained as randomly
selected (81 x 41 x 6) patches from the large training image in Figure 4.2. Additional 4000 images
cropped from this image serve as the testing set. The architecture of the CAAE DNN is similar
to that in [95], except that the latent variable z has 2 -2 - 11 - 21 = 924 elements. With 50-epochs
training and the learning rate of 2-10~%, the Adam optimizer is used to obtain the DNN parameters
and, thus, build G(k) and De(z).

A representative realization of In K (x) — k from the test set and its reconstruction via decoder,
k = De(z), are shown in Figure 4.5. After the training is complete, the mean absolute error ||k—k||1,
averaged over all the elements of the numerical mesh and over the 4000 members of the testing data
set, is 0.228464. The reconstructed log-conductivity field k captures the main structural features
of its original counterpart k. Some loss of information is unavoidable in reduced-order modeling
but, overall, the performance of this autoencoders is adequate to achieve accurate inverse modeling

results, as we shown in section 4.4.4 below.
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Figure 4.4: Two alternative networks of observational wells (red dots) in which measurements of
hydraulic head h and solute concentration ¢ are collected. The well locations are superposed on
the ground-truth distribution of hydraulic head in the fourth layer of the MODFLOW model. The
blue box represents a region of possible contaminant release from a point source that is known to
be located in the fourth model-layer, 1, xo in m.

5.117
4.179
3.241
2.304
1.366
0.428
—0.509
—1.447

Figure 4.5: A representative realization of In K (x) — k from the test set (left) and its reconstruction
(right) via the CAAE encoder, z = G(k), and decoder, k = De(z).
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4.4.3 DenseED Surrogate Model

As mentioned in section 4.3, although only model predictions at the well locations are necessary
for the inversion, a DNN that predicts c(x,t;) and h(x) at all points x of the simulation domain
has better generalization properties. We train our CNN on N = 800 Monte Carlo realizations
of the PDE-based model (4.1)—(4.8) with corresponding realizations of the input parameters m
(the discretized log-conductivity k and contaminant release history S). Another set of Niest = 150
realizations are retained for testing. These 950 realizations form 950 x 10 autoregressive input-output
pairs. The CNN contains three dense blocks with INV; = 3, 6, and 3 internal layers, has the growth
rate of Ry = 48 and N, = 48 initial features; it was trained for 200 epochs. We use the L;-norm
loss function and the Lo-norm weight regularization, apply stochastic gradient descent [15] in the
parameter estimation process, and add 5 times the L;i-norm loss at the well locations to the total
loss to penalize the prediction error at the observation wells. The CNN’s output is the hydraulic

head h(x) and the solute concentration ¢(x,t;) at the next time step ¢;.

t=1[1T)

Figure 4.6: Predictions of the solute concentration obtained with the PDE-based model, ¢(x,t), and
its DenseED CNN surrogate, é(x,t), timest = ...y, t = ...y, t = ...y, t = ..y, and t = ... y. Also
shown are the corresponding predictions of the hydraulic head, h(x) and iAL(x); and the difference
between these two types ¢(x,t) — &(x, t), h(x) — h(x) of prediction.
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Figure 4.6 exhibits temporal snapshots of the solute concentrations alternatively predicted with
the PDE-based model, ¢(x,t;), and the CNN surrogate, ¢(x,t;), for a given realization of the log-
conductivity field and the contaminant release configuration (both drawn from the test set). Also
presented are the hydraulic head maps predicted by the autoregressive model, iL(X)7 and the PDF-
based model, h(x). The accuracy of our CNN surrogate is quantified by the total root mean square
error, (|le(x,t) —é(x, t)||2+||h(x) —h(x)||2) /2. It falls to 0.853 at the end of the training process. It is
worthwhile emphasizing here that the Nxye = 800 Monte Carlo realizations used to train the CNN
surrogate are but a small fraction of the forward runs required by ESMDA inversion framework. One
could achieve more accurate predictions for three-dimensional problems by either deploying a more
complex DNN architecture [127, 95] or using much larger Nxyc or both. However, similar to the
CAAE training, we focus on the development of efficient methodologies for three-dimensional inverse

modeling that accommodate the trade-off between the accuracy and computational feasibility.

4.4.4 ESMDA Inversion

We demonstrate the use of the CAAE parameterization and the DenseED CNN surrogate of the
PDE-based forward model to accelerate the ESMDA inversion. The combination of these three tech-
niques constitutes our CAAE-DenseED-ESMDA framework to approximate the joint posterior PDF
of the uncertain model parameters m consistent with both model predictions and field observations.
In the simulations reported below, we select N, = 10 inflation factors in (4.13) and set their values
to a; =10 for i = 1,..., N,, and perform ESMDA with 10 iterations. To ascertain the impact of
the the DenseED CNN surrogate on the inversion accuracy, we also run CAAE-ESMDA with the
PDE-based forward model implemented in MODFLOW and MT3DMS.

Scenario Inversion framework Number of wells  Well completion
1 CAAE-ESMDA 24 all 6 layers
2 CAAE-DenseED-ESMDA 24 all 6 layers
3 CAAE-DenseED-ESMDA 9 all 6 layers
4 CAAE-DenseED-ESMDA 24 layers 2, 4, and 6
5 CAAE-DenseED-ESMDA 9 layers 2, 4, and 6

Table 4.5: Five scenarios of the inverse modeling. The well locations in the dense and sparse
observational networks are shown in Figure 4.4. These wells are completed in either all six layers of
the model or in three layers only.

In total, five alternative implementations of our inversion algorithm are considered. Summarized
in Table 4.5, these scenarios cover the reliance on either the PDE- or CNN-based forward model,
and on the data provided by either the dense or sparse network of observational wells in Figure 4.4.
The dense network in Scenarios 1 and 2 consists of 24 wells that are completed in all 6 layers of the
model, yielding 24 - 6 = 144 measurements of the solute concentration and hydraulic head at each

observation time. The dense network in Scenario 4 refers to the same wells but completed in layers
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2, 4, and 6 only, yielding 24 - 3 = 72 measurements at each observation time. The sparse networks
in Scenarios 3 and 5 comprise 12 observation wells that are completed either in all layers or in three
layers, resulting in either 12 -6 = 72 or 12 - 3 = 36 measurements at each observation time.

In all five scenarios, the ensemble size for ESMDA is set to N, = 960. Figure 4.7 shows this
number to sufficient for the algorithm’s convergence. It exhibits the averaged ensemble observation
error

1 &
Eobs = H Fc Zg(mj) —d
Jj=1 9
that is plotted as function of the number of iteration of the ESMDA algorithm. Here, g(m;) denotes
the forward model prediction, for the input parameters m;, at the same space-time locations as the

measurements d.

error —— 480 samples
2.0 960 samples
= - = 1440 samples
— — 1920 samples
1.54 *  lowest:0.187
1.0 1
0.5 1
Rl [ T r—
T L T - e § —r

1 2 3 4 5 6 7 8 9 10 11
ES-MDA iteration

Figure 4.7: Averaged ensemble observation error, &g, in Scenario 2, plotted as function of the
number of iteration of the ESMDA algorithm for several ensemble sizes, N,. As a result, N, = 960
is chosen to be the ensemble size for all five scenarios in Table 4.5.

Dense Observation Network (Scenarios 1 and 2)

Figure 4.8 exhibits posterior statistics (mean (Y') and standard deviation oy ) of the log-conductivity
Y (x), obtained after the assimilation of all 144 measurements via either CAEE-ESMDA (Scenario 1)
or CAEE-DenseED-ESMDA (Scenario 2). In both scenarios, the posterior ensemble mean (Y), re-
constructed from the latent variable z, correctly identifies the low-conductivity region in the right top
region of the three-dimensional domain and the high-conductivity regions elsewhere. As expected,

the mean log-conductivity fields, (Y), are smoother than the reference field Y (Figure 4.3), but
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the realizations drawn from the posterior Gaussian PDF A ((Y), oy) exhibit more realistic features
(right column in Figure 4.8). Regardless of the forward model used (the only difference in Scenarios
1 and 2), our data assimilation framework yields consistent predictions of oy (middle column in
Figure 4.8). It is small throughout most of the domain, indicating the reduced uncertainty in the
estimation of hydraulic conductivity K(x) due to assimilation of the concentration and head mea-
surements. The maximum values of oy and, hence, the largest predictive uncertainty in the K(x)
estimation, are along the interface between the high- and low-conductivity regions. This finding
suggests that the model predictions of hydraulic head and solute concentration are least sensitive to
the changes in hydraulic conductivity in that domain; it reaffirms the conclusion of the sensitivity
analysis of the relative importance of uncertainties in the spatial arrangement of hydrofacies and

their hydraulic conductivities [130].

oy Y ~N({Y),0v)
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Figure 4.8: Posterior mean ((Y), left column) and standard deviation (oy, middle column) of the
log-conductivity field Y (x) obtained upon assimilation of concentration and head measurements from
the dense observation network. These statistics are obtained via our inversion algorithm CAAE-
ESMDA that relies on either the PDE-based forward model (Scenario 1, top row) or its DenseED
CNN surrogate (Scenario 2, bottom row). Also shown are representative realizations of Y (x) drawn
from the resulting posterior PDF N ((Y), oy ) (right column).

The same inversion experiments yield estimates of the contaminant release history S, which are
shown in Figures 4.9 and 4.10 for Scenarios 1 and 2, respectively. Regardless of the forward model
used, our inversion algorithm accurately estimates the release strength during stress periods 1, 2, and
4 (Ss,1, Ss,2, and Ss 4); the estimates are close to their reference values and have tight 95% confidence
intervals. At the same time, the estimates of the source strength during stress periods 3 and 5 (Ss 3
and Ss 5) fail to converge to their reference values and exhibit large error bars. The two assimilation
strategies yield nearly identical estimates of the contaminant release location, S; = (SF, S/ )T the
estimates of both quantities have tight confidence intervals, but the reference value of Si° lies slightly

outside the confidence interval of its estimator.
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Figure 4.9: Boxplots of the ensembles for the contaminant release terms, S = (S, Ss) with S,
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(Sf, Sly)T and Sg = (Ss1,-- -, 55,5)T, and their confidence intervals, obtained via the CAAE-ESMDA
inversion with the PDE-based forward model (Scenario 1). These quantities are plotted as function
of the ESMDA iterations and contrasted with their reference values (horizontal lines). The source
location S; is in m; and the contaminant release strength in each of the five stress periods, Sq, is in

g/m?.
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Figure 4.10: Boxplots of the ensembles for the contaminant release terms, S = (S, Ss) with S;

(Sz,8Y)T and Sy = (Ss 1, - -
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, 55,5)T, and their confidence intervals, obtained via the CAAE-ESMDA

inversion with the DenseED CNN surrogate (Scenario 2). These quantities are plotted as function
of the ESMDA iterations and contrasted with their reference values (horizontal lines). The source
location S; is in m; and the contaminant release strength in each of the five stress periods, Sq, is in

g/m?.
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Sparse Observation Network (Scenarios 3-5)

Figures 4.11-4.13 present the contaminant release history S estimated by our CAAE-DenseED-
ESMDA inversion algorithm for the reduced amounts of concentration and head data in Scenarios
3-5, respectively. The algorithm’s performance in Scenario 2 and 4, which differ only in the number
of measurements along each well of the dense observation network, is very similar. Also, the inversion
of data from Scenario 4 (more wells with lower vertical sampling density) is more accurate than its
counterpart from Scenario 3 (fewer wells with higher vertical sampling density). These findings are
reassuring, since very few real-world wells are screened in each layer of a numerical flow and transport
model. As expected, the source identification on the data provided by the dense observation network
(Scenario 2) is superior to that on the data from the sparse network (Scenarios 3 and 5). Even in the
most data-poor Scenario 5, our inversion algorithm is able to capture the location of the contaminant
release, albeit with a wide confidence interval.
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Figure 4.11: Boxplots of the ensembles for the contaminant release terms, S = (S, Sy) with S; =
(Sg, ST and Sg = (Ss.1,---,5s5) ", and their confidence intervals, obtained via the CAAE-ESMDA
inversion with the DenseED CNN surrogate (Scenario 3). These quantities are plotted as function
of the ESMDA iterations and contrasted with their reference values (horizontal lines). The source
location S; is in m; and the contaminant release strength in each of the five stress periods, Sg, is in
g/m®.

Figure 4.14 further illuminates this inter-scenarios comparison by exhibiting the 95% confidence
intervals (error bars) for the inversion of hydraulic head and solute concentration data for these five

designs of the observation campaign. Having most data and relying on a more accurate (PDE-based)
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Figure 4.12: Boxplots of the ensembles for the contaminant release terms, S = (S, Ss) with S; =
(Sf, Sly)T and Sg = (Ss1,-- -, 55,5)T, and their confidence intervals, obtained via the CAAE-ESMDA
inversion with the DenseED CNN surrogate (Scenario 4). These quantities are plotted as function
of the ESMDA iterations and contrasted with their reference values (horizontal lines). The source
location S; is in m; and the contaminant release strength in each of the five stress periods, Sq, is in
g/m?.
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Figure 4.13: Boxplots of the ensembles for the contaminant release terms, S = (S, Ss) with S; =
(Sf, Sly)T and Sg = (Ss1,-- -, 55,5)T, and their confidence intervals, obtained via the CAAE-ESMDA
inversion with the DenseED CNN surrogate (Scenario 5). These quantities are plotted as function
of the ESMDA iterations and contrasted with their reference values (horizontal lines). The source
location S; is in m; and the contaminant release strength in each of the five stress periods, Sq, is in
g/m?.
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forward model, the inversion in Scenario 1 achieves the best parameter estimation results (except
for Sg3). Scenarios 1, 2 and 4 yield comparable estimates of the contaminant release location. The
estimate of S} is less accurate than that of S, indicating it is easier to estimate the source location

in the plane perpendicular to the flow direction.
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Figure 4.14: Error bars for estimation of the contaminant release history S = (S), S), i.e., its location
S = (S£,5Y)" and strength in each stress period, Ss = (Ss1,...,5s5) ", for the data-availability
scenarios in Table 4.5.

Figures 4.15-4.17 show reconstructions of the log-conductivity field from the hydraulic head and
solute concentration data in Scenarios 3-5, respectively. While quantitative differences in the recon-
struction of the posterior mean log-conductivity (Y (x)) are hard to discern visually, the posterior
standard deviation oy varies between scenarios. This measure of predictive uncertainty is apprecia-
bly smaller in Scenario 4, which has most data, than in Scenarios 3 and 5, which have less. This
again demonstrates an expected result: data availability is the key to successful inversion. The
manifestation of this truism are the box-plots in Figures 4.11-4.13 and the error bars in Figure 4.14.

It also validates the self-consistency of our parameter estimation algorithm.

Hydraulic Conductivity Estimation from Hydraulic Head Data

In addition to the five scenarios from Table 4.5, we consider the task of estimating the hydraulic
conductivity of a heterogeneous aquifer from hydraulic head measurements. This task is important
in its own right, as a classical hydraulic inversion problem. It also serves to ascertain the importance
of tracer data (even of uncertain quality) for this task. Figure 4.18 exhibits the posterior mean and
standard deviation of the log conductivity Y (x) obtained by assimilating the hydraulic head data

from the dense network of observational wells (Scenario 2). In the absence of solute concentration
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Figure 4.15: Estimates of the posterior mean ((Y), middle column) and standard deviation (oy,
right column) of log-conductivity Y (x) obtained via CAAE-DenseED-ESMDA algorithm from the
hydraulic head and solute concentration measurements in Scenario 3. Also shown is the reference
log-conductivity field (left column) and representative realizations drawn from the posterior PDF

N({Y),0y) (bottom row).
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Figure 4.16: Estimates of the posterior mean ((Y), middle column) and standard deviation (oy,
right column) of log-conductivity Y (x) obtained via CAAE-DenseED-ESMDA algorithm from the
hydraulic head and solute concentration measurements in Scenario 4. Also shown is the reference
log-conductivity field (left column) and representative realizations drawn from the posterior PDF

N({Y),oy) (bottom row).
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Figure 4.17: Estimates of the posterior mean ((Y), middle column) and standard deviation (oy,
right column) of log-conductivity Y (x) obtained via CAAE-DenseED-ESMDA algorithm from the
hydraulic head and solute concentration measurements in Scenario 5. Also shown is the reference
log-conductivity field (left column) and representative realizations drawn from the posterior PDF
N({Y),oy) (bottom row).

measurements, the posterior mean estimated via CAAE-DenseED-ESMDA algorithm misses some
features on the left of the computational domain, which are captured in Scenarios 1 and 2. The pos-
terior standard deviation oy (x) is much higher in a large part of the domain, relative to Scenarios 1
and 2 where the concentration data are used. Realizations of the log-conductivity field Y (x) drawn
from the resulting posterior PDF N ({Y), oy ) show higher variability and less continuity in the re-
gions which Y (x) is supposed to be smoother. Thus, not surprisingly, the addition of information in

the form of concentration measurements reduces the estimation uncertainty, as quantified by oy (x).

4.4.5 Comparison of Computational Costs

The computational costs of CAAE-ESMDA with the PDE-based forward model and its counterpart
with the DenseED CNN surrogate are shown in Table 4.6. CAAE-ESMDA with the PDE-based
model ran on CPU, while the DenseED CNN surrogate was trained and simulated on GPUs provided
by GoogleColab. In both cases, ESMDA consists of N, = 960 samples in each ensemble and 10
iterations are performed, resulting in Ngym = Ne X (10 + 1) = 10560 forward model runs. Overall,
CAAE-DenseED-ESMDA is two orders of magnitude faster than CAAE-ESMDA with the PDE-

based forward model.
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Figure 4.18: Estimates of the posterior mean ((Y), middle column) and standard deviation (oy,
right column) of log-conductivity Y (x) obtained via CAAE-DenseED-ESMDA algorithm from the
hydraulic head measurements only. Also shown is the reference log-conductivity field (left column)
and representative realizations drawn from the posterior PDF N ({Y),oy) (bottom row).

Trun Td ataset Tave
CAAE-ESMDA 388200.0 0.0 0.0 36.8
CAAE-DenseED-ESMDA 1893.9 34922.0 9439.2 4.4

Table 4.6: Total run time of the CAAE-ESMDA, T}, includes the costs of the PDE-based forward
model and its CNN surrogate. The average run-time per sample, Tyye, is defined as Taye = (Tyun +
Taataset T Ttrain)/Nsum, where Tyataser is the time for obtaining the training and testing data sets,
and Tipain is the CNN training time. CAAE parameterization is used in both cases, the training
time is 18678.23, the running time of CAAE is negligible in both data assimilation strategies. All

times are in seconds.



CHAPTER 4. JOINT CONDUCTIVITY AND SOURCE IDENTIFICATION 93

4.5 Conclusions and Discussion

We proposed an CAAE-DenseED-ESMDA algorithm to infer the statistics of both aquifer properties
(e.g., hydraulic conductivity) and contaminant release history from sparse and noisy observations of
hydraulic head and solute concentration. The algorithm relies on CAEE to obtain a low-dimensional
representation of the high-dimensional discretized conductivity field (and, if necessary, other spatially
distributed input parameters); deploys a DenseED CNN surrogate of the PDE-based transport model
to accelerate the forward runs; and adopts ESMDA to solve the inverse problem. The algorithm’s
computational efficiency is such that it enables one to handle three-dimensional problems.

To demonstrate the salient features of our inversion methodology, we conduct a series of numerical
experiments. They deal with flow and transport in a three-dimensional heterogeneous aquifer with
uncertain hydraulic conductivity field; our goal is to estimate the latter, and the contaminant release
history, from the measurements of hydraulic head and contaminant concentration collected in a few

observation wells. These numerical experiments lead to the following conclusions.

1. The CAAE-DenseED-ESMDA inversion framework is capable of both identifying the contam-
inant release source and reconstructing a three-dimensional hydraulic conductivity field from

sparse (in space and time) and noisy measurements of solute concentration and hydraulic head.

2. The CAAE-ESMDA inversion, with or without the DenseED CNN surrogate of the PDE-
based forward model, yields estimates of the contaminant release strength that differ from the
reference values by up to 30.42%. That can be attributed to the imperfect reconstruction of
hydraulic conductivity field or relative insensitivity of the observed solute concentrations to

the contaminant release strengths in each stress period (the inverse problem’s ill-posedness).

3. Deployment of the DenseED CNN surrogate within our CAAE-ESMDA inversion framework
provides an order of magnitude speed up, while giving identical estimates of the hydraulic
conductivity field; it also increases the predictive uncertainty (posterior standard deviation)
relative to that obtained via the CAAE-ESMDA inversion with the PDE-based model.

4. The computational efficiency of CAAE-DenseED-ESMDA, relative to that of CAAE-ESMDA
with the high-fidelity PDE model, is mostly due to the use of GPUs for CNN-related com-
putations, while the PDE solver for the flow and transport model (e.g., MODLFLOW and
MT3DMS) utilizes CPUs.

5. For the same number of observation wells, placing them in the direction of the regional hy-
draulic head gradient (as determined by hydraulic heads along the boundary of the simulation
domain) results in a more accurate reconstruction of the contaminant release history than

placing them in the transverse direction.
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6. Deployment of CAAE-DenseED-ESMDA allows one to investigate questions, such as measuring
the data assimilation accuracy versus the ensemble size or designing a network of observation
wells, that cannot be answered with CAAE-ESMDA with the PDE-based forward model,

whose computational cost might be prohibitive.

Although the flow and transport simulators, MODFLOW and MT3DMS, can be parallelized
to run on multiple CPU cores, that is a much more arduous task than carrying out NN-related
computations on GPUs available in Google-Colab or other cloud computing environments. The latter
takes very little implementation effort and can be done on a personal computer. The advantage of
our method largely depends on the feasibility of accessing GPU computing resources versus deploying

multicores parallelization with the physics-based forward model.



Chapter 5

Overall Conclusions and Future
Work

5.1 Conclusions and Discussion

This dissertation demonstrated versatile combinations of inversion frameworks and neural networks
surrogate models on the application of subsurface flow and transport inverse problems. The two most
popular inversion methods: MCMC and ensemble-based methods are applied to reconstruct contam-
inant release history and hydraulic conductivity from sparse noisy measurements of solute concen-
tration and hydraulic head. Respectively, DRAM MCMC sampling and HMC sampling are applied
on a medium dimensional inverse problems with eight unknown parameters in a two-dimensional
source identification problem in Chapter 3, indicating that the usage of a neural network surrogate
model can achieve comparable accuracy when used to reconstruct the contaminant release history,
the Auto-Differentiation also enables gradient-based HMC sampling, which is often prohibitive if
using a PDF solver to simulate the flow and transport model; ensemble based inversion framework,
ESMDA, is used in an application to reconstruct a three-dimensional hydraulic conductivity field,
and a dynamic contaminant release history in Chapter 4. The CAAE-DenseED-ESMDA inversion
framework was able to identify the contaminant release location, and reconstruct a three-dimensional
conductivity field with noisy solute concentration and hydraulic head measurements. Besides the
two advanced inverse modeling methods, neural network surrogate models are used through all three
applications to enhance the computational efficiency of the inversion framework while keeping com-
parable accuracy to the methods with physics-based forward models. In the application in Chapter 2,
a brute-force inversion framework is made possible with the usage of a neural network surrogate.
These applications and experiments indicate that the integration of neural network surrogate model

with appropriate inversion method can provide an alternative in inverse modeling. We hope that
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these studies will be helpful in the future for more complicated and realistic inverse problems.

5.2 Recommendations for Future Work

96

o A series of studies characterizing the fractional connected area (FCA) and other discrete frac-

ture network (DFN) statistical characteristics in [87, 88, 86] indicated the effectiveness of using
thermal breakthrough curves, electric potential, electrical resistivity in the inverse modeling.
We leave it a future study to incorporate FCA into the input of our NN surrogate model, and
inversion framework as well, potentially with more measurements in addition to the thermal

breakthrough curves from cross-borehole thermal experiments (CBTEs).

To continue the study of a conductivity field reconstruction and contaminant release history
identification, applying a Bayesian approach on the forward surrogate modeling would be a di-
rection to be explored: an ensemble of three-dimensional dense convolutional encoder-decoder
(DenseED) networks are trained to perform as the forward surrogate for the flow and transport
processes. The full workflow will be a combination of the CAAE and this Bayesian DenseED
forward surrogate models, and an inversion framework such as ESMDA is used at the end,
forming a CAAE-BayesianDenseED-ESMDA inversion framework. The Bayesian approach on
the neural networks training enables a ‘fully Bayesian’ inversion, previously prohibitive due to

the prediction error caused by a deterministic forward surrogate model.

Inverse problems on contaminant release history or conductivity reconstruction always rely
on an assumption that the forward model is a perfect model, whereas a realistic transport
phenomena in the field can be very different. Recent studies on surrogate modeling gradually
expanded from two-dimensional to three-dimensional, yet this might cause the gap between
synthetic data inverse modeling and real data inverse modeling even larger. Besides effort
to model the physical processes with more accurate high-fidelity simulators, we hope that

surrogate modeling can someday be trained on real dataset and used in a more realistic scenario.

Contaminant release history identification with less prior knowledge about the release location
and time is of our interests for future study. In our and many other research identification cited
in Chapter 3 and Chapter 4, the contaminant release region is restricted in a small area relative
to the whole domain. A practical issue with relaxing this constraint in our study is related
to the effort on neural network surrogate model training. Since neural network surrogates do
not easily generalize to predict the concentration transport or the fluid flow beyond the time
of training data, the training dataset usually has to cover the prior intervals of these unknown
parameters. A larger release region or more versatile release time setting would cause the
requirement of the training dataset to be increased. For this concern, we would like to explore

neural network architectures or training techniques that saves training data, or converges faster
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in the training process. The fewer physics-based forward model runs needed, the more obvious

the advantage of training and using a surrogate model is.

e Dense nonaqueous phase liquid (DNAPL) is a type of contaminant source that exhibits very
different transport properties than soluble contaminant in groundwater, and in fact [20], found
in many aquifers. Contaminant source identification of DNAPL with neural network surrogate

forward model remains a future study interest for us.

e Principal component geostatistical approach (PCGA) [64], was applied in a study of bathymetry
imaging [76] and outperformed ensemble based method in terms of accuracy and computational
efficiency. We are interested in a comparison of CAAE-PCGA inversion strategy on a contam-
inant source identification problem to our CAAE-ESMDA method shown in Chapter 4, where
CAAE is again used to parameterize the non-Gaussian conductivity field as a low dimensional

latent variable z which is constructed to be Gaussian.

e Another possible future work is about a study on thermal-hydrologic-chemical physical pro-
cesses involved in heat conduction and energy transfer due to fluid flow and chemical transport
in a site-scale reservoir [97]. The governing equations here are restricted to be for fluid flow,
chemical transport, and heat transfer processes. Generally, the detailed permeability field
remains unknown even with some core measurements, hence some inverse analysis is needed.
The goal of this study would be to identify the permeability, initial temperature profile, and
the heat flux on the bottom of a reservoir, given some measurements of the temperature and
tracer concentration taken at later times. The subsurface simulator PFLOTRAN [46] can
solve the system of nonlinear partial differential equations of a multiphase, multicomponent,
and multiscale reactive flow and transport in porous materials. However, the physics involved
in this thermal-hydrologic-chemical process is simulated by solving coupled PDEs, hence the
computational cost with PFLOTRAN is again prohibitive for inverse modeling which requires
a large number of forward runs. The combination of MCMC or ESMDA and a neural network

surrogate model can again be used to solve this inverse problem.
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