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Abstract

Quantitative predictions of fluid flow and transport in porous media are often compromised by

multi-scale heterogeneity and insu�cient site characterization. These factors introduce uncertainty

on input and output of physical systems which are generally expressed as partial di↵erential equa-

tions (PDEs). The characterization of this predictive uncertainty is typically done with forward

propagation of input uncertainty as well as inverse modeling for the dynamic data integration. The

main challenges of forward uncertainty propagation arise from the slow convergence of Monte Carlo

Simulations (MCS) especially when the goal is to compute the probability distribution which is

necessary for risk assessment and decision making under uncertainty. On the other hand, reliable

inverse modeling is often hampered by ill-posedness of the problem, thus the incorporation of geo-

logical constraints becomes increasingly important. In the thesis, four significant contributions are

made to alleviate these outstanding issues underlying on forward and inverse problems.

First, the method of distributions for steady state flow problem is developed to yield a full proba-

bilistic description of outputs via probability distribution function (PDF) or cumulative distribution

(CDF). The derivation of deterministic equation for CDF relies on stochastic averaging techniques

and self-consistent closure approximation which ensures the resulting CDF has the same mean and

variance as those computed with moment equations or MCS. We conduct a series of numerical ex-

periments dealing with steady-state two-dimensional flow driven by either a natural hydraulic head

gradient or a pumping well. These experiments reveal that the proposed method remains accurate

and robust for highly heterogeneous formations with the variance of log conductivity as large as five.

For the same accuracy, it is also up to four orders of magnitude faster than MCS with a required

degree of confidence.

The second contribution of this work is the extension of distribution-based method to account for

uncertainty in the geologic makeup of a subsurface environment and non-stationary cases. Our CDF-

RDD framework provides probabilistic assessment of uncertainty in highly heterogeneous subsurface

formations by combining the method of distributions and the random domain decomposition (RDD).

Our numerical experiments reveal that the CDF-RDD remains accurate for two-dimensional flow in a

porous material composed of two heterogeneous geofacies, a setting in which the original distribution

method fails. For the same accuracy, the CDF-RDD is an order of magnitude faster than MCS.
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Next, we develop a complete distribution-based method for the probabilistic forecast of two-

phase flow in porous media. The CDF equation for travel time is derived within the e�cient

streamline-based framework to replacing the MCS in previous FROST method. For getting fast and

stable results, we employ the numerical techniques including pseudo-time integration, flux-limited

scheme, and exponential grid spacing. Our CDF-FROST framework uses the results of method of

distributions for travel time as an input of FROST method. The proposed method provides proba-

bility distribution of saturation without any assist of sampling-based methods. The numerical tests

demonstrate that the CDF-FROST shows good accuracy in estimating the probability distributions

of both saturation and travel time. For the same accuracy, it is about 5 and 10 times faster than

previous FROST method and naive MCS, respectively.

Lastly, we propose a consensus equilibrium (CE) framework to reconstruct the realistic geological

model by the inverse modeling of sparse dynamic data. The optimization-based inversion techniques

are integrated with recent machine learning-based methods (e.g., variational auto-encoder and con-

volutional neural network) by the proposed CE algorithm to capture the complicated geological

features. The numerical examples verify that the proposed method well preserves the geological

realism, and it e�ciently quantifies the uncertainty conditioned on dynamic information.
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Chapter 1

Introduction

1.1 Motivation

Quantitative prediction of fluid flow and transport in subsurface porous media is a key component of

proper risk assessment and decision-making in many applications including water resources manage-

ment, extraction of fossil fuels, geologic carbon sequestration, and contaminant management. Given

a proper description of the physical properties, the dynamic processes in subsurface formations can

be predicted using the numerical solution of governing equations derived from fundamental conser-

vation laws and Darcy’s law [6]. However, the reliable characterizations of subsurface properties are

notoriously elusive due to insu�cient site data. The available site information including rock and

fluid samples and geology information from seismic data or outcrops of the formation (see Figure 1.1)

often shows a very sparse sampling density in the subsurface area of interest. Moreover, the problem

is further complicated by multi-scale heterogeneity of physical properties (see Figure 1.2).

The combination of high spatial variability and scarce site data introduces uncertainty in input

parameters (e.g., permeability and porosity) and forcings (e.g., initial and boundary conditions and

production rate), rendering model outputs uncertain as well. In the last several decades, many pre-

dictive models have been developed to quantify this uncertainty within the probabilistic framework,

which equates uncertainty with randomness. Two main research areas actively being pursed for

the characterization of uncertainty are forward propagation of input uncertainty (forward problem)

and inversion for conditioning on observed dynamic data (inverse problem). This thesis makes a

contribution to both of these two problems.

In this introduction, we first formulate the flow and transport problems in porous media that

1
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Figure 1.1: Various sources of site information: (a) core sample [100], (b) outcrop data [15], and (c)
seismic data [69].

Figure 1.2: Multi-scale heterogeneity of subsurface formation: (a) large-scale [77], (b) small-scale[14].



CHAPTER 1. INTRODUCTION 3

will be considered through the thesis. Then, the brief description of forward and inverse problems

and their main challenges are presented. Finally, we present the thesis outline with the main ideas

and contributions in each of the following chapters.

1.2 Flow and transport in porous media

In this thesis, we study two di↵erent problems. First, we consider the single phase flow problem

in heterogeneous porous media. The QoI of this flow problem is hydraulic head h or pressure p.

Second, the two-phase flow in porous media would be considered. The QoI of this two-phase problem

is pressure p as well as saturation S.

1.2.1 Single phase flow in porous media

Incompressible steady-state flow in a d-dimensional saturated heterogeneous porous medium ⌦ ⇢ Rd

is described by the groundwater flow equation

r · [K(x)rh(x)] = f(x), x 2 ⌦, (1.1)

subject to boundary conditions

h(x) = �(x), x 2 �D; q(x) · n(x) =  (x), x 2 �N ; (1.2)

Here f(x) represents point and/or distributed sources and sinks; �(x) and  (x) are the hydraulic

head and the normal component of the Darcy flux q(x) = �K(x)rh(x), on the Dirichlet (�D) and

Neumann (�N ) of the flow domain ⌦; K(x) is a hydraulic conductivity; and n(x) is the outward

unit normal vector to �N . (1.1) can be rewritten in terms of pressure p = ⇢gh and permeability

k = (Kµ)/(⇢g) as following:

r · [
k(x)

µ
rp(x)] = f(x), x 2 ⌦, (1.3)

where µ is viscosity, ⇢ is fluid density, and g is the accelaration of gravity. When fluid or rock is

compressible, flow equation is changed to transient equation as

Ss

@h

@t
= r · (Krh) � f(x), x 2 ⌦, t > 0, (1.4)

subject to the boundary condition (1.2).
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1.2.2 Two-phase flow in porous media

Next, we consider incompressible immiscible displacement of non-wetting phase (e.g., oil) by wetting

phase (e.g., water) in a d-dimensional heterogeneous porous medium ⌦ ⇢ Rd. Neglecting capillary

pressure and gravity, the Darcy fluxes for water qw and non-wetting phase qnw are described by

qw = ��wrp, qnw = ��nwrp. (1.5)

where p represents the pressure, and �w and �nw, mobility of each phases, are given by

�w =
K(x)krw(Sw)

µw

, �nw =
K(x)krnw(Snw)

µnw

(1.6)

Here, µnw and µw are viscosities of each phases; krw(Sw) and krnw(Snw) are relative permeability

of wetting and non-wetting phases; and K(x) is absolute permeability.

Since the total Darcy flux qtot = qw + qnw satisfies the continuity condition, the steady-state

flow equation can be written as

�r · (�totrp) = g(x). (1.7)

subject to boundary conditions

p(x) = �(x), x 2 �D; qtot(x) · n(x) =  (x), x 2 �N , (1.8)

where �tot = �w + �nw is the total mobility. It can be easily shown that (1.7) is analogous to (1.3)

when the porous media is fully saturated (i.e., Sw = 1 or Snw = 1).

With the condition Sw+Snw = 1, the conservation of mass can be reduced to following saturation

equation for the wetting phase,

�(x)
@Sw

@t
+ qtot · rfw(Sw) = 0. (1.9)

subject to initial and boundary conditions

Sw(x, t) = 1 � Snwi, x 2 �inj , t > 0; Sw(x, 0) = 1 � Swi, x 2 ⌦. (1.10)

where �inj is the boundary of the domain where the wetting phase is injected from the injector, and

Swi and Snwi are irreducible saturation of water and oil, respectively.
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1.3 Forward uncertainty propagation

The heterogeneous nature of the porous media and incomplete knowledge about their properties,

facilitates modeling of the parameters as random fields [27]. When the permeability or other input

properties, the coe�cients of governing equations in Section 1.2, are also treated as random fields,

then the equations become stochastic PDEs whose solution is probabilistic. The objective of the

forward uncertainty propagation is to quantify the impact of the input uncertainties on model

outputs. To formulate the uncertainty propagation more specifically, we assume uncertain input ⌘

follows a known probability distribution p(⌘). Let Q(x, t, ⌘) be our quantity of interest (QoI) which

is the function of space x, time t, and random input ⌘. The Q therefore will be random as well.

Then, the uncertainty propagation problem is to characterize the statistical properties of the output

QoI Q(x, t, ⌘), like mean Q̄ or variance �2
Q

,

Q̄ =

Z
Q(x, t, ⌘)p(⌘)d⌘, (1.11)

�
2
Q

=

Z
(Q � Q̄)2p(⌘)d⌘. (1.12)

However, the full probabilistic descriptions of the output i.e. the probability density function (PDF)

fQ, or cumulative distribution function (CDF) FQ are often desired for the probabilistic risk as-

sessment and decision making which typically requires the estimates of probability of rare events.

For instance, estimating the CDF FQ(q,x, t) is equivalent to the prediction of how likely the model

output Q(x, t) at the location x and t stays below a safe limit q. The PDF fQ(q,x, t) and CDF

FQ(q,x, t) for the given value q are formulated as

fQ(q,x, t) =

Z
�(q � Q)p(⌘)d⌘, (1.13)

FQ(q,x, t) =

Z
H(q � Q)p(⌘)d⌘, (1.14)

where �(·) and H(·) are delta and Heaviside functions.

Generally, multiple alternative scenarios have to be explored within the probabilistic framework

to obtain PDF/CDF, typically by means of Monte Carlo simulations (MCS). These can be compu-

tationally expensive, and often prohibitively so, especially when the goal is to accurately compute

the tails of a distribution. Among a plethora of methods aiming for uncertainty quantification, the

method of distributions [96] provides such information by solving the deterministic equations for
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PDF/CDF of the QoI. The computational e�ciency of this method over other approaches has been

proved in previous works [45, 118].

1.4 Inverse problem

Inversion techniques (aka history matching or data assimilation), which minimize the mismatch

between observations and model predictions, have become an essential tool of uncertainty charac-

terization. For Gaussian subsurface model, application of the Bayesian framework leads the inverse

problem to the minimization of maximum-a-posteriori (MAP) estimates defined as follows:

S(m) =
1

2
(d � d

⇤)T
C

�1
d

(d � d
⇤) +

1

2
(m � m

⇤)T
C

�1
m

(m � m
⇤), (1.15)

where S is the misfit function we seek to minimize, Cm is the spatial covariance matrix of the prior

model d represents the predicted dynamic data obtained by solving flow and transport problems in

Section 1.2 with geological model m, and d⇤ designates the measured dynamic data. The measure-

ments errors associated with d⇤ are often assumed to be Gaussian, with zero mean and covariance

matrix Cd. For the MAP estimate, we set m⇤ = m̄ (the prior mean) and d⇤ = dobs, where dobs is

the observed dynamic data. The MAP estimate does not solely assess the uncertainty. One of the

most widely used approaches for uncertainty quantification is the randomized maximum likelihood

(RML) which minimizes (1.15) repeatedly.

The minimization of (1.15) provides good estimates of uncertainty when it is well-posed problem

and the geological model is stationary Gaussian field. However, it is well known that subsurface

inversion is ill-posed problem with non-unique solutions, and additional prior information in form

of geological constraints is required to obtain realistic subsurface models that have good predictive

capability [17]. In other words, the resulting model of inversion process should be consistent to the

prior geostatistical description.

Most optimization-based approaches fail to incorporate various geological priors and capture

the geological constraints. One alternative is to employ a parameterization procedure aiming to

represent geological maps in terms of a small number of parameters. Methods of this class include

principal component analysis [80, 104] and deep learning-based techniques [20, 53, 52, 64]. Though

these approaches have shown good performance in many subsurface applications, their results vary

with the subjectively defined number of parameters and parameterization methods, i.e., require

significant fine-tuning.
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1.5 Thesis outline

In Chapter 2, We deploy the method of distributions to derive a deterministic equation for the

CDF of hydraulic head in an aquifer with uncertain (random) hydraulic conductivity. The proposed

CDF equation relies on a self-consistent closure approximation, which ensures that the resulting

CDF of hydraulic head has the same mean and variance as those computed with either statistical

moment equation or MCS. We conduct a series of numerical experiments dealing with steady-state

two-dimensional flow driven by either a natural hydraulic head gradient or a pumping well. These

experiments verify the accuracy of the proposed method over Monte-Carlo approach. The robustness

of the proposed method in terms of spatial variability is also demonstrated. These findings were

communicated in [45].

The distribution based method proposed in Chapter 2, is only applicable to stationary, mildly-

to-moderately heterogeneous porous media. In Chapter 3, we combines the random domain de-

composition (RDD) and the method of distributions to alleviates these limitations. The proposed

CDF-RDD scheme also accounts for uncertainty in the geologic makeup of a subsurface environment.

For a given realization of the geological map, we derive a deterministic equation for the conditional

CDF of hydraulic head of steady saturated flow. The solutions of this equation are then averaged

over realizations of the geological maps to compute the hydraulic head CDF. We present the nu-

merical implementation of the proposed CDF-RDD scheme and its computational gains over other

approaches. These contributions were also communicated in [118].

Next, the distribution-based approaches for flow problem developed in Chapters 2 and 3 are

coupled with the stochastic methods for transport problem. We consider two-phase immisicible

flow and transport in heterogeneous formation. The previous studies [44, 43] have shown that the

distribution of saturation can be achieved e�ciently by considering the distribution of travel time

and the statistics of equivalent injection time (EIT). This method, so-called FROST method, is

robust for geostatistical models with high permeability variances (�2
K

� 1 ), but still requires a lot

of MC realizations (>5000) to compute the distribution of travel time accurately.

In Chapter 4, we extend the previous FROST method to compute both saturation and travel

time without employing the MCS method. We first derive the deterministic CDF equation for travel

time. The derived high dimensional CDF equation is transformed into multiple two-dimensional

equations using the mean streamline coordinate for computational accuracy. A new numerical

scheme using pseudo-time integration and flux-limited scheme is developed for getting an accurate

and cost-e↵ective numerical solution in the presence of discontinuities on solutions and non-smooth

coe�cients. The proposed method which are referred to as CDF-FROST method couples the CDF

method for travel with the FROST method. The numerical experiments in incompressible and
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immiscible displacement settings are performed to reveal the accuracy and computational e�ciency

of CDF-FROST over previous approaches.

In Chapter 5, we are changing the subject from forward problem to inverse problem. We alleviate

the ill-posedness of subsurface inversion by deploying the plug and play (PnP) [101] and consensus

equilibrium (CE) strategies [16], which provide a flexible framework for image reconstruction. The

proposed framework integrates conventional optimization-based methods with the state-of-the-art

machine learning-based methods.

Our CE methodology for spatial delineation of geologic formations consists of an image de-

noiser [72, 26, 121] and a variational auto-encoder (deep learning-based emulator) [48]. The former

ameliorates the reconstruction noise, yielding well-defined geological structures; its mathematical

equivalence with the proximal operator allows the deployment of advanced denoisers (e.g., CNN-

based denoiser) that do not correspond to a regularization objective. The latter defines a geology

prior that imposes a geological constraint, e.g., continuity and shape of geological features, onto

the reconstructed image. We conduct a series of numerical experiments dealing with transient two-

dimensional flow driven by a pumping well and natural hydraulic head gradient to demonstrate the

CE framework’s ability to delineate, both probabilistically and deterministically, complex subsurface

environments. These results were communicated in [119].



Chapter 2

Method of distributions for steady

state flow in heterogeneous porous

media

The concept of this chapter is adopted from a previously published paper:

H. Yang, F. Boso, H. A. Tchelepi, & D. M. Tartakovsky, Probabilistic forecast of single-phase

flow in porous media with uncertain properties. Water Resources Research, 55(11), 8631-8645, 2019.

Most of figures and equations are identical to corresponding sections of the paper.

2.1 Introduction

The probability distribution information including CDFs and PDFs is required for risk assessment

and decision-making under uncertainty [90, 91], yet it is absent in most stochastic analyses of sub-

surface flow and transport, which focus on the first two statistical moments of a system state, e.g.,

on mean head h̄(x) as its “best” prediction and head variance �2
h
(x) as a measure of predictive un-

certainty [68, 27, 56]. Monte Carlo simulations (MCS) can be used to compute the CDF Fh(H;x).

However, this approach requires a large number of MC realizations to estimate the tails of Fh(H;x),

considerably more than that required to estimate h̄(x) and �
2
h
(x) with the same accuracy; when

a single model run is computationally expensive, the use of MCS to calculate Fh might become

9
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unfeasible.

Numerical strategies aiming to outperform MCS in terms of computational e�ciency include

quasi-MC [18], multilevel MC [38] and various stochastic finite element methods [113]. While widely

used in practice, including for subsurface-related applications [63, 31, 23], under certain conditions

such methods can be slower than MCS. For example, MLMC might become slower than regular MC

when estimating a system state’s distribution to the same accuracy [38], and polynomial chaos-based

techniques have been shown to underperform MC if random parameter fields in (nonlinear) models

exhibit short correlation lengths and/or high variances [3].

The method of distributions [96] provides another alternative to MCS by deriving a single de-

terministic equation for either PDF or CDF of a system state. It often treats nonlinearities in

a governing equation exactly and remains robust and e�cient for coe�cients with short correla-

tion length, including white noise. The method has been used extensively to quantify parametric

uncertainty in hyperbolic problems, such as nonlinear advection-reaction transport [60, 84, 95, 7]

and multiphase flow described by the Buckley-Leverett equation [105, 44, 43]. To the best of our

knowledge, development of the method of distributions for elliptic problems with random coe�-

cients (e.g., steady-state groundwater equation with uncertain hydraulic conductivity) remains an

open challenge.

That is because the Laplace operator in parabolic and elliptic equations requires a closure ap-

proximation for the PDF or CDF equations. In turbulence and combustion literature, such a closure

is obtained with the interaction by exchange with the mean (IEM) approximation [103] or its sub-

sequent modifications [76]. By construction, these closures preserve the mean of a state variable,

but have been shown to give incorrect estimates of its variance. The self-consistent closure of [9]

ameliorates this deficiency by preserving both the mean and variance. It has been used to quantify

uncertainty in advection-dispersion [9] and advection-dispersion-reaction [8] problems.

We develop the method of distributions for steady-state saturated flow in subsurface environ-

ments with uncertain hydraulic conductivity and external forcings. Section 2.2 contains a formulation

of groundwater flow problem with uncertain inputs and a derivation of the PDF and CDF equations

for hydraulic head. In section 2.3, we compare numerical solutions of the CDF equation with MCS

results in terms of their accuracy and computational e�ciency. In this section we also demonstrate

the robustness of the proposed method by analyzing its performance for di↵erent degrees of the input

uncertainty (variance of log hydraulc conductivity). Main findings and conclusions drawn from our

study are summarized in section 2.4.
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2.2 Problem Formulation and Method of Distributions

In this section we provide a probabilistic description of steady-state flow in a heterogeneous porous

medium with uncertain hydraulic conductivity K(x), and derive a deterministic equation for CDF

Fh(H;x) of hydraulic head h(x).

2.2.1 Steady-State Flow in Porous Media

Steady-state flow in a d-dimensional saturated heterogeneous porous medium ⌦ ⇢ Rd is described

by the following flow equation

r · [K(x)rh(x)] = g(x), x 2 ⌦, (2.1)

subject to boundary conditions

h(x) = �(x), x 2 �D; q(x) · n(x) =  (x), x 2 �N ;

q(x) · n(x) + ah(x) = '(x), x 2 �R. (2.2)

Here g(x) represents point and/or distributed sources and sinks; �(x),  (x) and '(x) are the

hydraulic head, the normal component of the Darcy flux q(x) = �K(x)rh(x) and a linear combi-

nation of the former (with given a) prescribed, respectively, on the Dirichlet (�D), Neumann (�N )

and Robin (�R) segments of the boundary @⌦ = �D [ �N [ �R of the flow domain ⌦; and n(x) is

the outward unit normal vector to �N .

The hydraulic conductivity K(x) and boundary functions �(x),  (x) and '(x) are uncertain and

treated as random fields. Specifically, K(x) is modeled as a second-order stationary multivariate

log-normal field with constant mean K̄, variance �2
K

, correlation length `K , and correlation function

⇢K(r/`K) where r = |x � y| is the distance between any two points x,y 2 ⌦. The stationarity

assumption precludes the presence of distinct geological units or hydrofacies; it can be relaxed

by deploying the random domain decomposition [110] that treats individual facies as stationary.

The boundary functions �(x),  (x) and '(x) are characterized by single-point CDFs F�(�;x),

F ( ;x) and F'(⌥;x), respectively; and by arbitrary spatial correlation structures. These statistical

properties of the inputs can be either estimated from spatially distributed data or assigned by

experts.

A solution of (2.1) and (2.2) with random K(x), �(x),  (x) and '(x) is the one-point CDF of

hydraulic head, Fh(H;x) = P[h(x)  H]. Our goal is to derive a deterministic equation satisfied by

Fh(H;x).
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2.2.2 CDF Equation for Hydraulic Head

The main result of our study is the derivation of a (d + 1)-dimensional deterministic equation for

the CDF Fh(H;x) of the hydraulic head h(x).

Let us consider a functional ⇧(H, h(x)) = H(H � h(x)), where H(·) is the Heaviside function

and H is the coordinate in the event space for the random hydraulic head h(x). The ensemble mean

of ⇧ over all possible values of the random variable h at any point x is the single-point CDF of h,

Fh(H;x) = h⇧(H, h(x))i. (2.3)

Multiplying (2.1) with �@⇧/@H and accounting for the equality r⇧ = �(@⇧/@H)rh yields a

stochastic (d + 1)-dimensional advection-di↵usion equation for ⇧,

r · [K(x)r⇧] � K(x)
@

2⇧

@H2
rh(x) · rh(x) = �g(x)

@⇧

@H
. (2.4)

We use the Reynolds decomposition to represent the random functions in (2.4) as the sum of their

ensemble means and zero-mean fluctuations around these means, K = hKi + K
0 and ⇧ = h⇧i +⇧0.

The ensemble average of the resulting equation yields an unclosed equation for the CDF Fh(H;x, t),

K̄r2
Fh + M = �g(x)

@Fh

@H
, M ⌘ r · hK 0(x)r⇧0i � hK(x)

@
2⇧

@H2
rh(x) · rh(x)i. (2.5)

This equation is unsolvable, since the mixed moments in the definition of M are unknown. Several

approximations (closures) can be used to express these moments, which account for di↵usion and

dissipation of uncertainty, in terms of the known quantities. We generalize the classic Interaction-

by-Exchange-with-the-Mean (IEM) approach [103] by postulating a closure

M ⇡ [↵(x)(H � h̄(x)) + �(x)]
@Fh

@H
, (2.6)

where h̄ is the mean hydraulic head and ↵ and � are the closure variables. The IEM closure has been

formulated in the context of di↵usive processes, wherein it takes advantage of the fact that di↵usion

drives probable states to the mean. Our use of this approximation is guided by the functional

similarity between (2.5) and the (steady-state) advection-di↵usion equation. Substitution of (2.6)

into (2.5) gives a closed CDF equation

K̄r2
Fh + [↵(x)(H � h̄(x)) + �(x) + g(x)]

@Fh

@H
= 0, (x, H) 2 ⌦⇥ (Hmin, Hmax). (2.7)
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Empirical or phenomenological selection of the closure variables [75, 76, 42] does not automati-

cally guarantee an accurate reproduction of the first and second statistical moment of the distribu-

tion, i.e., mean h̄(x) and variance �2
h
(x).

Following [9] and [8], we construct the closure variables ↵ and � in a way that ensures that the

CDF equation (2.7) gives rise to the moment equations satisfied by h̄ and �2
h
. We start by recalling

that if a random variable h is defined on an interval [Hmin, Hmax], then the mean and variance of

the CDF Fh(H) are

h̄(x) = Hmax �
Z

Hmax

Hmin

Fh(H;x)dH, �
2
h
(x) = H

2
max � 2

Z
Hmax

Hmin

HFh(H;x)dH � h̄(x)2. (2.8)

Hence, since Fh(Hmin;x) = 0 and Fh(Hmax;x) = 1, integrating (2.7) over H yields

K̄r2
h̄ � �(x) � g(x) = 0. (2.9)

By the same token, multiplying both sides of (2.7) by H and integrating the resulting equation over

H yields

K̄r2
�

2
h

+ 2K̄rh̄ · rh̄ � 2↵(x)�2
h

+ 2h̄[K̄r2
h̄ � �(x) � g(x)] = 0

or, accounting for (2.9),

K̄r2
�

2
h

+ 2K̄rh̄ · rh̄ � 2↵(x)�2
h

= 0. (2.10)

On the other hand, approximations of h̄(x) and �2
h
, denoted respectively by h̃(x) and �̃2

h
, satisfy

moment equations (Appendix A)

K̄r2
h̃ + ⇢(x) � g(x) = 0, ⇢ ⌘ K̄ lim

�!x
[rx · r�CY h(x,�)] (2.11)

and

K̄r2
�̃

2
h

+ 2V (x) = 0 (2.12a)

with

V ⌘ 1

2
K̄ lim

�!x
[rxh

(0) · rxCY h(x,�) � r� · rxCh(x,�)] +

✓
1 +

�
2
Y

2

◆
g(x)CY h(x, x). (2.12b)

The moment equations are derived via perturbation expansions in the variance �2
Y

of log conductivity

Y (x) = ln K(x), and are accurate up to the first order in �
2
Y

. In these equations, h
0(x) is the

zeroth-order approximation of h̄(x); the mean head h̄ is approximated with h̃ = h
(0) +h

(1) +O(�4
Y

),

and the variance �2
h

with �̃
2
h

= [�2
h
](1) + O(�4

Y
); CY h(x,�) is the first-order approximation of the

cross-covariance hY 0(x)h0(�)i; and Ch(x,�) is the first-order approximation of the hydraulic head’s
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auto-covariance hh0(x)h0(�)i.

Imposition of the equivalency between the mean (h̄) and variance (�2
h
) computed with the CDF

method, (2.9) and (2.10), and the moment equations, (2.11) and (2.12), yields expressions for the

closure variables ↵(x) and �(x). Specifically, the equations for the mean, (2.9) and (2.11), are

equivalent (up to the first order in �
2
Y

) if � ⌘ �⇢; and the equations for the variance, (2.10)

and (2.12), are the same (up to the first order in �2
Y

) if ↵ ⌘ (K̄rh̄ · rh̄ � V )/�2
h
. These conditions

yield

↵(x) =
K̄rh̄ · rh̄ � V

�
2
h

, �(x) = K̄r2
h̄ + g(x), V (x) = �1

2
K̄r2

�
2
h
. (2.13)

These terms can be computed with various methods, including MCS. In that case, the computational

advantage of using this CDF equation to compute Fh stems from the fact that it takes many fewer

MC realizations to estimate h̄(x) and �
2
h
(x) than Fh(H;x). In our implementation, we accelerate

the computation further by deploying deterministic moment equations (Appendix A) to compute

h̄(x) and �2
h
(x).

If the boundary functions �(x) and  (x) are uncertain and treated as random fields with one-

point CDFs F�(�;x) and F ( ;x), then (2.7) is subject to boundary conditions

Fh|↵ = F�, x 2 �D; �rFh|↵ · n = [�(x)(H � h̄) + ⌘(x)]
@Fh|↵

@H
, x 2 �N , (2.14a)

where

�(x) =
K̄�

2
h

· n
2�2

h
� 4h̄2

, ⌘(x) = K̄rh̄ · n �  ̄, (2.14b)

 ̄(x) is the mean of the boundary flux  (x), and �D and �N are portions of the Dirichlet and

Neumann boundaries, respectively, that intersect ⌦ (The detailed derivations of boundary conditions

are discussed in Appendix B). The general property of a CDF provides the remaining boundary

conditions in the H space,

F (H = Hmin;x) = 0, F (H = Hmax;x) = 1. (2.14c)

This straightforward formulation for boundary conditions in the phase space is a key advantage of

CDF equations over PDF equations, for which the corresponding boundary conditions may not be

uniquely defined and have to be supplemented with the conservation of probability condition.

A plethora of e�cient numerical schemes have been developed to solve linear advection-di↵usion

equations like (2.7). Since the coe�cients of the CDF equation (2.7) are ensemble averages (e.g.,

K̄), they are significantly smoother than their randomly fluctuating counterparts (e.g., K). Conse-

quently, this equation, and the corresponding moment equations, can be solved on coarser grids than
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the underlying stochastic flow equation to achieve the same accuracy. We use this fact to further

speed up the computations.

Our numerical solution of the boundary-value problem (2.7)–(2.14) comprises two modules. The

first module provides finite-volume solutions of the SMEs (A.4)–(A.12) and yields numerical approx-

imations of the statistical moments of head, h̄(x) and �2
h
(x). It utilizes the research code developed

by [61]. The second module computes the coe�cients ↵(x) and �(x) in (2.7), and solves the latter

in non-conservative form by employing a finite-di↵erence scheme.

If needed, PDF of the hydraulic head, fh(H;x) can be obtained either by di↵erentiating Fh(H;x)

or by deriving a (d + 1)-dimensional PDF equation [96].

2.3 Numerical Experiments

We use two sets of numerical experiments to demonstrate the accuracy, robustness and versatility of

the proposed approach. These experiments involve mean-uniform flow driven by externally imposed

hydraulic head gradient and convergent flow towards a pumping well.

In both cases, the two-dimensional flow domain ⌦ is a square of dimensionless (normalized with

the domain size L) length 1. The log-hydraulic conductivity (transmissivity) Y (x) = ln K(x) is

modeled as a second-order stationary multi-variate Gaussian field with zero mean (Ȳ = 0), variance

�
2
Y

, an isotropic exponential covariance function CY (r) = �
2
Y

exp(�r/`Y ), and dimensionless (nor-

malized with the domain size L) correlation length `Y . The position vector x = (x1, x2)> and the

distance r = |x � y| between any two points x and y in the flow domain ⌦ are normalized with the

domain size L. The flow domain boundaries x2 = 0 and x2 = 1, are impermeable; the deterministic

(known with certainty) hydraulic heads hin and hout are imposed along the boundaries x1 = 0 and

x1 = 1, respectively.

The mean uniform flow is driven by a hydraulic head gradient J ⌘ (hout � hin)/L = 0.1, with

the dimensionless hydraulic heads hin = 1.1 and hout = 0.1 (normalized with the reference hydraulic

head href). The spatial domain ⌦ is discretized with a staggered 99 ⇥ 99 grid, and the number

of grid points along the H coordinate is set to 55. The radial flow is induced by a pumping well

located at the center of the domain, (x1 = 1/2, x2 = 1/2), and operated at a fixed dimensionless

hydraulic head of hwell = 0.1; the dimensionless hydraulic heads at the boundaries x1 = 0 and

x1 = 1 are hin = hout = 1. In our implementation, a pumping well is represented by the source term

g(x) = Twell(h(x) � hwell) in (2.1), where Twell is the prescribed well transmissibility. In this case, ⌦

is discretized with a 105 ⇥ 105 grid, and 60 grid points are used to discretize the H coordinate.
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For both flow scenarios, we compare our estimates of the hydraulic head CDF Fh(H;x) with those

computed via Monte Carlo simulations (MCS). Equiprobable MC realizations were generated by the

sequential Gaussian simulator [29]. Our convergence study of the exceedance probability for a given

hydraulic head value H, P[h(x) > H] = 1 � Fh(H;x), in the mean uniform flow case with �
2
Y

= 1

and `Y = 0.3 revealed that an MC estimate of P[h(x) > H] stabilizes after about NMCS = 7, 000

MC realizations. To use the MCS estimates of Fh(H;x) as a yardstick for ascertaining the accuracy

of our CDF method for all experiments, we therefore rely on a conservative number of realizations

NMCS = 10, 000.

2.3.1 Accuracy of the CDF method

Since the coe�cients in the CDF equation (2.7) are given in terms of the mean and variance of

the hydraulic head h(x), we start by analyzing the ability of the SMEs (A.4)–(A.12) to accurately

approximate h̄(x) and �
2
h
(x). Figure 2.1 exhibits these statistical moments along the cross-section

x2 = 0.5 for �2
Y

= 1 and `Y = 0.3 in the case of mean uniform flow, and for �2
Y

= 2.0 and `Y = 0.2

in the case of convergent flow. These profiles h̄(x1, ·) and �2
h
(x1, ·) are alternatively computed with

MCS, the SMEs, and the CDF method.

By construction, the CDF Fh(H;x) in (7) must have the same moments h̄(x) and �2
h
(x) as their

counterparts computed with the SME. Figure 2.1 reveals a slight discrepancy between these two sets

of moments, as quantified by the average errors

✏̄mean =
1

k⌦k

Z

⌦
| h̄SME � h̄CDF | dx, ✏̄var =

1

k⌦k

Z

⌦
| �2

h,SME � �
2
h,CDF | dx, (2.15)

where k⌦k is the volume of the flow domain ⌦. The errors ✏̄ave and ✏̄var decrease with the grid size

along the H coordinate, �H, decreases (Figure 2.2). This result verifies that the discrepancy is

due to numerical solution of the CDF equation and the subsequent evaluation of the quadratures

required to compute the first two moments of a CDF.

Consistent with the previous SME-focused studies [68, 92, 93, 56, 61, 82], the mean and variance

of hydraulic head computed with SMEs are in agreement with those inferred from MCS, regardless

of the flow regime. The discrepancy between the two approaches is larger for the variance than for

the mean. It also increases with the variance of log-conductivity (�2
Y

), which is used as a small

perturbation parameter to derive SMEs: �2
Y

= 1 for the mean uniform flow, and �
2
Y

= 2 for the

convergent flow.

Spatial maps of exceedance/non-exceedance probabilities (P[h(x) > H] = 1 � Fh(H;x) and

P[h(x)  H] = Fh(H;x), respectively) for a selected hydraulic head threshold H are required to
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Figure 2.1: Mean (left column) and variance (right column) of hydraulic head, h̄(x1, x2 = 1/2) and
�

2
h
(x1, x2 = 1/2), for mean uniform flow (top row) and flow to a well located at the middle of the

domain (bottom row). These moments are alternatively computed with Monte Carlo simulations
(MCS), the statistical moment equations (SME), and the CDF method. The statistical properties
of log-conductivity are Ȳ = 0; and �

2
Y

= 1 and `Y = 0.3 in the case of mean uniform flow, and
�

2
Y

= 2.0 and `Y = 0.2 in the case of convergent flow.
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Figure 2.2: Average discrepancies ✏̄mean (left) and ✏̄var (right) between the mean and variance of
hydraulic head h(x), alternatively computed as quadratures of the CDF F (H;x) in (2.7) or by
solving the SME. The discrepancies decay as the the grid size along the H coordinate, �H, becomes
smaller. The statistical properties of log-conductivity are Ȳ = 0; and �

2
Y

= 1 and `Y = 0.3 in the
case of mean uniform flow, and �2

Y
= 2.0 and `Y = 0.2 in the case of convergent flow.

identify regions in the spatial domain where the corresponding risk is higher than desired. Figure 2.3

exhibits such maps of the probability of h(x) exceeding H = 0.8 for mean uniform and convergent

flows. With some degree of abstraction, these can be used to delineate the coastal regions in risk of

seawater intrusion due to rising sea levels (the mean uniform flow scenario) or identify well capture

zones with a prescribed level of confidence (the convergent flow scenario). These probabilities are

alternatively computed with the reference MCS and as a solution of the CDF equation (2.7). Visual

inspection of the two sets of map, as well as the CDFs Fh(H;x) presented in Figure 2.4 for several

points x 2 ⌦, demonstrates a close agreement between the two methods.

A more quantitative assessment of the agreement between the CDFs computed with the CDF

method (Fh) and the reference MCS (FMCS
h

, computed using NMCS = 10000 realizations) is provided

by the first Wasserstein distance between two distributions (a.k.a. Earth Mover’s metric)

D(x) ⌘
Z

Hmax

Hmin

| Fh(H 0
,x) � F

MCS
h

(H 0
,x) | dH

0
. (2.16)

The numerical integration is computed with the Gauss-Legendre quadrature rule. The resulting

contour plots of D(x) are shown in Figure 2.5. The error metric D(x) is smallest close to locations

where the hydraulic head h is known with certainty (the prescribed head boundaries in the case

of mean uniform flow, and the prescribed head boundaries and the well in the case of convergent

flow), and increase with distance from those locations. The behavior of D(x) mirrors that of the
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Figure 2.3: Spatial maps of exceedance probability P[h(x) > H = 0.8] = 1 � Fh(H = 0.8;x)
obtained with MCS (left column) and CDF method (right column) for mean uniform flow (top row)
and convergent flow (bottom row). The statistical properties of log-conductivity are Ȳ = 0; and
�

2
Y

= 1 and `Y = 0.3 in the case of mean uniform flow, and �
2
Y

= 2.0 and `Y = 0.2 in the case of
convergent flow.
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Figure 2.4: Hydraulic head CDFs Fh computed with MCS and the CDF method at selected locations
x = (x1, x2)> in the flow domain for mean uniform flow (top row) and convergent flow (bottom row).
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hydraulic head variance �2
h

and reflects the error in the perturbation-based estimation of the latter.

In both flow scenarios, D(x) remains small, not exceeding 0.011 for mean uniform flow and 0.023 for

convergent flow. This performance is remarkable, given relatively large values of the perturbation

parameter �2
Y

used in these simulations (�2
Y

= 1 and 2 for mean uniform flow and convergent flow,

respectively).

Figure 2.5: Spatial maps of the Wasserstein distance D(x) between the hydraulic head CDFs com-
puted with the CDF method and Monte Carlo simulations for mean uniform flow (left) and conver-
gent flow (right).
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2.3.2 Computational E�ciency of the CDF Method

As mentioned in the Introduction, a raison d’être for the development of the method of distribution

and other uncertainty quantification techniques is the need to outperform MCS in terms of compu-

tational e�ciency. While the CDF method calls for solving a (d + 1)-dimensional linear PDE (2.7),

MCS consist of repeated solves of a large number of d-dimensional (possibly nonlinear) PDEs like

the flow equation (2.1). Figure 2.6 visualizes the di↵erence of MCS and distribution-based methods

on computing probability distributions.

Figure 2.6: Visualization of di↵erence between MCS (left) and distribution-based methods.

In addition, coe�cients in the CDF and moment equations are smooth functions (ensemble

averages), whereas coe�cients in the original equations fluctuate randomly in space. For example,

the average conductivity K̄ in (2.7) is constant, even though K(x) can vary by orders of magnitude

from one cell of a numerical grid to the next. The spatial homogeneity of K̄ not only increases the

e�ciency of the linear solver used to solve the SMEs (A.4)–(A.12), but also allows us to solve these

equations on coarser grids without any averaging of cell properties.
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The resulting computational gains provided by our CDF method are reported in Tables 2.1

and 2.2 for mean uniform flow and convergent flow, respectively. The computation times are reported

for an Intel Xeon e5-2660 machine running at 2.2 GHz. The CPU comparison is carried out for the

same discrepancy level, defined by the average Wasserstein distance between the CDFs computed

with our method and MCS, Dave = k⌦k�1
R
⌦ D(x)dx where k⌦k is the volume of the flow domain ⌦

(in our simulation, the unit area of the square). Specifically, the discrepancy level Dave ⇡ 0.01 of the

CDF method is achieved by MCS with NMCS = 1, 240 realizations in the mean uniform flow regime

and with NMCS = 1, 470 realizations in the convergent flow regime. For the same discrepancy level

of Dave ⇡ 0.01, the CDF method is about an order of magnitude faster than MCS when the same

numerical grid is used. Coarsening the mesh used to solve the SMEs by a factor of 3 results in the

similar discrepancy level, while speeding up the computation by another order of magnitude.

Table 2.1: Computational time of the CDF method and MCS in the case of mean uniform flow.
Method Grid size Error Dave CPU time

CDF method
33 ⇥ 33 1.02 ⇥ 10�2 4.25 ⇥ 10�1 min
99 ⇥ 99 8.14 ⇥ 10�3 1.77 ⇥ 101 min

MCS with 1,240 realizations 99 ⇥ 99 8.14 ⇥ 10�3 1.33 ⇥ 102 min
MCS with 10,000 realizations 99 ⇥ 99 0 1.07 ⇥ 103 min

Table 2.2: Computational time of the CDF method and MCS in the case of convergent flow.
Methods Grid size Error Dave CPU time

CDF method
35 ⇥ 35 1.09 ⇥ 10�2 5.15 ⇥ 10�1 min

105 ⇥ 105 9.20 ⇥ 10�3 2.12 ⇥ 101 min
MCS with 1,470 realizations 105 ⇥ 105 9.20 ⇥ 10�3 2.23 ⇥ 102 min
MCS with 10,000 realizations 105 ⇥ 105 0 1.52 ⇥ 103 min

2.3.3 Robustness of the CDF Method

The accuracy of the CDF method is expected to depend on the degree of uncertainty/regularity

in the hydraulic conductivity, as characterized by �
2
Y

and `Y . We perform a series of numerical

experiments to analyze the robustness of the CDF method to the magnitude of these statistical

parameters.

Impact of Conductivity’s Variance. The closure approximations for the SMEs (A.4)–(A.12) are

obtained via the perturbation expansion in the variance of log hydraulic conductivity �
2
Y

. Conse-

quently, one would expect the accuracy of the CDF method to deteriorate as �2
Y

increases. Yet, the

average Wasserstein distance between our CDF solution and its MCS estimate does not appreciably

change (Dave increases by about a factor of 2) as �2
Y

increases from 1 to 5 (for fixed `Y = 0.1),

i.e., the spatial variability of conductivity K(x) increases by about five orders of magnitude (Figure
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2.7a).

Figure 2.7: Dependence of the average Wasserstein distance between our CDF solution and its MCS
estimate, Dave = Dave(�2

Y
, `Y ), on the variance (�2

Y
for fixed `Y = 0.1, left) and correlation length

(`Y for fixed �
2
Y

= 1.0, right) of log hydraulic conductivity Y = ln K for mean uniform flow and
convergent flow .

Impact of Conductivity’s Correlation Length. The correlation length `Y controls the degree of

regularity of the (log) conductivity field. The dependence of Dave on `Y (for fixed �
2
Y

= 1.0) is

shown in Figure 2.7b. In both flow configurations, Dave increases with `Y as long as `Y  0.7, and

decreases when `Y � 0.7. The maximum values of Dave are 0.014 and 0.0086 for mean uniform flow

and convergent flow, respectively. The heterogeneous structures of the hydraulic conductivity field do

not appear when the correlation length is extremely small. Obviously, the hydraulic conductivity field

becomes homogeneous when the correlation length approaches the size of a computational domain.

Therefore, the heterogeneity and the approximation error of SME and closures are maximum when

the correlation length is intermediate [56]. Regardless, the average discrepancy Dave remains small

regardless of `Y , which demonstrates that the CDF method is robust to the magnitude of `Y .

2.3.4 Impact of Moments’ Approximation

Two types of approximations underpin the derivation of the CDF equation: the moment-preserving

closure leading to (2.7) and the perturbation approximation used to close the moment equations.

The latter a↵ects the coe�cients ↵ and � in the CDF equation (2.7), which depend on the hydraulic

head moments h̄(x) and �
2
h
(x). To eliminate the second source of error or, equivalently, to isolate

its impact, we compare the CDFs Fh(H;x) obtained by solving the CDF equation (2.7) whose

coe�cients are alternatively computed with the SMEs and the reference MCS. Since the moments



CHAPTER 2. METHOD OF DISTRIBUTIONS FOR STEADY STATE FLOW 25

computed with the reference MCS are treated as exact, their use in the CDF equation (2.7) isolates

the impact of the moment-preserving closure.

Table 2.3: Average Wasserstein discrepancy Dave between the CDF method with MCS moments
and the CDF method with SME moments for two flow configurations.

Methods
Error Dave

Mean uniform flow Convergent flow
CDF method with MCS moments 2.26 ⇥ 10�2 1.72 ⇥ 10�2

CDF method with SME moments 2.78 ⇥ 10�2 2.02 ⇥ 10�2

Figure 2.8: Hydraulic head CDF Fh(H;x) computed with MCS, the CDF method with MCS mo-
ments, and the CDF method SME moments at x = (0.5, 0.5)> for mean uniform flow (left) and at
x = (0.5, 0.25)> for convergent flow (right).

For both flow configurations, we set �2
Y

= 3.0 and `Y = 0.4. Table 2.3 shows the relative minor

impact of the perturbation closures of the SMEs (A.4)–(A.12) on the average Wasserstein distance

Dave between the CDFs resulted from the two strategies for computing the coe�cients ↵ and �.

However, this integral metric of accuracy tells only part of the story. Figure 2.8 reveals that the

CDF Fh(H; ·) computed with the reference MCS moments is closer to the reference solution than the

CDF Fh(H; ·) computed with SME moments. This demonstrates that the performance of the CDF

method relies on the accuracy of moments. It also increases confidence in the moment-preserving

closure leading to the CDF equation (2.7) .
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2.4 Summary and Conclusions

We developed the method of distributions to probabilistically predict saturated flow in porous media

with uncertain hydraulic conductivity and/or uncertain boundary functions. The method results in a

deterministic partial-di↵erential equation for the cumulative distribution function (CDF) of hydraulic

head. The derivation of this equation relies on a novel moment-preserving closure approximation,

which expresses the coe�cients of the CDF equation in terms of the mean and variance of hydraulic

head. These hydraulic head statistics can be computed either with Monte Carlo simulations (MCS)

or by solving the corresponding statistical moment equations (SMEs). The latter require an addition

closure approximation, such as perturbation expansions in variance of log hydraulic conductivity. We

performed a series of numerical experiments to evaluate the accuracy, robustness, and computational

e�ciency of the CDF method. Our study leads to the following conclusions.

• The CDF method yields spatial maps of the exceedance probability for hydraulic head. This

information is required for probabilistic risk assessment, e.g., for probabilistic delineation of

well capture zones.

• The CDFs obtained with the CDF method are in good agreement with the reference MCS for

a wide range of statistical properties of hydraulic conductivity (its variance and correlation

length). The CDF equations remain robust for the conductivity variance as large as 5.

• The accuracy of the CDF method depends on the approximation of moments. Employing

the exact MCS moments instead of their SME-based counterparts as an input for the CDF

equation increases the accuracy of the solution.

• The CDF method is two-orders of magnitude more e�cient than MCS. This computational

speed up stems from the smoothness of the coe�cients in the SMEs and CDF equation, e.g.,

from replacing randomly fluctuating hydraulic conductivity with its ensemble mean coun-

terpart. This not only speeds up the linear solver, but also facilitates the use of low-cost

coarse-scale solutions.



Chapter 3

Method of distributions for

quantification of geologic

uncertainty in flow simulations

The concept of this chapter is adopted from a previously published paper:

H. Yang, F. Boso, H. A. Tchelepi, & D. M. Tartakovsky, Method of distributions for quantification

of geologic uncertainty in flow simulations. Water Resources Research, 56(7), e2020WR027643.

Most of figures and equations are identical to corresponding sections of the paper.

3.1 Introduction

The method of distributions in Chapter 2 obviates the need for sample generation by deriving

deterministic equations for PDFs or CDFs. It relies on stochastic averaging techniques similar

to those routinely used to derive (deterministic) moment di↵erential equations for the first two

statistical moments of system states [68, 61, and the references therein]. The performance of these

methods deteriorates with the degree of subsurface heterogeneity, as quantified by the correlation

lengths and variances (or, more precisely, coe�cients of variation) of the input parameters: Short

correlation lengths give rise to the so-called curse of dimensionality, which makes polynomial chaos-

based techniques slower than MCS. Large variances undermine the veracity of perturbation-based

27
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moment di↵erential equations and PDF/CDF equations.

Probabilistic computations become even more challenging when parameter PDFs exhibit multi-

modality and/or lack of statistical homogeneity (stationarity). These are manifestations of the

presence of multiple geologic materials with distinct (heterogeneous and uncertain) hydraulic and

transport properties. Random domain decomposition (RDD) [111, 109] ameliorates these compli-

cations by representing a heterogeneous subsurface environment as a union of distinct geological

units or hydrofacies. By construction, hydraulic and transport properties of each unit are treated

as unimodal, statistically homogeneous random fields with relatively small variances; boundaries

between the units, reconstructed from hard and/or soft data, can be uncertain as well. RDD has

been used to dramatically enhance the performance of moment di↵erential equations [110], general-

ized polynomial chaos expansions [114], and stochastic collocation methods [62]. Here, we use RDD

to derive a deterministic equation for the CDF of hydraulic head for flow in highly heterogeneous

aquifers with uncertain geology, hydraulic properties, and external forcings.

This approach, which we refer to as CDF-RDD, is presented in Section 3.2. It combines the

CDF method for flow in statistically homogeneous porous media [116] with RDD that accounts for

geologic uncertainty [40]. In Section 3.3, we demonstrate the accuracy and computational e�ciency

of CDF-RDD via a series of numerical experiments dealing with two-dimensional steady-state flow in

a porous medium composed of two materials whose spatial arrangement and hydraulic conductivity

are uncertain. Main findings and conclusions drawn from our study are summarized in Section 3.4.

3.2 Problem Formulation and its Probabilistic Solution

Consider a subsurface environment ⌦ composed of Ngu non-overlapping geological units ⌦i. A

spatial arrangement of these units can be provided by expert opinion in the form of a geological map.

When su�cient data (measurements of hydraulic conductivity or other discriminating attributes of

hydrofacies) are available, one might be able to reconstruct such a map by using geostatistics—e.g.,

indicator Kriging [41], object-based geostatistics [30] and multi-point geostatistcs [87]—or machine

learning tools such as support vector machines [112] or nearest-neighbor estimators [94]. Regarding

of the method used, the resulting geological maps are invariably uncertain.

Steady-state d-dimensional groundwater flow in such an environment is described by

r · [K(x)rh(x)] = g(x), x = (x1, . . . , xd)
> 2 ⌦, (3.1)

where K(x) is hydraulic conductivity of the porous medium ⌦, h(x) is hydraulic head, and g(x)
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represents point and/or distributed sources and sinks. The groundwater flow equation (3.1) is subject

to boundary conditions

h(x) = �(x), x 2 �D; �K(x)rh(x) · n(x) =  (x), x 2 �N . (3.2)

Here �(x) and  (x) are the hydraulic head and the normal component of the Darcy flux q(x) =

�K(x)rh(x) prescribed, respectively, on the Dirichlet (�D) and Neumann (�N ) segments of the

boundary @⌦ = �D [ �N of the flow domain ⌦; and n(x) is the outward unit normal vector to �N .

An unknown/unknowable spatial distribution of the hydraulic conductivity K(x) has to be es-

timated from measurements K(xn) collected at Nmeas (well) locations xn 2 ⌦ (n = 1, . . . , Nmeas).

The presence of multiple hydrofacies ⌦i manifests itself in a histogram of the measurement set

{K(xn)}Nmeas
n=1 (an estimate of the PDF of K) that exhibits multi-modal behavior and its over-

all standard deviation �K is large. This typical setting would increase the computational cost of

MCS and invalidate the perturbation-based moment di↵erential equations [61] and PDF/CDF equa-

tions [116], both of which require the perturbation parameter �2
Y

(the variance of log-conductivity

Y = ln K) to be relatively small.

We tackle this challenge by using the RDD described in Section 3.2.1. It is deployed in Sec-

tion 3.2.2 to account for geologic and parametric uncertainties in the context of the method of

distributions. An e�cient numerical implementation of the resulting CDF-RDD approach for com-

puting the CDF Fh(H;x) of hydraulic head h(x) is described in Section 3.2.3.

Distribution based framework for computation of flow and transport

3.2.1 Random Domain Decomposition

RDD treats the porous medium ⌦ and its hydraulic conductivity K(x) as a two-scale stochastic

process. The large scale represents geologic uncertainty, such that a random label ↵ with the PDF

f↵(a) encapsulates alternative representations of a site’s geology, i.e., uncertain spatial extent of the

facies ⌦i (i = 1, . . . , Ngu). For instance, the random ↵ can be parameterized as random contact

point for the stratified reservoir or random field for the complicated facies geometry. The small

scale accounts for random variability of the hydraulic conductivity K(x) within each facies ⌦i,

which is quantified by the PDF fK(k;x 2 ⌦i). Combining the two scales of uncertainty, hydraulic

conductivity K(x) is characterized by the joint PDF fK,↵(k, a;x) = fK|↵(k;x|↵ = a)f↵(a), where

fK|↵ is the PDF of K conditioned on a given geologic map with label a.

By construction, the random hydraulic conductivity K(x) of each sub-domain ⌦i is statistically
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homogeneous, with unimodal conditional PDFs fK|↵=a(k;x 2 ⌦i|↵ = a) and relatively small vari-

ances �2
Yi

of log conductivity Yi = Y (x) for all x 2 ⌦i. We model the hydraulic conductivity of

each facies, Ki ⌘ K(x) for all x 2 ⌦i, as a second-order stationary multivariate log-normal field

with constant mean K̄i and variance �2
Ki

. It has a correlation function ⇢Ki(r/`Ki), where `Ki is the

correlation length, and r = |x�y| is the distance between any two points x,y 2 ⌦i. To simplify the

presentation, we assume Ki(x) and Kj(x) with i 6= j to be mutually uncorrelated; RDD can readily

account for cross-correlations between hydraulic properties of di↵erent facies at the cost of slightly

increased mathematical complexity [108].

With these preliminaries, we replace (3.1) with

r · [Ki(x)rhi(x)] = g(x), x 2 ⌦i, i = 1, . . . , Ngu, (3.3)

which is subject to boundary conditions (3.2)

and the continuity conditions

hi(x) = hj(x), Ki(x)rhi(x) · ni(x) = Kj(x)rhj(x) · nj(x), x 2 �ij . (3.4)

defined on the contact interfaces �ij = ⌦i \ ⌦j between the adjacent facies ⌦i and ⌦j (i 6= j).

In (3.3) and (3.4), the subscript of h indicates the hydraulic head inside the corresponding facies.

This problem formulation is beneficial because it enables one to use small variances �2
Yi

within

each facies ⌦i as perturbation parameters. This has been done before to derive moment di↵erential

equations [110]; here, we use it to derive a deterministic equation for the full CDF of hydraulic head.

3.2.2 Combined CDF-RDD Approach

For a given geological map, defined by the label (realization) ↵ = a, we show in Section 2.2 that

the conditional CDF Fh|↵(H;x|↵ = a) of hydraulic head h(x) in (3.3) satisfies a deterministic

(d + 1)-dimensional di↵erential equation

r · (K̄(x)rFh|↵) +
@(UFh|↵)

@H
= �Fh|↵, x̃ = (x1, . . . , xd, H)> 2 ⌦̃. (3.5)

The (ensemble) averaged hydraulic conductivity K̄(x) takes the constant value of K̄i for x 2 ⌦i,

where i = 1, . . . , Ngu. The PDF equation (3.5) is defined on the domain ⌦̃ ⌘ ⌦ ⇥ (Hmin, Hmax),

where Hmin and Hmax are, respectively, the minimum and maximum values hydraulic head h(x) can
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take in the simulation domain ⌦; and

U = �(H � h̄) + r · (K̄rh̄) + 2g, � =
K̄rh̄ · rh̄ � V

�
2
h

, V = �1

2
K̄r2

�
2
h
. (3.6)

The coe�cients (3.6) contain the conditional mean, h̄, and variance, �2
h
, of hydraulic head h(x) at

x 2 ⌦. These statistical moments can be computed with various techniques, including MCS. In our

implementation, we use the solutions of deterministic statistical moment equations (SME), defined

in A, which proved to be more computationally e�cient than MCS.

The CDF equation (3.5) is derived by deploying the self-consistent closure approximation in

Section 2.2 that ensures that the di↵erential equations for the moments h̄(x) and �
2
h
(x), obtained

by integrating (3.5), are identical to the SME derived in Appendix A. This is in contrast to the

interaction-with-the-mean closures [75, 76, 42] used in turbulence and combustion. The latter fail

to preserve a system state’s variance and, under certain conditions, its mean [9, 116].

As discussed in Section 2.2.2, (3.5) is subject to boundary conditions

Fh|↵ = F�, x 2 �D; �rFh|↵ · n = [�(x)(H � h̄) + ⌘(x)]
@Fh|↵

@H
, x 2 �N , (3.7)

where

�(x) =
K̄�

2
h

· n
2�2

h
� 4h̄2

, ⌘(x) = K̄rh̄ · n �  ̄, (3.8)

 ̄(x) is the mean of the boundary flux  (x), and �D and �N are portions of the Dirichlet and

Neumann boundaries, respectively, that intersect ⌦.

Here, we present the derivation of interface conditions for CDF equation. Due to the continuity

of h at the interface, the CDF Fh always satisfies the following continuity condition

Fhi(x) = Fhj (x), x 2 �ij .

To derive the flux continuity condition at the interface between facies i and j, �ij , we introduce the

spatial domain ⌦ij , centered at any point x 2 �ij . Let Cij be the portion of �ij that intersects ⌦ij .

Integrating (3.5) over ⌦ij and using the Gauss-Ostrogradsky theorem yield

Z

@⌦ij

(K̄rxFh · n)dx +

Z

⌦ij

@(UFh)

@H
dx =

Z

⌦ij

vFhdx.

We now assume that the thickness (in the direction orthogonal to Cij) and the volume of ⌦ij shrink

to zero, while Cij is fixed. Given the finitedness of the integrand functions in both
R
⌦ij

@(UFh)
@H

dx

and
R
⌦ij

vFhdx (guaranteed by the continuity of the moments), both integrals approach zero, and
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above equation reduces to

Z

Cij

(K̄irxFhi · ni)dx =

Z

Cij

(K̄jrxFhj · nj)dx.

Since above condition is satisfied on any Cij , it leads to following interface condition for CDF

equation.

Fhi|↵(x) = Fhj |↵(x), K̄irFhi|↵ · ni = K̄jrFhj |↵ · nj , x 2 �ij . (3.9)

Finally, the general property of a CDF provides the remaining boundary conditions in H space,

Fh(H = Hmin;x) = 0, Fh(H = Hmax;x) = 1. (3.10)

We recall that a combination of the solutions to (3.5)–(3.10) in each subdomain ⌦i is the con-

ditional CDF Fh|↵, i.e., the CDF of h conditioned on a given geological map with the label ↵ = a.

This boundary-value problem has to be solved repeatedly for di↵erent geological realization ↵. The

average of these solutions over all possible realizations of ↵ is the CDF Fh(H;x),

Fh(H,x) =

Z
Fh|↵(H;x|↵ = a)f↵(a)da. (3.11)

The latter provides a probabilistic prediction of hydraulic head h(x), which accounts for uncertainty

in both a site’s geology and hydraulic conductivity.

3.2.3 Numerical Implementation

Numerical solution of the boundary-value problem (3.5)–(3.10) is computed in three steps. The first

step involves finite-volume solutions of the moment equations (A.4)–(A.12), i.e., provides numerical

approximations of the mean and variance of the hydraulic head, h̄(x) and �2
h
(x). This step relies on

the research code developed in [61].

The second step consists of numerical solution of (3.5) and (3.6). Among the plethora of

schemes for solving a linear advection-di↵usion-reaction equation, such as (3.5), we utilize a finite-

volume scheme in which the computation domain ⌦̃ is divided into Nfv non-overlapping domains

⌦̃1, . . . , ⌦̃Nfv . A finite-volume solution of (3.5) is obtained by integrating this equation over each

element ⌦̃k and using the Gauss-Ostrogradsky theorem to replace the volume integrals over ⌦̃k with
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the surface integrals over their surface @⌦̃,

Z

@⌦̃k

(K̄rxFh|↵ · ne,x + UFh|↵ne,H)dx̃ =

Z

⌦̃k

vFh|↵dx̃, x̃ = (x1, . . . , xd, H)>, (3.12)

where ne,x and ne,H are respectively the spatial and H-direction component component of ne, the

outward unit normal vector of the interface @⌦̃k. The discrete form of (3.12) is

X

l2adj(k)

Tkl(F
(l)
h|↵ � F

(k)
h|↵) + U

+
e

F
(k)
h|↵Akl + U

�
e

F
(l)
h|↵Akl = vkF

(k)
h|↵Vk, k = 1, . . . , Nfv, (3.13)

where adj(k) is the set of neighbors of k, Vk is the volume of ⌦̃k, and

Tkl =
KklAkl

�xkl

, U
+
e

=
Ue + |Ue|

2
, U

�
e

=
Ue � |Ue|

2
, Ue = Une,H . (3.14)

Here Kkl, Akl, and �xkl are harmonically averaged hydraulic conductivity, di↵erential element cross-

sectional area, and the distance between the spatially connected computational nodes k and l,

respectively.

A main advantage of using the finite volume implementation is that it ensures the continuity

conditions (3.9) when the contact interface between the adjacent facies is defined along the com-

putational cell boundaries by its construction. This results in considerable computational speed-up

over other RDD-based numerical schemes that enforce the continuity iteratively [40, 110]. Com-

bining (3.13) into a single system of linear algebraic equations, we obtain Af = b where A is the

Nfv ⇥ Nfv coe�cient matrix, b is the Nfv ⇥ 1 vector determined by the boundary conditions, and

f is the Nfv ⇥ 1 solution vector for the conditional CDF Fh|↵. We use the bi-conjugate gradient

stabilized method to solve this system. Since the coe�cients of the CDF equation (3.5) involve

ensemble averages (e.g., K̄), they are smoother than their randomly fluctuating counterparts (e.g.,

K). Consequently, coarser meshes (smaller values of Nfv) can be used to solve (3.5) than to solve

MC realizations, providing an additional boost to the computational e�ciency of the CDF method.

The third, and last, step is to compute the hydraulic head CDF Fh from its conditional coun-

terpart Fh|↵. This step involves numerical evaluation of the integral in (3.11). We approximate this

integration with the Monte Carlo average of N↵ realizations of the geological map with the label ↵.

The numerical integration of Fh|↵, used to compute the marginal CDF, mean, and variance of h, is

carried out with the Gaussian quadrature.
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3.3 Numerical Experiments

We illustrate the accuracy and e�ciency of the CDF-RDD approach on two examples dealing with

two-dimensional mean-uniform and convergent flows in a statistically inhomogeneous environment

composed of distinct heterogeneous facies. These examples represent two typical flow scenarios. The

first is regional flow driven by internally imposed hydraulic head gradient, the second is radial flow

towards a pumping well.

In both flow regimes, the flow domain ⌦, a square of unit dimensionless length (normalized

with the domain size L), is composed of Ngu = 2 facies whose uncertain spatial arrangement is

represented by four di↵erent equiprobable geological models labeled by ↵ ( see Figure 3.1 ). These

models are generated using multi-point geostatistics, specifically SNESIM algorithm [87]. The log-

hydraulic conductivity of each sub-domain, Yi(x) = ln Ki(x) (i = 1, 2), is a second-order stationary

multivariate Gaussian field with an isotropic exponential correlation function ⇢Yi(r) = exp(�|x �
y|/`Yi) and the dimensionless (normalized with L) correlation length `Yi . In the simulations reported

below, we set Ȳ1 = 0, Ȳ2 = 5, �2
Y1

= �
2
Y2

= 1, and `Y1 = 0.3.

The mean uniform flow is driven by a constant hydraulic head gradient J ⌘ (hout �hin)/L = 0.1,

with the deterministic dimensionless hydraulic heads hin = 1.1 and hout = 0.1 (normalized with the

reference hydraulic head href) along x1 = 0 and x1 = 1, respectively. The radial flow is induced

by a pumping well at the center of the domain, (x1, x2) = (0.5, 0.5), which is controlled by a fixed

dimensionless hydraulic head of hwell = 0.1; the boundary head hD along x1 = 0 and x1 = 1 is now

uncertain and modeled as a Gaussian field with the mean h̄D = 1.0 and variance �2
hD

= 0.04. For

both flow scenarios, no-flow boundary conditions are applied at bottom and top boundaries (x2 = 0

and x2 = 1).

The computation domain ⌦̃ ⌘ ⌦ ⇥ (Hmin = 0, Hmax = 1.2) is discretized using 45, 45, and 120

nodes in the x1, x2, and H directions, respectively. Thus, the total number of grids Nfv is 243,000.

We compare the performance of our CDF-RDD method with that of MCS. For each geological

model, equiprobable MC realizations of Yi(x) are generated by the sequential Gaussian simulator

[29]. The convergence study of the two flow scenarios revealed that, for each geological model, it

takes NMCS = 104 realizations for MCS estimates of the exceedance probability P[h(x) > H] =

1 � Fh(H;x) to stabilize with less than 0.01 of the coe�cient of variation. Hence, the total number

of MCS realizations is NMCS = 4 ·104, a prohibitively large number in most applications of practical

significance.
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Figure 3.1: Equiprobable geological models used in numerical experiments.
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3.3.1 Accuracy of the CDF method

Both the statistical moment equations (SME) and the CDF equation are derived via perturbation

expansions in the variance of log-conductivity. If one were to treat the porous medium in Figure 3.1

as a single continuum, it would be characterized by the variance �2
Y

⇠ (Ȳ1 � Ȳ2)2 [110]; for the

parameters used in our experiments, �2
Y

⇡ 7. Such a large variance is expected to undermine

the accuracy of the moment and CDF equations derived without recourse to RDD. Figure 3.2

demonstrates this to be the case even for the mean, h̄(x), and variance, �2
h
(x), of the hydraulic head

h(x), let alone its CDF. This figure compares the results of MCS, which are treated as exact, to

three alternative methods for computing these statistics: the RDD-enhanced SME, and evaluating

the moments of Fh in the CDF equation with and without RDD.

Figure 3.2: Mean (left column) and variance (right column) of hydraulic head in mean uniform flow
(top row) and flow to a well (bottom row). These moments are alternatively computed with Monte
Carlo simulations (MCS), the RDD-enhanced SME (SME-RDD), and evaluating the moments of Fh

in the CDF equation with and without RDD (CDF and CDF-RDD, respectively).
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Figure 3.2 shows that the CDF method without RDD fails to predict the hydraulic head mean h̄

and variance �2
h

with reasonable accuracy. Yet, the moments computed with SME-RDD and CDF-

RDD are in close agreement with those computed via the reference MCS in both flow scenarios. By

construction, Fh obtained from the CDF method is to have the same moments h̄ and �
2
h

as their

counterparts computed with SME; a slight (about 0.2% for h̄ and 4.7% for �2
h
) disagreement between

the two is due to the numerical error in computing the quadratures.

A natural interpretation of the hydraulic head CDF Fh(H;x) is the probability P[h(x) > H] =

1�Fh(H;x) of hydraulic head h(x) at any point x exceeding a mandated value H. Such exceedance

probability maps are required for probabilistic risk assessment and delineation of, e.g., sustainable

yield areas or well protection zones with a desired confidence level. The maps of P[h(x) > 0.85]

obtained with CDF-RDD and MCS are virtually indistinguishable (by the “eyeball measure”) from

each other, and appreciably di↵erent from the map constructed via the CDF approach without RDD

(Figure 2.3). Figure 3.4 elaborates this point further by presenting the CDF estimates Fh(H;x),

obtained with MCS, CDF-RDD, and the CDF method, at several points x in the computational

domain.

A more quantitative comparison between the alternative CDF (or exceedance probability) esti-

mates is provided by the first Wasserstein distance (aka Earth Mover’s metric) defined as (2.15). In

the two flow regimes considered, D(x) of the original CDF method is relatively large throughout the

simulation domain, being larger than 0.15 for the mean uniform flow and 0.09 for the convergent

flow (Figure 3.6). The Wasserstein distance for the proposed CDF-RDD approach is an order of

magnitude smaller, not exceeding 0.035 for mean uniform flow and 0.016 for convergent flow. These

results demonstrate that RDD extends the CDF method to statistically inhomogeneous formations

with complex and uncertain geology.

3.3.2 Computational E�ciency of CDF-RDD

The CDF method has been shown to be an order of magnitude faster than MCS in statistically

homogeneous media [116]. Instead of multiple MC solves of the d-dimensional groundwater flow

equation (3.1), it solves a single (d+1)-dimensional CDF equation (3.5). The relative smoothness of

the coe�cients in the CDF and moment equations allows for the use of coarser meshes and increases

the e�ciency of a linear solver. The proposed CDF-RDD method retains these features and, hence,

one should expect it to be computationally more e�cient than MCS in complex geologic settings as

well. These general considerations are confirmed in Table 3.1, which collates the computational costs

and accuracy (expressed in terms of the average Wassertein distance Dave) of the CDF method and

CDF-RDD methods. It takes NMCS = 6, 040 and NMCS = 7, 320 Monte Carlo realizations to obtain
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Figure 3.3: Spatial maps of exceedance probability P[h(x) > H = 0.85] = 1 � Fh(H = 0.85;x)
obtained with MCS (top row), the CDF method (center row), and CDF-RDD (bottom row) for
mean uniform flow (left column) and convergent flow (right column).
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Figure 3.4: Hydraulic head CDFs Fh computed with MCS, CDF method, and CDF-RDD at selected
locations x = (x1, x2)> in the simulation domain for the mean uniform flow (top row) and the
convergent flow (bottom row).
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Figure 3.5: Hydraulic head PDFs fh computed with MCS, CDF method, and CDF-RDD at selected
locations x = (x1, x2)> in the simulation domain for the mean uniform flow (top row) and the
convergent flow (bottom row).
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Figure 3.6: Spatial maps of the Wasserstein distance D(x) between the “exact” MCS estimate of
the hydraulic head CDF F

MCS
h

and its approximations provided by either the CDF method (top
row) or CDF-RDD (bottom row), for the mean uniform flow (left column) and the convergent flow
(right column).
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the discrepancy levels of CDF-RDD in the mean uniform flow and convergent flow, respectively. For

the same discrepancy level, CDF-RDD is an order of magnitude faster than MCS. The discrepancy

level of the CDF method without RDD is relatively large, Dave ⇡ 0.03, but it provides a four-fold

speedup relative to CDF-RDD.

Table 3.1: Computational times and accuracy of MCS and the CDF and CDF-RDD methods.
Flow regime Method Error Dave CPU time (min)

Mean uniform flow

CDF method 3.46 · 10�2 2.95 · 100

CDF-RDD 6.56 · 10�3 9.07 · 100

MCS with NMCS = 6040 6.56 · 10�3 1.07 · 102

MCS with NMCS = 4 · 104 0 8.43 · 102

Convergent flow

CDF method 3.2 · 10�2 3.08 · 100

CDF-RDD 4.90 · 10�3 1.13 · 101

MCS with NMCS = 7320 4.90 · 10�3 1.35 · 102

MCS with NMCS = 4 · 104 0 8.61 · 102

3.4 Summary and Conclusions

We proposed the integrated CDF-RDD framework to quantify geologic and parametric uncertainty

in groundwater flow models. The original CDF method for steady state flow equation in Chapter 2

provides a computationally e�cient alternative to MCS, but its applicability is limited to statistically

homogeneous fields. This limitation has been overcome by deploying RDD [111]. A key component

of CDF-RDD is the derivation of a deterministic equation satisfied by a conditional CDF Fh|↵, the

CDF of hydraulic head h(x) conditioned on a realization (labeled by ↵) of the site geology. The

sample average, over alternative geological maps (multiples values of ↵), of the solutions of this

CDF equation yields the hydraulic head CDF Fh. We performed a series of numerical experiments

to demonstrate the accuracy and computational e�ciency of the CDF-RDD method. Our study

leads to the following conclusions.

• The CDF-RDD method yields accurate estimates of the hydraulic head CDF (exceedance prob-

ability) for statistically inhomogeneous porous media in both linear and radial flow regimes.

• Unlike its original incarnation, the CDF-RDD method accounts for geologic uncertainty and

is applicable to highly heterogeneous subsurface environments.

• For the same accuracy, the CDF-RDD method is an order of magnitude faster MCS in both

radial and linear flow regimes.

• The CDF-RDD method provides information that is necessary for probabilistic risk assessment

and rare event analysis.



Chapter 4

Method of distributions for

two-phase flow in heterogeneous

porous media

4.1 Introduction

The uncertainty propagation of stochastic two-phase flow in heterogeneous porous media is often

challenging due to the non-linearity of transport equation (i.e., Buckley-Leverett problem) and the

necessity of coupling between the saturation and velocity vector. The statistical moment equations

(SMEs) based approach relying on low-order approximation has been developed for computing first

two moments of the water saturation in stochastic transport problem [120, 57, 61]. This approach

formulated on the Lagrangian coordinate (mean streamline coordinate) successfully couples the

saturation and velocity vector in terms of travel time. But it still assumes that the distribution

of travel time is known. The spectral methods using physically motivated transforms have been

developed to build e�cient probabilistic collocation methods for nonlinear flow in porous media

[58, 59]. For sampling based approach, the multilevel Monte Carlo (MLMC) has been used to speed

up the MCS in immiscible oil-water displacement problem [67].

Accelerated versions of MCS, such as multi-level Monte Carlo, provide significant speed-up in

computing the statistical moments of system states and associated quantities of interest (QoIs) [67],

but might become slower than standard MCS when used to estimate full PDFs/CDFs [98, 97]. Other

43
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direct uncertainty quantification techniques, such as polynomial chaos expansions and stochastic

collocation on sparse grids, are also not guaranteed to outperform MCS when the number of input

parameters (the so-called stochastic dimension) is large or the governing PDEs are highly nonlinear

[4]. Models of multiphase flow in heterogeneous porous media, which are the focus of our study, fall

under this category.

We posit that the method of distributions [96] has a potential to provide a computationally e�-

cient alternative to MCS in this setting. By providing a deterministic equation for the spatiotemporal

evolution of the PDF or CDF of a state variable, it has proved to be up to an order of magnitude

faster than MCS when used to compute the PDF/CDF of hydraulic head in confined heterogeneous

aquifers as proved in Chapters 2 and 3, and to yield accurate approximations of the PDF/CDF of

the concentration of solutes undergoing geochemical transformations during their migration in the

subsurface [95, 7, 8]. While the former class of problems is linear—see, also, [28] and [9] for the PDF

solutions of an advection-dispersion equation with uncertain parameters—and the latter nonlinear,

the state variable (hydraulic head or concentration) in both cases is smooth.

A complete description of uncertain output via PDF or CDF estimates is important to elaborate

the complexity of stochastic saturation field in two-phase flow problem. Among a plethora of methods

aiming for uncertainty quantification, the method of distributions [96] provides such information by

solving the deterministic equations for PDF or CDF of the QoI. The computational e�ciency of

this method over other approaches has been proved in Chapters 2 and 3. However, apart from flow

problems discussed in previous chapters, complete distribution-based approach for two-phase flow is

plagued by non-linearity of problem as well as multi-dimensionality of velocity vector.

Shocks and discontinuous state variables typical of multiphase problems, e.g., fluid saturation

whose dynamics is described by the Buckley-Leverett equation, pose a challenge for the method

of distributions (and other uncertainty quantification techniques). It requires either the analytical

computation of the shock dynamics [105] or the introduction of the so-called kinetic defect that

has to be inferred from data [10]. For highly heterogeneous subsurface environments, in which the

streamlines are defined largely by geology rather than flow conditions and, hence, remains frozen in

time, a version of the method of distributions named FROST [44, 43] exhibits remarkable accuracy

and e�ciency [35, 36]. Its input is the distribution of travel times, whose Monte Carlo computation

requires a large number of flow simulations and streamline tracings. To speed-up FROST further,

we eliminate the need for MCS by replacing it with a deterministic CDF equation for travel times.

We start by formulating a two-phase immiscible flow problem with uncertain inputs in Section 4.2.

Its treatment with the original FROST method is reviewed in Section 4.3, followed by the derivation

of a CDF equation for travel time in Section 4.4. A numerical implementation of the new CDF-

FROST method is presented in Section 4.5. Numerical experiments presented in Section 4.6 serve
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to demonstrate our method’s accuracy and e�ciency vis-à-vis MCS. Main findings and conclusions

drawn from our study are summarized in Section 4.7.

4.2 Problem formulation

We consider immiscible displacement of a non-wetting fluid (e.g., DNAPL) by a wetting fluid (e.g.,

water) in a d-dimensional heterogeneous porous medium, ⌦ ⇢ Rd. Both fluids are incompress-

ible, with respective viscosities µnw and µw. Their mobilities in the porous medium of intrinsic

permeability k(x) are defined as

�nw =
k(x)kr

nw(Snw)

µnw
, �w =

k(x)kr
w(Sw)

µw
, (4.1)

where k
r
nw(Snw) and k

r
w(Sw) are the saturation-dependent relative permeabilities of the porous

medium with respect to the non-wetting fluid and the wetting fluid, respectively; and Snw(x, t)

and Sw(x, t) are the saturations of these two phases, such that Snw + Sw = 1.

Neglecting the e↵ects of capillary pressure and gravity, the Darcy fluxes qnw(x, t) and qw(x, t)

of non-wetting and wetting phases are related to the gradient of pressure in both phases, p(x, t), by

qnw = ��nwrp, qw = ��wrp, x 2 ⌦, t > 0. (4.2)

The total Darcy flux qtot = qnw + qw satisfies the continuity condition, �r · qtot + g = 0, where

g(x, t) represents fluid sources and sinks. Neglecting the compressibility of the porous medium, and

accounting for (4.2), this yields a pressure equation

r · (�totrp) + g = 0, x 2 ⌦, t > 0, (4.3)

where �tot(Sw) = �nw(Sw) + �w(Sw) is the total mobility. This equation is subject to boundary

conditions either controlled by pressure

p = pinj for x 2 �inj and p = pprod for x 2 �prod, (4.4)

or total Darcy flux

qtot · n = qinj for x 2 �inj and qtot · n = qprod for x 2 �prod, (4.5)

which are defined on the injection (�inj) and production (�prod) segments of the boundary @⌦ =

�prod [�inj of the flow domain ⌦. Here, pinj and pprod are the pressure imposed along the boundary
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segment when boundary is controlled by prescribed pressure. qinj and qprod are the normal compo-

nent of the Darcy flux through rate-control boundary. n(x) is the outward unit normal vector to

@⌦.

Conservation of mass of, e.g., the wetting phase gives rise to a transport equation for the satu-

ration Sw(x, t),

�(x)
@Sw

@t
+ qtot · rfw(Sw) = gw. (4.6)

where gw is the source (sink) term for wetting phase and � is the porosity. The fractional flow

function of wetting phase, fw(Sw), is defined as �w/�tot. This equation is subject to following initial

and boundary conditions

Sw(x, 0) = S
ir
w, x 2 ⌦; Sw(x, t) = 1 � S

ir
nw, x 2 �inj, t > 0. (4.7)

Here, S
ir
w and S

ir
nw are the irreducible saturations of the wetting and non-wetting fluids, respectively.

Equations (4.3)–(4.7) govern the spatiotemporal evolution of the two state variables, fluid pres-

sure p(x, t) and saturation of the wetting phase Sw(x, t). With the sole exception of intrinsic per-

meability k(x), values of all the parameters in these equations are assumed to be known with

certainty. Permeability k(x) is modeled as a second-order stationary multivariate log-normal field

with constant mean k̄, variance �2
k
, correlation length `k, and correlation function ⇢k(r/`K), where

r = |x � y| is the distance between any two points x and y in ⌦. Uncertainty (randomness) in the

model input, k(x), renders the model prediction, Sw(x, t), uncertain (random) as well. Our goal is

to compute the probability of saturation Sw, at any space-time point (x, t), not exceeding a given

value s 2 [Sir
w, 1 � S

ir
nw], P{Sw(x, t)  s}. The latter is the definition of the single-point CDF of Sw,

i.e., P{Sw(x, t)  s} ⌘ FSw(s;x, t).

4.3 FROST method

Consider a streamline xsl(⌧) originating at point ⇠ at TOF ⌧ = 0. Given the total Darcy flux

qtot(x, t), it is defined implicitly by

xsl(⌧, t) = ⇠ +

Z
⌧

0
qtot(xsl(t

0), t)dt
0
. (4.8)

We parameterize this streamline by a natural coordinate r, such that the distance dr traveled

by a particle along this streamline during the TOF interval d⌧ is dr = |qtot|d⌧ . A collection
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of streamlines forms a streamtube with a variable cross-sectional area A(r); the volumetric flow

rate in this streamtube is Qtube = |qtot|A(r). Considering the following fundamental property

@Qtube/@r = 0 derived by the definition of streamtube, Qtube only depends on the time.

With these definitions, we rewrite the saturation equation (4.6) in the streamline coordinate

system,

�(r)A(r)
@Sw(r, t)

@t
+ Qtube

@fw(Sw(r, t))

@r
= 0, r > 0, t > 0. (4.9)

Next, we define the cumulative injection volume Q and the cumulative pore volume V as

Q(t) =

Z
t

0
Qtube(t

0)dt
0
, V (r) =

Z
r

0
�(r0)A(r0)dr

0
. (4.10)

Then, with Q playing the role of time and V of spatial coordinate, Sw(r, t) 7! Sw(V, Q) and (4.9)

takes the form of a one-dimensional Buckley-Leverett equation,

@Sw

@Q
+
@fw(Sw)

@V
= 0, V > 0, Q > 0. (4.11)

The initial and boundary conditions in (4.7) map onto

Sw(V, 0) = S
ir

w
, Sw(0, Q) = 1 � S

ir

nw
. (4.12)

The frozen streamline assumption implies the fixed total flux qtot direction. With this assump-

tion, cross sectional area A(r) becomes time-independent and can be expressed as A(r) = Qtube(t =

0)/|qtot(r0, t = 0)| using total flux qtot at t = 0. Hence, the ratio Z = V/Q becomes the ratio

between the time of flight (TOF) at time t = 0, ⌧0(x), and the equivalent injection time (EIT),

Tinj(x, t),

Z(x, t) =
⌧0

Tinj
, ⌧0(x) =

Z
r(x)

0

�(r0) dr
0

|qtot(r0, 0)| , Tinj(x, t) =

Z
t

0

Qtube(t0)

Qtube(t = 0)
dt

0
. (4.13)

Regardless of spatial heterogeneity, the EIT is approximately uniform in space and can be approxi-

mated by its mean value T̄inj from a relatively few MC realizations, i.e., Tinj(x, t) ⇡ Tinj(t) ⇡ T̄inj(t)

[43]. This approximation allows one to express the CDF of the wetting-phase saturation, FSw(s;x, t),

in terms of the CDF FY (y;x) of the logarithm of TOF, Y (x) = ln ⌧0(x),

FSw(s;x, t) = 1 � FY (z;x), z = ln[S�1
w (s)T̄inj(t)]. (4.14)
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The deterministic inverse mapping, S
�1
w (s), is provided by the analytical solution of (4.11),

S
�1
w (s) =

8
>>>>>><

>>>>>>:

1, s < S
ir
w

f
0
w(s⇤), s 2 (Sir

w, s
⇤)

f
0
w(s), s 2 (s⇤, 1 � S

ir
nw)

0, s > 1 � S
ir
nw,

(4.15)

where f
0
w(·) designates the derivative of fw(·), and s

⇤ satisfies the Rankine-Hugoniot jump condition,

f
0
w
(s⇤) =

fw(s⇤) � fw(Sir
w)

s⇤ � Sir
w

. (4.16)

We designate the original version of FROST by MCS-FROST to emphasize its reliance on MCS

to estimate both T̄inj(t) and FY (y;x). Estimation of the latter is particularly expensive because it

requires a large number of MC realizations, NMC, to converge (in our experiments, NMC � 5000).

Our version, CDF-FROST, replaces this computational bottleneck with a numerical solution of the

deterministic equation for FY (y;x).

4.4 CDF Equation for TOF

TOF, also known as travel time, is important in its own right since it provides useful information for

flow visualization, models’ ranking, and optimization of well placement or operation. As mentioned

above, TOF ⌧(r) at time t is defined as the time required for a particle to arrive at location r along

a given streamline,

⌧(r, t) =

Z
r

0

�(r0) dr
0

|qtot(r0, t)|
. (4.17)

For any point x in the flow domain ⌦, TOF from an injection point along the boundary �inj, ⌧(x),

satisfies a di↵erential equation [83]

qtot(x, t) · r⌧(x) = �(x), x 2 ⌦, (4.18)

subject to Dirichlet boundary condition

⌧(x) = 0, x 2 �inj. (4.19)
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Randomness in the intrinsic permeability k(x) translates into randomness of qtot(x, t), which

here serves as an input. We proceed to derive a deterministic equation for the CDF F⌧ (T ;x) of ⌧(x)

from (4.18) and (4.19).

4.4.1 Derivation of CDF Equation

Consider a function ⇧(T ,x) ⌘ H(T � ⌧(x)), where H(·) denotes the Heaviside function and T is a

deterministic value that the random TOF ⌧ at point x can take. Its ensemble mean over all possible

values of the random variables ⌧ is

E{⇧(T , ⌧(x))} = F⌧ (T ;x) ⌘ P{⌧(x)  T }. (4.20)

Multiplying both sides of (4.18) with @⇧/@T , and noting that r⇧ = �(@⇧/@T )r⌧ , yields an

equation for ⇧(T ,x),

qtot · r⇧+ �
@⇧

@T = 0. (4.21)

We use the Reynolds decomposition to represent the random quantities qtot and ⇧ as the sum of

their ensemble means and zero-mean fluctuation around them, qtot = q̄tot + q0
tot and ⇧ = F⌧ +⇧0.

(Throughout this manuscript, we use E{·}, ·̄, and h·i interchangeably to represent the ensemble

mean.) Then, the ensemble average of (4.21) yields an unclosed equation for F⌧ (T ;x),

q̄tot · rF⌧ + �
@Fh

@T
+ hq0

tot · r⇧0i = 0. (4.22)

A closure approximation for the unknown cross-correlation term hq0
tot · r⇧0i is necessary to ren-

der (4.22) computable.

The large-eddy-di↵usivity closure exhibits good accuracy and robustness for advection-reaction

problems [95, 102]. However, it relies on Green’s functions, which are computationally expensive

unless given analytically. Instead, we use the moments-preserving closure, a generalization of the

interaction by exchange with the mean approximation, [9, 8, 118, 45],

hq0
tot · r⇧0i ⇡ [↵(x)(T � ⌧̄) + �(x)]

@F⌧

@T
, (4.23)

where ↵(x) and �(x) are closure variables determined below. This yields a closed (d+1)-dimensional

CDF equation

q̄tot · rF⌧ + [↵(T � ⌧̄) + � + �]
@F⌧

@T
= 0. (4.24)
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4.4.2 Coordinate Transformation

To maximize the computational e�ciency of the CDF method, we introduce a new transformation

of coordinates in the frame of reference defined by the mean streamlines x̄sl(⌧). Equation (4.17)

establishes the duality between TOF along a mean trajectory, ⌧mean, and the position along the

mean streamline traveled during that time, r. Using this duality and taking the ensemble mean

of (4.8) yields

x̄sl(⌧mean) = x̄sl,0 +

Z
⌧mean

0
q̄tot(s

0)ds
0
. (4.25)

This relation allows one to represent any point x 2 ⌦ in the Cartesian grid in terms of the distance

r along the closest mean streamline. In the coordinate system spanned by r, q̄tot · r = q̄tot@/@r,

where q̄tot ⌘ |q̄tot| denotes the magnitude of the mean velocity vector q̄tot; F⌧ (T ;x) 7! F⌧ (T ; r);

and (4.24) takes the form,

q̄tot
@F⌧

@r
+ [↵(r)(T � ⌧̄) + �(r) + �(r)]

@F⌧

@T = 0. (4.26)

Since q̄tot is constant along a streamline coordinate r by the definition of streamline and incompress-

ibility, we rewrite this CDF equation in a “conservative” form,

@(q̄totF⌧ )

@r
+
@(UF⌧ )

@T = ↵F⌧ , U(r, T ) ⌘ ↵(T � ⌧̄) + � + �, (4.27)

which is more conducive to the subsequent numerical treatment. This CDF equation is subject to

the boundary conditions derived from (4.19),

F⌧ (T ; r = 0) = 1, T � 0. (4.28)

The general properties of a CDF provide the remaining boundary conditions,

F⌧ (0; r) = 0, F⌧ (⌧max; r) = 1. (4.29)

Following [9] and [45], we determine expressions for the closure variables ↵(r) and �(r) in (4.27)

by enforcing the consistency between the moments ⌧̄ and �
2
⌧

obtained alternatively by integration

of (4.27) and by either using MCS or solving the statistical moment equations (SMEs) derived in A

and C. We start by recalling that the mean, ⌧̄(r), and variance, �2
⌧
(r), of the TOF ⌧(r) with CDF



CHAPTER 4. METHOD OF DISTRIBUTIONS FOR TWO-PHASE FLOW 51

F⌧ (T ; r) are

⌧̄ = ⌧max �
Z
⌧max

0
F⌧ (T ; r)dT , �

2
⌧

= ⌧
2
max � 2

Z
⌧max

0
T F⌧ (T ; r)dT � ⌧̄

2
, (4.30)

where ⌧max is the maximal value the random TOF ⌧ can take; in the absence of additional informa-

tion, one can set ⌧max = 1.

Integrating (4.26) over T and employing (4.30) and (4.29), we can derive following equation for

⌧̄

qtot

@⌧̄

@r
� �(r) � � = 0. (4.31)

Similarly, multiplying both sides of (4.26) by T and integrating the resulting equation over T yields

qtot

@�
2
⌧

@r
� 2↵(x)�2

⌧
+ 2⌧̄ [qtot

@⌧̄

@r
� �(r) � �] = 0

or, accounting for (4.31),

qtot

@�
2
⌧

@r
� 2↵(x)�2

⌧
= 0 (4.32)

Imposition of the equivalency between the mean (⌧̄) and variance (�2
⌧
) equations derived by the

CDF method, (4.31) and (4.32), and the moments computed by SMEs or MCS yields expressions

for the closure variables ↵(r) and �(r) as

↵(r) =
qtot

2�2
⌧

@�
2
⌧

@r
, �(r) = qtot

@⌧̄

@r
� �. (4.33)

We use the SMEs to compute ⌧̄ and �2
⌧

becomes this strategy outperforms MCS in terms of compu-

tational cost for the same accuracy [61].

The solution to the two-dimensional boundary-value problem (BVP) (4.27)–(4.29) yields the

CDF of travel time along each mean streamline. Let Nsl, Nr, and NT denote the total number

of streamlines traced in the domain ⌦, the number of grid cells along each streamline, and the

number of grid cells used to discretize the interval [0, ⌧max], respectively. Then, the computational

complexity of solving this BVP is O(Nsl · N
3
r

· N
3
T ). We contrast this with the computational

complexity of solving the corresponding CDF equation in the Cartesian coordinate system, i.e.,

solving (4.24) directly. Even if the flow domain ⌦ were two-dimensional, its discretization with Nx

and Ny cells along each coordinate would yield the computational complexity of solving (4.24) of

O(N3
x

· N3
y

· N3
T ). This comparison highlights the main advantage of our coordinate transformation:

it enables the computation time that is proportional to the number of streamlines Nsl that, unlike

the Cartesian-grid calculations, scales linearly with the size of ⌦ [99].
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4.5 Numerical Implementation of CDF-FROST

In our approach, the CDF of saturation is obtained in three steps (Figure 4.1). The first step is to

obtain the mean and variance of TOF, ⌧̄(r) and �
2
⌧
(r), by solving the SMEs (C). The second step

involves numerical solution of BVP (4.27)–(4.29) to compute the travel-time CDF F⌧ (T ; r). The

latter provides an input for the analytical framework of FROST to evaluate the saturation CDF

FSw(s;x, t).

Figure 4.1: Workflow of proposed CDF-FROST method

The first step is carried out with the research code of [61]. The computational cost of the third

step is negligible, since it requires no numerical solution of di↵erential equations. The second step,

however, poses several challenges for standard numerical methods for hyperbolic partial-di↵erential

equations. The discontinuity of the boundary condition in (4.28) precludes the use of a high-order

scheme without inducing spurious oscillations. The non-smoothness of the coe�cients U and ↵ in

(4.27) requires a special treatment to achieve a desired accuracy. The monotonicity of TOF ⌧(r)

along a streamline necessitates the deployment of a nonuniform grid in the T coordinate to improve

e�ciency. To resolve these issues, we deploy three numerical techniques in this step: pseudo-time

stepping, a flux-limited method, and an exponential grid spacing.

Pseudo-time stepping

A pseudo-time stepping or pseudo-transient continuation method is particularly appropriate
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for the steady-state equation with non-smooth coe�cients [47, 34]. It starts with introducing the

fictitious or pseudo-time t
0. Dropping the subscript ⌧ for simplicity, (4.27) can be transformed into

the following time dependent equation

@F

@t0
+
@(qsl

F )

@r
+
@(UF )

@T
= vF, F (t0 = 0) = F0, (4.34)

where F0 is the initial condition. The main objective of the pseudo-time stepping method is to seek

the converged solution F
⇤ = limt0!1 F which is equivalent to the solution of (4.27) regardless of

initial condition.

When (4.34) is discretized within the spatial domain such that ri =
P

i�1
k=1�rk + �ri/2, Tj =

P
j�1
k=1�T k +�T j/2 where �r and �T are the spatial step, a general explicit conservative scheme

with forward time integration can be written as

F
n+1
i,j

= (1 + v)Fn

i,j
� �r,i(f

n

i+1/2,j
� f

n

i�1/2,j
) � �T,j(g

n

i,j+1/2 � g
n

i,j�1/2). (4.35)

The subscripts n and n + 1 represent the old and new time steps, respectively, and �r,i = �t
0
/�ri,

�r,i = �t
0
/�T i, where �t

0 is time-step size. For a finite volume scheme, F
n

i,j
and F

n+1
i,j

are cell

averaged conservative variables on the computational cell defined on the interval [ri�1/2, ri+1/2] ⇥
[Ti�1/2, Ti+1/2] where ri±1/2 = ri ±�ri and Tj±1/2 = Tj ±�T j . f and g are respectively the r and

T direction components of numerical flux.

Flux limited scheme

Among a plethora of schemes for approximating numerical flux, Roe’s first-order upwind method

guarantees non-oscillatory solution near discontinuities. Since q
sl

tot
is always greater than 0 along the

streamline, flux term f can be expressed as f
n

i+1/2,j
= q

sl

i,j
F

n

i,j
. For flux term g, the first-order upwind

method fails to impose the T space boundary conditions (4.29) properly when the boundaries T = 0

or T = Tmax are downstream boundaries (i.e., outgoing flow direction to the boundary). In order to

construct a numerical scheme that maintains high-order accuracy near boundaries, while producing

the monotone results at discontinuities, the flux limited scheme is implemented to construct flux

term g. The flux limited method represents the flux as a linear combination of low-order (i.e., Roe

first-order upwind) and high-order (i.e., Lax-Wendro↵) methods as follows

g
n

i,j+1/2 =

8
<

:
Ui,jF

n

i,j
+ 1

2ai,j+1/2(1 � �T ai,j+1/2)�
+
i,j

(Fn

i,j+1 � F
n

i,j
), ai,j+1/2 > 0

Ui,j+1F
n

i,j+1 + 1
2ai,j+1/2(1 + �T ai,j+1/2)�

�
i,j+1(F

n

i,j+1 � F
n

i,j
), ai,j+1/2 < 0

(4.36)
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where wave speed ai,j+1/2 is defined as

a
n

i,j+1/2 =

8
<

:

Ui,j+1F
n
i,j+1�Ui,jF

n
i,j

F
n
i,j+1�F

n
i,j

Fi,j 6= Fi,j+1

Ui,j Fi,j+1 = Fi,j

(4.37)

Here, flux-limiter �± is the function of ✓± which is the ratio of successive gradients indicating the

smoothness of the solution. The minmod flux-limiter function �(✓) = max[0, min(1, ✓)] is employed

in the present study. The ratio ✓±
i,j

can be considered as the measure of smoothness of the data near

cell (i, j) and defined as

✓
+
i,j

=
Fi,j � Fi,j�1

Fi,j+1 � Fi,j

, ✓
�
i,j

=
Fi,j+1 � Fi,j

Fi,j � Fi,j�1
. (4.38)

The numerical solution F
n

i,j
is updated iteratively using (4.35) until it converges to the steady state

solution. The convergence criteria is given as

max
i,j

|Fn+1
i,j

� F
n

i,j
| < 10�8 (4.39)

Exponential grid spacing

Considering the original definition of travel time (4.17), the travel time increases monotonically

along the streamline. Defining the CDF equation (4.27) along the mean streamline coordinate, every

points in the streamline should share the same T -direction grid system. As can be seen in Figure 4.2,

the fine grid size �Tj is required for accurate description of CDF when the distance from the origin

r is small. While, the coarser grid could be enough to represent the travel time CDF at large r. To

use this fact for further speed up of the computations, we introduce exponential grid spacing instead

of uniform grid size.

In the exponential grid spacing system, the grid size �T j = �T 0⇠
j�1 at cells j increases with

fixed expansion rate ⇠ where �T 0 is the initial time. The location of each cell Tj is defined as

Tj = T0 + �T 0
1�⇠j�1

1�⇠ where T0 is the location of first cell j = 0. In all numerical experiments in

this thesis, the expansion rate ⇠ is fixed as 1.02. Figure 4.3 shows the numerical solutions of (4.27)

obtained by two di↵erent grid systems with same grid number (NT = 150). It is shown that the

exponential grid spacing would be computationally cheaper than uniform grid to get the same level

of accuracy.

The third and last step is to obtain the saturation CDF FSw from the travel time CDF F⌧

using FROST method. The logarithm is introduced for better characterization of the distribution.

The distribution of initial logarithmic TOF Flog⌧0
can be computed from the results of second



CHAPTER 4. METHOD OF DISTRIBUTIONS FOR TWO-PHASE FLOW 55

Figure 4.2: Evolution of travel time CDF with distance r from the starting point of mean streamline.
L is the total length of mean streamline.

Figure 4.3: Travel time CDFs F⌧ computed with reference MCS and the CDF method with uniform
and exponential grid system at two selected distance r along the mean streamline for quarter-five
spot well configuration. L is the total length of mean streamline.
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step. It provides the input of (4.14) which finally produces the distribution of saturation FSw .

The computational cost of last step is relatively cheap compare to the first two steps, since it

does not require any numerical solution of PDEs which is most computationally expensive part in

CDF-FROST method. The overall procedure of proposed CDF-FROST method is illustrated in

Figure 4.1.

4.6 Numerical Experiments

We use two sets of numerical experiments to demonstrate the accuracy, robustness and versatility

of CDF-FROST. In both cases, the wetting phase is injected into a two-dimensional flow domain

⌦, which is initially filled with non-wetting phase. The viscosities of the non-wetting and wetting

phases are µnw = 2cp and µw = 1cp, respectively, thus the viscosity ratio M = µnw/µw = 2. The

quadratic model is used for relative permeabilities k
r
w = (Sw � S

ir
w)2 and k

r
nw = (1 � Sw)2, with

S
ir
w = 0.1 and S

ir
nw = 0. The porosity � is assumed to be uniform � = 0.1 over the computational

domain.

The spatial domain ⌦, a square of length L = 1000 m, is discretized with a staggered 80 ⇥ 80

grid, and the number of grid points along the T coordinate is set to NT = 150. The number of

mean streamlines launched in the domain is Nsl = 300. The log-permeability field (x) ⌘ ln k is

modeled as a second-order stationary multi-variate Gaussian field with zero mean (̄ = 0), variance

�
2


= 1, an isotropic exponential covariance function C = �
2


exp(�|x � y|/`), and dimensionless

(normalized with the domain size L) correlation length ` = 0.1.

Our numerical experiments mimic two representative flow scenarios. The first is the mean uniform

flow driven by a line injection of a wetting fluid at the left boundary, while the non-wetting fluid

is extracted at the right boundary. The second is a quarter-five spot problem with one injector at

lower left corner and one producer at upper right corner. In both scenarios, the total injection rate

is 100 m3/day and the extraction wells operate at constant pressure 100 Pa.

We compare our estimates of travel-time CDF F⌧ (T ;x) and saturation CDF FSw(s;x, t) with

their counterparts computed via high-resolution MCS. The latter employ the standard Pollock’s

method [74] and the finite-volume solver implementing an IMPES scheme [24] to compute, respec-

tively, the travel time and saturation field in each MC realization. The time-step size for the IMPES

scheme is set to 20 days, and the total simulation time is 1000 days. MC realizations of the log-

permeability (x) are generated by the sequential Gaussian simulator [29].
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4.6.1 Accuracy of the proposed method

We first start by analyzing the ability of the proposed CDF method to accurately approximate first

two moments of travel time, mean travel time ⌧̄ and standard deviation of travel time �⌧ . These two

statistics are widely used as uncertainty quantification tools and provide brief confidence intervals

of travel time variability. (4.30) enables the computation of any travel time moments from CDF.

Numerically, we compute the integrals (4.30) by using 500 quadrature points. Figure 4.4 exhibits

these statistical moments along the cross-section x1 = x2 in two di↵erent cases. These profiles

⌧̄(x1, ·) and �2
⌧
(x1, ·) are alternatively computed with MCS, the SMEs, and the CDF method.

Figure 4.4: Mean (left column) and variance (right column) of hydraulic head, h̄(x1, x2 = 1/2) and
�

2
h
(x1, x2 = 1/2), for mean uniform flow (top row) and flow to a well located at the middle of the

domain (bottom row). These moments are alternatively computed with Monte Carlo simulations
(MCS), the statistical moment equations (SME), and the CDF method. The statistical properties
of log-conductivity are Ȳ = 0; and �2

Y
= 1 and `Y = 0.1 in both cases.
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By construction, the CDF F⌧ (T ;x) in (4.27) is to have the same ⌧̄(x) and �
2
h
(x) as their coun-

terparts computed with the SMEs. The slight discrepancy between the two sets of the statistical

moments in Figure 4.4 is due to numerical errors in the solution of the CDF equation and the

subsequent evaluation of the quadratures required to compute the first two moments of a CDF.

Consistent with the previous SME-focused studies [56, 61, 82], the mean and variance of hydraulic

head computed with SMEs are in good agreement with those inferred from MCS, regardless of the

flow regime, since our the variance of log-permeability is moderate. The discrepancy between the

two approaches is larger for the standard deviation than for the mean.

While useful, these statistics are of limited use in risk assessment, which often requires spatial

maps of exceedance/non-exceedance probabilities, P{⌧(x) > T } = 1 � F⌧ (T ;x), for a selected

TOF threshold T . Figure 4.5 exhibits such maps for T = 50 days. Visual inspection of these

maps, alternatively computed with the reference MCS and the CDF method, demonstrates the CDF

method’s accuracy in most of the computational domain, except for the vicinity of its boundaries.

In these regions, the total fluid velocity qtot is slow and the MSEs loose their accuracy. The CDFs

F⌧ (T ;x) presented in Figure 4.6 for several points x 2 ⌦ provide another illustration of the accuracy

of the CDF method.

The normalized first Wasserstein distance between two distributions,

D(x) ⌘
R
⌧max

0 | F⌧ (T ;x) � F
MCS
⌧

(T ;x) | dT
R
⌧max

0 F⌧ (T ;x)dT
, (4.40)

provides a more quantitative assessment of the agreement between the CDFs computed with the

CDF method (Fh) and the reference MCS (FMCS
h

). These integrals are computed with the Gaussian

quadrature rule. The resulting contour plots of D(x) are shown in Figure 4.7. The error metric D(x)

is small throughout much of the domain ⌦, but increase around the boundary segments where the

streamline density is small. The behavior of D(x) mirrors that of the TOF variance �2
⌧

and reflects

the error in the perturbation-based estimation of the latter. In both flow scenarios, the average

Wasserstein distance Dave = k⌦k�1
R
⌦ D(x)dx remains small, 0.032 for the mean uniform flow and

0.046 for the quarter-five well configuration.

Finally, we verify the accuracy of the CDF-FROST framework. Figure 4.8 and 4.9 exhibits

temporal snapshots of the risk maps of saturation, i.e., of the exceedance probability P[Sw(x, t) >

0.5] = 1 � FSw(0.5;x, t) computed, alternatively, with CDF-FROST and MCS for the quarter-five

spot configuration. In both flow regimes, the two methods yield similar risk estimates, with slight

disagreement confined to the areas of small flow velocity. This finding suggests that the discrepancy

between the reference MCS and the CDF-FROST method is largely due to the approximation error

of the SMEs. Figure 4.10 elaborates this point further by presenting the CDF estimates at several
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Figure 4.5: Spatial maps of exceedance probability P[⌧(x) > T = 50] = 1 � F⌧ (T = 50;x)
obtained with MCS (left column) and CDF method (right column) for mean uniform flow (top

row) and quarter five spot configuration (bottom row).
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Figure 4.6: Travel time CDFs F⌧ computed with MCS and the CDF method at selected locations
x = (x1, x2)> in the flow flow domain for mean uniform flow (top row) and quarter-five spot
configuration (bottom row).
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Figure 4.7: Spatial maps of the normalized Wasserstein distance D(x) between the hydraulic head
CDFs computed with the CDF method and Monte Carlo simulations for mean uniform flow (left)
and quarter-five spot configuration (right).

points x 2 ⌦. The results demonstrate the high accuracy of CDF-FROST. Note that the direct

MCS utilizing IMPES scheme exhibits numerical di↵usion around the locations of shock fronts,

while MCS-FROST and CDF-FROST employing analytical Buckley-Leverett solution does not.

4.6.2 Computational E�ciency of CDF-FROST method

One can expect CDF-FROST to be faster than MCS because the former involves the numerical

solution of a fixed number Nsl of two-dimensional linear PDEs (4.27), while the latter requires

solving a large number of d-dimensional nonlinear coupled PDEs (4.3)–(4.7). CDF-FROST is also

expected to be more e�cient than MCS-FROST [44, 43], since it obviates the need for any MCS.

Table 4.1 confirms these expectations. The CPU times are reported for the same discrepancy level,

defined by the average Wasserstein distance Dave between the saturation CDFs computed with

either MCS, MCS-FROST, or CDF-FROST and the reference MCS. It takes NMCS = 2110 MC

realizations to achieve Dave ⇡ 0.03 for the mean uniform flow, and NMCS = 2630 MC realizations

to achieve Dave ⇡ 0.05 for the quarter-five well configuration. To achieve the same accuracy, MCS-

FROST requires NMCS = 3810 MC realizations for the mean uniform flow, and NMCS = 4160 MC

realizations for the quarter-five well configuration. For the same discrepancy level, CDF-FROST is

about five and ten times faster than MCS-FROST and MCS, respectively.
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Figure 4.8: Spatial-temporal evolution of exceedance probability P[⌧(x) > T = 50] = 1 � F⌧ (T =
50;x) at times t = 100days (top row), t = 500days (center row), t = 800days (top row) obtained
with MCS (left column) and CDF method (right column) for mean uniform flow.
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Figure 4.9: Spatial-temporal evolution of exceedance probability P[⌧(x) > T = 50] = 1 � F⌧ (T =
50;x) at times t = 100days (top row), t = 500days (center row), t = 800days (top row) obtained
with MCS (left column) and CDF method (right column) for quarter-five spot configuration.
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Figure 4.10: Saturation CDFs FSw(s; ·) computed with MCS, MCS-FROST [44, 43], and CDF-
FROST for two locations x = (x1, x2)> at times t = 100 days, t = 500 days, and t = 800 days. The
top and bottom rows correspond to the mean uniform flow and the quarter-five spot configuration,
respectively.

Table 4.1: Computational times and accuracy of MCS and the MCS-FROST and CDF-FROST
methods.

Flow regime Method Error Dave CPU time (min)

Mean uniform flow

CDF-FROST 3.23 · 10�2 9.55 · 100

MCS-FROST with NMCS = 3810 3.23 · 10�2 5.01 · 101

MCS with NMCS = 2110 3.23 · 10�2 9.38 · 101

MCS with NMCS = 1 · 104 0 4.23 · 102

Convergent flow

CDF method 4.58 · 10�2 9.46 · 100

MCS-FROST with NMCS = 2630 4.58 · 10�2 5.34 · 101

MCS with NMCS = 4160 4.58 · 10�2 9.66 · 101

MCS with NMCS = 4 · 104 0 4.31 · 102
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4.7 Conclusion

We proposed a sampling-free CDF-FROST method for probabilistic forecast of two-phase flow in het-

erogeneous porous media with uncertain permeability. By deploying a fixed-streamline assumption,

the original FROST method of [44] outperforms MCS in computing saturation CDFs. However, it

has a computational bottleneck, the MC computation of the distribution of travel time and statistics

of equivalent injection time. CDF-FROST overcomes this limitation by developing a deterministic

equation for CDF of travel time. The equation rests on a moment-preserving closure approximation,

whose coe�cients are determined by solving moment equations. For computational e�ciency, the

derived CDF equation is written for a mean streamline grid and solved by a specialized numerical

scheme that integrates pseudo-time stepping, flux-limited method, and exponential grid spacing.

We performed a series of numerical experiments to demonstrate the accuracy and computational

e�ciency of CDF-FROST. Our study leads to the following conclusions.

• The method of distributions yields accurate estimates of the CDF of travel time in heteroge-

neous porous media.

• The saturation CDFs obtained with CDF-FROST are in good agreement with reference MCS.

• For the same accuracy, CDF-FROST method is five and ten times faster than MCS-FROST

and MCS, respectively.

• CDF-FROST yields probabilistic information of both travel time and saturation that is nec-

essary for risk assessment and decision-making under uncertainty.

Based on the results of Chapters 2 and 4, we built the distribution-based framework for two-

phase flow in heterogeneous porous media. The developed framework utilizes the results of moment

equations as the input and computes the distributions of QoIs including pressure, travel time, and

saturation. Figure 4.11 summarizes the overall process of proposed distribution-based simulator.
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Figure 4.11: Overall flowchart of developed distribution-based simulator



Chapter 5

Consensus equilibrium for

subsurface inversion

The concept of this chapter is adopted from a previously published paper:

H. Yang, Y. Lin, B. Wohlberg, & D. M. Tartakovsky, Consensus equilibrium for subsurface

delineation. Water Resources Research, 57(10), e2021WR030151.

Most of figures and equations are identical to corresponding sections of the paper.

5.1 Introduction

Reliable characterization of the subsurface is a key component of quantitative predictions of flow

and transport in geologic formations. Subsurface characterization generally entails inversion (aka

history matching or data assimilation), a computational procedure that converts observations (e.g.,

of hydraulic head or solute concentration) into multi-dimensional images of model parameters (e.g.,

hydraulic conductivity or dispersivity). While inverse strategies vary widely, most of them involve

minimization of a discrepancy between observations and model predictions.

Gradient-based methods [81, and the references therein] and evolutionary algorithms [19, and

the references therein] are some of the most successful approaches to optimization-based inversion.

Among these, adjoint gradient-based methods boast high e�ciency, because they require only one

forward and one backward simulation to compute model sensitivity [81, and the references therein].

67
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These and similar optimization-based procedures generate one optimal solution at a time; they can

be combined with the randomized maximum-likelihood method [49] to obtain multiple posterior

models for uncertainty quantification. Sampling-based approaches for data assimilation, e.g., (dual)

ensemble Kalman filter [106], ensemble smoother [22], Markov chain Monte Carlo [122], and DREAM

algorithm [52] combined with Markov chain Monte Carlo, allow one both to estimate model param-

eters and to assess predictive uncertainty. Even though iterative ensemble-based schemes [22, 107]

ameliorate the convergence issue that plagues most inversion algorithms, sampling-based approaches

are generally more computationally expensive than adjoint gradient method. Yet, they are often

more e�cient than gradient-based approaches without the adjoints.

Regardless of the strategy used to achieve it, subsurface inversion is generally an ill-posed problem

that has to be regularized. One way to do so is to incorporate prior information in the form

of geological constraints, which would guarantee a geologically realistic solution. A majority of

the current approaches rely on explicitly definable priors such as two-point statistics (mean and

covariance), which renders them inappropriate for complex geology. One alternative is to employ

a parameterization procedure aiming to represent geological maps in terms of a small number of

parameters. Methods of this class include principal component analysis [80, 104] and deep learning-

based techniques [20, 53, 52, 64]. Though these approaches have shown good performance in many

subsurface applications, their results vary with the subjectively defined number of parameters and

parameterization methods, i.e., require significant fine-tuning.

We posit that high (parametric) dimensionality of subsurface images and non-di↵erentiability of

the image reconstruction problem argue for the deployment of proximal algorithms such as alternat-

ing direction method of multipliers (ADMM) [33, 1, 12]. More specifically, we adopt plug-and-play

(PnP) priors [101], which extend the previous proximal algorithms by relying on recent progress

in machine learning in general and deep neural networks (DNN) in particular. Inspired by the

mathematical equivalence between the proximal operator and an image denoiser, PnP methodolo-

gies provide a flexibility to integrate various heterogeneous priors that may not be explicitly defined

[85, 21, 71, 46, 88]. Among them, consensus equilibrium (CE) [16], a generalization of the ADMM-

based PnP scheme, integrates multiple advanced prior models (e.g., denoisers, data fidelity agents,

deblurring maps, etc.) within an optimization-free framework; examples of its application to image

reconstruction problems can be found in [37, 86].

We introduce CE as a means to achieve geologically realistic results for subsurface inversion

problems, which are formulated in Section 5.2. The CE approach, presented in Section 5.3, utilizes

a denoising prior and deep learning-based prior to maintain geological realism in the inversion of

hydraulic head data. The “agents” that seek equilibrium in our setting, i.e., operators responsible

for data fidelity, for data denoising, and for geological priors, are introduced in Section 5.4. In
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Section 5.5, we demonstrate the performance of the proposed CE framework via a series of numerical

experiments dealing with two-dimensional transient flow in an aquifer having channelized spatial

arrangement. Main findings and conclusions drawn from our study are summarized in Section 5.6.

5.2 Problem Formulation

The goal of an inverse problem is to recover an unknown subsurface model parameter set m 2 Rn

(e.g., values of hydraulic conductivity K in n elements of a numerical grid) from a set of mea-

surements d 2 Rm·k (e.g., of hydraulic head observed in m wells at k time intervals); in a typical

application, m ⌧ n and m · k ⌧ n. In terms of the maximum-a-posteriori (MAP) estimate, this

problem takes the form of an optimization problem,

m⇤ = argmin
m2Rn

f(m). (5.1)

The MAP cost function f(·) : Rn ! R+ is defined by

f(m) = � ln p(d|m) � ln p(m) + const, (5.2)

where p(d|m) and p(m) represent a data-fidelity function and a prior distribution, respectively. It

is common to assume that the distribution of random observation errors is a multivariate normal,

in which case the data-fidelity function, � ln p(d|m), is expressed as

p(d|m) =
1

2
(g(m) � d)>C�1

D
(g(m) � d), (5.3)

where CD 2 R(m·k)⇥(m·k) is the covariance matrix of the measurement errors, and g(·) : Rn ! Rm·k

represents the model predictions of an observable at space-time points (x, t) at which the observable’s

measurements d are available.

The prior distribution p(m) is often selected to be standard, e.g., multivariate Gaussian. How-

ever, complex priors representative of realistic geological environments are often poorly described

by such explicit distributions, and alternatives are needed. We propose the joint use of multiple ad-

vanced priors (e.g., machine learning-based priors) and conventional optimization-based approaches

within the CE framework to generate geologically realistic models.
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5.3 CE Framework

The novelty of CE framework is to fuse sets of heterogeneous models that may or may not arise from

the regularized optimization. The plug-and-play (PnP) reconstruction [101] emerging from ADMM

is the first method to incorporate the denoising operators that have no underlying optimization

problem. In addition to providing an optimization-free interpretation of PnP, CE extends PnP

to handle problems involving more than two “agents”, allowing the use of more than one implicit

regularizer for same problem.

To formulate the CE equations, we split the MAP cost function f(m) in (5.2) into N auxiliary

functions fi(m) : Rn ! R (i = 1, . . . , N), such that (5.1) becomes

min
NX

i=1

fi(mi); subject to mi = m, i = 1, . . . , N, (5.4)

with variable mi 2 Rn. A proximal mapping operator Fi : Rn ! Rn, corresponding to the cost

function fi, is defined by

Fi(m) = argmin
v2Rn

(
kv � mk2

2�2
i

+ fi(v)

)
. (5.5)

The regularization parameters �i controls the convergence speed of the PnP algorithm. If fi is a

lower-semicontinuous and convex function on Rn, then a solution of (5.4) and, hence, of (5.1) is

given by a solution, m⇤, of the CE equations [16],

Fi(m
⇤ + u⇤

i
) = m⇤

, i = 1, . . . , N ; and
NX

i=1

u⇤
i

= 0. (5.6)

The main advantage of the CE framework over optimization-based methods is that other non-

expansive operators, called agents, can be employed in lieu of the proximal mapping operator Fi

[16, 11]. An operator T : Rn ! Rn is said to be non-expansive if there exists a real number 0  k  1

such that

kT (x) � T (y)k  kkx � yk, (5.7)

for all x,y 2 Rn. The non-expansiveness, a weaker condition than being a proximal operator, allows

us to use much richer class of actions including machine learning models.

The CE equations (5.6) can be solved with several proximal point algorithms, such as ADMM
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[33] and Douglas-Rachford [12]. We introduce stacked operators F and G such that

F(m) =

2

664

F1(m1)
...

FN (mN )

3

775 , G(m) =

2

664

m̄
...

m̄

3

775 , m̄ =
1

N

NX

i=1

mi. (5.8)

Then (5.6) takes the form

F(v⇤) = G(v⇤), v⇤ = m⇤ + u⇤
. (5.9)

The averaging function G has a property 2G � I = I, where I 2 RN⇥N is the identity matrix. This

property gives rise to a fixed-point problem

(2G � I)(2F � I)v⇤ = v⇤
. (5.10)

We solve it using the Mann iteration [79], which is equivalent to the Douglas-Rachford algorithm

[39],

vk+1 = (1 � ⇢)vk + ⇢(2G � I)(2F � I)vk
, (5.11)

where ⇢ 2 (0, 1) is the fixed parameter. The convergence of the Mann iteration is guaranteed when

the operator T ⌘ (2G� I)(2F� I) is non-expansive [11]. If ⇢ = 0.5 and N = 2, then the fixed point

approach (5.11) is identical to the PnP with ADMM algorithm [85].

5.4 Selection of Agents for Subsurface Delineation

Our inverse modeling strategy is to deploy the CE framework (5.9) with N = 3 agents Fi: a

data fidelity agent Fdat, a denoising prior agent Fden, and a geology prior agent Fgeo. The first

of these, Fdat, is introduced to reduce the mismatch between observations, d, and predictions of

the reconstructed model, g(m). It is defined as a proximal mapping (5.5) of the data fidelity

function (5.3),

Fdat(m) = argmin
v2Rn

(
kv � mk2

2�2
dat

+
1

2
(g(v) � d)>C�1

D
(g(v) � d)

)
, (5.12)

where �dat is an internal parameter controlling the strength of the regularization term kv � mk2.

We solve the minimization problem in (5.12) using the gradient-based method L-BFGS-B, in which

adjoints are used to compute the gradient [13, 81, 70]. The adjoint method is employed here because
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of its computational e�ciency and lack of the Gaussianity assumption, but other advanced inversion

techniques [22, 107, 52, 122] can be plugged into CE as Fdat.

Agent Fden represents an image denoising prior, which plays the role of an implicit regularizer; its

role is to provide reconstructions with sharper, less smeared hydrofacies boundaries. The underlying

assumption behind the use of the denoising prior is that the subsurface is composed of distinct

hydrofacies with relatively low heterogeneity within each facies [109, 110, 108, 117]. Examples of

image denoisers include total variation (TV) [72], BM3D [26], and DnCNN [121]. BM3D typically

provides substantially better denoising performance than TV, and the more recent DnCNN typically

outperforms BM3D by a much smaller margin. TV is posed as an optimization problem and is easier

to implement as a regularizer for more complex problems than denoising via standard methods [5].

Neither BM3D nor DnCNN, however, has an explicit form as an optimization problem, BM3D being

based on a complex algorithm involving block matching and coe�cient shrinkage in the transform

domain, and DnCNN being a convolutional neural network (CNN).

Figure 5.1: Overall architecture of our VAE for incorporating prior geological information. The
abbreviations in Figure are defined as; Conv: convolution layer, FC: fully connected layer, and
ConvT: transposed convolution layer.

Agent Fgeo enables our model to preserve the prior geological information such as shapes, sizes,

positions and orientations of geological objects. We use variational autoencoders (VAEs), one of

the popular generative models, to build such geological information into our model. In a typical

implementation, VAEs use deep neural networks to learn latent representations from complex input
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data [48]. In so doing, an encoder is used to estimate latent variables z from input data m, then

multiple realizations of z are generated and used by a decoder to generate reconstructed data m̃

(Figure 5.1). Each layer of encoder/decoder contains a convolution or transposed-convolution unit

to e↵ectively extract and integrate the spatial features of input realizations. The convolution layer

performs linear filtering on the output from the previous layer. When the input X is a 2D image,

the output feature map, h, is obtained by N ⇥ N filter w. One output pixel, hi,j is calculated as

hi,j(Xi, j) = f

 
NX

m=1

NX

n=1

wi,jXi+m,j+n

!
, (5.13)

where the activation function f is a generally rectified linear unit (ReLU) f(x) = max(0, x). The

transposed convolutional layer reverses the operation of a standard convolutional layer. Details of the

convolution and transposed convolution layers can be found in [32, 51]. Training data for VAE can

be generated with geostatistical algorithms capable of producing geologically plausible realizations,

including object-based [30], process-based methods [73], and multipoint geostatistics [87].

Figure 5.2: Examples of Fgeo operations applied to geologically realistic input (top row) and unre-
alistic input (bottom row).

The encoder and decoder are trained simultaneously by minimizing VAE loss LVAE. Let � denote

a parameterization of the encoder that infers latent variables z from m; the inferred distribution is
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q�(z|m). When the decoder is parameterized with another parameter set ✓, yielding a distribution

p✓(z), VAE loss LVAE is formulated as

LVAE(m;�,✓) = DKL[q�(z|m), p✓(z)] � Ez⇠q� [ln(p✓(m|z))]. (5.14)

Here p✓(m|z) is the likelihood of m given z under the decoder model. The term DKL[·] is the

Kullback-Leibler (KL) divergence, which provides a measure of discrepancy between the distribu-

tion of the latent variables, p✓(z), and the inferred distribution, q�(z|m). The term Ez⇠q� [·], the

expectation of the likelihood that the input image m can be generated from latent variable z, repre-

sents the reconstruction error between the actual x and the reconstructed image m̃ from the decoder.

To compute LVAE e�ciently, one represents q�(·) as a known readily parametrizable distribution.

When z is a continuous latent variable, q�(·) is generally assumed to have a multivariate Gaussian

distribution, whose mean µ and variance �2 are determined by the encoder model.

If the VAE model is well trained on a su�cient number of realizations, its loss e↵ectively measures

the similarity between the input data and the training dataset. To ensure the consistency between

an updated image and the prior geological information, we define agent Fgeo as the proximal map

of the VAE loss LVAE,

Fgeo(m) = argmin
v2Rn

(
kv � mk2

2�2
geo

+ LVAE(v; ·)
)

, (5.15)

where �geo is the regularization coe�cient. Figure 5.2 shows examples of Fgeo-agent operations.

When the input is geologically realistic, Fgeo preserves the original input. In contrast, Fgeo improves

the input significantly when the input is inconsistent with the prior geology.

5.5 Numerical Experiments

We consider two-dimensional (vertically averaged) transient flow in an aquifer ⌦ ⇢ R2 bounded by

a surface @⌦. Spatiotemporal distribution of hydraulic head h(x, t) is described by the groundwater

flow equation,

Ss

@h

@t
= r · (Krh) � r(x), x 2 ⌦, t > 0, (5.16)

where K(x) and Ss(x) are the aquifer’s hydraulic conductivity and specific storage, respectively;

and r(x, t) represents sources and sinks (e.g., wells and recharge). This equation is subject to initial
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and boundary conditions

h(x, 0) = H, x 2 ⌦; h = �, x 2 �D; �Krh · n =  , x 2 �N . (5.17)

Here, H(x) is the initial distribution of hydraulic head; �(x, t) and  (x, t) are the hydraulic head

and the normal component of the Darcy flux q = �Krh prescribed, respectively, on the Dirichlet

(�D) and Neumann (�N ) segments of the boundary @⌦ = �D [ �N ; and n(x) is the outward unit

normal vector to �N .

The groundwater flow model (5.16) and (5.17) is supplemented with (noisy) measurements, d,

of hydraulic head h collected at a few locations (e.g., wells) throughout the aquifer during a certain

time horizon. In a typical application, an aquifer’s properties (K and Ss), auxiliary functions (H,

�, and  ) and sources (r) are all uncertain and have to be inferred from geologic considerations

and measurements d. This inverse problem is variously referred to as model calibration or history

matching. In the examples reported below, we treat hydraulic conductivity K(x) as the only un-

known parameter, and relate its natural logarithm, Y (x) = lnK(x), to the corresponding values of

specific storage Ss(x) via a linear regression,

Ss = aY + b. (5.18)

Following [55], we assume the regression coe�cient a to be positive. With this simplification, and un-

der a suitable discretization of the flow domain ⌦ into n elements (or nodes), the flow problem (5.16)

and (5.17) is uniquely characterized by a set of parameters m = {K1, . . . , Kn}. A numerical solution

of this problem is denoted by h = g(m).

As the previous studies in geo-inversion [81, 78, 53, 25, 89], we assume each hydrofacies to be

homogeneous, i.e., characterized by a constant value of hydraulic conductivity K and, hence, specific

storage Ss. This assumption is introduced to verify our method’s ability to reconstruct large-scale

geological structures; it is not necessary for our methodology to work. In fact, since the discontinuity

of Ki is not desirable for e�cient algorithms such as gradient-based methods, we relax the inversion

problem formulation by allowing K to be continuous and by constraining its range [80, 104, 64].

We use numerical experimentation to illustrate the performance of our CE framework. The

simulation parameters and other settings for these experiments are borrowed from [52, 50]. The

numerical simulations are performed in Python using the FEniCS software library [2].1 The first

setting (Section 5.5.1) deals with deterministic inversion, in which CE has only two agents, Fdat and

Fden. The second (Section 5.5.2) setting provides probabilistic treatment of a more complex geology

and CE has three agents (Fdat, Fden, and Fgeo).

1The data and codes are available at https://github.com/DDMS-ERE-Stanford/CE.git.

https://github.com/DDMS-ERE-Stanford/CE.git
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The meta-parameters introduced in Sections 5.3 and 5.4 are optimized to achieve the best image

reconstruction performance using the exhaustive grid search [54]. Specifically, the optimal parameter

for the BM3D denoiser is chosen experimentally by visual inspection of the reconstructed images

produced by the CE framework. Tuning of the DnCNN denoiser is more di�cult because it does not

have an explicit noise parameter [115], the noise regime being implicitly selected during the training

stage [121]. For the experiments reported here, we compare performance for all pre-trained models

provided by [121], selecting the one (i.e., � = 50 model for greyscale image) that gives the best CE

reconstruction according to visual inspection. The Mann iteration parameter ⇢ and the number of

iterations are set to 0.5 and 30, respectively for the fast convergence of algorithm. The regularization

parameters are set to �dat = 20 and �geo = 0.5 to achieve the best-quality reconstructed image.

5.5.1 Deterministic inversion without geological prior

We consider a channelized aquifer represented by a 45 ⇥ 45 grid consisting of 10 m ⇥ 10 m grid

cells (Figure 5.3). Values of the hydraulic conductivity of the channels and the ambient matrix

are set to 10�2 m/s and 10�4 m/s, respectively; the true (unknown) conductivity field is shown

in Figure 5.3a. Radial flow is induced by a pumping well (the red circle in Figure 5.3a) operating

with a fixed hydraulic head of hwell = 1 m; constant head h = 21 m is prescribed along the left

(x1 = 0) and right (x1 = 450 m) sides of the square aquifer; the remaining two boundaries (x2 = 0

and 450 m) are impermeable; the initial hydraulic head over the entire domain is 21 m. The true

hydraulic head field h(x, t) is computed as a numerical simulation of (5.16) and (3.2) with the true

hydraulic conductivity field.

Figure 5.3: True log hydraulic field (left) and its initial guess (right) estimated from conductivity
measurements via support vector regression.
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Hydraulic head measurements are collected at 25 observation wells (the white circles in Fig-

ure 5.3a) every 5 hours for the first 30 hours of the simulation. Gaussian noise with zero mean and

variance of 0.2 is added to these values to account for observation errors. The resulting dataset

d, as well as conductivity values at these 16 locations, are used in inverse modeling to reconstruct

the hydraulic conductivity field. Given both the relative simplicity of the geological structure in

Figure 5.3a and the relatively high sampling density, we use this setting to perform deterministic

inversion by reconstructing only one geological map. The prior geological constraint is not enforced

for this case, thus our CE framework contains only two agents, Fdat and Fden.

An initial guess for the inversion can be either provided by an expert (e.g., geologist) or con-

structed from the 16 conductivity measurements. Figure 5.3b presents the initial guess estimated

by support vector regression, which showed good performance for facies delineation [112].

Figure 5.4: True hydraulic conductivity map (a) and its reconstructions via the CE-based inversion
with the TV (b), BM3D (c), and DnCNN (d) denoisers.

Figure 5.4 shows the hydraulic conductivity maps obtained via the CE-based inversion with three
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alternative types of agent Fden: TV, BM3D, and DnCNN. Regardless of the denoiser type, our CE

framework captures the channel connectivity and generates realistic images. Visual inspection of

these images reveals that CE with the DnCNN image denoiser delineates the facies most accurately.

Predictions of hydraulic head h(x, t), corresponding to the reconstructed conductivity K(x),

at four locations are presented in Figure 5.5. Our CE-based inversion considerably reduces the

discrepancy between the true and predicted hydraulic head values, regardless of the denoiser type.

Figure 5.5: Temporal evolution of hydraulic head h(x, t) at four selected locations x = (x1, x2)T

predicted with the initial guess of K(x) based only on conductivity measurements and with the
CE-based inversion with the TV, BM3D, and DnCNN denoisers.

To quantify the relative performance of the CE framework, we introduce a classification error

computed as the fraction of misclassified grid points in the total number of grid points. The facies

classification is done by setting a threshold value for lnK as -3, which is the average of the log

hydraulic conductivities in the two distinct facies. The best method, CE with the DnCNN denoiser,

has the classification error of 5.65%; a remarkably good performance given small number of obser-

vation points (0.79% of the total number of grid points). Classification errors of CE with the TV

and BM3D denoisers are 6.19% and 6.47%, respectively.
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5.5.2 Probabilistic inversion with geologic prior

Prior geological information can be provided by an expert/geologist in the form of a training image

(TI) that describes the morphology and key characteristics of hydrofacies. CE incorporates this

conceptual geological knowledge through the geology prior agent, Fgeo, which is used in addition

to the other two agents, Fdat and Fden. We use the DnCNN denoiser, since it performed best on

the previous problem. Multi-point geostatistics, specifically the SNESIM algorithm [87], is used

to generate 2000 realizations which form the training dataset for the VAE model Fgeo. These

realizations also provide the initial guess for our inversion. The probabilistic inversion is conducted

by running multiple inversions with an arbitrarily sampled initial guess; this approach is known

as randomized maximum-likelihood or RML [49]. We use 50 RML runs for the stochastic data

assimilation.

Figure 5.6: Training images used for multi-point geostatistical simulations: (a) a 250 ⇥ 250 hand-
made drawing for case 1 and (b) a 768 ⇥ 243 image for case 2 generated from the satellite image
[66].

We consider two channelized aquifers with hydraulic conductivities 10�2 m/s and 10�4 m/s for

channels and matrix, respectively. Figure 5.6 shows the TIs for the two di↵erent cases2. The TI for

2The images are available at https://wp.unil.ch/gaia/downloads/

https://wp.unil.ch/gaia/downloads/


CHAPTER 5. CONSENSUS EQUILIBRIUM FOR SUBSURFACE INVERSION 80

Figure 5.7: True geological maps (left column) and representative prior realizations generated by
the SNESIM algorithm (the remaining two columns) for Cases 1 (top row) and 2 (bottom row). The
white circles mark locations of observation wells.
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Case 1 represents a fluvial channelized aquifer used in [87]. The TI for Case 2 comes from a satellite

image of the Ganges delta in Bangladesh [66, 65]. The aquifers are discretized with 81 ⇥ 81 and

75 ⇥ 75 grids for Cases 1 and 2, respectively. In both cases, the size of each grid cell is 20 m ⇥ 20 m

with thickness of 1 m. Figure 5.7 shows the true hydraulic conductivity fields and realizations

generated from the given TIs.

Initially, groundwater flow is driven by constant heads of 9.0 m and 10.0 m imposed on the left

and right boundaries of the domain, respectively; the remaining two boundaries are impermeable.

The initial hydraulic head distribution is computed by running the flow simulator until steady

state is achieved. At that time, four pumping wells operating with the fixed hydraulic head 8.0 m

are installed. Observation wells record the hydraulic head response to groundwater withdrawal.

Locations of pumping wells and observation wells are indicated by the red circles and white crosses,

respectively. Hydraulic head h(x, t) at these observation wells is simulated with (5.16) and (3.2) for

the true conductivity fields, and recorded every 20 days for the first 80 days. Dataset d is constructed

by corrupting these simulated values with zero-mean Gaussian noise of variance 0.01.

Figures 5.8 and 5.9 exhibit the true and estimated conductivity fields. The latter represent

sample averages of the realizations obtained with the initial guess, CE without Fgeo, and CE with

the DnCNN denoiser. Visual inspection of these figures demonstrates a close agreement between

the reconstructed geological maps and their true counterparts. On the other hand, the image

reconstruction without Fgeo fails to preserve the geological realism and has a large discrepancy with

the true image. The sample-averaged hydraulic conductivity fields for Cases 1 and 2 obtained by

CE without Fgeo (with the threshold conductivity value of 10�3 m/s) have the classification errors

of 14.6% and 12.8%, respectively. The corresponding classification errors of CE with Fgeo are 7.6%

and 8.1% for Cases 1 and 2, respectively.

Figures 5.10 and 5.11 present the temporal evolution of hydraulic head h at two di↵erent locations

for Cases 1 and 2, respectively. The RML approach allows us to quantify the prior (before inversion)

and posterior uncertainty ranges. The blue areas in these figures represent the 90% confidence

intervals; and the dashed lines, t = 60 days, indicate the end of the assimilation period. Visually,

the recorded drawdowns at two di↵erent locations are dissimilar in Cases 1 and 2 due to the di↵erent

degrees of connectivity to pumping wells. This distinct relationship between hydraulic head response

and channel connectivity enables the close agreement between the reconstructed image and true

image. The CE-enabled assimilation of hydraulic head data leads to significant uncertainty reduction

in the posterior realizations. The hydraulic head profiles of true model fall within the 90% confidence

interval in both Cases 1 and 2. These results demonstrate that our methodology has a robust

prediction performance.
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Figure 5.8: Case 1: (a) the true conductivity map and its reconstructions obtained by averaging the
realizations of conductivity maps of (b) the initial guess, (c) CE without prior geology agent, and
(d) CE with prior geology agent.
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Figure 5.9: Case 2: (a) the true conductivity map and its reconstructions obtained by averaging the
realizations of conductivity maps of (b) the initial guess, (c) CE without prior geology agent, and
(d) CE with prior geology agent.
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Figure 5.10: Hydraulic head h evolution with time at selected locations x = (x1, x2)T of aquifers for
case 1: (a) initial and (b) posterior.
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Figure 5.11: Hydraulic head h evolution with time at selected locations x = (x1, x2)T of aquifers for
case 2: (a) initial and (b) posterior.
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5.5.3 Computational e�ciency of the proposed method

In our CE approach, each of the agents is applied sequentially at each iteration. Since the averaging

and updating operations in (5.11) carry negligible computational costs, we approximate the overall

computational cost by the sum of the computational times for each agents. Table 5.1 collates

the computational burden for the three experiments considered in this study; the computation

costs are reported for an Intel Xeon e5-2670 machine running at 2.3 GHz, and all the runs of

the probabilistic inversion are parallelized on 50 computer nodes. Agent Fdat, an equivalent of

the regularized adjoint-based inversion, consumes most of the overall computational cost. This

finding implies that our method adds only a small amount of computational burden to the existing

optimization-based approaches, while significantly improving the reconstruction performance.

Table 5.1: Computational times of the CE algorithm for the three tests considered.
Tests Agents CPU time (min)

Deterministic
Fdat 4.39 · 101

Fden with DnCNN 5.3 · 100

Probabilistic, Case 1
Fdat 7.22 · 101

Fden 9.81 · 100

Fgeo 5.78 · 100

Probabilistic, Case 2
Fdat 3.49 · 102

Fden 2.19 · 101

Fgeo 1.65 · 100

5.6 Summary and Conclusions

We developed and applied a new plug-and-play approach to solve subsurface inversion problems with

complex geology. Conventional optimization-based approaches are widely used for this purpose, but

their applicability is often limited to geological formations characterized by multi-Gaussian fields.

We overcome this limitation within the CE approach by fusing multiple heterogeneous priors with

conventional physics-based inversion. Our CE strategy involves three di↵erent agents. The data

fidelity agent Fdat uses an adjoint method to force the consistency between a solution of an inverse

problem and observed data. This choice of Fdat is due to its computational e�ciency and lack of

the Gaussianity assumption, but other advanced inversion techniques can be plugged into CE as

Fdat. The denoiser agent Fden minimizes the noise within each hydrofacies and generates realistic

geological maps. The geology prior agent Fgeo incorporates the prior geological knowledge using the

VAE model.

We performed three numerical experiments to check the robustness of the proposed method.
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First, we solved a deterministic inversion problem on a relatively simple synthetic model. Next,

we used our method for probabilistic reconstruction of geologically realistic models. Our numerical

experiments lead to the following conclusions.

• The CE framework without agent Fgeo performs well for the relatively simple geology. However,

it cannot reflect the prior geological knowledge and fails to get a geologically realistic maps for

more complex formation.

• Among several alternative denoisers, DnCNN (a CNN-based denoiser) shows the best perfor-

mance as a CE component.

• When the prior geological information, such as shapes or orientations of geo-bodies, is available,

the VAE agent trained on the prior realizations significantly improves the CE performance.

• When combined with the RML approach, our method allows one to quantify posterior uncer-

tainties in estimates of both hydraulic parameters and flow response. Our method e↵ectively

estimates the posterior uncertainty range.



Chapter 6

Conclusions

In this thesis, we studied the probabilistic framework for the uncertainty quantification of flow and

transport in heterogeneous porous media. Specifically, we investigated two di↵erent stochastic ap-

proaches for e�cient characterization of uncertainty - method of distributions for forward uncertainty

propagation and consensus equilibrium for realistic inverse modeling.

First, we developed the method of distributions to predict saturated flow in porous media with

uncertain hydraulic conductivity or permeability and uncertain boundary functions. The method

of distributions yields probability information for QoI which is necessary for probabilistic risk as-

sessment. The proposed method derives and solves the deterministic partial di↵erential equation

(PDE) for the cumulative distribution function (CDF) of hydraulic head (or pressure). The moment-

preserving closure approximation is deployed to express the coe�cients of the CDF equation in terms

of mean and variance. The mean and variance can be computed either statistical moment equations

(SMEs) or MCS, but the best computational e�ciency is achieved when CDF method is combined

with SMEs. The series of numerical experiments have shown that the CDFs obtained with the CDF

method are in good agreement with the reference MCS for a wide range of statistical properties

of hydraulic conductivity (its variance and correlation length). The CDF method is two-orders of

magnitude faster than MCS, and this computational speed up stems from the the smoothness of

coe�cients in CDF equations.

Secondly, we extend the method of distributions developed in previous chapter to quantify the

geologic uncertainty as well as parametric uncertainty of saturated flow in porous media. Using

random domain decomposition (RDD), we derive a deterministic equation satisfied by conditional

CDF conditioned on a realization of the site geology. The sample average, over alternative geological

maps, of the solutions yields unconditional CDFs of pressure/hydraulic head. The proposed method,

88
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which we refer to CDF-RDD, yields accurate estimates of the hydraulic head CDF (exceedance

probability) for statistically inhomogeneous porous media in both linear and radial flow regimes.

For the same accuracy, the CDF-RDD method is an order of magnitude faster MCS in both radial

and linear flow regimes.

Next, We proposed the integrated CDF-FROST framework for complete distribution-based ap-

proach for the two-phase flow in heterogeneous porous media. We first develop a CDF method

for computing the travel-time distribution. The derivation of this equation relies on a moment-

preserving closure approximation whose coe�cients are determined by mean and variance of travel-

time. We transform the derived CDF equation into mean streamline grid for computational e�ciency

and solve it using a new numerical scheme designed to solve the derived equation. The specialized

numerical approach includes pseudo-time stepping, flux-limited method, and exponential grid spac-

ing. Then CDF method for travel-time is combined with FROST method [44] within CDF-FROST

framework to compute the probability distribution without the simulations of MC realizations. The

numerical expereiments show that CDFs obtained with CDF-FROST method are in good agreement

n both linear and quarter-five spot flow regimes. For the same accuracy, the proposed CDF-FROST

method is ten times faster than naive MCS.

Lastly, we developed and applied a new method called consensus equilibrium (CE) to solve

subsurface inversion problems with complex geology. The proposed framework is plug-and-play ap-

proach designed to characterize non-Gaussian formations which cannot be characterized by conven-

tional optimization-based approaches. The proposed CE approach integrates multiple heterogeneous

priors modeled by advanced approaches like machine learning with conventional physics-based inver-

sion. Our CE framework involves three di↵erent agents including data fidelity, denoiser, and geology

prior agent. The data fidelity agent uses an adjoint method to force the consistency between a solu-

tion of an inverse problem and observed data. The denoiser agent minimizes the noise within each

hydrofacies and generates realistic geological maps. The geology prior agent incorporates the prior

geological knowledge using the variational auto-encoder. The numerical experiments verified that

the CE framework with data fidelity and denoiser agents performs well for relatively simple geology.

In the presence of prior geological information, such as shapes or orientations of geo-bodies, the VAE

agent trained on the prior realizations significantly improves the CE performance. When proposed

framework is combined with randomized likelihood approach, the conditioned uncertainties in both

geology and dynamic response are e↵ectively quantified.



Appendix A

Moment Equations for Flow

Problem

Derivation and analysis of the moment equations (MDEs) for the hydraulic head h have been a

subject of intensive research in stochastic hydrogeology for several decades [68, 92, 93, 56, 82]. A

brief derivation of the MDEs implemented numerically by [61] is presented below for completeness.

The steady-state groundwater flow equation (2.1) is rewritten in terms of log hydraulic conduc-

tivity Y (x) = ln K(x) as

r2
h + rY · rh = g(x)e�Y

. (A.1)

Using the Reynolds decomposition Y (x) = Ȳ +Y
0(x), recalling that Y (x) is second-order stationary

multivariate Gaussian, i.e., that its mean Ȳ and variance �2
Y

= hY 02i are constant, defining by

KG = exp(Ȳ ) the geometric mean of the hydraulic conductivity K, expanding exp(Y 0) into a Taylor

series around Y
0 = 0, and taking the ensemble mean of the resulting equation leads to

r2
h̄ + r · hY 0rhi =

g

KG

1X

n=0

1

(2n)!
�

2n

Y
. (A.2)

Here the notation Ā and hAi is used interchangeably to denote the ensemble mean of any random

quantity A. The right-hand-side is derived by taking advantage of the fact that all odd moments of

a Gaussian Y
0 are zero. The unknown ensemble moments h̄ and hY 0rhi = hY 0rh

0i are expanded

into asymptotic series in the powers of �2
Y

,

h̄ = h̄
(0) + h̄

(1) + · · · , hY 0rh
0i = hY 0rh

0i(1) + hY 0rh
0i(2) + · · · , (A.3)
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where the superscript (n) indicates that the corresponding quantity is of order �2n

Y
. The use of these

expansions formally limits the applicability of the resulting solutions to �
2
Y

/2 < 1, but has been

shown to remain robust for �2
Y

as large as 4.

Collecting the terms of equal powers of �2n

Y
in (A.2) yields a recursive set of partial di↵erential

equations

r2
h̄

(0) =
g

KG
, r2

h̄
(n) + r · hY 0rhi(n) =

g

2KG
�

2n

Y
, n � 1. (A.4)

The boundary conditions for these equations are obtained from (2.2) by following a similar procedure,

h̄
(0) = �̄(x), h̄

(n) = 0, n � 1, x 2 �D; (A.5a)

�KGrh̄
(n) · n(x) =

1

(2n)!
 ̄(x)�2n

Y
, n � 0, x 2 �N ; (A.5b)

�KGrh̄
(n) · n(x) +

1

(2n)!
ah

(n)
�

2n

Y
=

1

(2n)!
'̄(x)�2n

Y
, n � 0, x 2 �R. (A.5c)

The latter results rely on a reasonable assumption that the hydraulic conductivity K is not correlated

with both  and '.

Apart from n = 0, the equations in (A.4) are unclosed since each of them contains two unknowns,

h̄
(n) and hY 0rhi(n). To remediate this problem, we derive an equation for the first-order approxi-

mation of cross-correlation CY h(�,x) = hY 0(�)h(x)i(1) by multiplying (A.1) with Y
0(�), taking the

ensemble mean, and retaining the terms of order �2
Y

,

r2
xCY h(�,x) + rxCY (x,�) · rxh̄

(0) = � g

KG
CY (x,�), (A.6)

where CY (x,�) = hY 0(x)Y 0(�)i is the auto-correlation of Y (x). Accounting for the lack of cor-

relation between Y and the boundary functions � and  , it follows from (2.2) that the moment

equation (A.6) is subject to boundary conditions

CY h(�,x) = 0, x 2 �D; rxCY h(�,x) · n(x) =
 ̄

KG
CY (x,�), x 2 �N . (A.7)

Once this boundary-value problem is solved and CY h(�,x) is evaluated, we compute rxCY h(�,x)

and then evaluate hY 0rhi(1) = lim�!x[rxCY h(�,x)]. We use the first-order (in �2
Y

) approximations

of the statistical moments, i.e., approximate the mean head h̄ with h̃ = h̄
(0)+h̄

(1). Multiplying (A.4)

with K̄ and summing the equations for h̄
(0) and h̄

(1) yields the equation (2.11) for the first order
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approximation of mean head subject to boundary conditions

h̃ = �̄(x), x 2 �D; �KGrh̃ · n(x) =  ̄(x)

✓
1 +

�
2
Y

2

◆
, x 2 �N ;

�KGrh̃ · n(x) + ah̃(x)

✓
1 +

�
2
Y

2

◆
= '̄(x)

✓
1 +

�
2
Y

2

◆
, x 2 �R. (A.8)

An equation for the first-order approximation of the head variance, �̃2
h
, is derived by subtracting

(2.11) from (A.4), multiplying the resulting equation with h
0(x), and taking the ensemble mean,

r2
x�

2
h
(x) � 2hrh · rh

0i(1) + 2rxh̄
(0) · hrY

0
hi(1) = �2g(x)

KG
CY h(x,x). (A.9)

Similar to the equation for h̃, we compute rxCY h(x,�) to evaluate hrY
0
hi(1) = lim�!x[rxCY h(x,�)].

To obtain the workable expression for the unknown term hrh · rh
0i(1), we solve the equation

for the first-order approximation of the hydraulic head’s auto-covariance function, Ch(x,�) =

hh(x)h0(�)i(1). The equation for Ch(x,�) is derived by multiplying (A.1) with h
0(�), taking the

ensemble mean, and retaining the terms of order �2
Y

,

r2
xCh(x,�) + rxCY h(x,�) · rxh̄

(0) = �g(x)

KG
CY h(x,�). (A.10)

The boundary conditions for this equations are obtained by multiplying (2.2) with h
0(�) taking the

ensemble average, and retaining the terms of order �2
Y

,

Ch(x,�) = C�h(x,�), x 2 �D; rxCh(x,�) · n(x) =
C h(x,�) �  ̄(x)CY h(x,�)

KG
, x 2 �N ,

�rxCh(x,�) · n(x) +
a

KG

Ch(x,�) =
�C'h(x,�) +

⇣
'̄(x) � ah̃(x)

⌘
CY h(x,�)

KG
, x 2 �R.

(A.11)

The boundary cross-covariances C�h(x,�), C h(x,�) and C'h(x,�) are computed by multiply-

ing (2.2) with h
0(�) and taking the ensemble average. If the boundary functions � and  are

deterministic, as is the case in our numerical experiments, then C�h(x,�) = 0 and C h(x,�) = 0.

Once this boundary-value problem is solved, i.e., Ch(x,�) is computed, we evaluate hrh ·
rh

0i(1) = lim�!x[rx · r�Ch(�,x)]. Multiplying (A.9) with K̄ and evaluating hrh · rh
0i(1) and

hrh·rh
0i(1) lead to the closed equations (2.12) for the first-order approximation of the head variance
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subject to boundary conditions

�̃
2
h
(x) = C�h(x,x), x 2 �D; rx�̃

2
h
(x) · n(x) =

2C h(x,x) � 2 ̄(x)CY h(x,x)

KG
, x 2 �N ;

�rx�̃
2
h
(x) · n(x) +

a

KG

�̃
2
h
(x) =

�2C'h(x,�) + 2
⇣
'̄(x) � ah̃(x)

⌘
CY h(x,�)

KG
x 2 �R.

(A.12)

Alternatively, �̃2
h

can be obtained by taking the limit of the head’s auto-covariance function Ch(�,x),

i.e., �̃2
h

= lim�!x Ch(�,x). The limit can be computed from the numerical solution of the (A.10),

the Ch between the grid point x and all grid points in the domain.

Next, we derive the first and second moment equations for the stochastic velocity field. For flow

in porous media, Darcy’s law with unit viscosity can be written as

v(x) = �e
Y (x)

�
rh(x) (A.13)

As in the derivation of (A.4), Reynolds decomposition and taking the ensemble mean lead to the

following equation,

v̄(x) = �KG

�

1X

n=0

1

2n!
(rh̄

(0)
�

2n

Y
+ hY 0nrh

0i). (A.14)

The first order approximation of mean velocity, ṽ can be written as

ṽ(x) = �KG

�
[rh̄

(0)(1 +
�

2
Y

2
) + rCY h(x,x))]. (A.15)

An equation for the covariance between the i-th and j-th components of the velocity vector,

Cvivj (x,�), is obtained by subtracting (A.14) with (A.15), multiplying v
0
j
(x), and taking ensemble

mean,

Cvivj (x,�) =
KG(x)KG(�)

�2
[
@h̄(x)

@xi

@h̄(�)

@�j

CY Y (x,�) +
@

2
Chh(x,�)

@xi@�j

+
@h̄(x)

@xi

@CY h(x,�)

@�j

+
@h̄(�)

@�j

@CY h(�,x)

@xi

].

(A.16)



Appendix B

Boundary Conditions for the CDF

equation

Boundary conditions for the CDF equation along the physical boundaries �N and �R are obtained

from (2.2) in three steps. We show here the derivation for mixed type boundary conditions along �R;

conditions along �N are identical by imposing a = 0 and substituting ' with  . First, we multiply

(2.2) along �R by @⇧/@H to obtain

�K(x)r⇧ · n(x) � aH
@⇧

@H
= �' @⇧

@H
. (B.1)

Ensemble averaging of (B.1) yields

�K̄(x)rF · n(x) = aH
@F

@H
� '̄

@F

@H
+ hK 0 @⇧

0

@H
i � h'0 @⇧

0

@H
i (B.2)

which requires closure. Consistently with the IEM closure developed for (2.1), we impose

�K̄(x)rF · n(x) = aH
@F

@H
� '̄

@F

@H
+
�
�(x)(H � h̄(x)) + ⌘(x)

� @F

@H
, x 2 �R, (B.3)

where �(x) and ⌘(x) are required to guarantee consistency with the boundary conditions for the

moment equation (Section A). Upon integration, this yields

�(x) =
K̄

2 r�2
h

· n(x) � a�
2
h
(x) + 2ah̄

2(x)�
�

2
h
(x) � 2h̄2(x)

� , ⌘(x) = K̄rh̄ · n(x) � ah̄(x) + '̄(x). (B.4)
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Moment Equations for Transport

Problem

The first two moments of the velocity field obtained by (A.15) and (A.16) can be used to generate

mean streamline. Then, the travel time moments are computed using the perturbation expansion

around the mean streamline. The random travel-time ⌧ can be expressed along the mean streamline

coordinate as

⌧ =

Z
r

0

1

vr(�, ⌘(�))
d� (C.1)

where r is the distance along the mean streamline, vr is the velocity component whose direction

is along the mean streamline, and � is a dummy variable to parameterize mean streamline. ⌘ is

transverse displacement, i.e., the displacement perpendicular to the mean streamline, is defined as

⌘(r) =

Z
r

0

v⌘(�)

vr(�)
d�. (C.2)

Here, v⌘ is the velocity component perpendicular to the mean streamline. Considering the definition

of mean streamline, the mean traverse displacement h⌘i = 0.

The underlying assumption for perturbation expansion is that the variance of traverse displace-

ment ⌘(�) and velocity along the streamline vr is relatively small. Taylor expansion in terms of

these two terms is employed to perturb all streamline-related random quantities around the mean

streamline. Applying Taylor expansion to (C.1) and neglecting the terms higher than first order, we
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can derive the following truncated equation for travel-time ⌧ ,

⌧(r) =

Z
r

0

"
1

hvr(�, h⌘i)i � v
0
r
(�, h⌘i)

hvr(�, h⌘i)i2 +
⌘
0(�)

hvr(�, h⌘i)i2
@hvr(�, ⌘)i
@⌘(�)

����
⌘=h⌘i

#
d� (C.3)

Taking ensemble average to the (C.3) yields the equation of the zeroth-order mean travel-time ⌧̄(r)(0),

⌧̄(r)(0) =

Z
r

0

1

hvr(�, h⌘i)id�. (C.4)

We subtract the mean equation (C.4) from (C.3) to obtain the first-order fluctuation term,

⌧
0(r) =

Z
r

0

1

hvr(�, h⌘i)i2

"
v
0
r
(�, h⌘i) + ⌘

0(�)
@hvr(�, ⌘)i
@⌘(�)

����
⌘=h⌘i

#
d� (C.5)

Multiplying two travel-time fluctuations at di↵erent locations and taking ensemble average lead to

the following expression for travel-time covariance

C⌧ (r1, r2) =

Z
r1

0

Z
r2

0

1

hvr1i2hvr2i2


hv0

r1v
0
r2i +

@hvr1i
@⌘

����
⌘1=h⌘1i

hv0
r2⌘

0
1i

+
@hvr2i
@⌘

����
⌘2=h⌘2i

hv0
r1⌘

0
2i

+
@hvr1i
@⌘

����
⌘1=h⌘1i

@hvr2i
@⌘

����
⌘2=h⌘2i

h⌘01⌘02i
�
d�1d�2

(C.6)

where ⌘1 = ⌘(�1), ⌘2 = ⌘(�2), vr1 = vr(�1, h⌘1i), and vr2 = vr(�2, h⌘2i). The closure terms related

to transverse displacement, hv0
r
⌘
0i and h⌘01⌘02i can be obtained from (C.2). By expanding v⌘ and 1/vr

with a Taylor series expansion around hvri, we can write the transverse displacement fluctuation as

⌘
0(r) =

Z
r

0

v
0
⌘
(�)

hvr(�)i

"
1 � v

0
r
(�)

hvr(�)i +
v
0
r

2(�)

hvr(�)i2 � · · ·
#

d�. (C.7)

With this fluctuation term, we can express the transverse displacement covariance as the expected

value of two traverse displacements with first order accuracy,

h⌘01(r1)⌘
0
2(r2)i =

Z
r2

0

Z
r1

0

hv0
⌘,1(�1)v0⌘,2(�2)i

hvr,1i(�1)hvr,2i(�2)
d�1d�2. (C.8)

Similarly, the following first-order equation for covariance between transverse displacement and

velocity along a streamline can be derived by multiplying (C.7) with v
0
r

and taking ensemble average:

hv0
r
(r1, h⌘1i)⌘0(r2)i =

Z
r2

0

hv0
⌘
(r1, h⌘(r1)i)v0⌘(�)i

hvr(�)i d�. (C.9)
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In summary, the travel time moments can be computed by the series of integration and velocity

moments derived in Appendix A. The numerical integration generally requires less computational

cost than linear solver. Hence, the travel-time moments can be obtained rapidly from the results of

Appendix A.
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