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EPIGRAPH

多 年 淫 非 夫 非 夫
不 與 慢 學 學 澹 君
接 時 則 無 須 泊 子
世 馳 不 以 靜 無 之

能 廣 也 以 行
悲 意 勵 才 明
守 與 精 才 志 靜
窮 日 非 須 以
廬 去 險 志 學 非 修

躁 無 靜 寧 身
將 遂 則 以 也 靜
復 成 不 成 無 儉
何 枯 能 學 以 以
及 落 治 致 養

性 遠 德

“The practice of a cultivated man is to improve himself by quietude and develop

virtue by frugality.

Without detachment, there is no clarification of the will; without serenity, there is

no achievement of great ambition.

Learning requires research through concentration, talent requires cumulation

through learning.

Without learning talent cannot be expanded; without determination learning

cannot be consistent.

Laziness and indulgence does not encourage will; impulsion and audaciousness

does not refine virtue.
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Years elapse with hours, aspirations flee with days and one withers like a fallen

leaf.

There is no contribution to others but only lament and regret in a shabby hut, for

the lost prime that will never return.

–Zhuge liang

(“letter to my son”, 234 A.D.)
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Daniel M. Tartakovsky, Chair

This dissertation is a work on the development of mathematical tools for un-

certainty quantification in environmental flow and transport models. In hydrology,

data scarcity and insufficient site characterization are the two ubiquitous factors

that render modeling of physical processes uncertain. Spatio-temporal variability

(heterogeneity) poses significantly impact on predictions of system states. Stan-

dard practices are to compute (analytically or numerically) the first two statistical

moments of system states, using their ensemble means as predictors of a system’s

behavior and variances (or standard deviations) as a measure of predictive uncer-

tainty. However, such approaches become inadequate for risk assessment where

one is typically interested in the probability of rare events. In other words, full

xvii



statistical descriptions of system states in terms of probabilistic density functions

(PDFs) or cumulative density functions (CDFs), must be sought. This is chal-

lenging because not only parameters, forcings and initial and boundary conditions

are uncertain, but the governing equations are also highly nonlinear. One way

to circumvent these problems is to develop simple but realistic models that are

easier to analyze. In chapter 3, we introduce such reduced-complexity approaches,

based on Green-Ampt and Parlange infiltration models, to provide probabilistic

forecasts of infiltration into heterogeneous media with uncertain hydraulic param-

eters. Another approach is to derive deterministic equations for the statistics of

random system states. A general framework to obtain the cumulative density func-

tion (CDF) of channel-flow rate from a kinematic-wave equation is developed in

the third part of this work. Superior to conventional probabilistic density func-

tion (PDF) procedure, the new CDFs method removes ambiguity in formulations

of boundary conditions for the CDF equation. Having developed tools for uncer-

tainty quantification of both subsurface and surface flows, we apply those results

in final part of this dissertation to perform probabilistic forecasting of algae growth

in an enclosed aquatic system.
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Chapter 1

Introduction

是 圣 夫 不 知
以 人 唯 知 不
不 不 病 知 知
病 病 病

病 尚
以 是 矣 矣
其 以
病 不
病 病

“Acknowledgement of ignorance is the strength of learning,

Pretension of knowledge is the sickness of learning.

Only understanding one’s sickness can prevent disease.

Sage does not have any weakness because he sees his own weakness,

and hence he does not have any weakness.”

-Lao-zi

“Dao De Jing” (chapter 71), 6th century B.C.

1
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1.1 Uncertainty Quantification

Wisdom begins with the acknowledgement of one’s ignorance - the limits of

what we know. Such recognition of uncertainty is a classic empiricist philosopher’s

view on human learning. It gave rise to recognition that most physical systems are

fundamentally stochastic [8, 9, 10, 11].

Uncertainty quantification (UQ) is a science of quantitative characteriza-

tion and possible reduction of uncertainty in the prediction of system behavior

[12]. Many scientific and engineering fields, for example climate and environmen-

tal modeling, energy generation, control and manufacturing, and process and sys-

tem design, have fully embraced the importance of dealing with, and quantifying,

predictive uncertainty.

Heterogeneity, insufficient site characterization and conceptual-mathematical

limitations of modeling approaches render the predictions of groundwater flow and

transport notoriously difficult. Continuous advancements in data acquisition are

encouraging but will not provide us with full knowledge of system parameters.

Measurements of hydraulic properties are prone to measurement and interpretive

errors. This uncertainty is ubiquitous and cannot be solved with more compu-

tational resources. It makes hydrogeology ever more challenging and UQ is both

necessary and increasingly deemed obligatory. This is the primary focus of this dis-

sertation in which various probabilistic tools are developed to quantify uncertainty

in models of environmental flow and transport.
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In the remainder of this chapter, we present a brief review of common UQ

methods in hydrogeology (section 1.2) and their shortcomings are also discussed.

A considerable part of section 1.3 is devoted to probabilistic risk assessment (PRA)

that prompts our study of new approaches to UQ. In section 1.4, those new methods

and their applications in hydrogeology are outlined.

1.2 Current UQ methods

Many probabilistic analyses classify uncertainty into two categories: aleatory

and epistemic. The former is the uncertainty “inherent in a nondeterministic

(random, stochastic) phenomenon” that cannot be suppressed by more accurate

measurements; while the latter is “attributable to incomplete knowledge about a

phenomenon that affects our ability to model it” [13] - this is the primary concern

of uncertainty quantification in hydrogeology.

From the earliest monograph [14] to the recent work [15], significant progress

to address epistemic uncertainty in stochastic hydrogeology resulted in a number

of competing approaches. Specifically, these approaches are developed to quantify

structural (model) and parametric uncertainties associated with surface/subsurface

process, which are mathematically represented through (stochastic) governing equa-

tions.

As outlined in Figure 1.1, structural uncertainty in hydrogeology often

stems from one’s limited knowledge of the hydrogeologic system makeup. It can be
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quantified by random domain decompositions [16, 17]. Meanwhile, our inadequate

understandings of subsurface flow and transport leads to various interpretations

and mathematical representations of the corresponding physical (chemical or bi-

ological) processes. One can apply a Bayesian maximum entropy approach [18],

maximum likelihood Bayesian averaging [19], etc. to quantify such uncertainty.
Sources of Uncertainty in Distributed Models

   Uncertainty in

       processes
physical

Computational
uncertainty uncertainty

     Model Parameter
uncertainty

Measurement and
interpretive

errors
disparity of

Variability and

scales
Sparse
data

Data
uncertainty

 uncertainty
  Predictive

Probabilistic risk
assessment

   Uncertainty in
hydrogeologic

system makeup

   Uncertainty in
chemical

       processes

   Uncertainty in

       processes
biological

       

Basic
uncertainty

Figure 1.1: Sources of uncertainty in a distributed system.

Parametric uncertainty results from spatio-temporal heterogeneity coupled

with scant and often noisy measurements of hydraulic and bio- geochemical proper-

ties. Routinely, researchers approach this type of uncertainty through a statistical
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treatment of parameters. Specifically, a parameter A(x, t, ω) varies not only in

the physical domain, (x, t) ∈ D, but also in the probability space ω ∈ Ω. Such

probabilistic descriptions of parameters render the corresponding governing equa-

tions stochastic. Their solutions are given in terms of probability density functions

(PDFs) or cumulative density functions (CDFs) of system states.Methodologies to

address parametric uncertainty could be subdivided into, statistical methods and

stochastic methods. Monte Carlo Simulations (MCS), moment differential equa-

tions (MDE) and generalized polynomial chaos expansions (PCEs) are the three

most common practices and shall be discussed below.

Among statistical methods for UQ, MCS is commonly labeled as “brute

force”. It involves numerous simulations of deterministic codes to solve the gov-

erning equations and hence to obtain statistical distribution of target system states.

In principle, the law of large numbers ensures that such approach becomes increas-

ingly accurate as more simulations (N → ∞) are performed. Yet in practice, we

are confined to limited computing resources and MCS has a convergence rate of

the order 1/
√
N . Without any physical insight, the advancement in computing

power is unlikely to match the growing size of models, i.e, the number of degrees

of freedom (random variables).

MDE, on the other hand, as an example of “indirect” stochastic methods

for UQ. By employing Reynolds decomposition, it represents a random parameter
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A as the sum of its mean Ā and a zero-mean fluctuation A′

A = Ā+A′, 〈A′2〉 = σ2
A (1.1)

where σ2
A is the second statistical moment (variance) of A. Ensemble averaging of

stochastic governing equations leads to deterministic equations for the statistical

moments of system states. Such MDEs typically require a closure approximation.

Based on physical arguments, various closure approximations have been proposed.

Often they assume mild heterogeneity (relatively small variance), Ā � A′, which

undermines the range of MDE applicability.

Grounded in rigorous mathematical theory [8], PCEs are an intrusive stochas-

tic finite element method. As its name suggests, a second-order stochastic process

(parameter) can be expanded:

A(x, t, ω) =
∞∑
i=1

ai(x, t) Ψi(ω) ≈
N∑
i=1

ai(x, t) Ψi(ω), 〈ΨiΨj〉 = 〈Ψ2
i 〉 δij (1.2)

where the orthogonal Wiener-Askey polynomials Ψi(ω) correspond to the distribu-

tion of random variable ω and δij denotes the Kronecker delta function. Knowledge

of the deterministic polynomial chaos coefficients ai(x, t) could fully characterize

the random parameter A. In theory, truncation at polynomial order N provides

non-perturbative UQ methods, which could capture large fluctuations and highly

non-Gaussian field. However, PCE also suffers drawbacks: it works well for uni-

modal distributions of random variables and large correlation length. Application

of PCEs in subsurface hydrology can be found in [20].
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1.3 Probabilistic Risk Assessment

The aforementioned approaches are primarily used to compute the first and

second statistical moments of systems states. They are adequate to describe the

mean system behavior whose prediction error can be quantified with the ensem-

ble variance. However, when one is concerned with probabilistic risk assessment

(PRA), i.e., the probability of rare events, those methods become insufficient and

full statistical characterization of system states, i.e., PDFs or CDFs, is required.

As outlined in the report of National Research Council [21], the main focus

of PRA is on uncertainty quantification to assess both the likelihood of an envi-

ronmental hazard and the efficiency of alternative remediation efforts. Similar to

most engineering applications, a comprehensive PRA should address the following

three questions: “What can happen? How likely is it to happen? Given that it

occurs, what are the consequences?” [22].

Consider, as an example, hazardous algae blooms (HABs) in an aquatic

system. We say that “a system failed” at time t, if the population of a specific

type of algae exceeds the Environmental Protection Agency mandated levels. By

identifying the system’s components, the general framework of PRA relates the oc-

currence of the system failure to the failures of its constitutive parts (basic events)

through Boolean operators AND and OR. Typical basic events include “Natural

attenuation fails”, “Favorable Climate”, “Remediation effort fails”, “Accumulation

of nutrients”.
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The procedure described above is a standard PRA framework whose output

relies on the computation of probabilities of basic events. In contrast to complex

artificial systems - for instance nuclear power plants and shuttles [22] - there are

no reliability databases for natural (environmental) systems to quantify the un-

certainty of individual components. Instead, one must solve stochastic partial

differential equations that govern flow and transport to obtain the predictive un-

certainty in Figure 1.1, i.e. PDFs or CDFs of system states. This is the goal of our

study on the development of UQ methods and our results will be briefly introduced

in the following section.

1.4 Research Outline

In addition to the uncertainty about parameters, forcing terms and initial

and boundary conditions, nonlinearity of the governing equations complicates their

analytical and numerical analysis. Such difficulty is elucidated in Chapter 2 where

a series of flow and transport simulations are conducted to study the effects of

spatio-temporal variability of precipitation on contaminant migration in the va-

dose zone. Specifically, we confirm that meteorological data based on different

temporal averaging scales (annual and daily) could lead to large discrepancy of

net infiltration and groundwater contamination level in arid and semi-arid regions.

We further demonstrate that the accuracy of temporally averaged predictions is

influenced by the degree of nonlinearity of the Richards equation describing flow
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in partially saturated porous media. Additional errors are introduced when one

ignores topographical and/or urban features that tend to focus and increase local

infiltration rates.

Given the practical impossibility of obtaining accurate PDF solutions of the

stochastic Richards equation in three dimensions, we develop novel reduced com-

plexity models to circumvent this problem. Based on the Green-Ampt and Par-

lange models that provide alternative descriptions of flow in unsaturated porous

media, we propose reduced complexity models for the probabilistic forecasting

of infiltration rates in heterogeneous soils during surface runoff and/or flooding

events. As presented in Chapter 3, these models yield closed-form semi-analytical

expressions for the single- and multi-point PDFs of infiltration depth and corre-

sponding infiltration rate, which quantify predictive uncertainty stemming from

uncertainty in soil properties. We investigate the temporal evolution of these

PDFs, the relative importance of uncertainty in various hydraulic parameters and

their cross-correlation, and the impact of the choice of a functional form of the hy-

draulic function. Comparing to their counterparts obtained from a full infiltration

model based on the Richards equation, the infiltration rate PDFs computed with

the reduced complexity models are in close agreement at early times and provide

conservative estimates of predictive uncertainty at all times.

Alternatively, one can attempt to derive deterministic equations for the

PDFs/CDFs of system states from stochastic governing equations. In Chapter 4,

this methodology is applied to kinematic wave theory in order to obtain a statisti-
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cal description of channel flows with uncertain hydraulic parameters, input sources

and boundary conditions. Introducing the new concept of fine-grained CDFs, our

approach is equivalent to computing the PDFs of volumetric flow rate but provides

easier formulation of boundary conditions for the new CDF equation. Since the

nonlinearity of the governing equation is reduced without any approximation, we

derive closed-form semi-analytical solutions for both raw and full CDFs of volu-

metric flow rate. The former facilitate their numerical simulations. We performed

MCS to evaluate the accuracy of the CDF approach. Results show that the two

approaches are in close agreement at all times.

Having developed various new tools for UQ, we conclude this dissertation by

a stochastic model of algae bloom in Chapter 5. This is accomplished by computing

the probabilistic distribution of algae population density using a Fokker-Planck

equation. Final conclusions are drawn in Chapter 6.

Subjects /Methods :

Sources of 
uncertainty :

Effects of 
boundary 
conditions

infiltration-rate PDF
(Green-Ampt / 

Parlange model)
runoff-rate CDF 

(kinematic Wave)
algae-concentration PDF
(Fokker-Planck Equation)

Precipitation, 
evaporation 

and etc.

Subsurface 
soil properties, 
e.g., hydraulic 
conductivity 

and etc.

input source, 
slope, surface 

roughness, 
initial and 
boundary 
condition

nutrients 
concentration 
due to random 

inflow

Figure 1.2: Workflow of Peng Wang’s doctoral research.



Chapter 2

Effects of Boundary Conditions

2.1 Introduction

In this Chapter we investigate the effects of boundary condition uncertainty,

i.e. spatio-temporal variability (heterogeneity and non-stationarity) of precipita-

tion rate, on subsurface flow and transport in the vadose zone.

The vadose zone forms a major hydrologic link, and acts as a main conduit

for anthropogenic contaminants, between land surface and groundwater aquifers.

These two functions of the vadose zone are closely related, since the downward

movement of water is the key mechanism of contaminant migration. Yet their

respective analyses often require distinct methodologies and assumptions: even if

large-scale averaged models are adequate to describe the effects of precipitation

on groundwater recharge [23, 24], they might fail to ascertain the risk posed by

contaminant spills to groundwater quality. This distinction becomes paramount

11



12

in regions with arid or semi-arid climate, which is defined by annual rainfall below

250 − 500 mm (10 − 20 in). It is often argued that such low precipitation rates

are not sufficient to drive contaminants from surface or near-surface spills to the

water table, i.e., that contaminants released into soils in (semi-)arid regions pose

no threat to groundwater quality.

This assertion rests on an implicit assumption that time and/or space aver-

aged precipitation rates provide an adequate input for subsurface flow and trans-

port models. The highly nonlinear nature of both the coupling between surface

and subsurface processes and the Richards equation that is routinely used to de-

scribe flow in partially saturated porous media provides a clear indication that

the superposition principle does not hold, i.e., that predictions based on averaged

boundary conditions (infiltration rates) are at best an approximation. The ade-

quacy of such approximations has been the subject of a handful of studies in the

past few decades. Analyzing contaminant migration in homogeneous soils, [25]

and [26] found breakthrough curves under time-varying and averaged boundary

conditions to be similar, while [27] and [28] concluded that contaminant might

travel significantly faster and further under time-variable infiltration than under

its time-averaged counterpart. [29] attributed this discrepancy to the absence of

root uptake from the latter studies and concluded that the use of time-averaged

infiltration rates is justifiable. (Note that her analysis used infiltration rates typ-

ical of humid climates and calls for the use of modified soil parameters.) The

more recent studies of [30] and [31] seem to support this finding, even though [30]
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cautioned that it might become invalid under severe weather conditions and [31]

added a few caveats discussed below.

Several crucial issues related to the adequacy of averaged precipitation rates

as predictors of the risk of groundwater contamination remain unresolved. First,

most of the studies mentioned above examined predictive errors stemming from

the use of average infiltration rates rather than their precipitation counterparts.

While the latter are readily available on an hourly basis, e.g., from meteorological

stations, the former have to be estimated. Second, the impact of the degree of

nonlinearity of the Richards equation, i.e., of the choice of particular constitutive

laws, has not been investigated. Finally, surface’s topography and/or local land use

localize infiltration, enhancing a contaminant’s downward migration in a manner

that undermines the use of spatially averaged precipitation and infiltration rates.

This chapter aims to elucidate the impact of spatio-temporal averaging of precipi-

tation rates on flow and transport predictions. This question gains in significance

now that global climate change is likely to result in more severe weather with

stronger rainfall, greater runoff, and longer periods of drought even if resulting

annual precipitation rates might remain unchanged [32].

2.2 Model Formulation

Flow in the vadose zone, i.e., distributions of volumetric flux q(x, t), pres-

sure head ψ(x, t) and water content θ(x, t) at any point x = (x1, x2, x3)T and time
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t, can be described by a combination of Darcy’s law and the continuity equation,

q = −K∇(ψ + x3) and
∂θ

∂t
= −∇ · q, (2.1)

respectively. A flow model is completed by specifying functional forms of unsatu-

rated hydraulic conductivity K = K(θ) and retention curve ψ = ψ(θ). We assume

that a porous medium is homogeneous (heterogeneity effects are discussed below).

To be concrete, we set initial water content to its residual value, θ(x, 0) = θr, and

place the water table at x3 = −L = −150 m. The boundary condition at the Earth

surface x3 = 0 is determined from atmospheric data and surface conditions. In the

presence of ponding, ψ = ho where h0 = 0m denotes the height of standing water

on a flat surface as in our case. In the absence of ponding, the boundary condition

at x3 = 0 is q3 = i if precipitation rate P > 0 and q3 = −e if P = 0. Infiltration

rate i is computed from precipitation rate P , actual evaporation rate e, and runoff

rate r over a unit area as i = P − e − r. The initial condition of the terrain also

plays an important role in spatial-average effect, in this paper it is assumed to be

dry.

In the current study, we employ a simple, linear relation between runoff

and precipitation, r = CrP with Cr = 0.1, which is a reasonable approximation

for (semi-)arid regions away from major rivers [33]. More complex relations would

add another nonlinear feedback into the system. However, we must stress that

in reality, runoff is a function of both soil water content θ and precipitation rate,

whose motion can be approximated using kinematic wave model. A rigours general
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framework is developed in Chapter 4 to address overland flow uncertainty and in

a narrow scope, runoff uncertainty.

Actual evaporation rate e = max{ep, ev}, where ep is potential evaporative

demand of atmosphere and ev is a soil’s ability to conduct water to the surface.

The latter can be defined as ev = Krs(ψa − ψs) [1], where ψa = RT/(Mwg) lnHr

is the pressure potential of atmosphere, ψs = ψ(x3 = 0) is pressure potential at

the surface and ψa is the pressure potential of atmosphere given by the Kelvin

equation [34], in which R is universal gas constant, T is absolute air temperature

(◦K), Mw is molecular weight of water and g is gravity acceleration, and Hr is

relative humidity. In the absence of surface crust and vegetation, surface resistance

rs equals the reciprocal of the distance from the land surface.

Potential evaporation rate ep is calculated from measurements of net solar

radiation Rn, vapor pressure pv, air temperature Tc (◦C), and mean wind speed at

two meters above the ground Uw by using a modified Penman equation [35],

ep =
wRn

694.5(1− 0.000946Tc)
+ 24(1− w)(ps − pv)fw. (2.2)

Here ps = 0.6108 exp[17.27Tc/(Tc + 237.3)] is saturation vapor pressure; fw =

0.030 + 0.0576Uw is the wind function; and the weight function w = ∆/(∆ + γ)

where ∆ = 4099ps/(Tc + 237.3)2, and psychrometer constant γ = 0.000646(1 +

0.000946Tc)(101.3 − 0.0115z + 5.44 · 10−7z2) with z denoting the elevation of a

weather station above the mean sea level.

Migration of a conservative contaminant with concentration c(x, t) is de-
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scribed by advection-dispersion equation,

∂c/∂t+∇ · (uc) = ∇ · (D∇c, (2.3)

where u = q/ω is the mean macroscopic velocity, ω is the porosity, and D is

the dispersion coefficient tensor whose longitudinal and transverse components are

given by DL = Dm+λL|u| and DT = Dm+λT |u|, respectively. Initially, the soil is

contamination-free, c(x, 0) = 0, except for the layer x3 ∈ [−0.5m,−0.4m] where

the concentration is c0 = 100 gm−3.

The raw meteorological data used in the simulations presented below come

from a California Irrigation Management Information System (CIMIS) station lo-

cated near Five Points, Fresno County, CA at the surface elevation z = 86.9 m.

The data set, freely available on line, contains measurements of daily precipitation,

air temperature, solar radiation, relative humidity, wind speed and vapor pressure

collected from 1983 to 2008. The average annual precipitation rate during this

time period was 0.2 m/year, which is representative of semi-arid regions.

Unless explicitly stated, the simulations reported below correspond to a

sandy loam soil with porosity ω = 0.496, residual water content θr = 0.15, sat-

urated hydraulic conductivity Ks = 0.7 m/day, and van Genuchten constitutive

relations [1, Table 1]

Kr =(1− |αψ|β−1D−γ)2/Dγ/2, D = 1 + |αψ|β , (2.4a)

Θ =(1 + |αψ|β)−γ, Θ = (θ − θr)/(ω − θr), (2.4b)

with parameters α = 0.847, β = 4.8, γ = 1− 1/β. In all transport simulations, we



17

set molecular diffusion to Dm = 10−6m2/day, longitudinal dispersivity to λL = 0.1

m, and transverse dispersivity to λT = 0.01 m.

Numerical code VS2DT [36] is used for daily numerical simulations over 25

years. Evaporation is simulated in VS2DT by a two-stage process, which requires

three inputs: potential evaporation ep, pressure potential of the atmosphere ψa

and the surface resistance rs. Since VS2DT can treat the surface as either a pre-

cipitation or evaporation boundary, but not both at the same time, we divide each

daily recharge period into two periods: first taking effective (total) precipitation

after runoff as infiltration, with rate modified so that total inflow mass will be

the same; it is then followed by an evaporation period. It is noted that due to

nonlinearity of Richards equation and constitutive relations (2.4), a reverse order

of evaporation and precipitation periods would lead to different results.

2.3 Effects of Temporal Averaging

We start by analyzing the effects of temporal averaging of daily atmospheric

data on the downward migration of moisture and contaminants. A one-dimensional

soil column was discretized into 1500 cells, which puts the contamination source

in the fifth cell from the surface. Fig. 2.1c compares temporal evolution of the

wetting front (defined as the leading edge of a moisture plume wherein water

content exceeds its initial value) computed with the daily meteorological data

described above and its counterparts resulted from monthly and yearly averages of
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these data. One can see that the yearly averages lead to predictions that are both

quantitatively and qualitatively wrong, while monthly averages yield somewhat

better predictions that still underestimate the extent of wetting. It is worthwhile

recognizing that the use of daily data is in itself an approximation that averages

instantaneous rainfall intensity albeit over shorter time intervals than monthly

and yearly data do. Hence the actual errors introduced by the reliance of yearly

meteorological data are even higher.
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Figure 2.1: Cumulative evaporation (a), cumulative infiltration (b), temporal evo-
lution of the wetting front (c), and final concentration profiles (d) predicted with
daily meteorological data and their monthly and yearly averages.

The extent of subsurface contamination resulted from 25 years of infiltration

is shown in Fig. 2.1d. The annual (averaged) precipitation data predict a contam-

inant that remains practically immobile in its initial position, which is consistent

with routine claims made for (semi-)arid regions. This prediction is, however, at
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variance with predictions obtained with daily and monthly meteorological data.

One can see that contaminant does migrate downward with reduced concentra-

tion, which reflects the presence of more water in soil in daily simulations than in

their monthly and especially yearly counterparts.

Figures 2.1a,b shed light on the cause of the apparent differences in modeling

predictions based on daily, monthly, and yearly data. While yearly data result in

zero infiltration, it is quite significant when computed from either monthly or

daily data. Another important feature of these results is the increasing dichotomy

between both infiltration and evaporation predicted from daily data and averaged

data. At the end of 25 years, the actual evaporation computed from annual data

is 0.447 m, which is almost twice the value of 0.2375 m computed from daily data.

This finding is one of the reasons why Destouni [29], whose simulations spanned a

one-year period, observed little differences between predictions based on daily and

annual data. Another reason is that we are concerned with (semi-)arid climates

that are characterized by severe precipitation patterns, while the simulations of

Destouni [29] were conducted for humid conditions.

Both infiltration and contaminant migration in the vadose zone are influ-

enced to a large degree by its hydraulic properties and heterogeneity. Figure 2.2

presents moisture profiles predicted with daily, monthly, and yearly averages for

three homogeneous soil types: Fresno medium sand (saturated hydraulic conduc-

tivity Ks = 400 m/day), Columbia sandy loam (Ks = 0.7 m/day) and Yolo light

clay (Ks = 0.011 m/day). Other hydraulic properties of these soils can be found
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in [1, Table 1]. The predictive errors caused by the reliance on annual meteo-

rological data can be quantified in terms of a relative error introduced by the

temporal averaging of meteorological data, E = |z(d)
f −z

(y)
f |/z

(d)
f where z

(d)
f and z

(y)
f

are the wetting front’s positions resulting from the use of daily and yearly data,

respectively. The errors increase with hydraulic conductivity, as wetting fronts

travel farther and faster without reaching the water table (E = 90% and 76% for

Columbia sandy loam and Yolo light clay, respectively). After the wetting front

reaches the water table, as is the case reported in Figure 2.2 for Fresno medium

sand at the end of 25 years, this error decreases slightly to E = 68.5%.
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Figure 2.2: Moisture profiles at the end of 25 years of simulations for three soil
types: (a) Fresno medium sand, Ks = 400 m/day; (b) Columbia sandy loam,
Ks = 0.7 m/day; and (c) Yolo light clay, Ks = 0.011 m/day. These and other soil
properties are taken from [1, Table 1].

Detailed investigation of the impact of soil’s heterogeneity is carried out in

the next chapter. Destouni [29] concluded that “Textural heterogeneity in the soil
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profile, such as a clay layer in sandy loam, increases the discrepancy between the

steady state and the transient flow model when root water uptake is neglected.”

Schoups et al. [31] seemingly contradict this conclusion by noting “Where time

averaging does not give satisfactory results, it may still give adequate predictions of

the spatial-ensemble distribution or statistical moments of the variable of interest.”

The veracity of such conclusions is hard to ascertain and is likely to be site specific.

2.4 Nonlinearity Effects

Nonlinearity of the Richards equation (2.1) stems from the dependence of

both relative hydraulic conductivity Kr and pressure head ψ on water content θ.

The choice of constitutive relations Kr(θ) and ψ(θ) is bound to influence the dis-

crepancy between predictions based on daily and yearly averages of meteorological

data. To investigate this phenomenon, we compare predictions based on the van

Genuchten model (2.4) with those corresponding to the Brooks-Corey model

Kr = (ψ/ψb)
−2+3λ, Θ = (ψ/ψb)

−λ (2.5)

wherein ψb = −0.85, λ = 1.6 and θr = 0.11, and the Haverkamp model

Kr = [1 + (ψ/ψa)
b]−1, Θ = [1 + (ψ/α)]−β (2.6)

wherein ψa = −0.9, b = 9.2, α = −1.26, β = 4.6, and θr = 0.16. The parameters in

these models are representative of sandy loam soils [1, Table 1], except for ψa and

b which were obtained by fitting. An alternative way to parameterize (2.5) and
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(2.6) is to ensure “hydraulic equivalency” between the three models (2.4), (2.5),

and (2.6) [37, 38]. The latter choice is more rigorous but less frequently used by

practitioners.

Relative errors in predictions of the wetting front penetration and cumu-

lative infiltration after 25 years of simulations with van Genuchten, Haverkamp,

and Brooks-Corey constitutive models are shown in Figure 2.3 for several values

of saturated hydraulic conductivity. A relative error introduced by the temporal

averaging of meteorological data is defined as E = |z(d)
f − z

(y)
f |/z

(d)
f , where z

(d)
f and

z
(y)
f are the wetting front’s positions resulting from the use of daily and yearly

data, respectively.

EE

Ks Ks

(%)(%)

Figure 2.3: Relative errors in predictions of the wetting front penetration (a)
and cumulative infiltration (b) after 25 years of simulations with van Genuchten,
Haverkamp, and Brooks-Corey constitutive models, plotted as a function of satu-
rated hydraulic conductivity Ks = 0.7 m/day, = 0.35 m/day, and = 0.175 m/day.
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Our simulations revealed the choice of a constitutive model affects both the

wetting front penetration and cumulative infiltration. The Brooks-Corey model

leads to the largest E , while the Haverkamp model results in the smallest error.

After 25 years of infiltration, the relative error in wetting front predictions is

E = 92% for the Brooks-Corey model, 89% for Van Genuchten model and 79%

for the Haverkamp model. We also found that the errors are largely insensitive to

the value of saturated conductivity Ks.

2.5 Effects of Spatial Averaging

Topographic features and built environments often focus infiltration. Under

such conditions, the use of large-scale meteorological data to predict contaminant

transport amounts to spatial averaging, which is bound to introduce predictive

errors due to nonlinearity of the governing equation. We analyze this phenomenon

by comparing two-dimensional contaminant migration induced by uniform and

localized infiltration regimes. Both regimes use the same annual meteorological

data as before; the former assumes uniform infiltration and evaporation over the

land surface, while the latter focuses them at a point.

Concentration isolines of c = 0.01 g/m3 at the end of 25 years of two-

dimensional simulations with uniform and localized boundary conditions are shown

in Figure 2.4. The spatial averaging of annual meteorological data underestimates

the extent of downward contaminant migration from its initial location near the
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Figure 2.4: Extent of soil contamination after 25 years of simulations with spatially
uniform and localized annual meteorological data.

Earth surface (x3 = −0.4m) by the factor of two. The increased water content

resulted from localized infiltration results in a drop of solute volumetric concen-

tration and a V-shaped concentration profile.

2.6 Conclusions

We investigated the effects of relying on annual spatially averaged meteo-

rological data to predict contaminant transport through the vadose zone in (semi-

)arid regions. Our analysis leads to the following major conclusions.

1. Given high temporal variability of precipitation in (semi-)arid regions, the

reliance on annual meteorological data might significantly underestimate the

downward migration of contaminant.

2. Predictive errors stemming from the use of annual data increase with time
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and are more pronounced in highly conductive soils.

3. Selection of constitutive models for the Richards equation, e.g., van Genuchten

model versus Brooks-Corey model, influences the magnitude of predictive er-

rors among various time periods of averaging input preciptation.

4. Surface topography and built environments further undermine the accuracy

of predictions based on annual data by introducing errors associated with

spatial averaging.

Having understood that boundary condition uncertainty plays an important

role in the prediction of subsurface flow and transport, in the next chapter, we

will develop two reduced-complexity models to obtain the probabilistic density

function of wetting front location and infiltration rate, based on the Green-Ampt

and Parlange infiltration models.

Wang, P., Quinlan, P., Tartakovsky, D. M., (2009), ’Effects of spatio-

temporal variability of precipitation on contaminant migration in vadose zone’.

Geophys. Res. Lett., vol. 36, pp. L12404, doi:10.1029/2009GL038347.



Chapter 3

Reduced Complexity Models for

Probabilistic Forecasting of

Infiltration Rates

3.1 Introduction

Flow in unsaturated porous media can be routinely described by Richards

equation,

∂θ

∂t
= ∇ · (K∇ψ)− ∂K

∂x3

, K = KsKr(θ), θ = θ(ψ), (3.1)

Despite some reservations, e.g., [39, 16], it has become common to treat saturated

hydraulic conductivity Ks(x) as a multivariate log-normal random field whose en-

semble statistics (e.g., mean, variance, and correlation length) can be inferred

26



27

from spatially distributed data by means of geostatistics. No such consensus exists

about statistical distributions of various hydraulic parameters entering relative hy-

draulic conductivity Kr(θ) and retention curves θ(ψ). For example, various data

analyses concluded that spatial variability of a soil parameter αG(x) in the Gard-

ner model of relative conductivity, which is often referred to as the reciprocal of

the macroscopic capillary length, exhibits either a normal [40] or log-normal [41]

distribution and is either correlated [42] or uncorrelated [40] with Ks. We defer

a more detailed review of the statistical properties of both αG(x) and parameters

in the van Genuchten model of relative conductivity till section 3.2. Here, it suf-

fices to say that any approach to uncertainty quantification for flow and transport

in the vadose zone must be flexible enough to accommodate arbitrary statistical

distributions of soil properties.

A large body of literature have attempted to solve the stochastic Richards

equation includes [43, 44, 45, 46, 47, 48], to name just a few. With the exception of

solutions based on the Kirchhoff transformation [49, 50, 51], such analyses require

one to linearize constitutive relations in the Richards equation, introducing errors

that are hard to quantify a priori. More important, none of these solutions can be

used to estimate the probability of rare events, which is of crucial importance for

uncertainty quantification and risk assessment [13]. To the best of our knowledge,

no PDF solutions of the Richards equation are reported in the literature.

Given the practical impossibility of obtaining accurate PDF solutions of the

stochastic Richards equation (3.1) in three spatial dimensions, we develop reduced
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complexity models to compute PDFs of the rate of infiltration into heterogeneous

soils with uncertain hydraulic parameters. Construction of such models starts with

the selection of a simplified statistical model for soil properties. In the present

analysis, we will make use of the Dagan-Bresler statistical parameterization [52],

which reduces the spatial dimensionality of random parameter fields. For example,

saturated hydraulic conductivity Ks(x)—the sole source of uncertainty in [52]—is

treated as a two-dimensional random field, Ks(x1, x2), i.e., a soil is treated as a

collection of vertical tubes each of which is characterized by a different random

variable Ks.

The Dagan-Bresler parameterization [52] enables one to model three-dimen-

sional infiltration with a collection of one-dimensional (in the x3 direction) so-

lutions of either the Richards equation (3.1) or its approximations, such as the

Green-Ampt model [53] and the three-parameter infiltration equation of Parlange

et al. [54]. Stochastic analyses of the Richards equation with the Dagan-Bresler

parameterization can be found in [55, 56]. Their counterparts based on the Green-

Ampt equation were found to yield accurate predictions of infiltration into hetero-

geneous soils [57] and have been adopted in a number of subsequent investigations,

e.g., [58, 59, 60, 61]. These and other similar analyses aimed to derive effective

(ensemble averaged) infiltration equations, and some of them quantified predictive

uncertainty by computing variances of system states.

Our goal here is to provide a full probabilistic description of infiltration

into heterogeneous soils with uncertain parameters (i.e., to compute PDFs of rel-
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evant dependent variables) by employing the reduced complexity models based

on the Dagan-Bresler parameterization [52] and either the Green-Ampt [53] or the

Parlange et al. [54] infiltration equations. From the outset, it is worthwhile empha-

sizing that the reliance on the Dagan-Bresler parameterization [52] formally limits

our analysis to infiltration into top soils, and thus can be used to model surface

response to rainfall events [59, 60] and transport phenomena in top soil [61]. Yet it

was also used to derive effective properties of the whole vadose zone [62, 41]. Rubin

and Or [55] provided an additional justification for the Dagan-Bresler parameteri-

zation by noting that “the determination of soil hydraulic properties through field

methods. . .homogenize the properties vertically, thus eliminating the variability in

the vertical direction in a practical sense.”

Driven by the needs of probabilistic risk assessment, we focus on the deriva-

tion of single-point PDFs (rather than the first two moments) of system states

describing infiltration into heterogeneous soils with uncertain hydraulic parame-

ters. The two alternative reduced complexity models are formulated in section 3.3,

which is preceded (section 3.2) by a brief summary of experimental evidence used to

select statistical properties of saturated hydraulic conductivity Ks and fitting pa-

rameters in the constitutive laws Kr = Kr(θ) and θ = θ(ψ). Section 3.4 presents

analytical closed-form expressions for the infiltration depth and infiltration rate

PDFs that can be used as input for probabilistic forecasting of surface runoff and

flooding. In section 3.5, we first focus on Green-Ampt model and investigate the

temporal evolution of the PDFs of a wetting front and corresponding infiltration
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rate, the relative importance of uncertainty in various hydraulic parameters and

their cross-correlation, and the impact of the choice of a functional form of Kr.

Similarly, in section 3.5.2, results from Parlange model is investigated to

study the temporal evolution of the PDFs of infiltration rate, the relative im-

portance of uncertainty in various hydraulic parameters, and the effects of their

cross-correlation. A comparison of the PDFs of infiltration rate obtained from the

reduced complexity models with those computed by means of Monte Carlo simu-

lations of the Richards equation (3.1) is presented in section 3.5.3. Key findings of

this analysis are summarized in section 3.6.

3.2 Problem Formulation

Consider infiltration into a heterogeneous soil with saturated hydraulic con-

ductivity Ks, porosity φ, residual water content θr, and relative hydraulic conduc-

tivity Kr(ψ;α) that varies with pressure head ψ in accordance with a constitutive

model and model parameters α. While the subsequent analysis can be applied to

any constitutive relation, we will focus on the Gardner model [53, Table 2.1]

Kr = eαGψ (3.2)

and the van Genuchten model

Kr =
[1− ψmnd (1 + ψnd )−m]2

(1 + ψnd )m/2
, ψd ≡ αvG|ψ|. (3.3)
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The model parameters α (αG and {αvG, n,m = 1− 1/n} for the Gardner and van

Genuchten models, respectively) and the rest of hydraulic properties mentioned

above vary in space and are sparsely sampled. To quantify uncertainty about

values of these properties at points x = (x1, x2, x3)T where measurements are

unavailable, we treat them as random fields. Thus, a soil parameter A(x, ω) varies

not only in the physical domain, x ∈ D, but also in the probability space ω ∈ Ω.

A probability density function pA, which describes the latter variability, is inferred

from measurements of A by invoking ergodicity. Experimental evidence for the

selection of PDFs pA for various soil parameters A is reviewed in the following

section, and the Dagan-Bresler statistical model used in our analysis is formulated

in section 3.3.1.

The overreaching aim of the present analysis is to quantify the impact of this

parametric uncertainty on predictions of both the dynamics of wetting fronts and

infiltration rates. Uncertainty in the former may significantly affect the accuracy

and reliability of field-scale measurements of soil saturation [63], while uncertainty

in the latter is of fundamental importance to flood forecasting [60].

3.2.1 Saturated hydraulic conductivity

In addition to the experimental studies reviewed in [49], the data analyses

reported in [41, 59], etc. support our treatment of saturated hydraulic conductivity

Ks as a lognormal random field.



32

3.2.2 Gardner’s constitutive parameter

The (scarce) experimental evidence reviewed in [49] suggests that αG, the

reciprocal of the macroscopic capillary length, can be treated alternatively either as

a Gaussian (normal) or as a log-normal random field. While the approach described

below is capable of handling both distributions, in the subsequent computational

examples we will treat αG as a log-normal field, which is a model adopted in more

recent computational investigations (e.g., [47, 41]).

3.2.3 van Genuchten’s constitutive parameters

The van Genuchten hydraulic function (3.3) is a two-parameter model, ob-

tained from its more general form by setting m = 1− 1/n and l = 1/2 (hence the

power m/2 in the denominator). We employ this form because of its widespread

use [53, Table 2.1], but the approach described below can be readily applied to

quantify uncertainty in more general formulations with arbitrary m and l. The

experimental evidence presented in [2], [41], and [64] shows that the coefficient of

variation of αvG is much larger than that of n. These data suggest that αvG can be

treated as a log-normal field and the shape factor n as a deterministic constant.

3.2.4 Correlations between hydraulic parameters

Experimental evidence on cross-correlation between Ks and α is inconclu-

sive. Various data sets were used to conclude that these parameters are perfectly
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correlated [42], uncorrelated [40], or anti-correlated [62]. The approach we present

below is capable of handling an arbitrary degree of cross-correlation between Ks

and α. Finally, the data reviewed in [49], as well as more recent data reported

in [41], suggest that the coefficient of variation (CV) of Ks is generally much larger

than α, i.e., that the former is much more variable than the latter.

Finally, since the difference between the full and residual saturations ∆θ =

φ − θr typically exhibits lower spatial variability than both Ks and α, we treat

it as a deterministic constant to simplify the presentation. Our approach can be

adopted to quantify uncertainty in ∆θ and the shape factor n in the van Genuchten

hydraulic function, as discussed in section 3.4.

3.3 Reduced Complexity Models

Construction of our reduced complexity models consists of two steps. First,

the Dagan-Bresler statistical parameterization is used in section 3.3.1 to represent

three-dimensional random fields Ks(x) and α(x) as a collection of corresponding

random variables Ks and α. Second, the Richards equation (3.1) is replaced with

either the Green-Ampt [53] or the Parlange et al. [54] infiltration equations (3.3.2).

To be specific, we consider infiltration under ponding, which is a prerequisite for

overland flow [65]. Other infiltration regimes can be handled as well by modifying

the Green-Ampt [53] and the Parlange et al. [54] infiltration equations accordingly.

The accuracy of the infiltration-rate PDFs predicted with the reduced complexity
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models is assessed via comparison with its counterpart obtained from MCS of the

Richards equation (3.1) in section 3.5.3.

3.3.1 Statistical Model for Soil Parameters

Following [52], we restrict our analysis to infiltration depths that do not

exceed vertical correlation lengths λv of (random) soil parameters A(x, ω). Then

A = A(x1, x2, ω), so that a heterogeneous soil can be represented by a collection

of one-dimensional (in the vertical direction x3) homogeneous columns of length

L3, whose uncertain hydraulic properties are modeled as random variables (rather

than random fields). The restriction λv > L3 formally renders the Dagan-Bresler

parameterization [52] suitable for heterogeneous top soils, and thus can be used

to model surface response to rainfall events [60, 59] and transport phenomena in

top soil [61]. Yet it was also used to derive effective properties of the whole vadose

zone [62, 41].

Consider a three-dimensional flow domain Ω = Ωh × [0, L3], where Ωh rep-

resents its horizontal extent. A discretization of Ωh into N elements represents Ω

by an assemblage of N columns of length L3 and facilitates the complete descrip-

tion of a random field A(x1, x2, ω)—in the analysis below, A stands for Ks and

α but can also include other hydraulic properties and the ponding pressure head

ψ0 at the soil surface x3 = 0—with a joint probability function pA(A1, . . . , AN).

Probability density functions (PDFs) of hydraulic properties of the i-th column
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are defined as marginal distributions,

pAi(Ai) =

∫
pA(A1, . . . , AN)dA1 . . . dAi−1dAi+1 . . . dAN . (3.4)

Since statistical properties of soil parameters A are inferred from spatially

distributed data by invoking ergodicity, the corresponding random fields (or their

fluctuations obtained by data de-trending) must be spatially-stationary so that

pAi = pA for i = 1, . . . , N. (3.5)

If soil parameters (e.g., Ks and α) are correlated, their statistical description

requires the knowledge of a joint distribution. For multivariate Gaussian Y1 =

lnKs and Y2 = lnαG (or Y2 = lnαvG), their joint PDF is given by

pY1,Y2(y1, y2) =
1

2πσY1σY2
√

1− ρ2
exp

[
− R

2(1− ρ2)

]
(3.6a)

where

R =
(y1 − Y 1)2

σ2
Y1

− 2ρ
y1 − Y 1

σY1

y2 − Y 2

σY2
+

(y2 − Y 2)2

σ2
Y2

; (3.6b)

Y i and σYi denote the mean and standard deviation of Yi (i = 1, 2), respectively;

and −1 ≤ ρ ≤ 1 is the linear correlation coefficient between Y1 and Y2. The lack

of correlation between Y1 and Y2 corresponds to setting ρ = 0 in (3.6).

3.3.2 Simplified flow models

During infiltration into top soils, the Dagan-Bresler parameterization of soil

heterogeneity can be supplemented with an assumption of vertical flow. The ratio-

nale for, and implications of, neglecting the horizontal component of flow velocity
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can be found in [52, 55, 58] and other studies reviewed in the introduction. This

assumption obviates the need to solve a three-dimensional flow problem, replacing

the latter with a collection of N one-dimensional flow problems to be solved in

homogeneous soil columns with random but constant hydraulic parameters.

The second step in the construction of our reduced complexity models

for probabilistic estimation of infiltration rates i(t) replaces the Richards equa-

tion (3.1) with either the Green-Ampt [53] or Parlange et al. [54] infiltration

equations. The accuracy of these reduced complexity models is investigated in

section 3.5.3 via comparison with Monte Carlo solutions of the two-dimensional

Richards equation (3.1).

As mentioned above, we consider the Green-Ampt [53] and Parlange et

al. [54] infiltration equations corresponding to ponding water of height ψ0 at the

soil surface x3 = 0. Other infiltration scenarios can be handled in a similar manner

by modifying these equations as discussed in the closing of this section.

Green-Ampt infiltration model

The Green-Ampt model provides an alternative description of flow in par-

tially saturated porous media. The relative simplicity of the Green-Ampt for-

mulation makes it easier to solve than the Richards equation, which explains its

prevalence in large numerical codes—e.g., SCS developed by US EPA, DR3M de-

veloped by USGS, and HIRO2 developed by USDA—that are routinely used to

predict overland and channel flows.
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Let I(t) denote (uncertain) cumulative infiltration due to ponding water

of height ψ0 at the soil surface x3 = 0. The Green-Ampt model of infiltration

approximates an S-shaped wetting front with a sharp interface (infiltration depth)

xf(t), which separates the uniformly “wet” (θ = θwet) region behind the wetting

front from a partially-saturated region with a uniform water content θ = θ∞ ahead

of the front. To be specific, and without loss of generality, we set θwet = φ and

θ∞ = θi. If the x3 coordinate is positive downward, Darcy’s law defines macroscopic

(Darcy’s) flux q as (e.g., [53, Eq. 5-1])

q = −Ks
ψf − xf − ψ0

xf

. (3.7)

Pressure head, ψf , at the infiltration depth xf(t) is often set to a “capillary drive”,

ψf = −
0∫

ψi

Kr(ψ) dψ, (3.8)

where ψi is the pressure head corresponding to the water content θi. Theoretical

derivations of this equation can be found in [66] and [67].

Mass conservation requires that the infiltration rate i = q, and that i =

∆θ dxf/dt where ∆θ = φ − θi. Combined with (3.7), this leads to an implicit

expression for the infiltration depth xf(t),

xf − (ψ0 − ψf) ln

(
1 +

xf

ψ0 − ψf

)
=
Ks

∆θ
t. (3.9)

which is applicable to time intervals during which the height of ponding water, ψ0,

remains approximately constant. Substituting ψf(t) from (3.9) into (3.7) yields a

Green-Ampt solution for the infiltration rate i(t).
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It is worthwhile emphasizing that several of the simplifying assumptions

made above can be easily relaxed. First, since Ks and ∆θ enter the stochastic

solution (3.9) as the ratio K?
s = Ks/∆θ one can easily incorporate uncertainty in

(randomness of) ∆θ by replacing the PDF of Ks with the PDF of K?
s . Second,

the implicit relation F (xf , Ks/∆θ, α; t) = 0 given by (3.9) and (3.8) allows one to

express the PDF of xf in terms of the PDFs of any number of hydraulic parameters

by following the procedure described below. Our goal is to relate uncertainty in

hydraulic parameters Ks and α to predictive uncertainty about the infiltration

depth xf(t) and the infiltration rate i(t), i.e., to express the PDFs of the latter,

pf(xf ; t) and pi(i; t), in terms of the PDF of the former (3.6).

Parlange infiltration model

The Parlange et al. [54] infiltration model seeks to preserve a sigmoidal

shape of infiltration fronts by postulating a functional form of the soil water

diffusivity D(θ) ≡ K dψ/dθ. Under ponded conditions, this equation takes the

form [68],

I −Kit = (ψ0 + ψj)
∆θKs

i−Ks

+
S2 − 2ψjKs∆θ

2∆K
ln

(
1 +

∆K

i−Ks

)
, (3.10)

where cumulative infiltration rate I(t) is related to infiltration rate i(t) by i =

dI/dt, and ∆K ≡ Ks −Ki with Ki ≡ K(θi). Following [69, 68], we approximate

soil sorptivity S by

S2 =

∫ φ

θi

(φ+ θ − 2θi)D(θ)dθ. (3.11)
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Finally, the parameter ψj (ψj < ψ) represents a small pressure jump at saturation

that is typically observed in soil-water characteristic curves. This soil parameter

depends on the local pore structure, has limited range and effect on infiltration

prediction, and remans “constant in time and independent of changing boundary

conditions” [68]. Consequently, we treat ψj as a deterministic constant.

For constant ponding water heights ψ0, solving (3.10) yields an implicit

expression for the infiltration rate i(t) [68],

t =
Ks(ψ0 + ψj)∆θ

(i−Ks)∆K
− S2 − 2ψjKs∆θ

2∆K(i−Ki)

+
S2 − 2Ks∆θ(ψ0 + 2ψj)

2(∆K)2
ln

(
1 +

∆K

i−Ks

)
. (3.12)

For brevity, we will call this expression the Haverkamp solution for infiltration

under ponded conditions, after the first author of [68]. Note that (3.12) reduces

to (3.9) if one sets the soil water diffusivity D(θ) to be a delta function [53, pp.

159-161].

In conclusion, analytical solutions (3.9) and (3.12) correspond to ponded

conditions with constant water heights ψ0. Our reduced complexity models can

handle other infiltration regimes by replacing (3.9) and (3.12) with their appropri-

ate counterparts. For example, (3.12) can be replaced with the analytical solutions

in [70] or [71] if infiltration is driven respectively by atmospheric pressure at the

soil surface (ψ0 = 0) or by temporally varying ponded water height ψ0(t). Like-

wise, infiltration under non-ponded conditions can be handled by replacing (3.9)

with appropriately modified Green-Ampt solutions, many of which can be found
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in [53]. What is important is that a properly chosen reduced complexity model

provides a mapping i = i(Ks, α).

3.4 PDF Solutions

3.4.1 PDFs of infiltration depth

For small t, (3.9) can be approximated by an explicit relation [53, Eq. 5.12]

xf ≈
√

2(ψ0 − ψf)Kst

∆θ
. (3.13)

For large t, flow becomes gravity dominated, i ∼ Ks, and [53, p. 170]

xf ≈
Ks

∆θ
t. (3.14)

For intermediate t, various approximations, e.g., [72] and [53, p. 170], can be used

to replace the implicit solution (3.9) with its explicit counterparts. We will use the

implicit solution (3.9) to avoid unnecessary approximation errors.

Let Gf(x
?
f ) = P (xf ≤ x?f ) denote the cumulative distribution function of xf ,

i.e., the probability that the random position of the wetting front xf takes on a

value not larger than x?f . Since (3.9) provides an explicit dependence of random

Ks on random xf and α , i.e.,

Ks(xf , α) =
∆θ

t

[
xf − (ψ0 − ψf) ln

(
1 +

xf

ψ0 − ψf

)]
, (3.15)

it follows from the definition of a cumulative distribution function that

Gf(x
?
f ) =

∞∫
0

Ks(x?f ,α)∫
0

pY1,Y2(Ks, α)
dKsdα

Ksα
. (3.16)
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The denominator in (3.16) reflects the transition from (3.6), the joint Gaussian

PDF for Y1 and Y2, to the lognormal variables Ks = exp(Y1) and α = exp(Y2).

The PDF of the random (uncertain) infiltration depth, pf(x
?
f ; t), can now

be obtained as

pf(x
?
f ; t) =

dGf(x
?
f ; t)

dx?f
. (3.17)

Using Leibnitz’s rule to compute the derivative of the integral in (3.16) and (3.17),

we obtain

pf(x
?
f ; t) =

∞∫
0

pY1,Y2 [Ks(x
?
f , α), α]

αKs(x?f , α)

∂Ks(x
?
f , α)

∂x?f
dα. (3.18)

It is worthwhile emphasizing that (3.18) holds for an arbitrary implicit solution

of the Green-Ampt equation, F (xf , Ks/∆θ, α; t) = 0, and, hence, the PDF solu-

tion (3.18) is applicable to a large class of infiltration regimes that are amenable

to the Green-Ampt description. For the flow regime considered in the present

analysis, Ks(x
?
f , α) is given by (3.15), and (3.18) takes the form

pf(x
?
f ; t) =

∆θ

t

∞∫
0

pY1,Y2 [Ks(x
?
f , α), α]

αKs(x?f , α)

x?f dα

ψ0 − ψf + x?f
. (3.19)

3.4.2 PDFs for Infiltration Rate

Let Gi(i
?; t) = P [i ≤ i?] denote the cumulative distribution function of i

at time t, i.e., the probability that the random infiltration rate i at time t does

not exceed some value i?. Equations (3.7)–(3.9) and (3.12) define mappings i =

i(Ks, α) for the two alternative reduced complexity models. These mappings enable
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one to compute the cumulative distribution function Gi(i
?; t) as

Gi(i
?; t) =

∞∫
0

α(i?,Ks)∫
0

pY1,Y2(Ks, α)
dα dKs

αKs

. (3.20)

The PDF of the random (uncertain) infiltration rate, pi = dGi/di
?, is

pi(i
?; t) =

∞∫
0

pY1,Y2 [α(i?, Ks), Ks]

α(i?, Ks)Ks

∂α(i?, Ks)

∂i?
dKs. (3.21)

While the analysis above deals with two uncertain parameters, Ks and α, it

can be readily generalized to account for uncertainty in other soil parameters, such

as the van Genuchten parameter n. If M soil properties are uncertain then their

statistics are characterized by a joint PDF, pY1,...,YM ; the cumulative distribution

function Gi in (3.20) is defined in terms of an M dimensional integral; and the

subsequent derivation is modified accordingly.

Green-Ampt infiltration model

Computation of the infiltration-rate PDF, pi is facilitated by the change of

the integration variable in (3.21),

pi(i
?; t) =

∞∫
0

pY1,Y2 [Ks(i
?, α), α]

αKs(i?, α)

∂Ks(i
?, α)

∂i?
dα. (3.22)

Here pY1,Y2 and Ks(i
?, α) are given by (3.6) and (3.7), respectively; and the deriva-

tive ∂Ks/∂i
? is obtained from (3.7) as the reciprocal of

∂i?

∂Ks

= 1 +
ψ0 − ψf

xf

(
1− Kst

∆θ

xf − ψf + ψ0

x2
f

)
. (3.23)
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Parlange infiltration model

For the van Genuchten constitutive relation (3.3), the soil sorptivity S

in (3.11) takes the form

S2 =
Ks∆θ

αvG
(1−m)A(m), (3.24a)

where m is the van Genuchten model shape parameter, A(m) is given by

A =
Γ(1−m)Γ(3m/2− 1)

Γ(m/2)
− 4

3m− 2
+

Γ(m+ 1)Γ(3m/2− 1)

Γ(5m/2)

+
Γ(1−m)Γ(5m/2− 1)

Γ (3m/2)
− 4

5m− 2
+

Γ(m+ 1)Γ(5m/2− 1)

Γ(7m/2)
, (3.24b)

and Γ(·) is the complete Gamma function. For the sake of simplicity, and without

loss of generality, we assume that the soil ahead of the wetting front is “dry”,

and set ψi = −∞. (Other values of ψi can be handled as well by following the

procedure outlined below.) Then Ki = 0 and substituting (3.24) into (3.12) yields

an explicit relation between the three random variables αvG = αvG(i,Ks),

αvG(i,Ks) = A

[
Ks − i ln

(
i

i−Ks

)]
i−Ks

2B(i,Ks)
(3.25a)

where

B(i,Ks) = (ψ0 + ψstr)iKs − (ψ0 + 2ψstr)i(i−Ks) ln

(
i

i−Ks

)
+Ks(i−Ks)(ψstr −

it

∆θ
). (3.25b)



44

Substituting (3.25) into (3.21) gives the infiltration-rate PDF,

pi(i
?; t) =

A

2

∞∫
0

KspY1,Y2 [αvG(i?, Ks), Ks]

αvG(i?, Ks)B(i?, Ks)2

{Ks − i?
∆θ

Kst

− (ψ0 + ψstr)

[
(2i? −Ks) ln

(
i?

i? −Ks

)
− 2Ks

]}
dKs. (3.26)

Multi-point pdfs

As discussed in section 3.3.1, a complete description of the random infiltra-

tion rate i(x, t) in the domain discretized into N elements requires the knowledge

of an N -point PDF, pi(i
?
1, . . . , i

?
N ; t), where i?k is a deterministic value (outcome)

of the random infiltration rate i at the k-th column (k = 1, . . . , N). The reduced

complexity models presented in section 3.3 allow one to compute such multi-point

PDFs.

Consider a two-point PDF, p
(2)
i (i?1, i

?
2; t), which describes a joint distribu-

tion of infiltration rates i(xk, t) (k = 1, 2) at points x1 = (x1
1, x

1
2)T and x2 =

(x2
1, x

2
2)T . Let Y1,k = lnKs(x

k) and Y2,k = lnα(xk), with the joint two-point PDF

p
(2)
Y1,Y2

(Y ?
1,1, Y

?
2,1;Y ?

1,2, Y
?

2,2). Recalling that (3.7)–(3.9) and (3.12) define the two al-

ternative mappings i = i(Ks, α), we compute, in analogy with (3.20), the two-point

cumulative distribution function G
(2)
i (i?1, i

?
2; t) as

G
(2)
i (i?1, i

?
2; t) =

∞∫
0

∞∫
0

α1(i?1,Ks1)∫
0

α2(i?2,Ks2)∫
0

p
(2)
Y1,Y2

(Ks1, α1;Ks2, α2)

× dα1dKs1dα2dKs2

α1Ks1α2Ks2

. (3.27)

The two-point PDF of the random (uncertain) infiltration rate, p
(2)
i (i?1, i

?
2; t), is
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obtained as

p
(2)
i (i?1, i

?
2; t) =

∂2G
(2)
i

∂i?1∂i
?
2

. (3.28)

N -point PDFs, p
(N)
i with N > 2, can be computed in a similar manner.

N -point PDFs can be used both to predict (cross-)correlations of infiltration

rates at multiple locations and to assimilate infiltration data via a straightforward

Bayesian updating. We leave the latter aspect for future investigation.

3.5 Results and Discussion

3.5.1 Green-Ampt infiltration model

In this subsection, we explore the impact of various aspects of parametric

uncertainty on the uncertainty in predictions of infiltration rate i(t) and infiltration

depth xf(t). Specifically, we investigate the temporal evolution of the PDFs of the

wetting front and the infiltration rate, the relative importance of uncertainty in

Ks and α, and the effects of cross-correlation between them. This is done for

the Gardner hydraulic function (3.2), in which case (3.8) results in the interfacial

pressure head ψf = −α−1
G . In conclusion, we explore how the choice of a functional

form of the hydraulic function, i.e., the use of the van Genuchten model (3.3)

instead of the Gardner relation (3.2), affects the predictive uncertainty.
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Dimensionless form of PDFs

To facilitate an analysis of the effects of various sources of parametric un-

certainty on the PDF, pf(x
?
f ; t), of the uncertain (random) infiltration depth xf(t),

given by the analytical solution (3.19), we introduce the following dimensionless

quantities. Let the averaged quantities (α)−1 and Ks represent a characteristic

length scale and a characteristic value of saturated hydraulic conductivity, respec-

tively. Then a characteristic time scale τ can be defined as

τ = (αKs)
−1, (3.29)

and the following dimensionless quantities can be introduced,

t′ =
t

τ
, ψ′ = αψ, α′ =

α

α
, K ′s =

Ks

Ks

. (3.30)

This leads to a PDF solution for the dimensionless infiltration depth x′f = αxf ,

pf(x
′
f ; t
′) =

∆θ

t′

∞∫
0

pY ′
1 ,Y

′
2
[K ′s(x

′
f , α
′), α′]

α′K ′s(x
′
f , α
′)

x′f dα′

ψ′0 − ψ′f + x′f
. (3.31)

Likewise, the PDF of the dimensionless infiltration rate i′ = i/Ks takes the form

pi(i
′; t′) =

∞∫
0

pY ′
1 ,Y

′
2
[K ′s(i

′, α′), α′]

α′K ′s(i
′, α′)

∂K ′s(i
′, α′)

∂i′
dα′. (3.32)

In the following, we drop the primes to simplify the notation. Unless explicitly

noted otherwise, the simulations reported below correspond to the dimensionless

height of ponding water ψ0 = 0.1, ∆θ = 0.45, the coefficients of variation CVlnKs ≡

σY1/Y 1 = 3.0 and CVlnαG ≡ σY2/Y 2 = 0.5 with the means Y 1 = 0.25 and Y 2 = 0.1,

and the cross-correlation coefficient ρ = 0. (The use of the soil data in Table 1 of
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[2] in conjunction with these dimensionless parameters would result in the height

of ponding water ψ0 = 0.6 cm.)

PDF of wetting front

Since the initial position of the wetting front is assumed to be known,

xf(t = 0) = 0, the PDF pf(xf ; 0) = δ(xf) where δ(·) denotes the Dirac delta

function. As the dimensionless time becomes large (t → ∞), pf ∼ pKs in accor-

dance with (3.14). The PDF pf(xf ; t) in (3.31) describes the temporal evolution

of predictive uncertainty between these two asymptotes, with Figure 3.1 providing

snapshots at dimensionless times t = 0.01, 0.1 and 0.5. (For the soil parameters

reported in Table 1 of [2] this corresponds to dimensional times 1.5, 15 and 75

min, respectively). The uncertainty in predictions of infiltration depth increases

rapidly, as witnessed by wider distributions with longer tails.
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Figure 3.1: Temporal evolution of the PDFs of infiltration depth from Green-Ampt
model, pf(xf ; t).
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PDF of infiltration rate

Figure 3.2 provides snapshots, at dimensionless times t = 0.01, 0.1 and 0.5,

of the temporal evolution of the PDF of infiltration rate, pi(i; t), given by (3.32).

Both the mean infiltration rate and the corresponding predictive uncertainty de-

crease with time. At later times (the dimensionless time t = 5.0, for the parameters

used in these simulations), the PDF appears to become time invariant. This is to be

expected on theoretical grounds, see (3.14), according to which pi(i
′; t′)→ pK(K ′s)

as t′ →∞. The reduced χ2 test confirmed this asymptotic behavior at dimension-

less time t = 100.0.
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Figure 3.2: Temporal evolution of the PDF of the infiltration rate from Green-
Ampt model, pi(i; t).
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Effects of parametric uncertainty

The degree of uncertainty in hydraulic parameters lnKs and lnαG is encap-

sulated in their coefficients of variation CVlnKs and CVlnαG , respectively. Figure 3.3

demonstrates the relative effects of these two sources of uncertainty upon the pre-

dictive uncertainty, as quantified by the infiltration depth PDF pf(xf ; t), computed

at t = 0.1. Uncertainty in saturated hydraulic conductivity Ks affects predictive

uncertainty more than uncertainty in the Gardner parameter αG does. Although

not shown in Figure 3.3, we found similar behavior at later times t = 0.5 and

1.0. These findings are in agreement with those reported in [52, 73], wherein vari-

ances of state variables were used to conclude that uncertain saturated hydraulic

conductivity Ks is the dominant factor affecting predictive uncertainty.
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different levels of uncertainty in (a) saturated hydraulic conductivity Ks and (b)
the Gardner parameter αG.



50

Effects of cross-correlation

The question of whether various hydraulic parameters are correlated with

each other remains open, with different data sets supporting opposite conclu-

sions (see section 3.2). This suggests that the presence or absence of such cross-

correlations is likely to be site-specific rather than universal. The general PDF

solution (3.31) enables us to investigate the impact of cross-correlations between

saturated hydraulic conductivity Ks and the Gardner parameter αG on predictive

uncertainty. This is done by exploring the dependence of the PDF of the wetting

front, pf(xf ; t), on the correlation coefficient ρ. Figure 3.4 presents pf(xf ; t = 0.1)

for ρ = −0.99, 0.0 and 0.99, which represent perfect anti-correlation, independence

and perfect correlation between Ks and αG, respectively. The perfect correlation

between Ks and αG (ρ = 0.99) results in the minimum predictive uncertainty (the

width of the distribution), while the perfect anti-correlation (ρ = −0.99) leads

to the maximum predictive uncertainty. Predictive uncertainty resulting from the

lack of correlation between Ks and αG (ρ = 0.0) falls amid these two limits. The

impact of cross-correlation between soil hydraulic parameters (a value of ρ) de-

creases with time, falling from the maximum difference of about 21% at t = 0.01

to about 3% at t = 0.1.

Effects of selection of hydraulic function

Finally, we examine how the choice of a hydraulic function Kr(ψ;α) affects

predictive uncertainty. Guided by the data analyses presented in section 3.2, we
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Figure 3.4: The infiltration depth PDF pf(xf ; t = 0.1) from Green-Ampt model for
different levels of correlation ρ between hydraulic parameters Ks and αG.

treat αvG as the only uncertain parameter in the van Genuchten hydraulic func-

tion with n = 1.5. To make a meaningful comparison between predictions based

on the Gardner (3.2) and van Genuchten (3.3) relations, we select statistics of their

respective parameters α in a way that preserves the mean effective capillary drive

defined by (3.8) [74, 38]. Specifically, we use the equivalence criteria to select the

mean of lnαvG (-1.40, for the parameters used in these simulations) that main-

tains the same mean capillary drive as the Gardner model with lnαG = 0.1, and

choose the variance of lnαvG as to maintain the original values of the coefficients

of variation CVlnαvG = CVlnαG = 0.5. Figure 3.5 reveals that the choice between

the van Genuchten and Gardner models has a significant effect on predictive un-

certainty of the wetting front dynamics, although this influence diminishes with

time. For example, the difference between the variances is 40% at t = 0.01 and

23% at t = 0.1.
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resulted from the use of the Gardner and van Genuchten hydraulic functions.

3.5.2 Parlange infiltration model

Here we carry out a similar analysis for the infiltration-rate PDF predicted

with the Parlange model (Haverkamp solution). Unless stated otherwise, van

Genuchten hydraulic functions are used. Specifically, we investigate temporal evo-

lution of the infiltration-rate PDF, the relative importance of uncertainty in Ks

and αvG and the effects of cross-correlation between them.

To be concrete, we use the Bet-Dagan soil properties [2] reported in Ta-

ble 3.1. Unless explicitly noted otherwise, the simulations reported below corre-

spond to theponding water height ψ0 = 1 cm, pressure jump ψj = 2 cm, and the

cross-correlation coefficient ρ = 0.
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Table 3.1: Hydraulic properties of the Bet-Dagan soil [2, Table 3].

lnKs lnαvG φ θi ψ0 ψj van Genuchten n
(cm/min) (cm−1) (cm) (cm)

mean −3.58 −3.01 0.42 0.13 1 2 1.81
variance 0.89 0.63 - - - - -

Temporal evolution of infiltration rate PDFs

Figure 3.6 presents three snapshots of the temporal evolution of the infiltration-

rate PDF, pi(i; t), at times t = 5, 50 and 100 min. Uncertainty associated with

predictions of the infiltration rate under ponded conditions (i.e., the width of pi)

decreases with time. This is because, as time increases, top soil gradually saturates

and the infiltration rate i(t) approaches an (uncertain) value of the saturated hy-

draulic conductivity Ks in accordance with (3.12), i.e., pi(i
?; t → ∞) → pK(K?

s ).

It must be noted that at large times, the infiltration depth exceeds the vertical
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?; t) given by (3.26).
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correlation lengths of Ks and αvG, which violates the conditions of validity of the

reduced complexity models. Therefore, our analysis is formally limited to early

infiltration times and ought to be used to compute the infiltration-rate PDFs that

are necessary for probabilistic forecasting of surface runoff and flooding where un-

certainty in infiltration rate predictions is highest (Fig. 3.6). Unless otherwise

noted the subsequent figures correspond to t = 5 min.

The infiltration-rate PDFs exhibit long tails that superficially resemble

those of lognormal distributions. To test whether a lognormal distribution pln(i?; t)

can be used to approximate pi(i
?; t) in (3.26), we compute a relative error E ≡

100% × |pi − pln|/pi. Both distributions have the same mean and variance. Fig-

ure 3.7 reveals a significant discrepancy between the tails of the two distributions

(probabilities of rare events).
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Effects of parametric uncertainty

While the proposed approach can handle uncertainty in any number of hy-

draulic parameters, we focus on Ks and αvG for the reasons discussed above. In

this section, we investigate the relative importance of these two sources of para-

metric uncertainty. Uncertainty in both lnKs and lnαvG is encapsulated in their

respective coefficients of variation, CVlnKs ≡ σY1/Y 1 and CVlnαvG ≡ σY2/Y 2. Fig-

ure 3.8 demonstrates their effects on predictive uncertainty (PDF of i at t = 5

min). The curves represent pi(i
?; t = 5 min) for the CV of one parameter set to

0.1, 0.3, 0.5 and the other parameter fixed at its value in Table 3.1. One can

see that uncertainty in Ks has more pronounced effect on the predictive uncer-

tainty than uncertainty in αvG does. This finding is in accordance with previous

observations [73, 52, 75].
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Figure 3.8: The infiltration-rate PDF pi(i
?; t = 5min) from Parlange model for

different levels of uncertainty in (a) saturated hydraulic conductivity Ks and (b)
the van Genuchten parameter αvG.
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Effects of cross-correlation

The data reviewed in section 3.2 suggest that the presence, absence, or

strength of cross-correlation between saturated hydraulic conductivity Ks and the

van Genuchten parameter αvG is site-specific rather than universal. Our reduced

complexity models allow one to investigate the role of this cross-correlation on pre-

dictive uncertainty in infiltration rates i(t). Figure 3.9 presents the infiltration-rate

PDFs pi(i
?; t) corresponding to Ks and αvG that are anti-correlated (ρ = −0.99),

uncorrelated (ρ = 0.0) and perfectly correlated (ρ = 0.99). The comparison of the

three curves reveals that the perfect correlation between Ks and αvG significantly

reduces the predictive uncertainty.
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Figure 3.9: The infiltration-rate PDF pi(i
?; t = 5 min) from Parlange model for

three degrees of correlation ρ between hydraulic parameters Ks and αvG.
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3.5.3 Comparison with Richards’ equation

To validate our reduced complexity models, we compare their PDF solu-

tions with that obtained by Monte Carlo Simulations (MCS) of the two-dimensional

stochastic Richards equation (3.1). In these MCS, we used the geostatistical soft-

ware library SGEMS to generate N = 2000 realizations of mutually-uncorrelated

random fields Ks(x) and αvG(x) in a two-dimensional (15000cm×200cm) domain

discretized into 2500 nodes. For both parameters, we used an anisotropic exponen-

tial correlation function, with horizontal and vertical correlation lengths λh and λv,

respectively. For each realization of Ks(x) and αvG(x), the Richards equation was

solved with the USGS code VS2DT, and the infiltration rate i(t) was determined

at a surface midpoint. The results were used to compute the infiltration-rate PDF

as pi(i
?; t) = (N∆bin)−1

∑N
n=1 I(in ∈ ∆i?

bin; t), where ∆bin is a (uniform) bin size,

∆i?

bin is the bin containing i?, and I is the indicator function.

The Dagan-Bresler statistical parameterization, which forms the foundation

of our reduced complexity models, requires that λv � λh. This requirement was

tested by setting λv/λh = 18.75 and 30.0 for the random fields lnKs and lnαvG,

respectively. Figure 3.10 compares the infiltration-rate PDF computed via MCS

of the Richards equation with those determined analytically from both the Green-

Ampt and Haverkamp solutions. These analytical solutions used the same random

values of Ks and αvG at the surface midpoint as those used in the MCS. The PDFs

computed with the two reduced complexity models are similar, with the Haverkamp



58

solution having a slight edge. Both agree with the PDF resulting from the Richards

equation at early times (up to 40 min), but this agreement deteriorates with time.

This is to be expected, since the conditions of validity of our reduced complexity

models are violated as time becomes large enough for the wetting front to travel

distances larger than the vertical correlation lengths of Ks and αvG.
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Figure 3.10: Temporal snapshots of the infiltration-rate PDFs computed with
the two reduced complexity models (Green-Ampt and Haverkamp) and Monte
Carlo simulations of the Richards equation (VS2DT). Ratios of the horizontal
and vertical correlation lengths are λv/λh = 18.75 and 30.0 for lnKs and lnαvG,
respectively.

Figure 3.11 provides a similar comparison for smaller ratios of λv/λh. The

ratios λv/λh = 4.0 and 2.5 for lnKs and lnαvG correspond to those observed in
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the Bet-Dagan soil [2]. The reduced complexity models perform well at early times

(t = 4 min) but their accuracy deteriorates faster (by t = 40 min), reflecting the

increased importance of the lateral flow. At all times and for arbitrary correlation-

length ratios, the reduced complexity models provide conservative estimates of

predictive uncertainty.
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Figure 3.11: Temporal snapshots of the infiltration-rate PDFs computed with
the two reduced complexity models (Green-Ampt and Haverkamp) and Monte
Carlo simulations of the Richards equation (VS2DT). Ratios of the horizontal
and vertical correlation lengths are λv/λh = 4.0 and 2.5 for lnKs and lnαvG,
respectively.

3.6 Conclusions

We presented two reduced complexity models for the probabilistic forecast-

ing of infiltration rates in heterogeneous soils during surface runoff and/or flooding

events. The models are based alternatively on the Green-Ampt or Parlange models

of infiltration under ponded conditions, both employing the Dagan-Bresler statis-

tical parameterization. These models yield closed-form semi-analytical expressions
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for the infiltration-rate PDFs (probability density functions), which quantify pre-

dictive uncertainty stemming from uncertainty in a soil’s hydraulic parameters.

Our analysis leads to the following major conclusions.

1. The infiltration-depth and infiltration-rate PDFs developed in this analysis

allow one to evaluate probabilities of rare events, i.e., to estimate the proba-

bility of the infiltration rate exceeding a given value.

2. Predictive uncertainty (the infiltration-depth and infiltration-rate PDFs) is

significantly more sensitive to the coefficient of variation of saturated hy-

draulic conductivity Ks than to that of the fitting parameters in the Gardner

or van Genuchten hydraulic function.

3. The degree of cross-correlation between hydraulic parameters Ks and α has

great influence on predictive uncertainty through joint PDF pY1,Y2(Ks, α)

(3.6).

4. For Green-Ampt model, the choice of a functional form of the hydraulic func-

tion (e.g., the Gardner model vs. the van Genuchten model) has a significant

effect on predictive uncertainty during early stages of infiltration. This effect

diminishes with time.

5. The PDFs of infiltration rate computed with the two reduced complexity

models are similar, with the Parlange model having a slight edge.

6. At early times the PDFs obtained from both models agree with their coun-

terpart resulting from the Richards equation, but this agreement deteriorates
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with time. The larger the ratio of vertical to horizontal correlation lengths of

soil properties, the longer the reduced complexity models remain valid.

7. At all times and for arbitrary correlation-length ratios, the reduced complexity

models provide conservative estimates of predictive uncertainty.

8. Nonlinear dependence of the infiltration rate on soil hydraulic parameters

implies that the infiltration-rate PDF is in general not lognormal even if

PDFs of the soil parameters are. Hence the nonlinear PDF mapping (3.21)

should be used.

Reliance on the reduced complexity models of infiltration into heterogeneous

soils with uncertain hydraulic parameters offers a number of advantages. Not

only it allows one to compute single-point PDFs of the infiltration rate, it does

so exactly, without introducing linearization errors that plague most stochastic

analyses of the Richards equation. The reduced complexity models are capable

of quantifying uncertainty in any number of hydraulic parameters and can be

used with arbitrary constitutive laws (relative conductivity functions and retention

curves). Finally, they make it possible to compute multi-point PDFs of infiltration

rate. The latter can be used both to predict (cross-)correlations of infiltration

rates at multiple locations and to assimilate infiltration data via a straightforward

Bayesian updating.

The infiltration-rate PDFs presented here correspond to ponded conditions

with constant water heights ψ0. Other infiltration regimes can be handled in a
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similar manner by replacing (3.9) and (3.12) with their appropriate counterparts.

For example, (3.12) can be replaced with the analytical solutions in [70] or [71]

if infiltration is driven respectively by atmospheric pressure at the soil surface

(ψ0 = 0) or by temporally varying ponded water height ψ0(t). Likewise, infiltration

under non-ponded conditions can be handled by replacing (3.9) with appropriately

modified Green-Ampt solutions, many of which can be found in [53]. What is

important is that a properly chosen reduced complexity model provides a mapping

i = i(Ks, α).

In the following chapter, we develop an alternative method to obtain the

statistical distribution of volumetric channel flow rate. To be specific, an equation

of fine-grained CDFs is derived from the stochastic kinematic wave equation that

governs overland flow.

Wang, P., Tartakovsky, D. M., (2011), ‘Probabilistic predictions of infil-

tration into heterogeneous media with uncertain hydraulic parameters’. Int. J.

Uncert. Quant., vol. 1, no. 1, pp. 35-47.

Wang, P., Tartakovsky, D. M., (2011), ‘Reduced complexity models for

probabilistic forecasting of infiltration rates’. Adv. Water Resour., vol. 34, pp.

375-382, doi:10.1016/j.advwatres.2010.12.007.



Chapter 4

Uncertainty Quantification in

Kinematic Wave Models

4.1 Introduction

In previous chapter, two reduced-complexity models for infiltration rate

have been developed. Now a different UQ approach for overland flow based on

kinematic wave theory (KWT) is proposed.

Since its development by Lighthill and Whitham [76, 77], KWT has been

used to model a number of environmental phenomena, including overland flow,

channel flow, mutliphase flow in porous media, erosion and sediment transport [78,

79]. It is routinely employed in analyses of urban storm-water drainage systems to

route flood hydrographs [79].

The KWT theory postulates a functional relationship between a quantity

63
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k(x, t) and its flux q(x, t), q = q(k), so that the phenomenon is described by the

continuity equation

∂k

∂t
+∇ · q = S, q = q(k) (4.1)

where S(x, t) is a source. This is in contrast with dynamic-wave models, which em-

ploy the conservation of momentum to establish a dynamic relation between k(x, t)

and q(x, t). For Froude numbers smaller than 1 (appropriate for flood waves), the

dynamic waves (long gravity waves) do appear, but they attenuate rapidly and

the main disturbance is carried downstream by kinematic waves only [76]. We use

this application (overland flow in flood forecasting) to motivate the subsequent

analysis.

When the KWT equation (4.1) is used to describe flow in long rivers, the

functional relationship q = q(k) is typically given by either Chézy or Manning

formulae [79], which represent a balance between the friction at the bottom and

the gravitational force. These constitutive relations are parameterized with a fric-

tion coefficient and a downward slope, both of which often exhibit high spatial

variability and are usually underspecified by data. In addition to this parametric

uncertainty, the source function S, which represents influx from tributaries and/or

runoff from the ambient terrain, as well as initial and boundary conditions are sub-

ject to uncertainty. Although data acquisition continues to improve, ubiquitous

data sparsity and measurement/interpretation errors render overland flow predic-

tions inherently uncertain. This predictive uncertainty is routinely mentioned as
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one of the fundamental challenges in flood forecasting [80].

A common approach to quantifying uncertainty in system parameters and

driving forces is to treat them as random fields, whose statistics are inferred from

available data. This renders the KWT equation (4.1) stochastic. Its solution is

given in terms of probabilistic density functions (PDFs) of the system states q and

k, and amounts to propagation of parametric uncertainty through the modeling

process.

Early attempts to quantify uncertainty in modeling predictions based on the

stochastic KWT equation (4.1) dealt with spatially-averaged quantities [81, 82, 83,

84, 85]. Spatially-distributed probabilistic predictions were obtained by solving the

stochastic KWT equation (4.1) with Monte Carlo simulations (MCS) [86, 60] and

stochastic finite elements [87, 88]. For transient nonlinear systems such as (4.1)

these direct approaches are computationally expensive, and often prohibitively

so, especially when the parameter fields have small correlation lengths and high

variances. They are typically used to compute the first two ensemble moments of

system states. Accurate estimates of the tails of system states’ PDFs entail further

computational costs.

We present an alternative approach to uncertainty quantification in flow

models based on the stochastic KWT equation (4.1). The approach is based on the

derivation of a deterministic differential equation for cumulative density functions

(CDFs) of the system states q(x, t) and k(x, t). Our framework is conceptually

similar to the PDF equations approach used to describe the dynamics of (passive



66

or reactive) scalars in turbulent flows [89] and to quantify uncertainty in models

of reactive transport in heterogeneous porous media [90]. Yet it offers a distinct

advantage of removing the ambiguity in formulation of boundary conditions.

In section §4.2, we provide a shallow-water formulation of surface flow and

identify the key sources of uncertainty. Section §4.3 contains the derivation of

a CDF equation and corresponding boundary conditions. In section §4.4, this

equation is solved analytically for two special cases describing flood dynamics in

long rivers. We investigate the robustness and salient features of the CDF solutions

in section §4.5, using MCS as a benchmark. The overall conclusions are drawn in

section §4.6.

4.2 Problem Formulation

4.2.1 Governing equations

Motion of a homogeneous fluid whose horizontal extent is much larger than

its vertical counterpart can be described by the shallow water equations. It is

common to use their one-dimensional form, which is often referred to as the Saint-

Venant equations,

∂k

∂t
+
∂q

∂x
= S, (4.2)

to model open-channel flow. In this application of the KWT equation (4.1), k(x, t)

[L2] denotes the cross-sectional area of a channel occupied by the fluid at a point x
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along the channel’s length, q(x, t) [L3 T−1] is the volumetric flow rate, and S(x, t)

[L2 T−1] denotes the lateral inflow rate. When kinematic waves in long rivers

pass a junction with a tributary, the latter’s effects on the flood movement are

represented by S. The KWT equation (4.1) provides a good approximation of the

flood dynamics if influence on the river upstream of the junction is neglected [76].

Since the kinematic wave approximation neglects backwater effects—the upstream

propagation caused by local acceleration, convective acceleration, and pressure—

the flow rate throughout the flow domain is non-negative, q(x, t) ≥ 0 for all x and

t.

For wide channels (i.e., channels whose hydraulic radius equals the depth

of water), commonly used functional relations between k and q at any point x and

time t (e.g., Darcy-Weisbach, Chézy, or Manning formulae) can be written as

q = α k1/β. (4.3)

Here the parameter α represents the effects of surface slope and resistance, and

the exponent β is a measure of turbulence that characterizes the flow regime as

laminar, turbulent or transitional [79]. In general, both parameters can vary in

space and time, α(x, t) and β(x, t). Although the bed of an alluvial river varies

with time [91], these changes occur on a time scale that is much larger than that

of the flow, so that α = α(x). While not strictly necessary, we assume that the

exponent β is constant in order to simplify the presentation. Combining (4.2)
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and (4.3) gives

γ(x)
∂qβ

∂t
+
∂q

∂x
= S(x, t), γ ≡ α−β. (4.4)

The open-channel flow equation (4.4) is subject to the initial and boundary con-

ditions

q(x = 0, t) = q0(t) (4.5a)

q(x, t = 0) = qin(x). (4.5b)

We allow the coefficient γ(x), the source function S(x, t), the inlet flow

rate q0(t), and the initial flow rate qin(x) to be uncertain. The uncertainty is

quantified by treating these functions as random fields. Within this probabilistic

framework, a random quantity A(x, t;ω) varies not only in the physical domain,

(x, t) ∈ (0,∞) × (0,∞), but also in the probability space ω ∈ Ω. Our goal is to

obtain a complete (single space-time point) probabilistic description of q(x, t;ω).

In the following, the dependence of the random fields on ω is suppressed to simplify

the notation.

4.2.2 Example of statistical parameterizations

Consider, as an example of the general relation (4.3), the Manning formula

q =

√
s0

n
k4/3, (4.6)

wherein s0(x) denotes the channel slope, and n(x) (s/m1/3) is the Manning’s rough-

ness coefficient. Both s0(x) and n(x) are typically uncertain and often treated as
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random (e.g., [92, 3, 4, 5] and the references therein). The data reviewed in these

and other analyses suggest that no single distribution is capable of capturing their

spatial variability at all sites, with the normal, lognormal, gamma, logistic or

log-logistic PDFs found to fit various data sets best. The spatial correlations of

s0(x) and n(x), and their cross-correlation, are likewise site-specific. For the data

analyzed in [92], the random field s0(x) was found to be spatially uncorrelated

(white noise) and either weakly correlated or uncorrelated with other hydraulic

parameters.

The relevant statistics of the parameter γ(x) = (
√
s0/n)−β in (4.4) are

related to those of s0(x) and n(x) in Appendix A.

4.3 CDF equations

We start by introducing a “raw” (or “fine-grained”) cumulative density

function (CDF),

Π(Q;x, t) = H[Q− q(x, t)], (4.7)

where H is the Heaviside step function, and Q is a deterministic value (outcome)

that the random flow rate q can take at a space-time point (x, t). Let pq(Q;x, t)

denote a single-point probability density function (PDF) of q at the space-time

point (x, t). Then taking the ensemble average (over random q) of (4.7) yields a
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single-point CDF of q,

Π(Q;x, t) ≡
∫ ∞

0

H(Q− q′)pq(q′;x, t)dq′ = Fq(Q;x, t). (4.8)

For q(x, t) in (4.4) and (4.5), its raw CDF satisfies a two-dimensional

stochastic linear CWT equation (Appendix B)

βγ(x)Qβ−1∂Π

∂t
+
∂Π

∂x
+ S(x, t)

∂Π

∂Q
= 0 (4.9)

subject to the initial and boundary conditions

Π(Q;x, t = 0) = Πin = H [Q− qin(x)] , (4.10a)

Π(Q;x = 0, t) = Π0 = H [Q− q0(t)] , (4.10b)

Π(0;x, t) = 0. (4.10c)

The straightforward and unambiguous way in which the boundary condition (4.10b)

is formulated provides the key advantage of our CDF method over commonly

used PDF methods [89, 90]. The latter are formulated in terms of “raw” PDFs,

Π(Q, q;x, t) = δ[Q− q(x, t)], whose value at Q = 0 for any space-time point (x, t)

is generally unknown.

The CDF formulation (4.9)–(4.10) offers a number of other advantages over

direct solutions of the flow equations (4.4)–(4.5). First, one needs to compute (e.g.,

with MCS or stochastic finite elements) only the first ensemble moment of Π to ob-

tain the full distribution of q. Second, linearity of the CDF equations (4.9)–(4.10)

simplifies their theoretical and numerical analyses, enabling, for example, exami-

nation of the convergence and other properties of polynomial chaos methods [93].
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More important for the subsequent analysis, one can take advantage of the large

body of literature on stochastic averaging of linear advective transport in random

velocity fields v(x, t),

∂Π

∂t
+ v · ∇xΠ = 0. (4.11)

In the context of (4.9)–(4.10),

x = (x,Q)T , v = (vx, vQ)T , vx =
Q1−β

βγ(x)
, vQ =

Q1−βS(x, t)

βγ(x)
. (4.12)

Specifically, the ensemble averaging of (4.11) would yield an effective transport

equation for the CDF of q,

∂Fq
∂t

+ veff · ∇xFq = ∇x · (D∇xFq), (4.13)

where veff and D are the effective velocity and the eddy-diffusivity tensor, respec-

tively. This equation is based on a closure approximation, but is asymptotically

exact when Fq varies slowly with x and t relative to v [94].

In the present study, we consider two special cases of (4.9), S = 0 and

S = S(x), both of which enable one to obtain the CDFs Fq without resorting to

closure approximations.

4.4 CDF Solutions

4.4.1 Flood propagation in the absence of lateral inflow

The open-channel flow equation (4.4) with S ≡ 0 provides a classical setting

first analyzed by Lighthill and Whitham [76] to model flood propagation in long
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rivers. The corresponding raw CDF problem (4.9)–(4.10) admits an analytical

solution (Appendix C),

Π(Q;x, t) = H(C − t)H[Q− qin(x?)] +H(t− C)H[Q− q0(t− C)]. (4.14a)

Here

C(x) =

∫ x

0

βQβ−1γ(x′)dx′. (4.14b)

and x′ = x? is a solution of the equation

C(x′) = C(x)− t (4.14c)

for a given Q, x and t.

For large times, t > C, the general solution (4.14) reduces to

Π(Q;x, t) = H[Q− q0(t− C)]. (4.15)

4.4.2 Flood propagation under steady lateral inflow

In the open-channel flow equation (4.4), the source term S = S(x) might

represent either input from a river’s tributaries (in which case S can be treated as

a sum of delta functions) or runoff (in which case S is continuous) or their com-

bination. The corresponding raw CDF problem (4.9)–(4.10) admits an analytical

solution (Appendix D)

Π(Q;x, t) = H(C − t)H[Q− I(x, x?)− qin(x?)] +H(t− C)H[Q− I(x, 0)− q0(t− C)].

(4.16a)
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Here

C =

∫ x

x0

β[Q− I(x, x′′)]β−1γdx′′, I(x, x′) =

∫ x

x′
S dx′′, (4.16b)

and x′ = x? is a solution of the equation

∫ x′

x0

β[Q− I(x, x′′)]β−1γdx′′ =

∫ x

x0

β[Q− I(x, x′′)]β−1γdx′′ − t (4.16c)

with

x0 =


0 Q ≥ I(x, 0)

η Q < I(x, 0)

, I(η, 0) = I(x, 0)−Q. (4.16d)

If S(x) ≡ 0, (4.16) reduces to (4.14).

4.4.3 CDF solutions

Expressions (4.14) and (4.16) map the random system parameter γ(x) and

driving forces q0(t), S(x), and qin(x) onto the raw CDF Π. To simplify the presen-

tation, we take qin to be deterministic, and analyze in detail flow in the absence

tributaries (S = 0). This setting captures the salient features of the CDF method,

and its extension to more complicated flow scenarios is relatively straightforward.

The parametric uncertainty can now be quantified by pγ,q0 , a joint PDF of

random inputs γ(x) and q0(t). Since γ(x) and q0(t) represent two different physical

phenomena, they can be treated as independent, so that pγ,q0 = pγpq0 and (4.8)

gives rise to a CDF solution

Fq(Q;x, t) =

∫ ∫
Π(Γ, Q0;x, t)pγ(Γ)pq0(Q0)dΓdQ0. (4.17)
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The (non-Gaussian, correlated) random field γ(x) enters (4.14) only as an integrand

in

Iγ(x) =

∫ x

0

γ(x′)dx′. (4.18)

Therefore, (4.17) can be replaced with

Fq(Q;x, t) =

∫ ∫
Π(I,Q0;x, t)pIγ (I)pq0(Q0)dIdQ0. (4.19)

It remains to compute pIγ (I;x), the PDF of Iγ(x).

Let λγ denote the correlation length of γ(x). For x � λγ, γ(x′) on the

interval [0, x] is approximately constant, Iγ(x) ≈ xγ and C(x) in (4.14) can be

approximated by

C(x) ≈ βQβ−1xγ(x), x� λγ. (4.20)

For x� λγ, Iγ(x) becomes Gaussian with mean xγ and variance 2xσ2
γ, and C(x)

becomes

C(x) ≈ βQβ−1N(xγ, 2xσ2
γ), x� λγ. (4.21)

If γ(x) lacks spatial correlation [92], this expression becomes exact. For inter-

mediate x, we approximate the statistics of Iγ(x) with the central limit theorem

(CLT)-based approach [95] (see Appendix E).

Below we use a computational example to investigate the accuracy and

robustness of the alternative approximations of pIγ (I;x), and their effects on the

flow-rate CDF Fq, via comparison with Monte Carlo simulations.
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4.4.4 Computational example

We set the initial flow rate to qin = 0.5 m3/s and the flow rate at the inlet

x = 0 to

q0(t) = q0

∣∣∣∣sin(πtP
)∣∣∣∣ [1 + q′0(t)]. (4.22)

The mean flow rate q0 = 1 m3/s satisfies the subcritical flow condition required

for the kinematic wave approximation to be valid, and P denotes the period. The

fluctuating term q′0(t) is white noise. Its statistics, as well as those of the random

channel slope s0(x) and Manning coefficient n(x) are summarized in Table 4.1,

wherein CV denotes the coefficient of variation (absolute value of the ratio of the

standard deviation to the mean), and ρ(r) and λ are the correlation function and

correlation length, respectively. The size of the flow domain (e.g., the length of

a river downstream from x = 0) is L = 20 km, while the correlation length is

λ = 200 m.

Table 4.1: Statistics of the uncertain (random) parameters. These values are
representative of data in [3, 4, 5, 6].

Parameter PDF ρ(r) Mean CV λ
q′0(t) normal δ(r) 0 0.1 –
s0(x) lognormal exp(r/λ) 0.01 0.25 200
n(x) lognormal exp(r/λ) 0.037 0.25 200

4.5 Results and discussion

The subsequent results are presented in terms of the dimensionless quan-

tities defined as follows. Let the deterministic quantities λ and q0 represent a
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characteristic length scale and a characteristic volumetric flux, respectively. Their

ratio define a characteristic time scale τ ,

τ = λ3/q0. (4.23)

We introduce dimensionless quantities

x̃ =
x

λ
, t̃ =

t

τ
, Q̃ =

Q

q0

, q̃in =
qin

q0

, γ̃ =
γq

3/4
0

λ2
, P̃ =

P

τ
. (4.24)

In the simulations reported below, we set P̃ = 1.

MCS consist of 2000 realizations. The geostatistical software SGEMS was

used to generate mutually-uncorrelated random fields of s0(x) and n(x) on 500

nodes evenly distributed on the interval [0, L]. These were used in (4.14) to com-

pute realizations of the raw CDF, Π, and its mean, the flow rate CDF Fq.

Close to the inlet, x̃� 1, the approximation of the integral C(xd) with (4.20)

is expected to lead to an accurate solution for the CDF Fq(Q̃; x̃, t̃). Figure 4.1 shows

three temporal snapshots of Fq(Q̃; x̃, t̃) computed at x̃ = 0.4 with MCS, the con-

stant γ approximation (4.20) (Const), and the CLT-based approximation (CLT).

At early times (t̃ = 1×10−6), Fq maintains its deterministic initial state (4.10a) of

a step function. As time increases, both parametric uncertainty and uncertainty

in boundary conditions propagate downstream and lead to a rising predictive un-

certainty at t = 1× 10−5. At later times, predictive uncertainty at a given point is

increasingly dominated by the boundary fluctuation while the effects of parametric

(s0 and n) uncertainty become negligible. The late-time solution (4.15) and the

snapshot at t = 0.005 illustrate this behavior.
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Figure 4.1: Temporal evolution of the flow rate CDF, Fq(Q̃; x̃ = 0.4, t̃), computed
with MCS, the constant γ approximation (4.20) (Const), and the CLT-based ap-
proximation (CLT).
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Figure 4.2: Temporal evolution of the flow rate CDF, Fq(Q̃; x̃ = 100, t̃), computed
with MCS, the white noise γ approximation (4.21) (Delta), and the CLT-based
approximation (CLT). Also shown for t̃ = 0.5 is the large-time solution (4.15).

Far away from the inlet, x̃� 1, the approximation (4.21) is expected to be

accurate. Figure 4.2 demonstrates that this indeed is the case for Fq(Q̃; x̃ = 100, t̃),

especially at early and large times. The CLT-based approximation is in perfect

agreement with MCS at all times. The initial state predominates the early time

solution (t = 1 × 10−3). At intermediate times (t̃ = 1.8 × 10−3), fluctuations

from both the hydraulic parameters and the boundary condition affect the flow

rate’s predictions. With increasing time, the latter uncertainty exerts ever stronger

influence, and Fq(Q̃; x̃, t̃) is dominated by the white-noise q′0(t). There is good

match with the large-time solution (4.15) at t = 0.5.
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Figure 4.3: Temporal evolution of the flow rate CDF, Fq(Q̃; x̃ = 10, t̃), computed
with MCS, the constant γ approximation (4.20) (Const), the CLT-based approx-
imation (CLT), and the white noise γ approximation (4.21) (Delta). Also shown
for t̃ = 0.16 is the large-time solution (4.15).

At intermediate distances (x̃ = 10), both the constant γ and white noise

γ approximations are expected to fail. Figure 4.3 reveals that the failure occurs

at intermediate times (t̃ = 2 × 10−4) when predictive uncertainty is highest. At

all times, the CLT-based approximation is in excellent agreement with MCS. The

large-time solution is appropriate at t = 0.16.
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4.6 Conclusion

We developed a probabilistic approach to quantify parametric uncertainty in

first-order hyperbolic conservation laws (kinematic wave equations). The approach

relies on the derivation of a deterministic equation for the cumulative density func-

tion (CDF) of the system state, in which probabilistic descriptions (probability

density functions or PDFs) of the system parameters and/or initial and boundary

conditions serve as inputs. The accuracy and robustness of solutions of the CDF

equation for one such system, the Saint-Venant equations of river flows, were in-

vestigated via comparison with Monte Carlo simulations. Our analysis leads to

the following major conclusions.

1. CDF equations, and their (semi-)analytical solutions, provide a computation-

ally efficient alternative to the existing methods for uncertainty quantifica-

tion, such as Monte Carlo simulations and stochastic finite element methods

(polynomial chaos expansions, stochastic collocation methods, etc.).

2. CDF equations are ideally suited for handling input parameters and/or initial

and boundary conditions that exhibit small correlation lengths. This is in con-

trast with stochastic finite element methods and other numerical approaches

that rely on the Karhunen-Loève representation of random parameter fields.

3. CDF equations offer an operational advantage over PDF equations that are

often used in other contexts, e.g., to analyze transport of passive tracers and

reactive species in turbulent (randomly fluctuating) velocity fields. This is
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because CDF equations allow for straightforward and unambiguous determi-

nation of boundary conditions with respect to sample variables.

In the next chapter, we will propose a general framework to quantify the

uncertainty of multiple algae-groups’ densities through a Langevin equation.

Wang, P., Tartakovsky, D. M., (2011), ‘Uncertainty quantification in kine-

matic wave models’. Submitted.



Chapter 5

Stochastic Forecasting of Algae

Bloom in Lakes

5.1 Introduction

In the previous two chapters, two UQ methods to obtain full statistical

description of random surface/subsurface flows have been developed. The reduced-

complexity model and CDF method not only enable one to assess the probability

of rare events but also aid stochastic analysis in ecological systems. This chapter

presents a stochastic model that governs dynamic growth of several phytoplankton

groups in an enclosed aquatic system, whose nutrients are primarily brought by

random runoff.

Cyanobacteria, also known as blue-green algae, is one of the most important

phytonplankton groups. It has attracted a lot of attentions over the years from

82
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both negative and positive prospectives. Widespread in a diverse range of water

bodies, cynobacteria consumes nutrients (nitrogen and phosphorous) as part of its

growing process. Increasing human activity, especially discharge of wastewater, has

significantly accelerated eutrophication of many aquatic systems worldwide [96].

As a result, there is an explosion of harmful algae blooms (HABs) that pose serious

risks for human and animal health and ecosystem sustainability. A conservative

estimate of the economic cost of HABs and eutrophication in U.S. alone amounts

to $2.2-4.6 billion annually [97]. Ironically, on the other end of its effect spectrum,

recent research has suggested various applications of algal biomass, such as bio-

diesel, animal feed, heating, electricity, and even pharmaceutical and cosmetic

products.

Comparing to many engineering systems, it is more challenging to study

dynamics in ecosystems typically governed by numerous parameters and complex

interactions between different bio-groups. Its analysis is further complicated by the

uncertainty exhibited in many large-scale applications. In recent years, a growing

number of works [7, 98, 99] dealt with stochastic analyses of HABs systems. Yet

their UQ is either relatively simple to account for more general cases or are not

physically based and fail to quantify the probability tails required for PRA.

In this chapter, an alternative framework is developed to address both un-

derlying dynamics and uncertainty of algae growth in a heterogeneous ecosystem.

The problem is formulated in section 5.2 with a brief review of associated parame-

ters and their uncertainty. Section 5.3 contains a derivation of a set of deterministic
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equations, i.e. Fokker-Planck equations, whose solution are the PDFs of density

of various algae groups. Section 5.4 presents an example for the cyanobacteria-

concentration PDFs. Final conclusions are drawned in section 5.5.

5.2 Problem Formulation

HABs occur most often when there are abundant nutrients (nitrogen and

phosphorous), warm water ( > 20oC), sunlight and stagnant or quiescent water

[100]. It is often assumed that an aquatic system is well mixed or at least there is

no spatial dependence for the top layer of water. As a result, the growing process

is usually modeled by an ordinary differential equation.

The present study adopts a model [7] that focuses on four algae groups:

Diatoms, Chrysophycea, nitrogen-fixing Cyanobacteria, and minor species. With-

out loss of generality, we extend this model to a number of N algae groups, whose

growth rate of biomass concentration CAi ([mg m−3 ]) in a lake is described by

dCAi
dt

=

(
µ̃i −

σ̃i
h
− Qout

V
− piCZ

)
CAi , i = 1, 2, ..., N (5.1)

The underlying dynamic of (5.1) requires a set of parameters relating growth to

gain (natural growth rate µ̃i) and loss (non-predatory loss rate σ̃i, outflow rate

Qout and zooplankton predator rate piCZ). V (m3) and h (m) represent the lakes’

volume and mean depth, respectively.
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Natural growth rate µ̃i and non-predatory loss rate σ̃i are defined as

µ̃i = µiθ
T−Tref
i

I

KIi + I

P

KPi + P

N

KNi +N
(5.2)

σ̃i = σiθ
T−Tref
σ (5.3)

where the rate coefficients K’s with various subscripts are defined in Table 5.1. θi

and θσ denote temperature coefficients for growth and non-predatory loss rate, T is

the average temperature in the lake, and P and N are the average concentrations

of phosphorus and nitrogen in the aquatic system. Inside phytoplankton the latter

concentrations are given by

P = Ptot −
N∑
i=1

αiCAi , N = Ntot −
N∑
i=1

βiCAi , (5.4)

where Ptot and Ntot are the total average concentrations of phosphorus and nitrogen

in the lake, respectively. Nutrient content of each algae group for phosphorus and

nitrogen is denoted by the deterministic constants αi and βi, respectively.

The Monod-form of algae growth rate (5.2) depends almost linearly on

irradiance I, phosphorous P and nitrate N when these quantities are small. It is

bounded by a maximum value of 1 for large intake of light and nutrients.

It is common [7, 98, 101] to identify parameters in the governing equation

(5.1) through either measurements of Markov chain Monte Carlo (MCMC). The

data reported in [7, 98, 101] suggest that temperature T , global irradiance I, out-

flow rate Qout and predatory loss piCZ typically exhibit much smaller variation

than nutrients concentrations over the summer. Consequently, we treat the con-

centrations of phosphorous Ptot and nitrogen Ntot as two random time-dependent
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parameters, while assuming that the remaining parameters are deterministic. Our

goal here is to derive a mapping scheme that translates these parametric uncer-

tainty into the statistics of system state W ({ξ}, t), where W is the joint PDF of

various phytoplankton-specices concentrations and {ξ} = ξ1, ξ2, ..., ξN denote the

deterministic values of population concentrations in probability place (i.e., out-

comes).

Table 5.1: Notations and units for the model parameters, data variables and con-
stants from Table 3 in [7]

µi (day−1) maximum growth rate at 20oC
σi (day−1) maximum non-predatory loss rate at 20oC
θi (–) temperature coefficients for growth rate
θσ (–) temperature coefficients for non-predatory loss rate
KIi (W m−2) global irradiance half-saturation coefficient
KPi (mg m−3) phosphorus half-saturation coefficient
KNi (mg m−3) nitrogen half-saturation coefficient
piCZ (day −1) zooplankton rate
αi (–) relative phosphorus content of algae
βi (–) relative nitrogen content of algae
P (mg m−3) total phosphorus concentration available for the algae
Ptot (mg m−3) total phosphorus concentration
N (mg m−3) total nitrogen concentration available for the algae
Ntot (mg m−3) total nitrogen concentration
T, Tref (oC) temperature, the reference temperature (20oC)
Q (m3 day−1) outflow
I (W m−2) global irradiance
V (m3) volume of lake
h (m) depth of lake



87

5.3 Stochastic Models

The supply of nutrients by surface runoff and discharge of waste water is the

primary factor leading to eutrophication in many water bodies. Hence we identify

fluctuation of runoff rate q(t) as the common cause of the uncertainty of Ptot and

Ntot, which can be modeled as

Ptot = P0 +
cPQ

V
, Ntot = N0 +

cNQ

V
, (5.5)

where P0 and N0 (mg m−3) are the initial concentration in the lake, cP and cN

([mg m−3]) represent the concentration of phosphorus and nitrogen in the runoff,

respectively. Statistics of random cumulative runoff Q(t) =
∫ t

0
q(t′)dt′ can be

derived from our CDF analysis of overland flow (Chapter 4).

Taking a Taylor expansion around the mean runoff volume Q̄ (m3) and

denoting Q′ = Q− Q̄, we express random growth rates as

µ̃i = µ̃i(Q̄) +
∂µ̃i
∂Q

(Q̄)Q′ +
∂2µ̃i
∂Q2

(Q̄)Q′ 2 + O(Q′ 3). (5.6)

Substituting the first two terms in this Taylor expansion into (5.1) gives

dCAi
dt

=

(
µ̃i(Q̄)− σ̃i

h
− Qout

V
− piCZ

)
CAi +

∂µ̃i
∂Q

(Q̄)CAi Q
′

= hi({CA}, t) + gi1({CA}, t)Q′(t), {CA} = CA1 , CA2 , ..., CAN (5.7)

This is a system of nonlinear Langevin equations with multiplicative noise Q′(t).
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Its Kramers-Moyal coefficients are given [102]

Di({ξ}, t) = hi({ξ}, t) + gkj
∂

∂ξk
gij({ξ}, t), (5.8)

Dij({ξ}, t) = gik({ξ}, t) gjk({ξ}, t), (5.9)

D
(v)
i1...iv

({ξ}, t) =
1

v!
lim
τ→0

1

τ
〈[CAi1 (t+ τ)− ξi1 ]...[CAiv (t+ τ)− ξiv ]〉. (5.10)

For a white-noise Q′(t), such that

〈Q′(t)〉 = 0, 〈Q′(t)Q′(t′)〉 = 2δ(t− t′), (5.11)

all the Kramers-Moyal coefficients (n ≥ 3) vanish [102], and we obtain a Fokker-

Planck equation for the joint probability density functions of N algae groups’

concentrations W ({ξ}, t)

∂W

∂t
=

[
−

N∑
i=1

∂

∂ξi
Di({ξ}, t) +

N∑
i,j=1

∂2

∂ξi ∂ξj
Dij({ξ}, t)

]
W. (5.12)

There is a rich literature on solutions of the Fokker-Planck equations of

several variables [102]. In the following section, we will consider the blue-green

algae groups only.

5.4 Results and discussion

For a single algae group, e.g., Cynanobacteria, (5.12) reduced to:

∂Wc

∂t
=

[
− ∂

∂ξ
D1(ξ, t) +

∂2

∂ξ2
D2(ξ, t)

]
Wc, (5.13)
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with the drift (D1) and diffusion (D2) coefficients

D1 =

(
µ̃1(Q̄)− σ̃1

h
− Qout

V
− p1CZ

)
ξ +

(
∂2µ̃1

∂Q∂ξ
(Q̄) ξ +

∂µ̃1

∂Q
(Q̄)

)
∂µ̃1

∂Q
(Q̄) ξ,

(5.14a)

D2 =

(
∂µ̃1

∂Q
(Q̄) ξ

)2

. (5.14b)

Rearranging (5.13), we obtain a one-dimensional advection-diffusion equation

∂Wc

∂t
= − ∂

∂ξ

(
D1 −

∂D2

∂ξ

)
Wc +

∂

∂ξ

(
D2

∂Wc

∂ξ

)
. (5.15)

For the Monod dependence of the growth rate (5.2), this gives

µ̃1 = µ1θ
T−Tref
1

I

KI1 + I

P̄

KP1 + P̄

N̄

KN1 + N̄
(5.16a)

∂µ̃1

∂ξ
= −µ1θ

T−Tref
1

I

KI1 + I

[
α1KP1(

KP1 + P̄
)2

N̄

KN1 + N̄
+

P̄

KP1 + P̄

β1KN1(
KN1 + N̄

)2

]

(5.16b)

∂µ̃1

∂Q
=
µ1

V
θ
T−Tref
1

I

KI1 + I

[
KP1cP(

KP1 + P̄
)2

N̄

KN1 + N̄
+

P̄

KP1 + P̄

KN1cN(
KN1 + N̄

)2

]

(5.16c)

∂2µ̃1

∂Q∂ξ
=
µ1

V
θ
T−Tref
1

I

KI1 + I

[
2α1KP1cP(
KP1 + P̄

)3

N̄

KN1 + N̄
+

P̄

KP1 + P̄

2β1KN1cN(
KN1 + N̄

)3

− KP1KN1(β1cP + α1cN)(
KP1 + P̄

)2 (
KN1 + N̄

)2

]
(5.16d)

It is noted that the mean concentrations of nutrients in the lake are

P̄ = P0 +
cP Q̄

V
− α1ξ, N̄ = N0 +

cNQ̄

V
− β1ξ (5.17)

Numerical simulations are performed to obtain a PDF solution to (5.15)

with data from previous investigations [7, 98]. A Gaussian distribution N (5, 1)
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Figure 5.1: Temporal evolution of the cynanobacteria concentration PDF Wc(ξ, t)
at (a) t = 0 days, (b) t = 5 days and (c) t = 10 days.

is prescribed for the initial concentration PDF. Figure 5.1 demonstrates the tem-

poral evolution of cynanobacteria population density PDF Wc(ξ, t) through three

timeframes: (a) t = 0 days, (b) t = 5 days and (c) t = 10 days. With continuous

nutrients’ inflow, blue-green algae exhibits rapid growth from its initial mean con-

centration of 5 mg m−3 to 33 mg m−3 over a week. At the same time, widening

distributions (increasing variance) indicate a rising uncertainty in the prediction

of algae concentration. Overall, the shape of Wc gradually diffuses and propagates

with time, as expected from the advection-diffusion equation (5.15).

In Figure 5.2 the effect of average runoff volume Q̄ on algae bloom is in-
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Figure 5.2: Effects of runoff Q̄ on the cynanobacteria concentration PDF Wc(ξ, t)
at t = 10 days.

vestigated with respect to the lake outflow rate Qout. After t = 10 days, greater

inflows (Q̄/Qout = 2) have introduced more uncertainty to the predictions of the cy-

nanobacteria population density, as indicated by larger variance. This is expected,

because inflow nutrients are the primary factors contributing to algae bloom in

lakes and provide the major source of system uncertainty. A reduction of its aver-

age value by higher outflow rate (Q̄/Qout = 0.5) would lead to smaller predictive

uncertainty. However, the overall impact is limited due to its small volume relative

to the volume of the lake.

The initial concentration exerts great influence on the development of algae
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Figure 5.3: The cynanobacteria concentration PDF Wc(ξ, t) at t = 10 days for
different levels of uncertainty at initial concentration.

bloom in lakes. This is illustrated in Figure 5.3 for Wc(ξ, t) at t = 10 days with

three CV (standard deviation divided by mean value) levels of initial distribution.

Larger initial fluctuations lead to greater uncertainty (longer distribution tails) at

later stages of algae growth.

5.5 Conclusion

We present a general framework to quantify the uncertainty in nutrients’

inflow via a full statistical description (PDF) of the concentration of several phy-
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toplankton groups. Based on a physical model routinely used for algae population

dynamics in a lake, a Fokker-Planck equation is derived. Its solution yields the

joint PDF of multiple-algae-species concentrations.

1. The new framework enables one to obtain probabilistic density functions

(PDFs) of several phytoplankton groups’ concentrations. Its results also facil-

itate probabilistic risk assessments, which rely on probabilities of rare events.

2. Average runoff inflow has limited impact on algae growth due to its relative

small volume compared to the volume of the lake.

3. Uncertainty in initial concentration significantly affects overall predictive un-

certainty.



Chapter 6

Conclusions

This dissertation leads to the following major conclusions:

1. Given high temporal variability of precipitation in (semi-)arid regions, the

reliance on annual meteorological data might significantly underestimate the

downward migration of contaminant through the vadose zone in (semi-)arid

regions. Specially, predictive errors stemming from such data increase with

time and are more pronounced in highly conductive soils. It is also influ-

enced by the selection of constitutive models for the Richards equation, e.g.,

van Genuchten model versus Brooks-Corey model. Additional errors asso-

ciated with spatial averaging further undermine the accuracy of predictions

based on annual data when one takes account of surface topography and built

environments.

2. The two reduced complexity models provide accurate results of PDFs of

94
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infiltration rate compared to their counterpart resulting from the Richards

equation. Though this agreement deteriorates with time, the reduced com-

plexity models provide conservative estimates of predictive uncertainty at all

times. Reliance on the reduced complexity models of infiltration into hetero-

geneous soils with uncertain hydraulic parameters offers a number of advan-

tages. Not only it allows one to compute closed-form semi-analytical expres-

sions for single-point PDFs of the infiltration rate, it does so exactly, without

introducing linearization errors that plague most stochastic analyses of the

Richards equation. It also allows one evaluate probabilities of rare events.

The reduced complexity models are capable of quantifying uncertainty in any

number of hydraulic parameters and can be used with arbitrary constitutive

laws (relative conductivity functions and retention curves). It has been shown

that predictive uncertainty (the infiltration-depth and infiltration-rate PDFs)

is significantly more sensitive to the coefficient of variation of saturated hy-

draulic conductivity Ks than to that of the fitting parameters in the Gardner

or van Genuchten hydraulic function, while it is also greatly influenced by the

degree of cross-correlation between hydraulic parameters Ks and αV G. For

Green-Ampt model, the choice of a functional form of the hydraulic function

(e.g., the Gardner model vs. the van Genuchten model) has a significant ef-

fect on predictive uncertainty during early stages of infiltration - this effect

diminishes with time. Finally, reduced complexity models make it possible to

compute multi-point PDFs of infiltration rate. The latter can be used both
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to predict (cross-)correlations of infiltration rates at multiple locations and to

assimilate infiltration data via a straightforward Bayesian updating.

3. We developed a probabilistic approach to quantify parametric uncertainty in

first-order hyperbolic conservation laws (kinematic wave equations). The ap-

proach relies on the derivation of a deterministic equation for the cumulative

density function (CDF) of the system state, in which probabilistic descrip-

tions (probability density functions or PDFs) of the system parameters and/or

initial and boundary conditions serve as inputs. The accuracy and robust-

ness of solutions of the CDF equation for one such system, the Saint-Venant

equations of river flows, were investigated via comparison with Monte Carlo

simulations and yielded satisfactory results. CDF equations, and their (semi-

)analytical solutions, provide a computationally efficient alternative to the

existing methods for uncertainty quantification, such as Monte Carlo simu-

lations and stochastic finite element methods (polynomial chaos expansions,

stochastic collocation methods, etc.). In addition, CDF equations are ideally

suited for handling input parameters and/or initial and boundary conditions

that exhibit small correlation lengths. This is in contrast with stochastic finite

element methods and other numerical approaches that rely on the Karhunen-

Loève representation of random parameter fields. Lastly, CDF equations offer

an operational advantage over PDF equations that are often used in other

contexts, e.g., to analyze transport of passive tracers and reactive species in

turbulent (randomly fluctuating) velocity fields. This is because CDF equa-
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tions allow for straightforward and unambiguous determination of boundary

conditions with respect to sample variables.

4. We propose a general framework to obtain probabilistic density functions

(PDFs) of several phytoplankton groups’ concentrations with uncertain nu-

trients’ inflow. Its results also facilitate probabilistic risk assessment which

typically concerns probabilities of rare events. Specifically we find that un-

certainty of initial concentration significantly affects overall predictive uncer-

tainty, while average runoff inflow has limited impact on algae growth due to

its relative small volume compared to the volume of the lake.



Appendix A

Statistical properties of γ

The random coefficient γ =
(√

s0/n
)−β

is defined in terms of the two ran-

dom parameters, s0(x) and n(x). Its single-point PDF pγ(Γ;x) can be expressed in

terms of the PDFs of s0(x) and n(x) as follows. Let Gγ(Γ) = P (γ ≤ Γ) denote the

cumulative density function of γ, i.e., the probability that the random coefficient

γ at point x takes on a value not larger than Γ. By definition,

Gγ(Γ) =

∫ ∞
0

∫ N(Γ,S0)

0

pn,s0(N,S0)dNdS0 (A.1)

where pn,s0(N,S0) is the joint PDF of the channel slope s0 and the Manning coef-

ficient n at point x. The PDF pγ can now be obtained as

pγ(Γ) =
dGγ

dΓ
=

∫ ∞
0

pn,s0 [N(Γ, S0), S0]
∂N(Γ, S0)

∂Γ
dS0. (A.2)

If s0 and n are mutually independent, (A.2) reduces to

pγ(Γ) =
1

β
Γ1/β−1

∫ ∞
0

pn[N(Γ, S0)]ps0(S0)
√
S0dS0. (A.3)
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If Y1(x) = ln s0(x) and Y2(x) = lnn(x) are mutually uncorrelated multivari-

ate Gaussian stationary (statistically homogeneous) random fields, their two-point

PDFs are given by

p2Yi(ξ1, ξ2) =
1

2πσ2
Yi

√
1− ρ2

Yi

exp

[
− Ri(ξ1, ξ2)

2σ2
Yi

(1− ρ2
Yi

)

]
, i = 1, 2, (A.4a)

where

Ri = (ξ1 − Y 1)2 − 2ρYi(ξ1 − Y i)(ξ2 − Y i) + (ξ2 − Y i)
2 (A.4b)

and ρYi(x1, x2) denotes the linear correlation function between Yi(x1) and Yi(x2).

The two-point covariance of γ(x), Cγ(x1, x2) = 〈γ′(x1)γ′(x2)〉, is defined by

Cγ(x1, x2) = 〈γ(x1)γ(x2)〉 − γ2 = C1(x1, x2)C2(x1, x2)− γ2. (A.5)

The covariances C1(x1, x2) = 〈[(s0(x1)s0(x2)]−β/2〉 and C2(x1, x2) = 〈[n(x1)n(x2)]β〉

can be expressed in terms of the statistics of s0(x) and n(x),

C1(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

e−
β
2

(S1+S2)p2Y1(S1, S2)dS1dS2 = e−βY 1+β2(1+ρY1 )σ2
Y1
/4 (A.6)

and

C2(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

eβ(N1+N2)p2Y2(N1, N2)dN1dN2 = e2βY 2+β2(1+ρY2 )σ2
Y2 . (A.7)



Appendix B

Derivation of Raw CDF Equation

It follows from the definition of Π in (4.7) that

∂Π

∂x
=
∂H[q(x, t)−Q]

∂x
=
∂Π

∂q

∂q

∂x
= −∂Π

∂Q

∂q

∂x
. (B.1)

Multiplying (4.4) with ∂Π/∂Q and making use of (B.1) yields

βγqβ−1 ∂Π

∂Q

∂q

∂t
+
∂Π

∂Q

∂q

∂x
=
∂Π

∂Q
S. (B.2)

Since ∂Π/∂Q = δ(Q− q) where δ(·) is the Dirac delta function, and since for any

test function g(·) the following relation holds g(q)δ(Q − q) = g(Q)δ(Q − q), one

can rewrite (B.2) as

βγQβ−1 ∂Π

∂Q

∂q

∂t
− ∂Π

∂x
=
∂Π

∂Q
S. (B.3)

Finally, substituting the relation

∂Π

∂t
=
∂H[q(x, t)−Q]

∂t
=
∂Π

∂q

∂q

∂t
= −∂Π

∂Q

∂q

∂t
(B.4)

into (B.3) yields an equation for the raw CDF (4.9).
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Appendix C

Solution for S = 0

Taking the Laplace transformation of (4.9) with S ≡ 0 yields

dΠ̂

dx
+ βQβ−1γsΠ̂ = βQβ−1γΠin, (C.1)

where Π̂(Q;x, s) is the Laplace transform of Π(Q;x, t). This equation is subject

to the boundary condition obtained from (4.10b),

Π̂(Q, x = 0, s) = Π̂0 =

∫ ∞
0

H [Q− q0(t)] e−st dt. (C.2)

A solution of (C.1) and (C.2) is

Π̂ =

∫ x

0

e−s[C(x)−C(x′)]B(x′)dx′ + Π̂0 e−sC(x), (C.3)

where

B(x) = βQβ−1γ(x)H[Q− qin(x)], C(x) =

∫ x

0

βQβ−1γ(x′)dx′. (C.4)

The inverse Laplace transform of (C.3)–(C.4) is given by

Π =

∫ x

0

δ[t− C(x) + C(x′)]B(x′)dx′ +H(t− C)H[Q− q0(t− C)]. (C.5)
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Evaluating the quadrature, while recalling the definitions of B and C in (C.4),

yields

Π = H[Q− qin(x?)] +H(t− C)H[Q− q0(t− C)]. (C.6)

Here x′ = x? is a solution of the equation

C(x′) = C(x)− t (C.7)

for a given x and t. It follows from (C.4) that C(x′ = x?) ≥ 0 for all x and t. This

imposes the constraint C(x) ≥ t on the parameter space of (C.7), which translates

into the Heaviside function H(C − t) in (4.14).



Appendix D

Solution for S = S(x)

Taking the Laplace transformation of (4.9)–(4.10) with S = S(x) yields

∂Π̂

∂x
+ S(x)

∂Π̂

∂Q
= −βQβ−1γ(x)(sΠ̂− Πin) (D.1)

subject to the boundary conditions

Π̂(Q; 0, s) = Π̂0(Q, s), Π̂(0;x, s) = 0. (D.2)

A family of characteristics Q = Q(x; ξ) is defined by

dQ

dx
= S(x), Q(x = 0) = ξ, (D.3)

which yields an equation for characteristics

Q =

∫ x

0

S dx′ + ξ. (D.4)

The “label” ξ defines the origin of each characteristic line, such that (see Fig-

ure D.1)
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1. for ξ ≥ 0, characteristics originate from the Q-axis (x = 0) and the solution

is determined by the boundary condition on x;

2. for ξ < 0, characteristics originate from the x-axis (x = η) and the solution

is determined by the boundary condition on Q. The constant η is a solution

of
∫ η

0
S dx′ = −ξ.

ξ

η

x

Q0

x!

Q!
1 Q!

2

ξ < 0
ξ > 0

Figure D.1: Characteristic curves in the (x,Q) plane for Π̂(Q;x, s).

Along the characteristics (D.4), the equation (D.1) takes the form

dΠ̂

dx
= −βQβ−1γ(x)(sΠ̂− Πin). (D.5)

The two boundary conditions in (D.2) give rise to the boundary condition for (D.5),

Π̂(Q;x0, s) = Π̂0(ξ, s), x0 =


0 ξ ≥ 0

η ξ < 0

, Π̂0 =

∫ ∞
0

H [ξ − q0(t)] e−st dt.

(D.6)
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Substituting (D.4) into (D.5), solving the resulting ODE, and eliminating ξ in

favor of x and Q in the solution, yields

Π̂ =

∫ x

x0

e−s(C−A)Bdx′ + Π̂0(x0, s)e
−sC (D.7)

where

A =

∫ x′

x0

β[Q− I(x, x′′)]β−1γdx′′ (D.8a)

B = β[Q− I(x, x′)]β−1γH[Q− I(x, x′)− qin(x′)] (D.8b)

C =

∫ x

x0

β[Q− I(x, x′′)]β−1γdx′′, I(x, x′) =

∫ x

x′
S dx′′. (D.8c)

The inverse Laplace transform of (D.7)–(D.8) is given by

Π =

∫ x

x0

δ(t− C + A)Bdx′ +H(t− C)H[Q− I(x, 0)− q0(t− C)]. (D.9)

Evaluating the quadrature, while recalling the definitions of A, B and C in (D.8),

yields

Π = H[Q− I(x, x?)− qin(x?)] +H(t− C)H[Q− I(x, 0)− q0(t− C)]. (D.10)

Here x′ = x? is a solution of the equation

A(x, x′) = C(x, x′)− t (D.11)

for a given x and t. It follows from (D.8) that A(x, x?) ≥ 0 for all x and t.

This imposes the constraint C(x, x′) ≥ t on the parameter space of (D.11), which

translates into the Heaviside function H(C − t) in (4.16).



Appendix E

Integration of correlated random

fields

For intermediate x, we follow the approach presented in [95] to compute the

statistics of the integral Iγ(x) in (4.18). It is briefly reviewed here for completeness.

Let us subdivide the integration interval [0, x] into 2N intervals of length ∆ =

x/(2N). Then (4.18) can be rewritten as

Iγ(x) =
N∑
i=1

(Ii + Ji), Ii =

∫ 2i∆

(2i−1)∆

γ(x′)dx′, Ji =

∫ (2i−1)∆

(2i−2)∆

γ(x′)dx′.

(E.1)

Since γ(x) is stationary, the integrals Ii and Ji (i = 1, . . . , N) have the same mean

I = γ∆ and variance

σ2
I = σ2

γ

∫ 2i∆

(2i−1)∆

∫ 2i∆

(2i−1)∆

ργ(x
′ − x′′)dx′dx′′ = 2σ2

γ

∫ ∆

0

(∆− x)ργ(y)dy. (E.2)

106



107

The correlation coefficient between the two sums is given by

ρN

(
N∑
i=1

Ii,

N∑
j=1

Ij

)
=

2N − 1

2N

∫ ∆

0
ργ(y)dy∫ ∆

0
(∆− y)ργ(y)dy

. (E.3)

According to the central limit theorem for dependent processes, Iγ(x) =∑N
i=1(Ii+Ji) is asymptotically (as N →∞) Gaussian with mean 2NI and variance

2N(1 + ρN)σ2
I .
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[88] J. Tryoen, O. Le Mâıtre, M. Ndjing, and A. Ern, “Intrusive Galerkin methods
with upwinding for uncertain nonlinear hyperbolic systems,” J. Comp. Phys.,
vol. 229, no. 18, pp. 6485–6511, 2010.

[89] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[90] D. M. Tartakovsky and S. Broyda, “Pdf equations for advective-reactive
transport in heterogeneous porous media with uncertain properties,” J. Con-
tam. Hydrol., vol. 120-121, pp. 129–140, 2011.

[91] J. A. Seddon, “River hydraulics,” Trans. Amer. Soc. Civ. Engrs., vol. 43,
pp. 179–243, 1900.

[92] D. L. Buhman, T. K. Gates, and C. C. Watson, “Stochastic variability of
fluvial hydraulic geometry: Mississippi and Red rivers,” J. Hydr. Engrg.,
vol. 128, pp. 426–437, 2002.



115

[93] David Gottlieb and Dongbin Xiu, “Galerkin method for wave equations with
uncertain coefficients,” Commun. Comput. Phys., vol. 3, no. 2, pp. 505–518,
2008.

[94] R. H. Kraichnan, “Eddy viscosity and diffusivity: Exact formulas and ap-
proximations,” Complex Systems, vol. 1, pp. 805–820, 1987.

[95] O. Ditlevsen, G. Mohr, and P. Hoffmeyer, “Integration of non-Gaussian
fields,” Probab. Eng. Mech., vol. 11, pp. 15–23, 1996.

[96] Wayne Carmichael, Cyanobacterial Harmful Algal Blooms: State of the Sci-
ence and Research Needs, vol. 619, chapter 4: A world overview - One-
hundred-twenty-seven years of research on toxic cyanobacteria - Where do
we go from here?, pp. 105–125, Srpinger New York, 2008.

[97] W.K. Dodds, W.W. Bouska, J.L. Eitzmann, T.J. Pilger, K.L. Pitts, A.J.
Riley, J.T. Schloesser, and D.J. Thornbrugh, “Eutrophication of u.s, fresh-
waters: analysis of potential economic damages,” Environ. Sci. Technol.,
vol. 43, pp. 12–19, 2009.

[98] Heikki Haario, Leonid Kalachev, , and Marko Laine, “Reduced models for
algae growth,” Bulletin of Mathematical Biology, vol. 71, no. 7, pp. 1626–
1648, 2007.

[99] Dong-Wei Huang, Hong-Li Wang, Jian-Feng Feng, and Zhi-Wen Zhu, “Mod-
elling algal densities in harmful algal blooms (hab) with stochastic dynam-
ics,” Applied Mathematical Modelling, vol. 32, no. 7, pp. 1318–1326, 2008.

[100] H.K. Hudnell, C. Jones, B. Labisi, V. Lucero, D. R. Hill, and J. Eilers,
“Freshwater harmful algal bloom (fhab) suppression with solar powered cir-
culation (spc),” Harmful Algae, vol. 9, no. 2, pp. 208–217, 2010.

[101] Marko Laine, Adaptive MCMC methods with applications in environmental
and geophysical models, Ph.D. thesis, Lappeenranta university of tehcnology,
March 2008.

[102] H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applica-
tions, Springer, 2nd edition, 1989.


