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Abstract

Neural networks (NNs) are often used as surrogates or emulators of partial differential equations

(PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost

of such surrogates renders them an attractive tool for ensemble-based computation, which requires

a large number of repeated PDE solves. Since the latter are also needed to generate sufficient data

for NN training, the usefulness of NN-based surrogates hinges on the balance between the training

cost and the computational gain stemming from their deployment.

To reduce this cost, we propose to use multifidelity simulations in order to increase the amount

of data one can generate during the allocated computing time. High-, and low-fidelity images are

generated by solving PDEs on fine and coarse meshes, respectively; these multifidelity data are then

patched together in the process of training a deep convolutional NN (CNN) using transfer learning.

This strategy is further generalized to incorporate three levels of multifidelity data. We use theoreti-

cal results for multilevel Monte Carlo to guide our choice of the numbers of simulations (and resultant

images) of each kind. This multifidelity training is used to estimate the distribution of a quantity

of interest, whose dynamics is governed by a system of nonlinear PDEs with uncertain/random co-

efficients (e.g., parabolic PDEs governing the dynamics of multiphase flow in heterogeneous porous

media). Our numerical experiments demonstrate that a mixture of a comparatively large amount

of low-fidelity data and a much smaller amount of high-fidelity data provides an optimal balance

between computational speedup and prediction accuracy. When used in the context of uncertainty

iv



quantification, our multifidelity strategy is several orders of magnitude faster than either CNN train-

ing on high-fidelity images only or Monte Carlo solution of the PDEs. This computational speedup

is achieved while preserving the accuracy of the estimators of the distributions of the quantities of

interest, as expressed in terms of both the Wasserstein distance and the Kullback–Leibler divergence.

To further reduce the cost of data generation, we demonstrate that one can start the CNN

training for a new task (a given set of PDEs describing, e.g., reactive transport) from a CNN

that was originally trained for a different task (another set of PDEs, e.g., for multiphase flow). Our

numerical experiments show that this transfer learning approach yields a considerable speedup when

applied to the problem of the estimation of the distribution of a quantity of interest, whose dynamics

is prescribed by a system of nonlinear PDEs for advection-dispersion transport in porous media with

uncertain/random conductivity field. For a given amount of training data, the method has equal

or greater prediction accuracy and generalizability to unseen inputs than a CNN whose training is

initialized randomly.
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Chapter 1

Introduction

Machine learning techniques, especially neural networks (NNs), have affected every facet of human

activity and has permeated into the field of scientific computing. In the latter setting, NNs are used

to approximate highly nonlinear and irregular functions (Friedman et al., 2001), solve (ordinary and

partial) differential equations (e.g., Lee and Kang, 1990; Lagaris et al., 1998; Fuks and Tchelepi,

2020, among many others), and construct computationally cheap surrogates for ensemble-based

computation (e.g., Mo et al., 2019a; Raissi et al., 2019a). Examples of the latter include inverse

modeling (Mo et al., 2019b; Zhou and Tartakovsky, 2021), data assimilation (Tang et al., 2020), and

uncertainty quantification (UQ) (Tripathy and Bilionis, 2018; Zhu et al., 2019).

A typical ensemble-based computation involves repeated solves of (coupled, nonlinear) partial-

differential equations (PDEs),

N (u;θ) = g(x, t;θ), (x, t) ∈ D × (0, T ], (1.1)

which describe the spatiotemporal evolution of (a set of) state variables u(x, t) in the computational

domain D over the simulation time horizon (0, T ]. Multiple solves of Equation (1.1)—for different

values of the inputs θ(x, t) that parameterize the differential operator N , the source function g,

1



CHAPTER 1. INTRODUCTION 2

and auxiliary functions in the initial and/or boundary conditions—are required because these values

are known at best in terms of their distributions, which are either inferred from data or provided

by the expert. High computational cost of solving Equation (1.1) numerically often precludes one

from generating enough samples to obtain meaningful statistics of u(x, t) or the derived quantities

of interest. A surrogate of Equation (1.1) carries a negligible cost, making possible ensemble-based

computation with arbitrarily small sampling error.

Alternative strategies for surrogate construction include polynomial chaos expansions (Xiu, 2010),

Kriging or Gaussian processes (Couckuyt et al., 2014), polynomial regression (Montgomery and

Evans, 2018), tensor-product splines (Hwang and Martins, 2018) and random forests (Breiman,

2001). Current popularity of NN-based surrogates (Mo et al., 2019a; Raissi et al., 2019a) is grounded

in the scalability and approximation capabilities of deep NNs (Friedman et al., 2001; Tripathy and

Bilionis, 2018). Regardless of the surrogate type, the training of a surrogate requires a large number

of solves of Equation (1.1) for different combinations of parameter values θ. Advanced computer

architectures, e.g., CUDA-compatible graphics processing units (GPUs) and tensor processing units

(TPUs), are almost a necessity to train a large NN.

The combined cost of training-data acquisition and NN training can be so large as to negate

the benefits of the NN surrogate. This observation suggests that the practical utility of a NN as a

surrogate model hinges on one’s ability to reduce dramatically the cost of its construction. In this

thesis, we introduce two strategies to achieve this overarching goal. The first relies on multifidelity

simulations to reduce the cost of data generation for subsequent training of a deep convolutional NN

(CNN) using transfer learning. The second is to upcycle pretrained models, a process in which the

CNN training for a new task (a given set of PDEs) starts from a CNN that was originally trained

for a different task (another set of PDEs). These two complementary strategies are presented in

Chapters 2 and 3 and Chapter 4, respectively.

To fix the basic ideas undergirding this research, we start by providing a brief overview of NNs,

their use as surrogates of PDE-based models (Section 1.1), and transfer learning techniques for NN
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training (Section 1.2).

1.1 Neural Networks

NNs are universal function approximators (Cybenko, 1989; Heinecke et al., 2020; Zhou, 2020). If one

thinks of a a PDE-based model like Equation (1.1) as a function that maps the input θ onto output

u, a NN can be used to approximate this function, resulting in a surrogate for the PDE. In order

to gain insight into NN architecture selection for surrogate modeling, it is important to understand

the inner workings of a NN. We start with a linear input-output relation without bias,

û = wθ, (1.2)

where w is an Nû×Nθ matrix of weights; and Nû and Nθ are the number of elements in the output

and the number of elements in the input, respectively. An optimal set of weights is obtained by

minimizing the discrepancy between u and û.

Even after optimization, the linear model in (1.2) is unlikely to represent accurately the nonlin-

ear input-output relationship encoded in Equation (1.1). To handle nonlinearity one introduces a

nonlinear operator σ(·), which operates on each element of the vector wθ. Popular variants of this

so-called activation function include the rectified linear unit (ReLU),

σReLU(x) = max(0, x), (1.3a)

and the sigmoid function

σsigmoid(x) =
1

1 + e−x
. (1.3b)

With the addition of the activation function, the linear function approximation (1.2) is replaced

with its nonlinear counterpart,

û = σ(wθ) ≡ (σ ◦w)(θ). (1.4)
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This expression is referred to as a “layer” in machine learning jargon and provides the simplest

representation of a NN.

A “deep NN” is constructed by the repeated application of the activation function, resulting in

multiple (N) layers. The standard convention for layer counting does not count the input while the

output is counted as one of the N layers. For example, a four-layer deep NN, D4−layer, is defined as

û = D3−layer(w1,w2,w3;θ) = σ(w3σ(w2σ(w1θ))) ≡ (σ ◦w3)(σ ◦w2)(σ ◦w1)(θ). (1.5)

Thus, a deep NN with NL-layers, D(W;θ), approximates the model output u by

û = D(W;θ) = (σ ◦wNL−1) . . . (σ ◦w1)(θ), (1.6)

where W = {w1, . . . ,wNL
}; the weight matrix w1 has dimensions d1 × Nθ, the weight matrix

w2 dimensions d1 × d2, . . . , and the weight matrix wNL−1
dimensions Nθ × dNL−2; and di (i =

1, . . . , NL − 2) is the number of “neurons” in the ith layer. Deep NNs are interchangeably referred

to as “artificial NNs” or “multilayer perceptrons”.

1.1.1 Convolutional Neural Networks

As the number of layers, NL, and the number of neurons in each layer, di, increase, the number

of elements within the NN D, NW, grows multiplicatively and can become prohibitively large for

realistic finite computing-memory resources. CNNs (Goodfellow et al., 2013) use a convolution

operator, which maintains the spatial relationship in the input, to reduce NW. CNNs are widely

used in many image-related problems ranging from image recognition (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016) to image-to-image regression

(Mo et al., 2019b,a; Ronneberger et al., 2015; Zhou and Tartakovsky, 2021).

The core of a CNN is the convolutional layer which enables the CNN to perform computations
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Figure 1.1: Example of a convolutional filter in mid computation. The input is a 5× 5 matrix with
a padding of one (indicated by the grey zeros surrounding the input). The convolutional filter is a
3 × 3 matrix and the resulting output would be a 5 × 5 matrix. The convolutional filter (yellow)
scans a portion of the input data (blue) and produces parts of the output (green). The stride used
in this example is one.

while maintaining spatial relationships in the input and output. The convolutional filter, also com-

monly referred to as a kernel, is composed of trainable weights. The dimensions of the filter are

specified by “filter size”. During computation, the filter slides across the height and width of the

two-dimensional input while performing dot product between itself and the scanned portion of the

input. The sliding of the filter between each dot product operation is specified by “slide length”.

The input data is often subject to a “padding” or “zero-padding”, surrounding the input volume

with zeros around the border, to accommodate the filter size and control the dimensions of the

output. An example of this process is displayed in Figure 1.1.

Much like regular NNs, CNNs alternate between convolutional filters and nonlinear operators,

such as the sigmoid function and ReLU, to perform complex tasks. It is common practice to form

“blocks” or consecutive layers of the same input/output dimensions to perform tasks. As the CNN

becomes deeper, and the architecture requires for more layers, we may run into the problem of

vanishing gradients. One way to address this problem is to form dense blocks, within each of which

the later layers form connections to early layers to facilitate more effective training.
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In practice, odd filter sizes are preferred as even filter sizes cause asymmetry in how much of the

padding is reflected in the output. The construction of blocks calls for the selection of an odd filter

size F , which determines the padding P to be

P =
F − 1

2
. (1.7)

Assuming that we want a symmetric padding representation, for each dimension, we calculate the

output size Wout,

Wout =
W − F − 2P

S
+ 1, (1.8)

if we know the input size Win, filter size F , padding P , and stride length S. While square data and

filter dimensions are popular, they are not a requirement. Since equation (1.8) holds true for each

dimension, one can have different input size Win, filter size F , padding P , and stride length S in

different directions.

In contrast to blocks, a CNN may benefit from reducing or increasing the size of the output

volume. Two popular methods of reducing the volume of the output are pooling layers and using

stride lengths greater than one. A pooling layer is a convolutional operation that examines an area

of the input volume and allows only limited information to pass trough. An example of a pooling

layer is the max-pool, which scans an area of the input and allows only the maximum value of

the scanned area to pass through. A stride length of more than one reduces the output size by a

factor of the stride length. To increase the size of the output volume, a two-dimensional transposed

convolution is commonly used; a typical volume inside of a CNN operating on two-dimensional data

has three characteristics: channels, length, and width. The channels are determined by the number of

convolutional filters the input is subjected to. The two-dimensional transposed convolution collapses

the number of output channels, compared to the number of input channels, while increasing the

length and width of the output.
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1.1.2 Neural Network Training Strategy

The specific training strategies associated with each method in this thesis are included in their

respective chapter. However, the training of a NN via stochastic gradient descent (SGD) requires

the following common steps:

1. Evaluate the loss of a model based on a forward pass

2. Calculate the derivatives of the weights with respect to the loss

3. Update weights based on the derivatives

Loss functions enable NN training to be posed as an optimization problem in which the weights are

modified to minimize a loss function. The loss function often takes the following form:

Loss = f(u, û) +R||W||. (1.9)

Popular loss terms associated with the discrepancies between the data and their NN representation,

f(u, û), include root mean square error (RMSE),

RMSE =

√√√√ 1

N

N∑
i=1

(ui − ûi)2, (1.10a)

and mean absolute error (MAE),

MAE =
1

N

N∑
i=1

|ui − ûi|, (1.10b)

where N is the number of data points used for the NN training. The loss associated with the mag-

nitude of the weights, R||W||, is called the regularization term. The regularization term penalizes

large weights based on R and the norm taken to calculate the regularization term. The PyTorch

implementation of the weight decay coefficient R is controlled through weight decay ψ.

Once the loss is calculated, the derivatives are computed using back propagation. Then the
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weights W are updated according to a variant of SGD. While there are many variants of SGD, the

original formulation of GD captures many of the core ideas behind NN training. The GD procedure

to update the weights of a NN is

Wi+1 = Wi − η∇Wi
Loss(Wi,ui, ûi), (1.11)

where the index i organizes training progression and η refers to the learning rate. When index i

reaches the number of training data Ntrain, when all of the training data has been used by the

training process once, we say that the training process has gone through one epoch. The selection

of learning rate η is very important: if η is too small, the training will be slow with a high risk of

getting stuck in local optima; too big and the training may skip the optimum. To address this issue,

one employs a training scheduler.

A scheduler changes various training parameters during training. It can enable the training

procedure to start with large learning rates to quickly get near the optimum then reduce the learning

rate to fine-tune the training process. The change of learning rate is prescribed by factor γ, which

changes the learning rate according to

ηj+1 = γηj , (1.12)

where j is an index marking the progression of the scheduler updates. Common scheduler progression

schemes include reducing learning rate based on epoch and reducing learning rate when the training

error plateaus. When setting up a scheduler, setting a minimum learning rate is often a good idea

as a learning rate that is too small can functionally halt the training process.

1.1.3 Neural Networks as Surrogate Models

The use of a NN as a surrogate for the PDE-based model implies the availability of domain-specific

knowledge about the system under investigation; such knowledge (e.g., conservation laws) is encap-

sulated in the PDE formulation. Some of the NN-based surrogate modeling techniques are discussed
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below; the presentation follows the original citation, while retaining our nomenclature to maintain

consistency within this thesis.

Physics Informed Learning/Physics Informed Neural Network

Physics-informed learning (Raissi et al., 2021) is a popular framework to train surrogate models.

It has been applied to Gaussian process regression (Raissi et al., 2017, 2018) and physics-informed

neural networks (PINNs) (Raissi et al., 2019b; Cai et al., 2022). PINNs have been applied to incom-

pressible (Jin et al., 2021; Raissi et al., 2020) and compressible (Mao et al., 2020) fluid flows. PINNs

use domain knowledge (known PDEs) to formulate the minimization problem used to determine the

weights W in Equation (1.6); it can be used with any NN architecture.

Specifically, it is used to formulate a loss function that quantifies the discrepancy between the

data (PDE solution) u and its NN approximation û. Common loss functions include RMSE and

MAE. In a PINN, such loss functions are augmented with additional terms:

Loss = Lossdata + Lossconstrain + LossPDE. (1.13)

The term Lossdata = RMSE or MAE accounts for the discrepancy between the data u and ob-

servations or the model prediction û; the term Lossconstrain enforces the physical constraints, e.g.,

positivity of the state variables and the monotonicity of certain relationships between the state vari-

ables; and the term LossPDE accounts for the known physics encapsulated in the PDE that was used

to generate the data.

By embedding the domain knowledge in the loss function formulation, PINNs might achieve

higher prediction accuracy then their purely data-driven NN counterparts in Equation (1.10). How-

ever, the PINN workflow is ineffective if little is known about the data set, or if the loss function

terms are difficult to calculate. The quality of a PINN-based surrogate depends crucially on the

amount of data one can afford to generate by running the PDE-based simulation for different com-

binations of the input parameters, i.e., on N in Equation (1.10).
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Deep Convolutional Encoder-Decoder Network

The deep convolutional encoder-decoder network (Zhu and Zabaras, 2018), a CNN variant, is an

architecture that often yields accurate surrogates for various fluid flow problems, e.g., single- (Mo

et al., 2019a) and multi-phase (Mo et al., 2019b) flows and reactive solute transport (Zhou and Tar-

takovsky, 2021) in porous media, and performed various ensemble calculation tasks, e.g., uncertainty

quantification (Mo et al., 2019a,b) and parameter estimation (Zhou and Tartakovsky, 2021). Con-

volutional encoder-decoder and the dense layers are two key devices within the model architecture

which assist in the surrogate model construction.

The convolutional encoder-decoder architecture’s first layers operate on the input dimensions.

Subsequent layers “encode” to function on a smaller dimension; this encoded state is also called the

latent state and thought to be a low-dimensional representation of the original inputs. Then the

encoded latent layer is decoded to function at the dimensions of the outputs. The encoder-decoder

is a dimensionality-reduction technique that helps mitigate the “curse of dimensionality”; the latter

is a primary reason for the failure of many surrogate methods when high-dimensional inputs are

trained on limited data (Lin and Tartakovsky, 2009). The exact size, number of layers used by the

CNN, is determined by two factors: initial features and growth rate. The effect of network size is

investigated in Appendix A.

The CNN layers are organized in dense blocks (Huang et al., 2017). Each dense block contains

connections between nonadjacent layers which enhance the flow of information during training.

These dense blocks differentiate the CNN from other encoder-decoders such as the one found in

UNet (Ronneberger et al., 2015).

As the CNN encodes and decodes, the intermediate and latent dimensions can be specified.

Multifidelity data, e.g., data generated by solving a PDE on grids with different spatiotemporal

resolutions, can be generated to match the dimensions of the intermediate and latent variables. We

choose the CNN architecture because of its prescribable intermediate and latent dimensions along
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with the two devices mentioned above.

1.2 Transfer Learning

Transfer learning (Donahue et al., 2014) is the process of taking a model trained on one task and

applying it to another (remotely) related task. Starting with a pretrained model, the process of

transfer learning proceeds as follows:

1. Lock, i.e., prevent from updating during training, most of the weights and only allow a few

layers near the output to update;

2. Train the updatable weights on the new data;

3. Unlock the entire model and allow all weights to update during training;

4. Fine-tune the entire NN on the new data.

The intuition behind initially locking the weights closer to the input is to allow the pretrained weights

to identify key relationships in the data and not over-train to the new data. In computer-vision

applications, transfer learning is the norm; such applications include generation of image description

(Karpathy and Fei-Fei, 2015), face detection (Jiang and Learned-Miller, 2017), and construction of

PINNs (Haghighat et al., 2021). The detailed methodology on how to apply transfer learning is

described in each Chapter.

1.3 Dissertation Overview

A CNN capable of making predictions for realizations of θ(x) outside of the training data-set requires

a large number Ntrain of PDE solves; e.g., Ntrain ∼ 1500 was used by Zhou and Tartakovsky (2021)

and Mo et al. (2019a) to train encoder-decoder CNNs similar to ours. For situations where each

forward PDE solve is computationally expensive, the computational cost associated with large Ntrain

can be so expensive as to render the CNN training unfeasible. To address this problem, we implement
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transfer learning in different ways: using multiresolution/multifidelity data and starting from a model

pretrained on a different application.

The idea of using multifidelity data in the context of NNs is not unique to this study. For

example, Geneva and Zabaras (2020) trained surrogate models using low-fidelity simulations as a

conditional input. Meng and Karniadakis (2020) built fully-connected NN surrogates by training

different networks to handle the low- and high-fidelity data. The novelty of our approach is to deploy

transfer learning on multifidelity data to train different parts of a single network. This thesis places

a focus on minimizing the computational cost of the generation of data needed to train the model as

this directly increases the utility of such surrogate models. The value of the trained surrogate model

is also evaluated through a UQ task where distributions are generated using the surrogate models for

a far lower data generation cost than the computational costs associated with a comparable Monte

Carlo (MC) simulation.

This dissertation is organized in the following way. In Chapter 2, we present a framework to

train a CNN surrogate on multifidelity data using transfer learning. The CNN is able to accurately

predict multiphase flow solution on a fine mesh, while being trained on two levels of data: coarse and

fine data. The accuracy and training data requirements of the CNN trained on multifidelity data are

compared to those of CNNs trained on only fine or coarse data. The CNN trained on multifidelity

data is also used for uncertainty quantification, and the results are compared with traditional MC

simulations. This work has been published in the Journal of Machine Learning for Modeling and

Computing (Song and Tartakovsky, 2021).

In Chapter 3, we expand the technique developed in Chapter 2 to accommodate three levels of

training data. This further reduces the data generation cost. The CNN trained on multifidelity data

is again compared to CNNs trained on single-resolution data. Furthermore, the performance of the

CNN surrogate for uncertainty quantification is evaluated.

Chapter 4 presents a framework to effectively retrain a CNN model. We take a CNN previously

trained to solve a multiphase problem (CNN from Chapter 4) and apply concepts from transfer
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learning to retrain the model to solve an advection-dispersion transport problem. The data require-

ment and accuracy of this technique are evaluated. Also, the UQ performance of this method is

benchmarked against MC Simulations.



Chapter 2

Training on Two Levels of Data

Neural networks (NNs) are often used as surrogates or emulators of partial differential equations

(PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost

of such surrogates renders them an attractive tool for ensemble-based computation, which requires

a large number of repeated PDE solves. Because the latter are also needed to generate sufficient

data for NN training, the usefulness of NN-based surrogates hinges on the balance between the

training cost and the computational gain stemming from their deployment. We rely on multifidelity

simulations to reduce the cost of data generation for subsequent training of a deep convolutional NN

(CNN) using transfer learning. Two sets of high- and low-fidelity images are generated by solving

PDEs on fine and coarse meshes, respectively. We use theoretical results for multilevel Monte

Carlo (MLMC) to guide our choice of the numbers of images of each kind. We demonstrate the

performance of this multifidelity training strategy on the problem of estimation of the distribution

of a quantity of interest, whose dynamics is governed by a system of nonlinear PDEs (parabolic

PDEs of multiphase flow in heterogeneous porous media) with uncertain/random parameters. Our

numerical experiments demonstrate that a mixture of a comparatively large number of low-fidelity

data and smaller numbers of high- and low-fidelity data provides an optimal balance of computational

14
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speed-up and prediction accuracy. The former is reported relative to both CNN training on high-

fidelity images only and MC simulation solution of the PDEs. The latter is expressed in terms of

both the Wasserstein distance and the Kullback–Leibler divergence.

2.1 Introduction

The combined cost of training-data acquisition and NN training can be so large as to negate the

benefits of the NN. This observation suggests that the practical utility of a NN as a surrogate model

hinges on one’s ability to dramatically reduce the cost of its construction. We rely on multi-fidelity

simulations to reduce the cost of data generation for subsequent training of a deep convolutional

NN (CNN) using transfer learning. High- and low-fidelity images are generated by solving the PDE

described by Equation (1.1) on fine and coarse meshes, respectively. A fine mesh is defined by the

need to resolve the spatiotemporal variability of the model’s inputs θ and outputs u; the resulting

high-fidelity simulation carries a high computational cost. Lower-fidelity solutions of Equation (1.1),

obtained on coarser meshes on which appropriately homogenized inputs θhom are defined, are cheaper

to compute but less accurate. We train a CNN on a mixture of these multifidelity data, using the

theoretical results for MLMC (Heinrich, 1998, 2001; Giles, 2008; Taverniers et al., 2020) to guide

our choice of the numbers of solutions u(x, t) of each kind. Similar to MLMC (Müller et al.,

2013; Peherstorfer, 2019), the varying fidelity (also referred as “levels”) of predictions of u can be

achieved not only by solving Equation (1.1) on different meshes, but also by replacing Equation (1.1)

with its cheaper-to-compute counterparts. For example, the multiphase flow equations used as the

computational testbed in this study can be replaced with the cheaper-to-solve Richards equation

and Green-Ampt equation (Yang et al., 2020; Sinsbeck and Tartakovsky, 2015), each of which

encapsulates progressively simplified physics. We leave this aspect of NN training on multifidelity

data for a follow-up study.

The idea of using multifidelity data in the context of NNs is not unique to this study. For

example, Geneva and Zabaras (2020) trained surrogate models using low-fidelity simulations as a
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conditional input. Meng and Karniadakis (2020) built fully-connected NN surrogates by training

different networks to handle the low- and-high fidelity data. The novelty of our approach is to deploy

transfer learning on multifidelity data to train different parts of a single network.

Section 2.2 contains a brief description of our CNN and the workflow for its training on multifi-

delity of data. The performance of this algorithm is tested on a system of nonlinear parabolic PDEs

governing multiphase flow in a heterogeneous porous medium with uncertain properties, which are

formulated in Section 2.3. In Section 2.4, we demonstrate the accuracy and computational efficiency

of the CNN-based surrogate used to quantify predictive uncertainty of Equation (1.1) in terms of

the distribution of a quantity of interest. Main conclusions drawn from this study are presented in

Section 2.5.

2.2 Deep Convolutional Neural Networks

The CNN-based surrogate is set up as an image-to-image regression model (Zhou and Tartakovsky,

2021). To train and test the network, we use the parameter values θ(xi) in Nel elements {xi}Nel
i=1 of a

numerical grid as input and the discretized solution u(xi, tk) of the PDE described by Equation (1.1)

at Nts time steps {tk}Nts

k=1 as output. To facilitate the generalizibility of the trained CNN to unseen

sets of the input θ(xi), i.e., to ensure that the CNN is not over-fitted to a particular choice of θ(xi),

the training data comprises a large number Ntrain of the solutions u obtained for Ntrain realizations

{θ1, . . . ,θNtrain
} of the input θ. The loss function,

L(w) =

Ntrain∑
m=1

Nel∑
i=1

Nts∑
k=1

|u(xi, tk;θm)− ûik(w;θm)|+R

Nw∑
n=1

w2
n (2.1)

consists of two parts. The first represents the L1-norm discrepancy between the state variables u

predicted by solving the PDE described by Equation (1.1), u(xi, tk) and estimated by the CNN,

ûik(w), with Nw weights w = (w1, . . . , wNw)>. The L2-norm regularization prevents over-fitting by

penalizing large weights w associated complex models; the regularization parameter R determines
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how much regularization penalty is applied. The CNN training consists of finding a set of weights

w? that minimizes L.

2.2.1 Transfer Learning

Transfer learning has been implemented for face detection (Jiang and Learned-Miller, 2017), gener-

ation of image description (Karpathy and Fei-Fei, 2015), and construction of physics-informed NNs

(Haghighat et al., 2021), among other applications.

Let HFS and LFS data refer to the solutions of Equation (1.1), u(xi, tk), obtained on the fine

(Nel = NHFS
el ) and coarse (Nel = NLFS

el with NLFS
el < NHFS

el ) meshes, respectively. If Nw in Equa-

tion (2.1) denotes the number of weights in the CNN trained on the HFS data, then our implemen-

tation of transfer learning starts with the construction of a CNN composed of NLFS (NLFS < Nw)

weights wLFS = (w1, . . . , wNLFS
)> trained on the LFS data. Then, the HFS data are used to train the

desired high-resolution CNN, i.e., to determine the remaining weights wHFS = (wNLFS+1, . . . , wNw
)>.

This transfer learning strategy is depicted in Figure 2.1 and detailed below.

2.2.2 Workflow for CNN Training on Multifidelity Data

Our strategy for CNN training on multifidelity data consists of three phases (Figure 2.1), each

of which results in a CNN denoted by Mi (i = 1, 2, 3). During Phase 1, the CNN M1 with the

NLFS
el × NLFS

el output is trained on the LFS data. In Phase 2, the CNN M2 with NHFS
el × NHFS

el

output is constructed by adding an additional layer with the weights wHFS, which are trained on the

HFS data while keeping the original weights wLFS locked. Phase 3 consists of fine-tuning the CNN

M2 by allowing all the weights w = {wLFS,wHFS} to update during the training on the same HFS

data. The numerical experiments reported in Sections 2.3 and 2.4 demonstrate that this transfer

learning strategy significantly reduces the number of high-resolution PDE solves.

The workflow of our approach is provided below.

Phase 1: Train a CNN M1, with NLFS
el ×NLFS

el output, on the LFS data.
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Figure 2.1: Workflow for CNN training on multifidelity data. Phase 1 returns a low-resolution CNN
trained on the LFS data. Phase 2 supplements that network with an additional layer whose weights
are determined from the HFS data, producing a high-resolution CNN. In Phase 3, the latter is
fine-tuned by allowing all the weights to vary during the training on the same HFS data.
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State 1.1: Initialize the transfer learning by employing the encoder-decoder CNN of Mo et al.

(2019b), Minit with NHFS
el ×NHFS

el output, whose Nw weights w are set to PyTorch

defaults.

State 1.2: Train the CNN M1 on the LFS data. The starting point is a CNN obtained

from Minit by replacing its last layer Llast, which has NHFS weights wHFS, with a

temporary convolution layer Ltemp. The latter is composed of weights wtemp and

makes output of M1 match the dimensions of the LFS data, [Nts×NLFS
el ×NLFS

el ].

Then, the weights of M1, wphase1 = {wHFS,wtemp} are trained on the LFS data

by minimizing (2.1).

Phase 2: Train a CNN M2, with Nw weights w = {wLFS,wHFS} (of which NLFS weights are

locked) and NHFS
el ×NHFS

el output, on the HFS data

State 2.1: Build a CNN from M1 by replacing its layer Ltemp with the layer Llast and dis-

carding Ltemp. The modified CNN has weights w = {wLFS,wHFS}, among which

weights wLFS have been updated by data and wHFS have not been updated by

data.

State 2.2: Train the resulting CNN M2 on the HFS data by minimizing Equation (2.1) over

the weights wHFS of layer Llast, while keeping the remaining weights wLFS locked

at their values in M1.

Phase 3: Train a CNN M3 on the HFS data by allowing all weights w of M2 to vary during the

minimization

Because the bulk of the CNN M3 training is carried out on the LFS data, this procedure is more

efficient than CNN training solely on HFS data. The predictive capability of the trained M2 is

only sometimes similar to that of the trained M3; Phase 3 improves the performance if changes are

needed in the layers which were locked during Phase 2.
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2.3 Computational Example: Multiphase Flow

Numerical solution of problems involving multiphase flow in porous media is notoriously difficult

because of the high degree of nonlinearity and stiffness of the governing PDEs. Each forward

solve of these PDEs is so expensive that ensemble forward solves are uncommon, e.g., uncertainty

quantification efforts in petroleum engineering have been based on as few as three model runs. This

high cost and numerical complexity make the multiphase flow equations a challenging testbed for

ensemble-based simulations.

We consider horizontal flow of two incompressible and immiscible fluids, with viscosities µ1 and

µ2, in a heterogeneous, incompressible, and isotropic porous medium D. The latter is characterized

by porosity φ and intrinsic permeability k. The viscosities of both phases are assumed to be constant

µ1 = µ2 = 1 × 10−3 kg/(m·s). The porosity is assumed to be constant φ = 0.25, and intrinsic

permeability k(x) is treated as a random variable. The time domain t is between zero and a specified

terminal time T . Mass conservation of the `th fluid phase (` = 1, 2) implies

φ
∂S`
∂t

+∇ · v` + q` = 0, x ≡ (x1, x2)> ∈ D, t ∈ [0, T ], (2.2a)

where S`(x, t) is the phase saturation constrained by S1 + S2 = 1; q` is the source/sink term; and

the macroscopic velocity v`(x, t) is described by the generalized Darcy law

v` = −kkr`
µ`
∇P`. (2.2b)

The relative permeability for the `th phase, kr`, varies with the phase saturation, kr` = kr`(S`), in

accordance with the Brooks-Corey constitutive model (Corey, 1954). The Brooks-Corey constitutive

model prescribes relative permeability as:

kr` = kr`,maxS
N`

` (2.3)
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where kr`,max is the maximum relative permeability for the `th phase and N` are curve shape

parameters used to define the relative permeability curves. The kr`,max and N` values used for this

computational example are provided in Table 2.1.

Table 2.1: Variables used to determine relative permeability curves

Variable Value
kr1,max 1
kr2,max 1
N1 2
N2 2.5

Following Taverniers et al. (2020) and many others, we neglect the capillary forces, i.e., assume

pressure within the two phases to be equal, P1 = P2 ≡ P (x, t); that is a common assumption in

applications to reservoir engineering and carbon sequestration. In this specific numerical example,

the subscripts ` = 1 and 2 represent water and oil respectively.

The two-dimensional computational spatial domain D is a 150 m × 150 m square (Figure 2.2)

with the impermeable bottom (Γb or x2 = 0) and top (Γt or x2 = 150 m) boundaries; Dirichlet

conditions are imposed along the left (Γl or x1 = 0) and right (Γr or x1 = 150 m) boundaries:

∂P

∂x2
= 0, x ∈ Γb ∪ Γt; P = 10.2 & S1 = 1.0, x ∈ Γl; P = 10.1, x ∈ Γr; (2.4a)

here and below, the pressure P is expressed in MPa. Initial conditions are

P (x, 0) = 10.1, S1(x, 0) = 0, x ∈ D. (2.4b)

All the model parameters, except for the intrinsic permeability k(x), are assumed to be constant

and known with certainty. The uncertain permeability k(x) is modeled as a second-order stationary

random field, such that Y (x) = ln k is multivariate Gaussian with mean 〈Y 〉 = 0, variance σ2
Y = 2.0,

and an exponential two-point covariance C(x,y) = σ2
Y exp(−|x − y|/λY ). A correlation length of

λY = 19 m was used to generate one set of intrinsic permeability fields and a correlation length of
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Figure 2.2: Representative realizations of log permeability fields Y = ln k on the 128 × 128 grid,
which are used in high-fidelity simulations. A correlation length of λY = 19 m was used to generate
the top permeability field, and a correlation length of λY = 8 m was used to generate the bottom
permeability field. Permeability k is expressed in mDarcy.
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λY = 8 m was used to generate the other set of intrinsic permeability fields. We use a truncated

Karhunen-Loéve expansion with p = 31 terms to represent Y (x) (Taverniers et al., 2020). A rep-

resentative realization of the resulting permeability field is shown in Figure 2.2 for the 128 × 128

mesh.

Equations (2.2)–(2.4) are approximated using a finite volume scheme in space and implicit Euler

scheme in time, yielding a highly nonlinear algebraic system (Aziz, 1979). Adaptive time-stepping

is implemented to advance the solution in time. At each time step, the nonlinear algebraic system

is solved through Newton-Raphson (NR) iterations with the modified Appleyard update dampening

(Appleyard et al., 1981) that improves the convergence of NR iterations by capping the maximum

saturation update to a specified limit. For the νth iteration and the ith cell of volume Vi, the

convergence criteria are:

max
i

∣∣∣∣∆t( r`,iφVi

)∣∣∣∣ < ε1, max
i
|P (ν+1)
i − P (ν)

i | < ε2, max
i
|S(ν+1)
`,i − S(ν)

`,i | < ε3 (2.5)

where r`,i is the residual of the mass balance of phase `, ∆t is the time step, the relative residual

norm ε1 = 10−6, the maximum pressure update ε2 = 10−3, and the maximum saturation update

ε3 = 10−2.

2.3.1 Upscaling of Permeability

Multifidelity data are generated by solving Equation (2.2)–(2.4) on progressively coarsened grids:

the 128×128 and 64×64 grids are used for HFS and LFS, respectively. When we use the correlation

length of λY = 19 m, the spatial discretizations of these HFS and LFS (∆x = 1.17 m and 2.34 m,

respectively) are sufficient to capture the randomness in permeability fields. The latter rests on

the “rule of thumb” requirement that ∆x be such that 4∆x ≤ λY , i.e., that a numerical mesh

should have at least four elements of length ∆x per correlation length λY (e.g., Ye et al., 2004, and

references therein). However when the correlation length of λY = 8 m is used, only the HFS satisfies

this requirement.
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The grid coarsening must be accomplished by upscaling (coarsening) of the realizations of the

random permeability k̂ which are initially generated at the finest scale (Figure 2.2). Among al-

ternative upscaling strategies (Paleologos et al., 1996; Tartakovsky and Neuman, 1998; Boso and

Tartakovsky, 2018), we select the one proposed by Durlofsky (2005) because of its computational

simplicity. This method turns a scalar permeability field defined on the fine (128× 128) mesh into

its upscaled tensorial (anisotropic) counterpart whose off-diagonal components are zero and the di-

agonal components are computed as the distance-weighted arithmetic mean perpendicular to the

direction of flow and the distance-weighted harmonic mean in the direction of flow.

2.3.2 Data Acquisition

Multifidelity training data come in the form of Nts = 16 temporal snapshots of the saturation

S1(x, t) computed by solving Equation (2.2)–(2.4) on the Nel×Nel grids with Nel = 128 ≡ NHFS
el and

64 ≡ NLFS
el . While two sets of data are generated for each of the correlation lengths, Figure 2.3 shows

examples of such images, corresponding to the permeability field generated using the correlation

length of λY = 19 m in Figure 2.2. The permeability fields on the finest mesh, [1×NHFS ×NHFS],

are used as the input θ for all CNNs. The size of of the CNN, [Nts×Nel×Nel], depends on the size

of the training data.

The numerical solutions of Equation (2.2)–(2.4) are obtained using a Matlab-based multiphase

flow simulator on a computer with an Intel Core i7-4790 3.6GHz processor and 64GB of RAM.

The average computation time for each HFS data point is 219.13 sec and 37.13 sec for each LFS

data point. These computation times were consistent for both data sets corresponding to different

correlation lengths. The time needed to generate a data set is henceforth referred as “data-generation

budget”.
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Figure 2.3: Temporal snapshots of saturation S1(x, t) computed with HFS (top-row) and LFS
(bottom-row) for the permeability field k(x) generated using the correlation length of λY = 19 m in
Figure 2.2.

2.3.3 CNN Training

Table 2.2 describes the CNN architecture used in the implementation of our approach (see Fig-

ure 2.1). The model implementation and training is done using PyTorch and other open source

packages. The computations were carried out on the Stanford Mazama high-performance comput-

ing cluster. The allocated computing resources include Intel Xenon Gold 6126 CPU (2.6 GHz),

60GB RAM, and Nvidia V100 GPU with 16GB vRAM. (Although available, multicores were not

used for this work.)

The key hyperparameters affecting the CNN performance are the learning rate η, the weight decay

ψ, the factor γ, and the minimum learning rate ηmin. The η and ψ are parameters of the Adam

optimizer (Kingma and Ba, 2014), and the γ and ηmin are parameters of the ReduceLROnPlateau

scheduler. The CNN training involves many more hyperparameters, but we use their default values

in PyTorch. The regularization parameter R is specified through ψ following the implementation

of Loshchilov and Hutter (2017). Further information on the hyperparameters, schedulers, and
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Table 2.2: Model block description and the input and output dimensions of each model block. In
our numerical experiments, the number of time steps is Nts = 16; the number of elements in fine
and coarse meshes is NHFS

el × NHFS
el = 128 × 128 and NLFS

el × NLFS
el = 64 × 64, respectively; the

number of elements in the output of the dense block is Ndense = 32; and the number of channels in
each of the seven layers of the CNN is n1 = 64, n2 = 344, n3 = 172, n4 = 652, n5 = 326, n6 = 606,
and n7 = 303.

Layer Input Output
Input: Permeability field k 1×NHFS ×NHFS

Convolution 1 n1 ×NHFS
el ×NHFS

el n2 ×NLFS
el ×NLFS

el

Dense Block (Encoding) n2 ×NLFS
el ×NLFS

el n3 ×NLFS
el ×NLFS

el

Convolution 2 n3 ×NLFS
el ×NLFS

el n4 ×Ndense ×Ndense

Dense Block n4 ×Ndense ×Ndense n5 ×Ndense ×Ndense

Convolution Transpose 1 n5 ×Ndense ×Ndense n6 ×NLFS
el ×NLFS

el

Dense Block (Decoding) n6 ×NLFS
el ×NLFS

el n7 ×NLFS
el ×NLFS

el

Convolution Transpose 2 n7 ×NLFS
el ×NLFS

el Nts ×NHFS
el ×NHFS

el

Output: Saturation map Ŝ Nts ×NHFS
el ×NHFS

el

optimizers can be found in the PyTorch documentation (Paszke et al., 2019).

Table 2.3: Learning rates and epochs used at each phase.

Learning rate Epochs
Phase 1 5× 10−3 170
Phase 2 5× 10−3 150
Phase 3 10−4 100

The hyperparameter search was conducted on the data generated using the correlation length

of λY = 19 m. The same hyperparameters were used for the experiments using the data generated

using the correlation length of λY = 8 m. The hyperparameters used by Mo et al. (2019b) in a similar

CNN architecture serve as an initial guess for the hyperparameter optimization. The search iterated,

in order, through variations of η, ψ, γ, and ηmin. Once an acceptable value of a hyperparameter

was found, the search moved to the next hyper parameter. A robust grid search may yield a more

optimal set of hyper parameters. The search required 100 HFS, with each training pass taking about

0.65 hours to complete, when 200 epochs were used. It took 7.2 training-hours to find functional

hyperparameters (12 training passes), and a considerably smaller wall-clock time because this task

was parallelized across several GPU nodes. We selected the hyperparameter values yielding the

smallest root mean square error (RMSE) on the HFS test data (Figure 2.4). These values are used
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Figure 2.4: Hyperparameter performance in the neighborhood of optimum hyper parameter set
in terms of the root mean square error (RMSE) for the test data. The data set used for this
hyperparameter search are the simulations using permeability maps generated according to the
correlation length of λY = 19 m. Unless labeled as the x-axis variable, all plot correspond to
η = 5 × 10−3, ψ = 1 × 10−5, γ = 0.6, and ηmin = 5 × 10−6. Each data point represents the mean
and standard deviation of ten training sessions.
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as a starting point in the hyperparameter optimization for multifidelity transfer learning. Then, the

η and epochs at each phase (Section 2.2.2) are modified to minimize the RMSE on the corresponding

test data. The resulting hyperparameter values are shown in Table 2.3.

2.4 Results

CNNs were trained and the predictive accuracy and UQ performance were evaluated on data sets

generated using correlation lengths of λY = 19 m and λY = 8 m. The data and results associated

with the correlation lengths of λY = 19 m and λY = 8 m are referred to as “long” and “short”,

respectively. The long data set was used to initially explore the effectiveness of training the CNN

on multilevel data using transfer learning. The short data set serves to demonstrate the robustness

of the CNN architecture and selected hyper parameters.

2.4.1 Models Trained on Long Data

Once trained on multifidelity long data (in this example, on 573 LFS and 100 HFS, which took 12

hours to generate), the CNN surrogate provides an accurate approximation of the PDE solution on

the fine mesh, even for such highly nonlinear problems as Equation (2.2) that exhibit sharp dynamic

fronts. A forward pass of the CNN surrogate is on the order of a second, whereas the fine-mesh PDE

solution takes nearly 220 seconds. This two orders of magnitude speed-up makes CNN surrogates

an invaluable tool for UQ (Section 4.4.2).

Model Performance

We compare the relative performance of the CNN trained on multifidelity data and the CNNs

trained on either HFS data or LFS data, in terms of both accuracy (RMSE on test data) and

computational cost. We also investigate the effect of varying the amount of HFS and LFS data for

a given computational budget of 12 hours.

To train the high-resolution (128×128 output) CNN solely on the LFS (64×64) data, the latter
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Figure 2.5: Temporal snapshots of the saturation maps S1(x, t) for the permeability field k(x)
generated using the correlation length of λY = 19 m in Figure 2.2. These are generated with either
HFS of the PDE model described by Equation (2.2) and Equation (2.4) (labeled as S in the first
and fourth columns) or the CNN surrogate (labeled as Ŝ) in the second and fifth columns). The
third and sixth columns display the absolute difference between the two predictions, |S − Ŝ|.
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have to be downscaled to match the dimensions. We do so by taking the Kronecker product of a

64× 64 LFS image and a 2× 2 matrix of 1s. The Kronecker product operation, commonly denoted

by “⊗”, is defined as: given a m× n matrix A and a p× q matrix B, the Kronecker product A⊗B

results in a mp× nq matrix C with elements defined by

cαβ = aijbkl, α ≡ p(i− 1) + k, β ≡ q(j − 1) + l. (2.6)

In our application, the modified LFS data is C, LFS data is A, and the 2 × 2 matrix of ones is

B. When the definition in Equation 2.6 is applied, the transformed LFS data C would take a form

which contains 2× 2 clusters of the elements of A:

C = A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

. (2.7)

The transformed LFS data have the desired HFS dimensions, while containing the same information

as the original image. The test data are composed of HFS images (PDE solves on fine mesh) that

were not used for CNN training.

Figure 2.6 exhibits the RMSEs on test data of the CNNs trained on high-, low-, and multifidelity

data as function of the computational budget; each point in these graphs represents an average over

ten repetitions of training and is accompanied by error bars (the standard deviation).

The left plate of Figure 2.6 reveals that, if the data-generation budget does not exceed 20 hours,

the CNN trained on the LFS data outperforms its HFS-trained counterpart in terms of RMSE.

That is because such budgets do not allow for generation of sufficient amounts of HFS data. As the

budget increases, the error of the LFS data precludes RMSE of the CNN trained on such data from

dropping below 0.125 while RMSE of the HFS-trained CNN continues to decrease. This finding is

reminiscent of the cost-constrained selection between high- and low-fidelity models in the context of

ensemble-based simulations (Yang et al., 2020; Sinsbeck and Tartakovsky, 2015). This figure also
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Figure 2.6: RMSE on test data for the alternative CNN training strategies. It is plotted as function
of the budget allocated for data generation (left) and the number of PDE solves on the fine mesh
used to generate HFS data (right). Each RMSE point in these graphs represents an average over
ten iterations of training and is accompanied by error bars (the standard deviation). The left plate
provides RMSE for the CNNs trained on high-fidelity (blue circles), low-fidelity (red triangles), or
multifidelity (black ×) data. The latter corresponds to the CNN trained on an optimal (the lowest
RMSE) mix of high- and low-fidelity data for a set budget of 12 hours; it is contrasted with the
RMSE of the CNN trained on the HFS data generated within the same budget (blue square). The
black circles in the right plate represent RMSE of the CNN trained on the multifidelity data sets, in
which the number of HFS varies while the data-generation budget is fixed at 12 hours. Also shown
there are RMSEs of the CNNs trained on 12 hours (dot-dashed line) and 79 hours (dotted line) of
HFS.
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demonstrates that, for a relatively small budget of 12 hours, the use of multifidelity data yields the

CNN whose RMSE is appreciably smaller that those of the CNNs trained on either HFS data or

LFS data.

An optimal mix of the HFS and LFS data is investigated in the right plate of Figure 2.6. The

multifidelity training was conducted five times for each HFS/LFS ratio, with random selection of

LFS/HFS from a larger pool data. At the empirically optimal mix of 573 LFS and 100 HFS, five

of our experiments yield RMSE values of 0.097, 0.12, 0.098, 0.105, and 0.110. Two of the five

CNN’s trained on 12 hours worth of these multifidelity data achieve lower RMSEs than the RMSE

of 0.099 for the CNN trained on 79 hours worth of HFS data. This LFS/HFS ratio lies near the

range, 1.5 − 5.5, suggested for MLMC (Taverniers et al., 2020). The latter theoretical results and

the numerical experiments presented here, we recommend the LFS/HFS ratio of five as a suitable

initial guess. For the data-generation budget of 12 hours, a mix dominated by the LFS data results

in a CNN whose RMSE on test data exceeds 1.0 (beyond the scale of Figure 2.6), which indicates

that the network’s last Convolution Transpose 2 layer is not meaningfully trained.

CNN Surrogates for Uncertainty Quantification

We investigate the utility of our CNN surrogates for uncertainty quantification. A quantity of interest

is the breakthrough time, Tbreak, at the x1 = 100 m plane (Figure 2.2), with the term “breakthrough”

defined as the saturation of the invading phase (S1) exceeding 0.15. Given uncertainty in intrinsic

permeability k(x), a solution of Equation (2.2) and, hence, predictions of Tbreak are given in terms

of their cumulative distribution functions (CDFs) or probability density functions (PDFs).

Figure 2.7 exhibits the CDF and PDF of Tbreak alternatively computed with HFS and LFS MC

simulations and with the CNN trained on the multifidelity data. The distributions obtained via MC

simulation consisting of 292 hours of HFS are treated as ground truth. The distributions obtained

from 24 hours of LFS involve a sufficient number of samples for the error to be attributable solely

to the low resolution, i.e., to the disretization errors in solving PDEs. The numbers of HFS samples

generated during either 6 or 12 hours of simulations are insufficient for MC simulations to converge,
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Figure 2.7: The converged CDF (left) and PDF (right) of breakthrough time is calculated using MC
simulations of HFS, LFS, and the CNN surrogate model. The inner panel of each plate displays the
CDF (left) and PDF (right) obtained from unconverged HFS MC simulations.
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Figure 2.8: The converged CDF and PDF of breakthrough time is calculated using MC simulations
of HFS, LFS , and the CNN surrogate model(Figure 2.7). The CDF and PDF calculated from
varying amounts of HFS are displayed on the subplots. Bar plots: RMSE (left-top), MAE (left-
bottom), KL divergence (right-top), and Wasserstein distance (right-bottom) from PDF calculated
using CNN model, HFS, and LFS.
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leading to the appreciable errors in estimation of PDF and CDF of Tbreak. The CNN trained on

multifidelity data yields accurate estimates of these quantities, while requiring only 12 hours of data

generation.

In addition to visual comparison, the alternative strategies for estimation of the distributions of

Tbreak are compared in terms of RMSE, MAE, the Kullback-Leibler (KL) divergence, and the first

Wasserstein distance. KL divergence DKL of discrete PDFs is defined as

DKL(P ||Q) =
∑
x∈χ

P (x)log

(
P (x)

Q(x)

)
(2.8)

where P and Q are discrete PDFs on the same probability space χ; P represents the ground truth and

Q represents the modeled PDF. The first Wasserstein distance W1 for one-dimensional distributions,

or more commonly referred to as just “Wasserstein distance”, is defined as

W1(u, v) =

∫ ∞
−∞
|U(x)− V (x)|dx (2.9)

where u and v are probability measurements with respective CDFs U and V . The Wasserstein

distance was calculated using the Python package: scipy.stats.wasserstein distance.

The UQ task was repeated 50 times, with Figure 2.8 displaying the mean and standard deviation

of these measures of discrepancy. We found 3200 forward passes of the CNN to be sufficient for

the CDF/PDF estimates to converge; this UQ task took about ten minutes, whereas an equivalent

HFS MC simulation takes 194 hours. By every discrepancy measure, the CNN estimates outperform

the converged LFS MC simulation and are at least as accurate as the HFS MC simulation using 72

hours of simulation time. Likewise, the CNN estimates are vastly more accurate than the HFS MC

simulation of a similar data-generation budget.
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2.4.2 Models Trained on Short Data

CNNs were trained to solve the long problem using multifidelity data using transfer learning on

particular CNN architecture and hyperparameters. The generalizability of the method, model, and

hyperparameters is tested by training the same CNN architecture to solve the short problem. Once

trained (using 573 LFS and 100 HFS of the short data, which took 12 hours to generate), the

CNN surrogate accurately approximates the PDE solution on the fine mesh (Figure 2.9). The short

data set comes, once again, from a highly nonlinear problem that exhibits sharp dynamic fronts.

Compared to the long data set, the shorter correlation lengths in the short data set contains more

frequent permeability field changes the CNN must handle.

Figure 2.9: Temporal snapshots of the saturation maps S1(x, t) for the permeability field k(x)
generated using the correlation length of λY = 8 m in Figure 2.2. These are generated with either
HFS of the PDE model described by Equation (2.2) and Equation (2.4) (labeled as S in the first
and fourth columns) or the CNN surrogate (labeled as Ŝ) in the second and fifth columns). The
third and sixth columns display the absolute difference between the two predictions, |S − Ŝ|.
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Model Performance

CNNs were trained on the short data using the multifidelity data and the high-fidelity data using

the same hyperparameters found using the long data. The relative performance of the CNN trained

on a short multifidelity data and the CNNs trained on short HFS data is compared in terms of

both accuracy (RMSE on test data) and computational cost. Furthermore, evaluation of the CNN

trained on short multifidelity data was expanded to include data budgets of 6, 12, 24, and 48 hours;

the ratios of the short HFS and short LFS were kept consistent for each data generation budget.

The size of the HFS and LFS data sets is reported in Table 2.4. This experiment was repeated for

the long data set and a comparison is made in Figure 2.10.

Table 2.4: HFS and LFS data used to train the CNNs trained on multifidelity data

Total data budget HFS data points LFS data points
6 hours 50 286
12 hours 100 573
24 hours 200 1146
48 hours 400 2292

Although the long and short data differ upon visual inspection, Figure 2.9 reveals that the CNN

learns both problems at a similar rate when trained solely on varying amounts of high-fidelity data.

As the data generation budget increases, the improvements in RMSE decreases for the CNNs trained

on high-fidelity data. The CNNs trained on only high fidelity data is insensitive to whether it is

training on the long or short data. The CNNs trained on long high-fidelity data were tested on long

high-fidelity data and the CNNs trained on short high-fidelity data were tested on short high-fidelity

data. The hyperparameters used to train the fine model are robust and functional for both the long

and short data sets.

Despite the fact the hyperparameters were optimized for the long data set, the CNNs trained on

multifidelity short data achieve better predictive accuracy compared to CNNs trained on multifidelity

long data. For each given data budget, the CNNs trained on multifidelity data achieve more accurate

RMSEs at lower data generation budgets than the CNNs trained on only high-fidelity data. As the
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Figure 2.10: RMSE on test data for the alternative CNN training strategies. It is plotted as function
of the budget allocated for data generation. Each RMSE point in these graphs represents an average
over 10 iterations of training. The data points in black provide the RMSE for the CNNs trained on
long (λY = 19 m) data and the green data points provide the RMSE for the CNNs trained on the
short (λY = 8 m) data. The dots connected by the lines are provide the RMSEs of CNNs trained on
high fidelity data, and the ×s mark the RMSE achieved by CNNs trained on various data budgets
of multifidelity data.



CHAPTER 2. TRAINING ON TWO LEVELS OF DATA 39

RMSE vs. data-generation budget appears to be asymptotic and the CNNs trained on multifidelity

data outperform their counterparts trained on only more than 60 hours of high-fidelity data, this

gain is significant. The CNNs trained on long multifidelity data were tested using short high-fidelity

data and the CNNs trained on short multifidelity data were tested using long high-fidelity data.

The CNN trained using 12 hours of short multifidelity data (573 LFS and 100 HFS short data),

denoted by the bold green x, was made to perform the UQ task and the results are discussed in the

next section.

CNN Surrogates for Uncertainty Quantification

Finally, we investigate the utility of our CNN surrogates trained on the short data for uncertainty

quantification. Again, the quantity of interest is the breakthrough time, Tbreak, at the x1 = 100 m

plane (Figure 2.2), with the term “breakthrough” defined as the saturation of the invading phase

(S1) exceeding 0.15. Given uncertainty in intrinsic permeability k(x), a solution of Equation (2.2)

and, hence, predictions of Tbreak are given in terms of their cumulative distribution functions (CDFs)

or probability density functions (PDFs).

Figure 2.11 presents the CDF and PDF of Tbreak alternatively computed with HFS and LFS MC

simulations and with the CNN trained on the multifidelity data. The distributions obtained via MC

simulations consisting of 292 hours of HFS are treated as ground truth. The distributions obtained

from 24 hours of LFS involve a sufficient number of samples for the error to be attributable solely to

the low resolution, i.e., to the discretization errors in solving PDEs. The numbers of HFS samples

generated during either 6 or 12 hours of simulations are insufficient for MC simulations to converge,

leading to the appreciable errors in estimation of PDF and CDF of Tbreak. The CNN trained on

multifidelity data yields accurate estimates of these quantities, while requiring only 12 hours of data

generation. It is noted that, for this short problem, the CNN’s error is biased in the direction of

predicting a breakthrough time that is too early as evidenced by a good match in the PDF and a

slight mismatch at breakthrough times greater than 7.5 years. In contrast, the LFS MC results in a

PDF which both under-predicts and over-predicts the distribution at different breakthrough times.
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Figure 2.11: The converged CDF (left) and PDF (right) of breakthrough time is calculated using
MC simulations of HFS, LFS using the short (correlation length of λY = 8m) data set, and the
CNN surrogate model trained on the short data set. The inner panel of each plate displays the CDF
(left) and PDF (right) obtained from unconverged HFS MC simulations.
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In addition to visual comparison, the alternative strategies for estimation of the distributions of

Tbreak are compared in terms of RMSE, MAE, the Kullback-Leibler (KL) divergence, and the first

Wasserstein distance. The UQ task was repeated 50 times, with Figure 2.12 displaying the mean and

standard deviation of these measures of discrepancy. We found 3200 forward passes of the CNN to

be sufficient for the CDF/PDF estimates to converge; this UQ task took about 10 minutes, whereas

an equivalent HFS Monte Carlo takes 194 hours. By every discrepancy measure, the CNN estimates

outperform the converged LFS Monte Carlo and are at least as accurate as the HFS Monte Carlo

using 72 hours of data. Likewise, the CNN estimates are vastly more accurate than the HFS Monte

Carlo of a similar data-generation budget.

2.5 Conclusions

We proposed a transfer learning-based approach to train a CNN on multifidelity (e.g., multireso-

lution) data. High- and low-fidelity images were generated by solving a PDE on fine and coarse

meshes, respectively. The performance of our algorithm was tested on two data sets generated from

a system of nonlinear parabolic PDEs governing multiphase flow in a heterogeneous porous medium

with uncertain (random) permeability. The different data sets were generated from different cor-

relation lengths defining the random permeability fields. A quantity of interest in this example is

the PDF or CDF of the breakthrough time of an invading fluid. Our analysis leads to the following

major conclusions.

1. CNN surrogates trained on multifidelity data, for both data sets, provide an accurate approx-

imation of the PDE solution on the fine mesh, even for highly nonlinear problems that exhibit

sharp dynamic fronts. A forward pass of the CNN surrogate is two orders of magnitude faster

than a PDE solution on the fine-mesh. This speed-up makes CNN surrogates an invaluable

tool for ensemble-based computation of the PDF/CDF of a quantitiy of interest.

2. CNN training on multifidelity data reduces the data-generation budget seven-fold relative to
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Figure 2.12: The converged CDF and PDF of breakthrough time is calculated using MC simulations
of HFS, LFS , and the CNN surrogate model(Figure 2.11). The CDF and PDF calculated from
varying amounts of HFS are displayed on the subplots. Bar plots: RMSE (left-top), MAE (left-
bottom), KL divergence (right-top), and Wasserstein distance (right-bottom) from PDF calculated
using CNN model, HFS, and LFS.
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to CNN training on HFS data alone. If the budget is relatively small, the CNN trained on

the LFS data is more accurate than its HFS-trained counterpart. As the budget increases, the

opposite is true. This finding is reminiscent of the cost-constrained selection between high-

and low-fidelity models in the context of ensemble-based simulations.

3. For a small data-generation budget (12 hours, in our example), the CNN trained on multi-

fidelity data exhibits an appreciably smaller RMSE on test data than the CNNs trained on

either HFS or LFS data. Performance of the multifidelity CNN depends on the ratio between

HFS and LFS in the training set. Theoretical studies from MLMC can be used to guide the

selection of an optimal mix of low- and high-fidelity data.

4. The CNNs trained on multifidelity data are largely insensitive to the discretization error of

LFS. CNN-derived estimates of the PDF and CDF of the quantity of interest are close to those

of converged high-fidelity MC simulations; but the former are two orders of magnitude faster

to obtain than the latter.

5. The CNNs trained on large (greater than 12 hours) data budgets of multifidelity data is more

accurate than the CNNs trained on HFS data. Relying on multilevel data to train one CNN

via transfer learning is a promising tool for construction of accurate surrogate models.

6. The hyperparameter search for the training of a CNN surrogate can start with the hyperparam-

eters of another surrogate model with a similar architecture. If the problem and architecture

are sufficiently similar, a hyperparameter search may be unnecessary.

The computational efficiency and accuracy of CNN training on multifidelity data depend crucially

on the HFS/LFS ratio. We relied on the theoretical results for MLMC as an empirical guide for

the selection of this ratio; a detailed theoretical and/or experimental investigation of an optimal

HFS/LFS ratio is left for the future. Another direction of subsequent studies is the use of multiple

physical models of different complexity, rather than a single model solved on different numerical

grids, to generate multifidelity data.



Chapter 3

Training on Three Levels of Data

NN surrogates can emulate the behavior of complex systems in the sense that they are capable

of replicating PDE solutions. Once trained, a virtually negligible forward pass computational cost

renders them an attractive tool for ensemble-based computation. However, as the generation of

training data is itself an ensemble-based computation, reducing the computational cost of genera-

tion of the training data increases the value of the NN surrogate. In Chapter 2, we reduced the

computational cost of data generation by using two levels of multifidelity data to train a CNN using

transfer learning. This idea is explored further in this chapter by training a CNN on three levels of

data using transfer learning. Three sets of high-, low-, and very-low-fidelity images are generated

by solving PDEs on fine, coarse, and very coarse meshes, respectively. The effectiveness of this mul-

tifidelity training strategy is evaluated in terms of its predictive capability and ability to perform

an uncertainty quantification (UQ) task. The predictive capability of this strategy, measured using

root mean squared error of a test data set, is compared to that of the strategy in Chapter 2. The

UQ task is the estimation of the distribution of a quantity of interest, whose dynamics is governed

by a system of nonlinear PDEs (parabolic PDEs of multiphase flow in heterogeneous porous media)

with uncertain/random parameters. The UQ task is evaluated in terms of both the Wasserstein

distance and the Kullback–Leibler divergence.

44
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3.1 Workflow for CNN Training on Three Levels of Data

Our strategy for training a CNN on three levels of multifidelity data starts by generalizing the train-

ing scheme for two degrees of fidelity: the lower-fidelity Si and higher-fidelity Si+1. The definition

of Si and Si+1 is intentionally minimalist. It may refer to simulation results obtained on coarse and

fine meshes, as we do in this study, or to solutions of two models accounting for fewer and more

physical processes, or to synthetic and experimental data. Let us define Ni and Ni+1 as NNs that

operate on Si and Si+1, respectively. Our goal is to construct a trained NN N∗i+1, which operates

on Si+1 (here and below, the ∗ denotes a trained NN). If N∗i ∈ N∗i+1, then the difference between

the models, N∗∆i,i+1, is also a model and N∗i + N∗∆i,i1 = N∗i+1. The transfer learning approach to

obtaining N∗i+1 comprises the following steps.

1. Train Ni on the Si data to obtain N∗i .

2. Freeze the weights of N∗i to prevent them from being updated.

3. Construct Ni+1 by attaching N∆i,i+1, whose weights are allowed to update, to N∗i .

4. Train Ni+1 on the Si+1 data to obtain N∗i+1.

5. Unlock all weights of N∗i+1 to enable further updating.

Our results reported in Chapter 2 demonstrate that this approach can greatly reduce the data

generation cost relative to the computational budget necessary for the NN training on the fine scale.

We promulgate a sequential approach to the NN training on multifidelity data, which starts

with the two lowest degrees of fidelity, Si and Si+1 with i = 1; and then repeats the above training

procedure by adding the progressively refined data (i > 1) one level at a time. We consider simulation

data u(xn, tk) with three degrees of fidelity, corresponding to very-low- (VLFS), low- (LFS), and

high-fidelity (HFS) solutions of Equation (1.1). These are obtained by solving Equation (1.1) on

very-coarse (NVLFS
el ), coarse (NLFS

el ), and fine (NHFS
el ) meshes, respectively. The numbers of elements

in these meshes satisfy the order relation NVLFS
el < NLFS

el < NHFS
el ; in the simulations reported in

this chapter, we set NHFS
el = 4NLFS

el = 16NVLFS
el .
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Transfer learning allows a CNN trained on one data set to be modified and retrained to func-

tion on another data set. Thus, a CNN trained on VLFS is retrained on LFS, and this CNN

is again retrained on HFS. Let wHFS, wLFS, wVLFS denote the weights in the CNNs functioning

on HFS, LFS, and VLFS respectively. Then, a CNN architecture where wVLFS ∈ wLFS ∈ wHFS

is ideal for transfer learning. Our implementation of transfer learning starts with the construc-

tion of a CNN with weights wVLFS = (w1, . . . , wNVLFS
)> trained on the VLFS data. Then, addi-

tional weights are added to form wLFS = (w1, . . . , wNVLFS , wNVLFS+1, . . . , wNLFS)>; these are esti-

mated by minimizing the discrepancy with the LFS data. Finally, more weights are added to form

wHFS = (w1, . . . , wNLFS
, wNLFS+1, . . . , wNHFS

)>; these are estimated by minimizing the discrepancy

with the HFS data.

The resulting strategy for CNN training on multifidelity data consists of three phases, each of

which yields a CNN Mi (i = 1, 2, 3).

Phase 1: (a) The CNN M1 with the NVLFS
el × NVLFS

el output is trained on the VLFS data to

become M∗1 .

(b) Weights of M∗1 , wVLFS, are frozen.

(c) Trainable weights are added to M∗1 to form M2 with the NLFS
el × NLFS

el output.

The CNN M2 has wLFS, among which the weights wVLFS are still frozen.

(d) The CNN M2 is initially trained on the LFS data.

(e) All weights wLFS of M2 are unlocked.

Phase: 2 (a) The CNN M2 with the NLFS
el ×NLFS

el output is trained on the LFS data to become

M∗2 .

(b) The weights wLFS of M2 are frozen.

(c) More trainable weights are added to M∗2 to form the CNN M3 with the NHFS
el ×

NHFS
el output. The CNN M3 has weights wHFS, among which the weights wLFS

are still frozen.
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(d) The CNN M3 is initially trained on the HFS data.

(e) All the weights wHFS of M3 are unlocked.

Phase:3 The CNN M3 is trained on the HFS data to become M∗3 .

With a proper selection of the CNN architecture, this scheme estimates the bulk of the weights

from the VLFS and LFS data. This procedure is most effective when the computational cost

associated with the HFS data is significantly greater than that of the LFS and VLFS data. Since

the bulk of the CNN M3 training is done on the VLFS data, this procedure is more efficient than

CNN training solely on the HFS data.

3.2 Data Generation

The physical phenomenon modeled in this chapter, two-phase flow in heterogeneous porous media,

is the same as in Chapter 2. The key difference is that now we also generate data on the very-coarse

mesh consisting of 32× 32 elements.

3.2.1 Upscaling of Permeability

Multifidelity (HFS, LFS, and VLFS) data are generated by solving Equations (2.2)–(2.4) on progres-

sively coarsened grids consisting of 128×128, 64×64, and 32×32 elements, respectively. The spatial

discretizations of these HFS, LFS, and VLFS (∆x = 1.17 m, 2.34 m, and 4.38 m, respectively) are

sufficient to capture the random fluctuations of a heterogeneous permeability field. Specifically, they

satisfy the “rule of thumb” requirement that ∆x be such that 4∆x ≤ λY , i.e., that a numerical mesh

should have at least four elements of length ∆x per correlation length λY (e.g., Ye et al., 2004, and

references therein); the correlation length of our permeability field k̂ is λY = 19 m.

Grid coarsening must be accompanied by upscaling (coarsening) of the realizations of the ran-

dom permeability k̂, which are initially generated at the finest scale (Figure 2.2). Among alternative

upscaling strategies (Paleologos et al., 1996; Tartakovsky and Neuman, 1998; Boso and Tartakovsky,
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2018), we select the one proposed by Durlofsky (2005) because of its computational simplicity. This

method turns a scalar permeability field, defined on the fine (128 × 128) mesh, into its upscaled

tensorial (anisotropic) counterpart whose off-diagonal components are zero and the diagonal com-

ponents are computed as the distance-weighted arithmetic mean perpendicular to the direction of

flow and the distance-weighted harmonic mean in the direction of flow.

Multifidelity training data come in the form of Nts = 16 temporal snapshots of the saturation

S1(x, t) computed by solving Equations (2.2)–(2.4) on the 128 × 128, 64 × 64, and 32 × 32 grids.

Figure 3.1 shows examples of such images, corresponding to the permeability field in Figure 2.2.

The permeability fields on the finest mesh, [1×NHFS
el ×NHFS

el ], are used as the input θ for all CNNs.

The size of the CNN, [Nts×Nel×Nel], depends on the size of the training data (Nel = NHFS
el , NLFS

el ,

or NVLFS
el ).

3.3 CNN Training

Table 3.1 describes the CNN architecture used to implement our approach. The model implemen-

tation and training is done using PyTorch and other open source packages. The computations were

carried out on the Stanford Mazama high-performance computing cluster. The allocated computing

resources include Intel Xenon Gold 6126 CPU (2.6 GHz), 60GB RAM, and Nvidia V100 GPU with

16GB vRAM. (Although available, multicores were not used for this work.)

The key hyperparameters affecting the CNN performance are the learning rate η, the weight

decay ψ, the factor γ, and the minimum learning rate ηmin. As our methodology prescribes five

training steps, the searchable hyperparameter space is large. Since in Chapter 2 we used the same

architecture and the same HFS data, the hyperparameters obtained in that chapter serve as an

initial guess for the hyperparameter optimization. Then, the learning rate η and epochs at each

training (Section 3.1) are modified to minimize the RMSE on the corresponding test data. The

nondefault hyperparameter values are shown in Table 3.2.
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Figure 3.1: Temporal snapshots of saturation S1(x, t) computed with HFS (top-row), LFS (middle-
row) and VLFS (bottom-row) for the permeability field k(x) in Figure 2.2.

Table 3.1: Model block description and the input and output dimensions of each model block. In our
numerical experiments, the number of time steps is Nts = 16; the number of elements in the fine and
coarse meshes is NHFS

el ×NHFS
el = 128× 128, NLFS

el ×NLFS
el = 64× 64, and NLFS

el ×NVLFS
el = 32× 32

respectively; the number of elements in the output of the dense block is Ndense = NVLFS
el = 32; and

the number of channels in each of the seven layers of the CNN is n1 = 64, n2 = 344, n3 = 172,
n4 = 652, n5 = 326, n6 = 606, and n7 = 303.

Layer Input Output
Input: Permeability field k 1×NHFS

el ×NHFS
el

Convolution 1 n1 ×NHFS
el ×NHFS

el n2 ×NVLFS
el ×NVLFS

el

Dense Block (Encoding) n2 ×NVLFS
el ×NVLFS

el n3 ×NVLFS
el ×NVLFS

el

Convolution 2 n3 ×NVLFS
el ×NVLFS

el n4 ×Ndense ×Ndense

Dense Block n4 ×Ndense ×Ndense n5 ×Ndense ×Ndense

Convolution Transpose 1 n5 ×Ndense ×Ndense n6 ×NVLFS
el ×NVLFS

el

Dense Block (Decoding) n6 ×NVLFS
el ×NVLFS

el n7 ×NVLFS
el ×NVLFS

el

Convolution Transpose 2 n7 ×NVLFS
el ×NVLFS

el Nts ×NHFS
el ×NHFS

el

Output: Saturation map Ŝ Nts ×NHFS
el ×NHFS

el
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Table 3.2: CNN hyperparameters used in each phase: learning rate η, epoch, weight decay ψ, factor
γ, and minimum learning rate ηmin.

Learning Rate Epoch Weight Decay Factor Minimum Learning Rate
η, (×10−3) ψ, (×10−4) γ ηmin (×10−6)

Training 1 1.0 300 0.01 0.6 1.50
Training 2 1.0 300 0.01 0.6 1.55
Training 3 1.0 300 0.01 0.6 1.55
Training 4 5.0 300 5.0 0.6 1.50
Training 5 5.0 300 5.0 0.6 1.50

3.4 Results

Once trained on six-hours worth of data (in this example, on 65 HFS, 130 LFS, and 300 VLFS),

the CNN surrogate provides an accurate approximation of the PDE solution on the fine mesh

(Figure 3.2); this is a nontrivial feat since the PDE under consideration is highly nonlinear and

its solution exhibits localized dynamic fronts. A typical forward pass of the CNN surrogate takes

less than a second, whereas the corresponding run of the PDE solver on the fine mesh requires over

220 seconds. Ensemble-based computations, such as uncertainty quantification, make the most of

this two orders of magnitude speed-up.

3.4.1 Model Performance

We compare the accuracy (RMSE on test data) of the CNN trained on the three levels of the

multifidelity data and the CNNs trained on purely HFS, LFS, and VLFS data. To train the high-

resolution (128× 128 output) CNN solely on the LFS (64× 64) or VLFS (32× 32) data, the latter

have to be downscaled to match the dimensions. We do so by taking the Kronecker product of a

64× 64 LFS image and a 2× 2 matrix of ones, or taking the Kronecker product of a 32× 32 VLFS

image and a 4×4 matrix of ones. The transformed VLFS and LFS data have the desired dimensions,

while containing the same information as the original image. The test data are composed of HFS

images (PDE solves on the fine mesh) that were not used for CNN training.

Figure 3.3 reveals that, if the data-generation budget does not exceed 20 hours, the CNN trained

on the LFS data outperforms its HFS-trained counterpart in terms of RMSE. The CNN trained



CHAPTER 3. TRAINING ON THREE LEVELS OF DATA 51

Figure 3.2: Temporal snapshots of the saturation maps S1(x, t) for the permeability field k(x)
generated using the correlation length of λY = 19 m in Figure 2.2. These are generated with either
HFS of the PDE model Equation (2.2) and Equation (2.4) (labeled as S in the first and fourth
columns) or the CNN surrogate trained on the three levels of data (labeled as Ŝ) in the second and
fifth columns). The third and sixth columns display absolute difference between the two predictions,
|S − Ŝ|.
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on the VLFS data outperforms its LFS-trained counterparts when the data-generation budget does

not exceed 4 hours. That is because such frugal budgets do not allow for generation of sufficient

amounts of HFS and LFS data, respectively. As the budget increases, the error of the VLFS and

LFS data precludes RMSE of the CNN trained on such data from dropping below 0.125 while RMSE

of the HFS-trained CNN continues to decrease. This finding is reminiscent of the cost-constrained

selection between high- and low-fidelity models in the context of ensemble-based simulations (Yang

et al., 2020; Sinsbeck and Tartakovsky, 2015). Figure 3.3 also demonstrates that, for a relatively

small budget of six hours, the use of multifidelity data yields the CNN whose RMSE is appreciably

smaller than RMSEs of the CNNs trained on either HFS, LFS, or VLFS data alone.

3.4.2 CNN Surrogates for Uncertainty Quantification

We investigate the utility of our CNN surrogates for uncertainty quantification. Our quantity of

interest is the breakthrough time, Tbreak, at the x1 = 100 m plane (Figure 2.2), with the term “break-

through” defined as the saturation of the invading phase (S1) exceeding 0.15. Given uncertainty in

intrinsic permeability k(x), a solution of Equation (2.2) and, hence, predictions of Tbreak are given

in terms of their cumulative distribution functions (CDFs) or probability density functions (PDFs)

(Figure 3.4). The numbers of HFS samples generated during either 6 or 12 hours of simulations

are insufficient for MC simulations to converge, leading to the appreciable errors in estimation of

PDF and CDF of Tbreak. The CNN trained on multifidelity data yields accurate estimates of these

quantities, while requiring only six hours of data generation.

Figure 3.4 exhibits the CDF and PDF of Tbreak alternatively computed with HFS, LFS, and VLFS

MC simulations and with the CNN trained on the multifidelity data. The distributions obtained

via MC simulation consisting of 292 hours of HFS are treated as ground truth. The distributions

obtained from 24 hours of LFS or VLFS involve a sufficient number of samples for the error to be

attributable solely to the low resolution, i.e., to the disretization errors in solving PDEs.

In addition to visual comparison of the distributions, the alternative strategies for estimation
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Figure 3.3: RMSE on test data for the alternative CNN training strategies plotted as function of
the budget allocated for data generation. Each RMSE point in these graphs represents an average
over ten iterations of training. The data point which represents the CNN trained on three levels
of data also includes error bars based on 1 standard deviation. The graphic provides RMSE for
the CNNs trained on strictly high-fidelity (blue circles), low-fidelity (red circles), very-low-fidelity
(green circles), or multifidelity (tripoint star) data. The latter corresponds to the CNN trained on
an optimal (the lowest RMSE) mix of high-, low-, and very-low-fidelity data for a set budget of six
hours.
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Figure 3.4: The converged CDF (left) and PDF (right) of breakthrough time is calculated using MC
simulations of HFS, LFS, VLFS, and the CNN surrogate model.

of the distributions of Tbreak are compared in terms of RMSE, mean absolute error (MAE), the

Kullback-Leibler (KL) divergence, and the Wasserstein distance. The UQ task was repeated 50

times, with Figure 3.5 displaying the mean and standard deviation of these measures of discrepancy.

We found 3200 forward passes of the CNN to be sufficient for the CDF/PDF estimates to converge;

this UQ task took seconds, whereas an equivalent HFS MC simulation takes 194 hours. In Chapter 2,

the same operation took around ten minutes; we used the GPU for the forward pass to further reduce

the time associated with ensemble computations. By every discrepancy measure, the CNN estimates

outperform the converged LFS or VLFS MC simulations and are at least as accurate as the HFS

MC simulation using 72 hours of data. Likewise, the CNN estimates are vastly more accurate than

the HFS MC simulations of a similar data-generation budget.

3.4.3 CNNs Trained on Two-Levels or Three-Levels of Data

The method of training a CNN on two levels of data is promulgated in Chapter 2. In this chapter,

we expand the method by training a CNN on three levels of data. To justify the added complexity
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Figure 3.5: Comparison between PDFs of breakthrough times from MC simulations and the ground
truth PDF (the ground truth PDF. was generated from MC using 292 hours of HFS). The compared
PDFs include converged PDFs and nonconverged PDFs. The converged PDFs are generated from
MC simulations of HFS, LFS, VLFS, and the CNN surrogate model (Figure 3.4). The nonconverged
PDFs are generated from 12 hours and 24 hours of MC simulations using HFS. The comparisons
are made using RMSE (top-left), MAE (bottom-left), KL divergence (top-right), and Wasserstein
distance (bottom-right).
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in the methodology, a direct comparison is made between training a CNN on three levels of data,

as discussed in this chapter, and training a CNN on two levels of data, as discussed in Chapter 2.

We make this comparison by evaluating the predictive accuracy of the CNNs trained on two levels

of data and the CNNs trained on three levels of data at the same total data generation budgets.

Figure 3.6 compares the predictive performance, RMSE on the test data, of the following CNNs:

• the CNNs trained on two levels of data at six and twelve hours of training budget (Figure 2.10);

• the CNNs trained on three levels of data at six hours of training budget (Figure 3.3);

• the CNNs trained on three levels of data at twelve hours of training budget. In this experiment,

the amounts of HFS, LFS, and VLFS in the training data are doubled their counterparts for

the CNNs trained on six hours of three level data. The ratios between the HFS, LFS, and

VLFS are kept constant.

Figure 3.6 shows a significant predictive performance gain by the CNNs trained on three levels

data over the CNNs trained on two levels of data at six hours of data generation budget. However,

at twelve hours of data generation budget, the two methods perform very similarly. The difference

in RMSE at six hours of training data budget can be considered the direct gains of training on three

levels of data as opposed to just two levels of data.

Figure 3.7 elucidates the significance of the gain in the predictive performance between the CNNs

trained on three levels of data and CNNs trained on two levels data at six hours of data generation

budget. This figure looks at the relationship between prediction accuracy and UQ performance

across many experiments performed using the data set associated with the permeability fields gen-

erated using the correlation coefficient of λ = 19 m. The left panel of Figure 3.7 reveals a nonlinear

relationship between the KL divergence and RMSE; this is important as an incremental gain in pre-

dictive performance of CNNs can significantly enhance the UQ capabilities of the CNNs. Consider,

for example, the KL divergences in the neighborhood of RMSE values of 0.11 and 0.13, correspond-

ing to the RMSE values of CNNs trained on three levels of data and RMSE values of CNNs trained
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Figure 3.6: RMSE on test data for the alternative CNN training strategies plotted as function of
the budget allocated for data generation. Each RMSE point in these graphs represents an average
over ten iterations of training. The data points generated by CNNs trained on two levels of data are
marked with ×s and the data points generated by CNNs trained on three levels of data are marked
with tripoint stars. The datapoint represented by the bold tripoint star corresponds to the CNNs
trained on an optimal (the lowest RMSE) mix of high-, low-, and very-low-fidelity data for a set
budget of six hours. The graphic also provides RMSE for the CNNs trained on strictly high-fidelity
(blue circles), low-fidelity (red circles), or very-low-fidelity (green circles).
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Figure 3.7: KL Divergence plotted as function of RMSE for many trained models. The left panel
displays a zoomed out view, and the right panel displays a zoomed in view. The left panel displays
a trend line through the data included in this panel (this data does not include the total data shown
on the left panel), where y is KL divergence and x is RMSE.

on two levels of data, respectively. The trend line in Figure 3.7 yields the KL divergence values of

0.050 and 0.130 for RMSE values of 0.11 and 0.13, respectively; the KL divergence metric gain of

2.6 is contrasted with the RMSE improvement of 0.02. Although the zoomed out trend is nonlinear,

a linear fit is a good tool to discern the relationships in the zoomed data.

3.5 Conclusions

We proposed an approach, based on transfer learning, to train a CNN on multifidelity (e.g., mul-

tiresolution) data. High-, low-, and very-low-fidelity images were generated by solving a PDE on

fine, coarse, and very-coarse meshes, respectively. The performance of our algorithm was tested on

a system of nonlinear parabolic PDEs governing multiphase flow in a heterogeneous porous medium

with uncertain (random) permeability. A quantity of interest in this example is the PDF or CDF of

the breakthrough time of an invading fluid. Our analysis leads to the following major conclusions.
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1. When trained on three levels of multifidelity data, CNN surrogates provide an accurate ap-

proximation of the PDE solution on the fine mesh, even for highly nonlinear problems that

exhibit sharp dynamic fronts. A forward pass of the CNN surrogate is two orders of magni-

tude faster than a PDE solution on the fine-mesh. This speed-up makes CNN surrogates an

invaluable tool for ensemble-based computation of the PDF/CDF of a quantity of interest.

2. CNN training on three levels of multifidelity data reduces the data-generation budget fourteen-

fold relative to CNN training on HFS data alone; two-fold reduction compared to the data-

generation budget for of CNN trained on two levels of multifidelity data. If the budget is

relatively small, the CNN trained on the VLFS or LFS data is more accurate than its HFS-

trained counterpart. As the budget increases, the opposite is true. This finding is reminiscent of

the cost-constrained selection between high- and low-fidelity models in the context of ensemble-

based simulations.

3. For a small data-generation budget (six hours, in our example), the CNN trained on three

levels of multifidelity data exhibits an appreciably smaller RMSE on test data than the CNNs

trained on either HFS, LFS, or VLFS data. Performance of the multifidelity CNN depends on

the ratio between HFS, LFS, and VLFS in the training set. Theoretical studies from MLMC

can be used to guide the selection of an optimal mix of low- and high-fidelity data.

4. The CNN trained on multifidelity data is largely insensitive to the discretization error asso-

ciated with LFS or VLFS. CNN-derived estimates of the PDF and CDF of the quantity of

interest are close to those of converged high-fidelity MC simulations; but the former are three

orders of magnitude faster to obtain than the latter (when using GPUs for the forward pass).

5. Even very small gains in the predictive accuracy of CNN surrogates can result in big improve-

ments in the UQ performance.



Chapter 4

Upcycle Deployment of Pretrained

Surrogates

Neural networks (NNs) are universal function approximators that can emulate the dynamics of com-

plex systems. As such, surrogate models that mimic the forward solves of partial differential equa-

tions (PDEs) are powerful applications of NNs. A virtually negligible computational cost associated

with the forward pass of a NN renders NN-based surrogates an attractive tool for ensemble-based

computations, which otherwise require a large number of expensive numerical PDE solves. Since

the latter provide the data needed to train the NNs, the utility of NN-based surrogates hinges on

the balance between the training cost and the computational gain stemming from their deployment.

We rely on transfer learning to train a deep CNN for a new task (solving a set of PDEs for solute

transport) starting from a CNN that was originally trained for a different task (solving a different

set of PDEs for multiphase flow). Our numerical experiments demonstrate that the CNN surrogate

generalizes well to the inputs/outputs not seen during the training. The transfer learning scheme

is effective in estimation of the distribution of a quantity of interest associated with advection-

dispersion transport in a porous medium with uncertain/random conductivity fields. For a given

60
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training-data set, the CNNs that utilize transfer learning exhibit equal or greater prediction accu-

racy than the CNNs whose training is initialized randomly. Furthermore, the ability of the CNN to

recreate distributions was compared to MC simulations and the performance is expressed in Kull-

back–Leibler divergence and Wasserstein distance. The latter reveals that with only six hours of

training data budget, a CNN originally trained to solve multiphase flow problems can he upcycled

to accurately solve advection-dispersion problems and recreate distributions on the new problem.

A randomly initialized CNN could not perform this task when trained the same data, and MC

simulation could notd recreate the distributions when given a simulation computational time of six

hours.

4.1 Introduction

Benefits of NNs as surrogates of PDE-based models are inextricably tied to the cost of NN training

and generation of data necessary for this training. In Chapters 2 and 3, we introduced a strategy

to reduce this cost by focusing on the data generation aspect of the surrogate construction. In this

chapter, we tackle the other aspect, i.e., NN training, by starting the training process with a NN

trained on an unrelated problem and then deploying transfer learning to build a CNN surrogate for

the problem at hand. By way of example, we upcycle the CNN from Chapter 2, which was trained to

solve multiphase flow in a heterogeneous porous medium, to build a surrogate for PDEs describing

advection-dispersion transport in a different heterogeneous porous medium.

Section 4.2 contains a description of the CNN architecture and the workflow to train a CNN

that solves PDEs for advection-dispersion transport starting from a CNN trained to solve PDEs

for a multiphase flow. A set of numerical experiments aimed at testing the algorithm performance

is described in Section 4.3. Results of these experiments, reported in Section 4.4, demonstrate the

accuracy of the CNN-based surrogates, the computational advantages of transfer learning, and the

computational efficiency of the CNN-based surrogate vis-à-vis MC simulations when used to quantify

the predictive uncertainty of the transport model. The main conclusions drawn from this study are
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collated in Section 4.5.

4.2 Deep Convolutional Neural Networks

The CNN-based surrogate is set up as an image-to-image regression task (Zhou and Tartakovsky,

2021). To train and test the network, we treat the inputs and outputs of Equation (1.1) as images.

Specifically, the parameter values θ(xi) in Nel elements {xi}Nel
i=1 of a numerical grid serve as input

and the discretized solution u(xi, tk) of Equation (1.1) at Nts time steps {tk}Nts

k=1 is used as output.

In order to train a generalized CNN sensitive to unseen sets of the input θ(xi), i.e., to prevent

over-fitting to a particular choice of θ(xi), the training data often comprise a large number Ntrain

of model runs. Generation of this training/test data-set is computationally expensive as each of its

Ntrain members is a solution u of Equation (1.1) for different realizations {θ1, . . . ,θNtrain
} of the

input θ. The performance of the CNN-based surrogate is evaluated using the loss function

L(w) =

Ntrain∑
m=1

Nel∑
i=1

Nts∑
k=1

|u(xi, tk;θm)− ûik(w;θm)|+R

Nw∑
n=1

w2
n. (4.1)

The first term in this loss function is the L1-norm discrepancy between the state variables u(xi, tk)

predicted by solving Equation (1.1) and its CNN approximation, ûik(w), with Nw weights w =

(w1, . . . , wNw)>. The second term is the L2-norm regularization, which mitigates over-fitting by pe-

nalizing large weights w associated with complex models; the regularization parameter R prescribes

how strongly the regularization penalty is applied. The CNN training process starts with weights

w and optimizes to w? by minimizing L.

4.2.1 Transfer Learning

Our data are comprised of solutions of Equation (1.1), u(xi, tk), obtained on a mesh that matches

the dimension of the input θ(xi). Transfer learning allows us to break apart the training process and

initially train a subset of Nw,train weights composed of trainable weights wtrain on u. The resulting
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CNN contains Nw,locked nontrainable weights wlocked = (w1, . . . , wNw,locked
)> and Nw,train trainable

weights wtrain = (wNw,locked+1, . . . , wNw
), such that Nw,train = Nw − Nw,locked. The network is

trained and the trainable weights wtrain are updated. Next, updating is enabled in all the weights

such that Nw,train = Nw. We then allow the entire set of weights w update on the same training

data u. The use of a CNN pretrained on different data as initialization of the training process helps

prevent over-fitting by not updating all of the weights on the new data.

Figure 4.1: Workflow for retraining a pretrained CNN to perform a new task. Phase 1 trains the
last blocks of the CNN using the new data. Phase 2 trains the entire CNN on the same data.

4.2.2 Workflow for Retraining CNN for a New Task

Our strategy for retraining a pretrained CNN to solve a new problem consists of two phases (Fig-

ure 4.1), each of which results in a CNN denoted by Mi (i = 1, 2). We start the training process

with a pretrained CNN denoted by M0. In Phase 1, the CNN M0 locks the weights in wlocked from

updating while allowing wtrain to train. This modified CNN is trained on u to form M1. During

Phase 2, all of the weights of M2 are allowed to update and trained to form M2. Both phases

use the same training data. The numerical experiments in Sections 4.3 and 4.4 demonstrate that
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this transfer learning strategy significantly lowers the number of simulation runs required to train

functional CNN surrogates.

Phase 1: Train a CNN M1, with Nw weights w = {wlocked,wtrain} of which only Nw,train weights

wtrain are updated during the training process, on the data u

State 1.1: Initialize M0, the model pretrained to a different task then lock wlocked to form

M1

State 1.2: Train the CNN M1 on the HFS data by minimizing the loss function in Equa-

tion (4.1) over the weights wHFS of layer Llast, while keeping the remaining weights

wlocked locked at their values in M1.

Phase 2: Train the CNN M2 on the HFS data by allowing all weights w of M1 to vary during

the minimization

4.3 Application to Advection-Dispersion Transport

Horizontal flow in an aquifer Ω with hydraulic conductivity K(x) and porosity φ(x) is described by

a two-dimensional steady-state groundwater flow equation,

∇ · (K∇h) = 0, x ≡ (x1, x2)> ∈ Ω, (4.2)

subject to appropriate boundary conditions. A solution to this equation yields the spatial distribu-

tion of the hydraulic head h(x); numerical differentiation of this solution gives the macroscopic flow

velocity v(x) = (v1, v2)>:

v = −K
φ
∇h. (4.3)

The two-dimensional computational domain Ω is a 150 m× 150 m square (Figure 4.3). The top (Γt

or x2 = 150 m) and bottom (Γb or x2 = 0) boundaries are impermeable, and flow is driven by the
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difference in the hydraulic heads imposed along the left (Γl or x1 = 0) and right (Γr or x1 = 150 m)

boundaries:

∂h

∂x2
= 0, x ∈ Γb ∪ Γt; h(x1 = 0 m, x2) = 15 m; h(x1 = 150 m, x2) = 0. (4.4a)

Starting with initial time t = 0, a contaminant with volumetric concentration cs is continuously

released into the aquifer at location xs ∈ Ω. This point source has constant intensity qs. The

spatiotemporal evolution of the contaminant concentration in groundwater, c(x, t), is described by

an advection-dispersion equation,

∂φc

∂t
= ∇ · (D∇c)−∇ · (vc) + qscsδ(x− xs), (4.5)

where δ(·) is the Dirac delta function. In the principle coordinate system aligned with the mean

flow direction (v = (v ≡ |v|, 0)>), the dispersion coefficient tensor, D, has components

D11 = φDm + αLv, D22 = φDm + αT v, D12 = D21 = φDm, (4.6)

where αT and αL are the transverse and longitudinal dispersivities, respectively, and Dm is the

molecular diffusion coefficient of the contaminant in water.

The initial concentration of the contaminant is

c(x, t = 0) = 0, x ∈ D. (4.7)

The concentration boundary conditions are Neumann boundary conditions where concentrations do

not change across the boundaries:

∂c

∂x2
= 0, x ∈ Γb ∪ Γt;

∂c

∂x1
+
v1

φ
c = 0, x ∈ Γl ∪ Γr (4.8)
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The contamination source is located at xs = (x1 = 15 m, x2 = 75 m)>. The contaminant release

intensity is qs = 50 m2/d, and the contaminant concentration at the release site is cs = 10 g/m3.

4.3.1 Data Generation

With the exception of hydraulic conductivity K(x), all the model parameters are assumed to be

constant and known with certainty. The logarithm of the uncertain conductivity K(x) is modeled

as a stationary multivariate random field with mean µ = −1.91[ln(md )], variance σ2 = 0.2[(ln(md ))2],

and the exponential covariance function; the latter has correlation lengths 17.57 m (15 cell-lengths)

and 2.34 m (2 cell-lengths) in the x1 and x2 directions, respectively (Heße et al., 2014). Realizations

of this field are generated using GSTools (Müller et al., 2022), a Python-based geostatistics package,

on the uniform 128× 128 mesh. A representative realization of lnK(x) is displayed in Figure 4.2.

Figure 4.2: A representative realization of log conductivity field Y = lnK on the 128× 128 grid. K
is expressed in m/d.
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The contaminant transport model, Equations (4.2)–(4.6), are solved on the same 128×128 mesh,

for the parameter values provided in Table 4.1. Flopy (Bakker et al., 2016), a Python implementation

of MODFLOW (Harbaugh, 2005) and MT3DMS (Bedekar et al., 2016), is used to solve the flow,

(4.2), and transport, (4.5), equations, respectively.

Table 4.1: values of the transport parameters used for data generation.

Parameter Value Units
Porosity, φ 0.2 -
Molecular diffusion, Dm 10−9 m2/d
Longitudinal dispersivity, αL 0.01 m
Transverse dispersivity, αT 0.1 m

The 128 × 128 concentration maps c(x, t) from 16 time-steps of interest are saved for each

realization of the 128 × 128 corresponding conductivity field K(x). When multiple conductivity

fields K(x) and corresponding concentration maps c(x, t) are generated; they represent input and

output of the training/test data, respectively.

Figure 4.3: Temporal snapshots of contaminant concentration c(x, t) for the conductivity field K(x)
in Figure 4.2.

The forward solves were completed using a computer with an Intel Core i7-4793 3.6Ghz processor

and 64GB of RAM. On average, each forward pass required 216 seconds to complete. The forward

passes are saved as image files and used to train the CNN; the time needed to generate a dataset

is henceforth referred to as “data-generation budget”. Figure 4.3 provides snapshots of the solved

forward pass for the conductivity field K(x) in Figure 4.2.
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4.3.2 CNN Architecture

Table 2.2 describes the specific input and output volumes of the CNN architecture used in the

implementation of our approach. PyTorch is deployed for the CNN construction and training. The

training/testing computations were executed on the Stanford Mazama high-performance computing

cluster. The computing resources used for this study include Nvidia V100 GPU with 16GB vRAM,

Intel Xenon Gold 6126 CPU (2.6 GHz), and 60GB RAM.

Table 4.2: Dimensions of the model blocks and input/output volume of each model block. The
number of time steps is Nts = 16; the number of elements the meshes are Ndata×Ndata = 128×128;
the number of elements in the output of the intermediate blocks is Nint = 64 ; and the number of
elements in the output of the dense block is Ndense = 32. The CNN uses 7x7 filters and the number
of channels in each of the seven blocks of the CNN is n1 = 64, n2 = 344, n3 = 172, n4 = 652,
n5 = 326, n6 = 606, and n7 = 303.

Layer Input Output
Input: Conductivity field K(x) 1×Ndata ×Ndata

Convolution 1 n1 ×Ndata ×Ndata n2 ×Nint ×Nint

Dense Block (Encoding) n2 ×Nint ×Nint n3 ×Nint ×Nint

Convolution 2 n3 ×Nint ×Nint n4 ×Ndense ×Ndense

Dense Block n4 ×Ndense ×Ndense n5 ×Ndense ×Ndense

Convolution Transpose 1 n5 ×Ndense ×Ndense n6 ×Nint ×Nint

Dense Block (Decoding) n6 ×Nint ×Nint n7 ×Nint ×Nint

Convolution Transpose 2 n7 ×Nint ×Nint Nts ×Ndata ×Ndata

Output: Saturation map c(x) Nts ×Ndata ×Ndata

4.3.3 Training initialization

Transfer learning is common in the field of computer vision. The workflow often starts from a

well-known high-performing trained NN and modifications are made to complete new tasks. In this

study, the encoder-decoder CNN trained for the multiphase flow problem in Chapter 2 is used as,

and henceforth referred to as, the pretrained model.

The details of the pretrained model can be found in Chapter 2 and in Song and Tartakovsky

(2021); some information is replicated here for the sake of convenience. The pretrained CNN has

the architecture described in Section 4.3.2. The multiphase flow data used for its training and

testing are of the same dimensions as the data used in this study. Both the multiphase flow and
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Figure 4.4: Sample data used to train/test the pretrained CNN from Song and Tartakovsky (2021).
Left: 128 × 128 permeability field k(x). Right: Temporal snapshots of four 128 × 128 saturation
maps S(x, t); actual data sets contain 16 snapshots each.

advection-dispersion transport problems have impermeable top and bottom boundaries and a higher

head/pressure on the left boundary than the right boundary resulting in a net flow from left to

right. However, the physical phenomena and their mathematical descriptions that are simulated

to form the data sets are fundamentally different. The multiphase flow problem consists of tightly

coupled nonlinear PDEs, while the solute transport problem involves sequentially coupled linear

PDEs. The differences in their solutions are manifest upon a visual inspection of the two data sets;

a representative data set for the pretrained CNN is provided in Figure 4.4.

To investigate the effectiveness of our transfer learning strategy, we compare its prediction of

the concentration maps c(x, t) with those obtained by the PyTorch CNNs whose training started

with the default random initialization (Paszke et al., 2017). Without any training, feeding the

hydraulic conductivity K(x) from Figure 4.2 into either the pretrained CNN or a randomly initialized

CNN yields predictions of ĉ(x, t) that have nothing in common with the concentration maps c(x, t)

computed by solving PDEs (4.2)–(4.6) (Figure 4.5). This failure is to be expected since neither CNN

has seen data representative of solute transport. The question we address is whether the pretrained

CNN needs fewer training data than the randomply initialized CNN does.
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Figure 4.5: Temporal snapshots of the concentration maps alternatively predicted by solving
PDEs (4.2)–(4.6) with the hydraulic conductivity field K(x) from Figure 4.2 (the first and fourth
columns) and by feeding this K(x) into the pretrained CNN (second and fifth columns) or a randomly
initialized CNN (third and sixth columns).
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The following section provides some details of the training of these two CNNs on the c(x, t) data

obtained by solving PDEs (4.2)–(4.6) for different realizations of K(x).

4.3.4 Hyperparameter Optimization

Learning rate η, weight decay ψ, factor γ, and minimum learning rate ηmin are hyperparameters

that can impact the success of a CNN training program. The parameters η and ψ impact the Adam

optimizer (Kingma and Ba, 2014), and the parameters γ and ηmin impact the ReduceLROnPlateau

scheduler. Many other hyperparameters, e.g., ψ that is responsible for determining the regulariza-

tion parameter R (Loshchilov and Hutter, 2017), can be changed to influence the CNN training

performance, but we use their default PyTorch values. More information on the individual hyper-

parameters, optimizers, and schedulers are available PyTorch documentation (Paszke et al., 2019).

Figure 4.6: Model performance in the neighborhood of the optimum learning rates for the con-
trol/randomly initialized CNN (left) and the CNN based on our transfer-learning scheme (right).
Each data point is the average over five test runs and the error bars represent a 68% confidence
bound.

The optimization starts by using the hyperparameters used in Chapter 2 as initial guesses. The

search iterates, in order, through variations of η, ψ, γ, and ηmin. Once the parameter associated

with the lowest RMSE has been found, the search moves to the next hyperparameter. A robust grid
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Table 4.3: Non-default parameters

Parameter Value
Learning rate η (Transfer-learning) 5 · 10−4

Learning rate η (Control) 5 · 10−3

Weight decay ψ 10−5

Factor γ 0.6
Minimum learning rate ηmin 5 · 10−6

Epochs 150

search could result in a more optimized set of hyperparameters. Our search required 100 data points;

corresponding to a data budget of six hours. Each training pass involved 150 epochs, which used

about 0.33 hours. The 16 training passes (four iterations per each of the four hyperparameters) took

5.3 and 10.5 training-hours to find functional hyperparameters for the randomly initialized CNN and

the CNN trained with transfer-learning, respectively; the transfer-learning scheme has two training

steps, as described in Section 4.1. The training-hours correspond to considerably smaller wall-clock

time, since this task is parallelized across several GPU nodes. For this example, η proved to be the

only hyperparameter that differs from its counterpart used in Chapter 2.

Non-default values of the hyperparameters are reported in Table 4.3, and the η space that was

explored is shown in Figure 4.6. It is worthwhile noting that the value of η that yields on optimal

performance of the retrained CNN is an order of magnitude smaller than the optimal η for the

randomly initialized CNN. This suggests that large values of η may negate the benefits of transfer

learning by training “over” the initially well-trained weights. This observation is supported by the

right panel in Figure 4.6, wherein the η = 5 · 10−2 is associated with a high RMSE with large

confidence bounds.

4.4 Results

Once trained on only six hours of the c(x, t) data, the updated pretrained CNN provides an accurate

approximation of the PDE solution, including “bumps” at the plume edge caused by the subsurface

heterogeneity (Figure 4.7). Each PDE solve takes nearly 220 seconds, while a comparable CNN
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prediction takes less than a second. This more than two-orders of magnitude speed-up greatly

facilitates ensemble computations, such as UQ in Section 4.4.2.

Figure 4.7: Model response after transfer learning. Snapshots of concentration maps c(x, t) corre-
sponding to the conductivity field K(x) in Figure 4.2. The PDE model defined by Equations (4.2)-
(4.6) is solved to generate the concentration data c(x, t) in the first and fourth columns. The CNN’s
prediction of the concentration map ĉ(x, t) is shown in the second and fifth columns. The difference
between the two, |c− ĉ|, is shown in the third and sixth columns.

4.4.1 Model Performance

The left panel of Figure 4.8 exhibits the RMSEs of the estimates of solute concentration c(x, t)

obtained via the two CNNs trained on data with varying data-generation budgets. The pretrained

network trained via transfer learning achieves more accurate results on the test data for every

training-data budget. The randomly initialized CNN needs 30 hours of data-generation budget to

match the RMSE of the CNN trained via transfer learning on six hours worth of training data; a

factor of five reduction in the data-generation requirements. As the data-generation budget increases
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Figure 4.8: CNN performance on test RMSE (left) and on uncertainty quantification task (right)
for two alternative CNN training strategies. The randomly initialized CNN (control) is marked by
circles and the transfer-learning based CNN by diamonds. Both graphs are plotted as function of
the training data budget. Each point on both graphs represents the average over five iterations of
training. The data points corresponding to six hours of training are marked by open symbols; this
represents the greatest performance difference between the two methods for any given data budget.

beyond 30 hours, the two methods of training to converge to the same RMSE of 0.08.

The right panel of Figure 4.8 shows the KL divergence for the PDF of the breakthrough time

Tbreak (see Section 4.4.2) estimated via the two CNNs alternatively trained on the data with varying

data-generation budgets. The CNN trained via transfer learning yields lower KL divergence, i.e., is

more accurate, than the randomly initialized CNN does, for every training data budget. The latter

CNN needs a bit less than 30 hours of data-generation budget to reach the same KL divergence

as that of the transfer learning-based CNN trained on six hours worth of training data. In other

words, our transfer learning strategy reduces the data requirements by a factor of five. As the

budget increases beyond 30 hours of training data, the two methods of training converge to the KL

divergence of 0.07.

Figure 4.8 demonstrates that the estimation accuracy of CNN surrogates is related to their

performance on a UQ task. This relationship is nonlinear, such that a CNN with even a slightly

smaller RMSE can yield much better UQ performance; an accurate CNN surrogate is critical to the
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UQ performance.

4.4.2 CNN Surrogates vs Monte Carlo Simulations

We compare the performance of our CNN-based surrogate with that of Monte Carlo solution to the

PDE-based model. The UQ task here is to estimate the PDF of breakthrough time Tbreak, defined

as the time it takes the contaminant released at xs to exceed the concentration 2 g/m3 at any point

along the control plane x1 = 100 m (Figure 4.2). This task propagates uncertainty in the input,

hydraulic conductivity K(x), through the modeling process culminating in uncertainty in estimates

of contaminant concentration c(x, t) and breakthrough time Tbreak. The resulting PDF allows one to

estimate the probability of the contaminant concentration in groundwater exceeding its maximum

allowable limit (2 g/m3, in this example) over a certain time horizon [0, T ].

Figure 4.9: The converged CDF of breakthrough time Tbreak calculated using MC simulations,
control CNN, and CNN trained via transfer learning, for various data budgets of the PDE-based
simulations. The insert zooms in on the PDF peak.
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In Figure 4.9, the PDF of Tbreak constructed from 192 hours of traditional MC simulations

provides the ground truth. The randomly initiated CNN trained on six hours worth of data is unable

to replicate accurately the breakthrough PDF. Likewise, 6 and 18 hours worth of MC simulations fail

to provide an accurate estimate of this PDF. On the other hand, both 30 hours worth of traditional

MC simulations and the CNN trained via transfer learning on six hours worse of data accurately

reproduce the PDF of Tbreak. Hence, the MC simulations require five times more data-generation

budget as our CNN.

Figure 4.10: Estimation accuracy of the CDF of breakthrough time Tbreak calculated using MC
simulations, control CNN, and CNN trained via transfer learning, for various data budgets of the
PDE-based simulations in Figure 4.9. The accuracy is quantified in terms of the KL divergence (left
panel) and the Wasserstein distance (right panel). The error bars represent a 68% confidence bound.

In additional to the visual comparison of alternative estimates of the PDF of Tbreak, Figure 4.10

exhibits their KL divergence and Wasserstein distance. These metrics make it clear that the control

CNN trained on six hours worth of data and 6 and 18 hours of the traditional MC simulations fail to

accurately estimate the Tbreak PDF. The CNN trained through transfer-learning on six hours worth

of data has prediction accuracy of the 30 hours of MC simulations.
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4.4.3 Comparison Between Transfer Learning Methods

Finally, we test i) the robustness of upcycling a pretrained CNN via transfer learning, and ii) the

relative gains achieved by multifideling training and upcycling. The former strategy deploys the

two-level training method from Chapter 2 to accommodate low-fidelity data gerated by solving the

transport problem on the 64× 64 mesh. The conducted experiments are summarized below:

Experiment 1: Training CNNs to solve the multiphase flow problem with permeability fields

generated using a correlation length of λY = 19 m starting from the CNN trained

to solve the advection-dispersion problem.

Experiment 2: Training CNNs to solve the multiphase flow problem with permeability fields

generated using a correlation length of λY = 8 m starting from the CNN trained

to solve the multiphase flow problem with a permeability field generated using

a correlation length of λY = 19 m.

Experiment 3: Training CNNs to solve the advection-dispersion problem using two levels of

data. Rather than generating the coarse-resolution conductivity maps by up-

scaling their fine-resolution counterparts (Chapter 2), we use GSTools (Müller

et al., 2022) to generate random realizations of coarse-resolution conductivity

maps that have the same statistics as fine-resolution conductivity maps and the

same random seeds. Representative fine and coarse log conductivity fields are

displayed in Figure 4.11. We use the hyperparameters from the control CNN.

For the sake of clarity, we introduce the following plotting conventions:

• Black circles indicate results of the CNNs solving the multiphase flow problem for permeability

fields whose correlation length is λY = 19 m (the long problem).

• Green circles indicate results of the CNNs solving the multiphase problem for permeability

fields whose correlation length is λY = 8 m (the short problem).
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Figure 4.11: Representative realizations of log conductivity field Y = lnK on the fine (128 × 128)
grid (left) and the coarse (64× 64) grid (right). K is expressed in m/d.

• Blue circles indicate results of the CNNs solving the advection-dispersion problem.

• The CNNs starting from the default random initialization and trained only on 128× 128 data

are referred to as “Control”.

• Crosses indicate results of the CNNs trained on multifidelity data, which are referred to as

“Two-level”.

• Diamonds indicate results of the upcycled CNNs, which are referred to as“Upcycled”.

Across all data sets, the CNNs trained on multifidelity data and the upcycled CNNs outperform

the control CNN at every data-generation budget. For the long multiphase flow problem, CNN

trained on multifidelity data has the smallest RMSE among all the training strategies considered

(the top left panel of Figure 4.12). For the short multiphase flow problem, the upcycled CNN

outperforms the CNN trained on multifidelity data for budgets less than ten hours (the top right

panel of Figure 4.12).

This figure shows that the upcycled CNN and the control CNN have similar prediction-accuracy

limits, whereas training on multifidelity data may allow one to go beyond this limit. At six hours

worth of data, the CNN trained on multifidelity data and the upcycled CNN trained on high-fidelity

data achieve similar RMSEs. As the data generation budget increases, the multifidelity training
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Figure 4.12: Prediction accuracy of the upcycled CNNs and the CNNs alternatively trained on the
128 × 128 data and the multifidelity data. The accuracy is reported in terms of the RMSE for the
multiphase flow problem for the permeability field with correlation lengths λY = 19 m (top left
panel) and λY = 8 m (top left panel), and for the advection-dispersion problem (bottom panel).
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outperforms the upcycling technique, with the latter asymptoting to the RMSE of the control CNN

because both are trained on the same amount and quality of data and the benefits of using the

pretrained weights diminish with the data volume.

The multifidelity training also achieves a lower RMSE on the solute transport problem when the

data budget exceeds ten hours (the bottom panel in Figure 4.12). The upcycled CNN has the lowest

RMSE at every data-generation budget. The CNN trained on multifidelity data is less accurate than

the upcycled CNNs, which we attribute to the random generation of the coarse (64×64) conductivity

fields rather than the rigorous upscaling of the original fine (128 × 128) conductivity fields used in

Chapter 2. This finding points to the importance of generating adequate low-fidelity data.

The top left panel of Figure 4.13 shows that the control CNNs for the two multiphase problems

have similar RMSEs, while the control CNNs for the advection-dispersion problem has a lower

RMSE. In all three problems, RMSEs of the control CNNs reach their respective asymptotic limit,

i.e., fail to improve, as the data budget increases beyond a certain limit.

The top right panel of Figure 4.13 demonstrates the similar RMSE behavior of the CNNs trained

on multifidelity data from the three problems. Visual comparison with Figure 4.12 suggests that

the rate of the RMSE improvement with data-generation budget is greater for the CNNs trained on

multifidelity data than for either the control CNNs or the upcycled CNNs.

The accuracy of the upcycled CNNs in the bottom panel of Figure 4.13 is associated with the

quickest performance gains at less than six hours of data-generation budget. However, as the budget

increases, their RMSEs achieve an asymptotic limit, indicating the limitation of the gains one might

achieve with the upcycled strategy.

4.5 Conclusions

We proposed a transfer learning-based approach to retrain a CNN designed for one task to solve a new

task. The pretrained network was originally built to solve a multiphase flow problem. The new data

were generated by solving a PDE representing advection-dispersion transport in a heterogeneous
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Figure 4.13: Prediction accuracy of the trained CNNs for the multiphase flow problems with perme-
ability field whose correlation length is λY = 19 m and λY = 8 m, and for the advection-dispersion
problem. The accuracy is reported in terms of the RMSE for the CNNs trained on multifidelity data
(top left panel) and on high-fidelity data (top right panel), and for the upcycled CNNs.
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porous medium with uncertain (random) hydraulic conductivity. A quantity of interest in this

example is the PDF of the breakthrough time of a dissolved contaminant. Our analysis leads to the

following major conclusions.

1. The retrained CNN provides an accurate surrogate of the PDE-based model of solute trans-

port, even in the presence of sharp dynamic fronts. The CNN surrogate is three orders of

magnitude faster than a numerical solution to the contaminant transport problem obtained

via the industry-standard simulators.

2. The speed gains make CNN surrogates a valuable tool for ensemble-based computations of

PDF of a quantity of interest.

3. Starting with a pretrained CNN reduces the data-generation budget five-fold relative to train-

ing of a randomly initialized CNN. The retrained CNN is more accurate than the CNN trained

from random initializations, at every data budget. The greatest gain in performance is achieved

as small budgets.

4. For every data-generation budget, the CNN retrained from a pretrained model exhibits a

significantly smaller RMSE on test data than the CNNs trained using the random (PyTorch

default) initializations.

5. The estimated PDF of the quantity of interest obtained from the upcycled CNN is close to

the PDF of converged MC simulations; but the former are five orders of magnitude faster to

obtain than the latter.

6. A CNN trained using a pretrained model as a starting point has the best predictive performance

at data generation budgets of less than six hours. As the data budget increases, the prediction

accuracy of upcycled CNNs approaches an asymptotic limit.



Chapter 5

Overall Conclusions and Future

Work

In this dissertation we introduced two methods to reduce the computational costs associated with

training NNs. In Chapters 2 and 3, we used transfer learning to train CNNs on multifidelity data

generated by solving multiphase flow problems for different realizations of the input parameters

(permeability fields). The CNN’s performance was evaluated for accuracy and and was further

tested on UQ tasks. In Chapter 4, we promulgated another use of transfer learning to further speed

up NN training. Our strategy is to retrain a CNN originally built for one set of PDEs to act as a

surrogate for another set of PDEs. The resulting surrogate was again evaluated for accuracy and

was further tested on UQ tasks.

• The multifidelity data do not have to come from the coarseness/fineness of the grid. It can refer

to any methods of generating data where there is a cost/accuracy trade off. Other examples of

multifidelity data include a fast simulation of a process with some physics left out vs. a slow

simulation that includes all relevant physics; or two-dimensional data vs. three-dimensional

data. We hope that our transfer learning approaches will work on other types of multifidelity
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data and allow one to inexpensively train other high-performance models.

• The output volumes of the CNN architecture are key to our implementation of transfer learning

as the output volumes matched the dimensions of our multiscale data. However, the model

was not originally designed with transfer learning and problems can arise. One such problem

is that the model can get too big as each time we apply transfer learning, we are growing the

model as well. Methods such as NN pruning (Blalock et al., 2020; Karnin, 1990) can keep

model size more manageable.

• Using multifidelity data and transfer learning is effective in training accurate surrogates on a

small data-generation budget. Transfer learning works best when the original task and the

new task are similar. In this dissertation, the two tasks were chosen because they shared

qualitative similarities. If a quantitative approach to calculating the similitude between two

processes can be developed, the guesswork in selecting data set ratios for transfer learning may

be optimized.

• The NN surrogates in this study successfully function on two-dimensional data. We did not

work with three-dimensional data because the memory demands associated with the additional

dimension tested GPU’s vRAM limits. As algorithms get more efficient and training hardware

become more powerful, effective training on three-dimensional data may be possible.

• In Chapter 3, we successfully trained a CNN on three levels of data. However, selecting the

optimum ratio between the high-, medium-, and low-fidelity data remains a challenge as we

only had the experience of training on two levels of data and the theoretical results of MLMC

(Taverniers et al., 2020; Giles, 2008) to guide our data ratio selection. A more rigorous look

into the selection of the training data will strengthen workflows that train models on multilevel

data.

• In Chapters 2-4, the CNN surrogate functions as an image-to-image regression and is able

to produce saturation and concentration maps that are evolving in time. To truly evolve a
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solution in time, a recurrent neural network (RNN) training scheme may be better. RNNs are

notorious for suffering from the vanishing gradient problem; a problem which is exacerbated

on large inputs and outputs like the high-fidelity saturation maps used in this study. Using

coarse data to train an RNN to account for the temporal evolution and using the relationship

between coarse and fine data to downscale the RNN solution could result in a more general

training scheme for time-dependent problems.

• Many studies of NN surrogates, including this one, deal with individual strategies in isolation.

The intent in this study was to gauge the merit of each strategy by itself. However, it is

plausible to think that the combination of training strategies may yield even better results than

using individual strategies. A study investigating optimal ways to combine existing strategies

could yield both more accurate models at a small data generation budget and high-accuracy

CNN surrogates.



Appendix A

Model Size Investigation

NN architecture selection is important. A NN model that is too small, not enough layers or weights

within each layer, will not be able to perform complex tasks. While a NN model, especially on a

GPU, that is too big may be expensive to train; GPT-3, a well known language model developed

by OpenAI, is famous for having an estimated cost of $4.6 million per training run (Dale, 2021).

However there is no standard accepted method for determining the size of a NN model. For this

work, the largest network that can reliably train on Nvidia V100 GPU with 16GB vRAM was

selected to be the NN architecture of choice. The CNN was able to perform the tasks within this

study, but there is little room for model expansion if a new application demands it. Following this

line of thought, a smaller model is more valuable than a larger model if they perform the same task

equally well.

The size of the CNN used in this study is determined by two variables: initial number of features

and growth rate. The initial number of features determines how many convolutional filters are

included in the first layer of the CNN. The growth rate determines how many layers are added

from one dense block to the next. Two grid searches were performed to discern how predictive

performance, test RMSE, is effected by varying initial number of features and growth rates. The

first grid search was performed on the multiphase flow data set from the permeability fields generated
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using the correlation length of λY = 19m and the results are displayed in Figure A.2. The second grid

search was performed on the advection-dispersion data set. Both grid searches were only performed

for training the CNN on HFS data, and the number of training data used in the searches was fixed

at Ntrain = 500. The hyperparameters used in the grid search are the same hyperparameters used

to generate the HFS data points for Chapter 2 and Chapter 4 respectively.

Figure A.1: The grid search reporting predictive performance, test RMSE, based on varying number
of initial features and growth rate. This grid search was performed on the multiphase flow data set
from the permeability fields generated using the correlation length of λY = 19m.

In both grid searches, the test RMSE drops significantly when the number of initial feature

increases from one to sixteen. A smaller drop in RMSE is observed when the number of initial

feature increases from sixteen to thirty-two.
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Figure A.2: The grid search reporting predictive performance, test RMSE, based on varying number
of initial features and growth rate. This grid search was performed on the advection-dispersion data
set.
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In the multiphase flow problem, the test RMSE drops significantly by increasing the growth rate

from one to five. And another drop in test RMSE is observed when increasing the growth rate from

five to ten. The test RMSE drops were the greatest for CNNs with number of initial features equal

or less than thirty-two.

Based on these grid searches, A CNN constructed from a number of initial features of forty-eight

and a growth rate of ten would be a more optimized model; a smaller model that can solve the given

problems. The CNN constructed from a number of initial features of forty-eight and a growth rate

of ten would have 469033 trainable weights. The CNN used in this study had a number of initial

features of sixty-four and a growth rate of twenty which resulted in 1648115 trainable weights; the

optimized model would have 3.5 fold less trainable weights while performing at a similar predictive

accuracy. Such a model can potentially be trained on lower cost GPU or be expanded to solve more

complicated problems.
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Appendix B

Supplemental Material for

Chapter 2

B.1 Pseudocode

Algorithm 1: CNN training for given data

Input : Starting model (Min); training data (datatrain); test data (datatest); Number of

phases(Np); Epochs (eps)

Output : Best output model (Mout)

Procedure:

for i = 1, . . . , Np do

for j = 1, . . . , eps do

Train Min using datatrain;

Compute RMSEtest using datatest;

end

Set RMSEcheck as mean of last 10 RMSEtest;

if RMSEcheck < RMSEbest then

Set Mout as Min;

Set RMSEbest as RMSEcheck;

end

end
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Algorithm 2: Phase 1: Training using LFS

Input : Original model (Morig); Convolution Transpose 2 layer from Morig

(Lconv,transpose2); Temporary convolution layer in order to match LFS output

dimensions (Ltemp); LFS training data (datatrain,LFS); LFS test data

(datatest,LFS); Number of phase 1 iterations(Nphase1); Epoch in phase 1

(epsphase1)

Output : CNN trained on LFS (M1, best)

Procedure:

Set Mmod1 by removing Lconv,transpose2 from Morig;

Set M1 by attaching Ltemp to the end of Mmod1;

Train M1,best using Algorithm 1 (inputs: Min = M1, Nphase = Nphase1, eps = epsphase1,

datatest = datatest,LFS, datatrain = datatrain,LFS);

Algorithm 3: Phase 2: Initial training using HFS

Input : Model from Phase 1 (M1,best); Convolution Transpose 2 layer from Morig

(Lconv,transpose2); Temporary convolution layer in order to match LFS output

dimensions (Ltemp); HFS training data (datatrain,HFS); HFS test data

(datatest,HFS); Number of phase 2 iterations(Nphase2); Epoch in phase 2

(epsphase2)

Output : CNN trained on LFS and HFS (M2,best)

Procedure:

Set Mmod2 by removing Ltemp from M1,best, and lock all weights;

Set M2 by attaching Lconv,transpose2 to the end of Mmod2 (the weights of Lconv,transpose2

remain unlocked);

Train M2,best using Algorithm 1 (inputs: Mstart = M2, Nphase = Nphase2, eps = epsphase2,

datatest = datatest,HFS, datatrain = datatrain,HFS);
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Algorithm 4: Phase 3: Final training using HFS

Input : Model from Phase 2 (M2,best); HFS training data (datatrain,HFS); HFS test

data (datatest,HFS); Number of phase 3 iterations (Nphase3); Epoch in phase 3

(epsphase3)

Output : Fine tuned CNN trained on LFS and HFS (M3, best)

Procedure:

Set M3 by unlocking all weights in M2,best;

Train M3,best using Algorithm 1 (inputs: Mstart = M3, Nphase = Nphase3, eps = epphase3,

datatest = datatest,HFS, datatrain = datatrain,HFS);

Algorithm 5: Training Surrogate Model on Two Levels of Data

Input : HFS training data (datatrain,HFS); HFS test data (datatest,HFS); LFS training

data (datatrain,LFS); LFS test data (datatest,LFS); Number of phase 1

iterations(Nphase1); Number of phase 2 iterations(Nphase2); Number of phase 3

iterations(Nphase3); Epoch in phase 1 (epsphase1); Epoch in phase 2 (epsphase2);

Epoch in phase 3 (epsphase3)

Output : Surrogate model on the high-fidelity scale (M3)

Procedure:

Set and initialize Morig as original model as described by Table 2.2;

Set Lconv,transpose2 as “Convolution Transpose 2” layer from Morig;

Set Ltemp as temporary convolution layer in order to match LFS output dimensions

(16× 64× 64);

Train M1 using LFS data via Algorithm 2;

Train M2 using HFS data via Algorithm 3;

Train M3 using HFS data via Algorithm 4;
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Appendix C

Supplemental Material for

Chapter 3

C.1 Pseudocode

Algorithm 6: CNN training for given data

Input : Starting model (Min); training data (datatrain); test data (datatest); Number of

phases(Np); Epochs (eps)

Output : Best output model (Mout)

Procedure:

for i = 1, . . . , Np do

for j = 1, . . . , eps do

Train Min using datatrain;

Compute RMSEtest using datatest;

end

Set RMSEcheck as mean of last 10 RMSEtest;

if RMSEcheck < RMSEbest then

Set Mout as Min;

Set RMSEbest as RMSEcheck;

end

end
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Algorithm 7: Phase 1: Training using VLFS and LFS

Input : Modified model in VLFS scale (M1); Convolution Transpose 1 layer from Morig

(Lconv,transpose1); Temporary convolution layer in order to match VLFS output

dimensions (Ltemp2); VLFS training data (datatrain,VLFS); VLFS test data

(datatest,VLFS); LFS training data (datatrain,LFS); LFS test data (datatest,LFS);

Number of phase 1 iterations(Nphase1); Epoch in phase 1 (epsphase1)

Output : CNN trained on VLFS and LFS (M2)

Procedure:

Train M∗1 using Algorithm 6 (inputs: Min = M1, Nphase = Nphase1, eps = epsphase1,

datatest = datatest,VLFS, datatrain = datatrain,VLFS);

Set M2,init,part1 by Lock all weights of M∗1 and attaching Lconv,transpose1 to the end of M∗1

(the weights of Lconv,transpose1 remain unlocked);

Set M2,init,part2 by attaching Ltemp2 to the end of M2,init,part1 (the weights of Ltemp2 remain

unlocked);

Train M2,temp using Algorithm 6 (inputs: Min = M2,init,part2, Nphase = Nphase1,

eps = epsphase1, datatest = datatest,LFS, datatrain = datatrain,LFS);

Set M2 by unlocking all weights of M2,temp
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Algorithm 8: Phase 2: Training using LFS and HFS

Input : Modified model in LFS scale (M2); Dense Block (Decoding) layer from Morig

(Ldense,decoding); Convolution Transpose 2 layer from Morig (Lconv,transpose2);

LFS training data (datatrain,VLFS); LFS test data (datatest,LFS); HFS training

data (datatrain,HFS); HFS test data (datatest,HFS); Number of phase 2

iterations(Nphase2); Epoch in phase 2 (epsphase2)

Output : CNN trained on VLFS and HFS (M3)

Procedure:

Train M∗2 using Algorithm 6 (inputs: Min = M2, Nphase = Nphase2, eps = epsphase2,

datatest = datatest,LFS, datatrain = datatrain,LFS);

Set M3,init,part1 by Lock all weights of M∗2 and attaching Ldense,decoding to the end of M∗2

(the weights of Ldense, decoding remain unlocked);

Set M3,init,part2 by attaching Lconv,transpose2 to the end of M3,init,part1 (the weights of

Lconv,transpose2 remain unlocked);

Train M3,temp using Algorithm 6 (inputs: Min = M3,init,part2, Nphase = Nphase2,

eps = epsphase1, datatest = datatest,HFS, datatrain = datatrain,HFS);

Set M3 by unlocking all weights of M3,temp

Algorithm 9: Phase 3: Training using HFS

Input : Modified model in HFS scale (M3); HFS training data (datatrain,HFS); HFS

test data (datatest,HFS); Number of phase 3 iterations(Nphase3); Epoch in

phase 3 (epsphase3)

Output : CNN trained on HFS (M∗3 )

Procedure:

Train M∗3 using Algorithm 6 (inputs: Min = M3, Nphase = Nphase3, eps = epsphase3,

datatest = datatest,HFS, datatrain = datatrain,HFS);
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Algorithm 10: Training Surrogate Model on Three Levels of Data

Input : HFS training data (datatrain,HFS); HFS test data (datatest,HFS); VLFS training

data (datatrain,VLFS); VLFS test data (datatest,VLFS); Number of phase 1

iterations(Nphase1); Number of phase 2 iterations(Nphase2); Number of phase 3

iterations(Nphase3); Epoch in phase 1 (epsphase1); Epoch in phase 2 (epsphase2);

Epoch in phase 3 (epsphase3)

Output : Surrogate model on the high-fidelity scale (M3)

Procedure:

Set and initialize Morig as original model as described by Table 4.2;

Set Lconv,transpose1 as “Convolution Transpose 1” layer from Morig;

Set Ldense,decoding as “Dense Block (decoding)” layer from Morig;

Set Lconv,transpose2 as “Convolution Transpose 2” layer from Morig;

Set Ltemp1 as temporary convolution layer in order to match VLFS output dimensions

(16× 32× 32);

Set Ltemp2 as temporary convolution layer in order to match LFS output dimensions

(16× 64× 64);

Build M1 by removing Lconv,transpose1, Ldense,decoding, Lconv,transpose2 from Morig Add

Ltemp1 to M1 Train M1 using VLFS data via Algorithm 7;

Train M2 using LFS data via Algorithm 8;

Train M3 using HFS data via Algorithm 9;



Appendix D

Supplemental Material for

Chapter 4

D.1 Pseudocode

Algorithm 11: CNN training for given data

Input : Starting model (Min); training data (datatrain); test data (datatest); Number of
phases(Np); Epochs (eps)

Output : Best output model (Mout)
Procedure:
for i = 1, . . . , Np do

for j = 1, . . . , eps do
Train Min using datatrain;
Compute RMSEtest using datatest;

end
Set RMSEcheck as mean of last 10 RMSEtest;
if RMSEcheck < RMSEbest then

Set Mout as Min;
Set RMSEbest as RMSEcheck;

end

end
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Algorithm 12: Phase 1: Training Last Blocks Initially

Input : Pretrained Model (M0); Dense Block (Decoding) layer from M0 (Ldense,decode);

Convolution Transpose 2 layer from M0 (Lconv,transpose2); Training data

(datatrain); Test data (datatest); Number of phase 1 iterations(Nphase1); Epoch

in phase 1 (epsphase1)

Output : Intermediate CNN (M1)

Procedure:

Lock all weights of M0;

Set M1 by unlocking the weights of Ldense,decode and Lconv,transpose2;

Train M1 using Algorithm 11 (inputs: Mstart = M1, Nphase = Nphase1, eps = epsphase1,

datatest = datatest, datatrain = datatrain);

Algorithm 13: Phase 2: Training Entire Model

Input : Model from Phase 1 (M1); HFS training data (datatrain); HFS test data

(datatest); Number of phase 2 iterations (Nphase2); Epoch in phase 2 (epsphase2)

Output : Trained CNN (M2)

Procedure:

Set M2 by unlocking all weights in M1;

Train M2 using Algorithm 11 (inputs: Mstart = M2, Nphase = Nphase2, eps = epphase2,

datatest = datatest, datatrain = datatrain);



APPENDIX D. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 101

Algorithm 14: Training Surrogate Model on Multiple Scales of Data

Input : Training data (datatrain); Test data (datatest); Number of phase 1

iterations(Nphase1); Number of phase 2 iterations(Nphase2); Epoch in phase 1

(epsphase1); Epoch in phase 2 (epsphase2)

Output : Trained CNN (M2)

Procedure:

Import pretrained model M0;

Set Lconv,transpose2 as “Convolution Transpose 2” layer from M0;

Set Ldense,decode as “Dense Block (Decoding)” layer from M0;

Train M1 using New HFS data via Algorithm 12;

Train M2 using New HFS data via Algorithm 13;
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