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EPIGRAPH

It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as simple

and as few as possible without having to surrender the
adequate representation of a single datum of experience.

Albert Einstein
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At their best, mathematical models of physical and biological systems strive to represent

the nature faithfully while maximizing their simplicity and efficiency. Large numbers of variables

involved in biophysical and geophysical processes make it necessary to develop predictive mod-

els with the minimum conceivable level of complexity. The combination of coupled phenomena,

spatial and temporal scales, different regimes of behavior, and plethora of agents interacting

simultaneously constitutes an unmanageable amalgamation of factors that unavoidably reduce

both performance and tractability of mathematical models. Creating models with the optimal

complexity requires finding the balance between the following characteristics: accuracy, compu-
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tational cost, applicability to multiple scales and regimes, ability to represent realistic scenarios,

and versatility. In this dissertation, we present analytical models of heat transfer in fractured

porous media, in vitro and in vivo kinetics models of polymerization, and a hybrid algorithm for

reaction-diffusion systems. These models provide more accurate representations of reality than

their current counterparts, and they do so at the small fraction of the computational cost.
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Introduction

This dissertation presents different models for complex problems based on previous works

to show that, with feasible approaches, we can achieve remarkable improvements. Simplistic

models can imply small errors and reasonable computational speeds in limited scenarios, but

once they are developed to extend their range of applications or become part of bigger models,

such shortcomings entail noticeable and unnecessary lacks of efficiency. In Chapter 1, we

propose new analytical models for heat transfer in fractured porous media (M1); in Chapter 2, an

in vitro kinetics model of polymerization is introduced (M2) to be later improved and extended

to in vivo scenarios in Chapter 3 (M3); finally, in Chapter 4, we present a self-adjusted hybrid

model for reaction-diffusion systems (M4).

In comparison to their counterparts, our models keep a better balance between all the

following properties:

• Accuracy and computational cost - Without losing accuracy, M1 proposes an analytical

solution to a 2D diffusion problem that needed to be numerically solved in previous studies;

M2 presents an in vitro kinetics model of FtsZ protein polymerization that predicts faster

and better than its predecesors by reducing the number of Ordinary Differential Equations

(ODEs) from hundreds/thousands to seventeen; M3 improves the latter by reducing the

computational cost and making it independent on the total concentration, what makes it

optimal for crowded in vivo scenarios; M4 presents a more accurate hybrid model than its

predecesor while keeping a reasonable computational cost by redefining both the step size

and the time step depending on the particle spatial distributions.
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• Applicability to multiple scales and wide ranges of scenarios - Solution presented in

M1 makes predictions for the entire spatial domain, for periods of time that cover from

days to years, and for scenarios with dominant diffusion effects; M2 works for short

and long times as well as a wide range of concentrations; M3 improves the latter by

accurately predicting in crowded in vivo environments, where concentrations can be up

to two orders of magnitude higher than in in vitro scenarios; M4 self-adjusts dinamically

both step size and time step to the appropiate scale and remains efficient in both reaction

and diffusion-controlled regimes.

• Realistic representation - Model M1 represents reality more faithfully than its analytical

counterparts by introducing the effects of 2D diffusion and an infinite domain; polymer

kinetics description in M2 introduces the combination of bundling and GTP-hydrolysis

that other models neglected; M3 also includes the effects of membrane in real cells, the

role of other proteins, and the influence of crowded environments in polymer diffusion;

M4 predicts location and time of particle interactions more realistically than its counterpart

as well as fast concentration variations in time and space.

• Versatility - By applying the principle of superposition to our analytical solutions in

model M1, we can potentially develop predictive models for heat transfer in fracture

networks; M2 and M3 can be ideal as submodels of bigger kinetics models with more

species and chemical reactions and as efficient compartmentalized and spatially distributed

representations of in vivo polymerization processes; self-adjusted nature of model M4

makes it much more versatile than models that need predefined step sizes, time steps, or

parameters that determine the dominant regime in the system.

Summarizing, the desired simplicity for a model must be relative to the level of complexity

that we attempt to represent. We modestly believe that the physical and chemical models

presented in this dissertation got much closer to such optimal point than their predecessors.
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Chapter 1

Analytical Models of Heat Conduction in
Fractured Rocks

1.1 Introduction

Heat transfer in fractured rocks is a critical phenomenon that drives the performance of

both enhanced geothermal systems (wherein heat transferred from hot dry rocks warms water

circulating in fractures) [WRWT96, GLK12] and enhanced oil recovery (wherein oil viscosity

is reduced by injecting hot water or steam, thus increasing rock temperature) [AHB01]. Heat

conduction impacts the structural properties of ambient rocks by creating new or reopening

existing microfractures [WBC+89, Lin02] and/or modifying rock alteration patterns [XP01].

Its negative effects are manifested in seismic activity induced by geothermal energy extraction

[GFJ03, CS11] and in nuclear waste leakage due to heat generated by radioactive decay [XZ12,

WTCW81].

Heat transfer in fractured subsurface environments takes place in at least two distinct

phases: fluid-filled fractures and ambient solid matrix. Existing analytical and semianalytical

models of heat conduction in fractured rocks consider single isolated fractures [Mey04] and

networks of equally spaced horizontal [BT82] or vertical [YY09, GWO75] fractures. It is

important to recognize that single-fracture representations are important not only in their own

right, but also as conceptual representations of mobile/immobile regions in natural fractured

systems [ZLM+07]. Such models are amenable to the same mathematical treatment as their
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counterparts developed for mass transport in discrete fracture networks. Examples of the latter

include analytical [TFS81], semianalytical [RdDT12, SF82] and numerical [RLdD10] models of

solute transport due to advection and diffusion in fractures and pure diffusion in the host matrix.

A key difference between heat and mass transfer in fractured environments is that heat readily

diffuses through both solid and fluid phases, whereas solutes spread largely in the fluid phase.

While potentially important (e.g., [BGRF06]), investigation of variable-density flow and heat

transport lies outside the scope of the present study.

Analytical solutions, such as those mentioned above, provide significant physical insight

into these transport phenomena and act as an invaluable component in field-scale screening

and management (decision support) models. Yet they rely on a number of simplifying assump-

tions that might not be valid in a specific application. While these solutions routinely neglect

longitudinal diffusion in the matrix, its impact on heat and mass transfer can be significant

[MPCP07, RdDT12]. Likewise, longitudinal diffusion in the matrix (which is typically neglected

in analytical models) is an important mechanism of heat transfer in a system of several fractures

[CGD01, BK09, Kol95]. It can overestimate the thermal drawdown by up to 11% after 20 years

of heat mining from HDRs in fractured crystalline rocks [Kol95].

In the present study we develop an analytical model of heat transfer in individual fractures,

which accounts both for longitudinal and transverse diffusion in the matrix and for longitudinal

and transverse dispersion and diffusion in the fracture. Section 1.2 provides a mathematical

formulation of the problem. Section 1.3 contains its general solution in the Fourier-Laplace

space. This solution is inverted analytically under conditions that are typical of most geothermal

reservoirs (Section 1.3.2). We compare our analytical solutions with their existing counterparts

in Section 1.4, and demonstrate their physical and practical implications in Section 1.5. Major

conclusions from our study are summarized in Section 1.6.
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1.2 Problem Formulation

Consider fluid flow and heat transfer in a fracture with aperture 2b and infinite length,

that is embedded in a homogeneous rock matrix with porosity φ (Fig. 1.1). Following the

standard practice in the field (e.g., [Kol95, CGD01, BK09, XZ12]), we assume the steady-

state flow to be single phase, incompressible and laminar; the gravity effects and density

variation with temperature to be negligible, and the fracture walls to be smooth and parallel

to each other. Some of these assumptions can be relaxed, as discussed in the concluding

remarks in Section 1.6. Since the problem is symmetric about the plane z = 0, we restrict our

analysis to the upper half of the computational domain, so that the fracture is represented by

Ω f = {(x,z) :−∞ < x < ∞,0≤ z≤ b} and the matrix by Ωm = {(x,z) :−∞ < x < ∞,b≤ z < ∞}.

Fluid temperature in the fracture, T f (x,z, t), satisfies an advection-dispersion equation

∂T f

∂t
+u

∂T f

∂x
= D f

L
∂2T f

∂x2 +D f
T

∂2T f

∂z2 + f , x ∈Ω f (1.1)

where x= (x,z)> is the position vector; u is the fluid velocity; f (x, t) is a source term; and D f
L and

D f
T are the longitudinal and transverse dispersion coefficients, respectively. For a fluid of density

ρ f and heat capacity c f , these are given by D f
L = λ

f
L/α f +E f

L/α f and D f
T = λ

f
T/α f +E f

T/α f ,

where α f = ρ f c f , λ
f
L and λ

f
T are the longitudinal and transverse thermal conductivity coefficients,

and E f
L and E f

T the longitudinal and transverse thermal dispersion coefficients [YY09].

The ambient matrix Ωm is assumed to be impervious to flow. The heat spreads throughout

the matrix by conduction, so that temperature in the matrix, T m(x, t), is governed by a diffusion

equation

∂T m

∂t
= Dm

L
∂2T m

∂x2 +Dm
T

∂2T m

∂z2 , x ∈Ωm, (1.2)

where Dm
L = λe

L/ce and Dm
T = λe

T/ce are the longitudinal and transverse diffusion coefficients, ce

is the effective heat capacity of the matrix, and λe
L and λe

T the longitudinal and transverse thermal
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conductivity coefficients in the matrix.

Let Ti(x,z) denote the initial temperature in the system. Then equations (1.1) and (1.2)

are subject to initial conditions

T f (x,z,0) = Ti(x,z), T m(x,z,0) = Ti(x,z). (1.3)

Equation (1.1) is subject to boundary conditions

T f (±∞,z, t) = Ti,
∂T f

∂z
(x,0, t) = 0, (1.4)

and equation (1.2) to boundary conditions

T m(±∞,z, t) = Ti, T m(x,∞, t) = Ti. (1.5)

At the fracture-matrix interface z = b, both the temperature and the heat flux are continuous,

giving rise to two interfacial conditions

T f = T m, φmDm
T

∂T m

∂z
= D f

T
∂T f

∂z
≡ r, z = b, (1.6)

where φm = φ+(1−φ)ρscs/(ρ f c f ); ρs and cs are the density and heat capacity of the solid phase,

respectively; and r(x, t) is the (unknown) thermal flux between the fracture and matrix. Since the

boundary value problems (BVPs) (1.1)–(1.6) are invariant under transformations T = T j−Ti

( j = f ,m), we set, without loss of generality, Ti = 0.

In what follows, we first develop general solutions of BVPs (1.1)–(1.6), which are

applicable to a wide range of source functions f (x, t). Then we proceed by analyzing these

solutions in detail for f representing a point injection of heat at x = 0. This setting is relevant to

both natural and forced convection. For example, it represents fluid injection through a well that

intersects a fracture at x = 0. If the temperature of the injected fluid is appreciably different from
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the initial temperature Ti of the host fluid, then this setup can be used to characterize fractured

rocks by collecting temperature logs at the well; [PGP07, PPCG10] used it to detect the presence

of active fractures under natural groundwater flow conditions. Another example described by

the model is an enhanced geothermal system, in which the fluid velocity u is induced by, e.g.,

groundwater extraction at point x = xi > 0. If the fracture fluid is at the initial temperature Ti,

the objective is to evaluate how the temperature of the fluid extracted at x = xi is modified by

warmer/colder water injected at x = 0 under forced flow conditions.

1.3 Analytical Solutions

The fracture BVP consists of (1.1), (1.3), (1.4) and the second condition in (1.6).

The matrix BVP is composed of (1.2), (1.3), (1.5) and the second condition in (1.6). Let

G f (x,z;x′,z′; t− t ′) and Gm(x,z;x′,z′; t− t ′) denote the Green’s functions associated with the

fracture and matrix BVPs, respectively. Their analytical expressions are given in Appendix A.1.

Our analytical models are first derived in the Fourier-Laplace (FL) space. For any suitable

function A(x, t), we define its Laplace and Fourier transformations as

Ā(x,s) =
∞∫

0

A(x, t)e−stdt, (1.7a)

Ã(ξ,s) =
1√
2π

∞∫
−∞

Ā(x,s)e−ixξdx. (1.7b)

1.3.1 General solution in Fourier-Laplace space

We show in Appendix A.2 that the FL transforms of the temperature in the fracture,

T̃ f (ξ,z,s), and matrix, T̃ m(ξ,z,s), are given by

T̃ f =
√

2π

[
F1(ξ,s)∆F (b;ξ;s)

F2(ξ,s)+1/β
−∆F (z;ξ;s)

]
(1.8)
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and

T̃ m =−
√

2π

β
exp

(
−ψ|z−b|√

Dm
T

)
∆F (b;ξ;s)

F2(ξ,s)+1/β
. (1.9)

Here ∆F (z;ξ;s) = F̃ (z,0;ξ;s)− F̃ (z,b;ξ;s), F̃ (z,z′;ξ;s) is the antiderivative of f̃ G̃ f with

respect to z′, ψ =
√

Dm
L ξ2 + s, β = φm

√
Dm

T ψ, and

F1 =
G̃ f

ξ
(s)

b
+

2
b

∞

∑
n=1

(−1)n cos(αnz)G̃ f
ξ
(s+α

2
nD f

T ) (1.10a)

F2 =
G̃ f

ξ
(s)

b
+

2
b

∞

∑
n=1

(−1)2nG̃ f
ξ
(s+α

2
nD f

T ) (1.10b)

where G f
ξ
(s) is given by (A.4) and αn = nπ/b.

The FL transform of the temperature distribution in the fracture-matrix system, (1.8)

and (1.9) is free of any simplifying assumptions. It captures full (two-way) coupling of the

fracture-matrix exchange; and accounts for longitudinal and transverse dispersion and diffusion

in the fracture and matrix, respectively. It also enables one to deal with arbitrary heat sources.

1.3.2 Explicit models of temperature in the fracture

In the case of complete transverse mixing (D f
T =∞) and negligible longitudinal dispersion

(D f
L = 0) in the fracture, the general FL solutions (1.8) and (1.9) can be inverted analytically,

yielding a closed-form expression for the temperature distribution. These conditions are typical

for fracture-matrix systems. Indeed, the impact of longitudinal dispersion is limited to low

velocities (≤ 10−7 m/s) [TFS81], and transverse dispersion is important only if D f
T < Dm

T

[RdDT12].

Consider a continuous-in-time point source located at x = 0, such that f = T0uδ(x)H (t),

where T0 is the temperature of the injected fluid (or the difference between the temperature of the

injected fluid and its initial value Ti if the latter is not zero) and H (·) is the Heaviside function.
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In the limit of D f
T → ∞ and D f

L→ 0, (1.8) reduces to

T̃ f =
1√
2πs

T0u
β/b+ s+uξi

. (1.11)

Let us define dimensionless ratio R, coefficient K, and critical time tmin as

R =
φm
√

Dm
T Dm

L

ub
, K =

φm

2b

√
Dm

T
Dm

L
, tmin =

104b2

φ2
mDm

T
. (1.12)

Note that since
√

Dm
T Dm

L is the geometric mean of the heat diffusivity in the matrix and u/φm is

a scaled advective velocity in the fracture, one can think of R as the inverse of a “fracture-matrix

Péclet number” in that it represents a ratio of advection timescale in the fracture to diffusion

timescale in the matrix. We show in Appendix A.3 that, for R > 1, K > 1 and t > tmin, the inverse

FL transformation of (1.11) yields

T f (x, t)∼− T0

2π

R
R

Ei
(
− 1

4t∗d

)
+

T0

2
1
R

{
sgn(x)− erf

[
sgn(x)
2
√

t∗d

R√
R

]}

+
T0

π
e−R2/(4R t∗d )

{
−
√

πt∗d
2t∗a

sgn(x)

R
√

R
+

2t∗a −1
2t∗a R 3/2 +

2t∗a −3
12t∗a R 5/2

+
1

R 7/2

[
R2(1−2t∗a)

24t∗d t∗a
+

3
40t∗a
− 3

16t∗a 2

]

+
R2(5−6t∗a)
80t∗d t∗a 2R 9/2 +

R4(2t∗a −1)
320t∗d

2t∗a 2R 11/2

}
(1.13)

where R = R2 +1 and t∗a = tu/x and t∗d = tDm
L /x2 are the dimensionless advection and (longitu-

dinal) diffusion times, respectively.

The conditions R > 1, K > 1, and t > tmin are adequate for geothermal studies: Typical

thermal diffusivity in rocks is Dm = O(10−6m2/s) [BK09] and typical prediction times are larger

than hours. Therefore, (1.13) provides a robust explicit prediction of spatiotemporal evolution of

temperature in an infinite fracture. It accounts for both longitudinal and transverse diffusion in

the matrix.
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In lieu of another example, we consider a pulse injection of duration tp. This corresponds

to the source term f = T0uδ(x)[H (t)−H (t− tp)], and fracture temperature

T f
p (x, t) = T f (x, t)H (t)−T f (x, t− tp)H (t− tp), (1.14)

where T f (x, t) is given by (1.13).

1.3.3 Accuracy of analytical solutions

Our analytical solutions, e.g., (1.11), are exact in the Fourier-Laplace space. Their

analytical inversion in Appendix A.3 is approximate since it is based on truncation of the Taylor

series involved. We assess the accuracy of the resulting analytical solutions, e.g., (1.13), by

comparing them with their counterparts computed with numerical inversion of the corresponding

expressions in the Fourier-Laplace space, e.g., (1.11). The latter is accomplished by using the

[dHKS82] algorithm and the MATLAB routine ifft to compute the inverse Laplace and Fourier

transforms, respectively. In the simulations reported below we set Dm
L = Dm

T = 9.16×10−7 m2/s,

φ = 0.1, ρs = 2757 kg/m3, cs = 1180 J/kgK, and φm = 0.78.

Figures 1.2 and 2.3 exhibit distributions of the relative fracture temperature T f
r = T f /T0

for two transport configurations. The first (Figs. 1.2) corresponds to flow with velocity u =

1.4× 10−4 m/s in a fracture whose aperture is 2b = 1.0× 10−3, 5.0× 10−4, and 2.0× 10−4

m or R = 10, 20, and 50. The second (Figs. 2.3) corresponds to u = 1.4× 10−3 m/s and

2b = 1.0×10−3, 5.0×10−4, and 2.0×10−4 m or R = 1, 2, and 5. Both cases demonstrate the

agreement between the analytical and numerical solutions for t = 1 month (Figs. 1.2a and 2.3a)

and 1 year (Figs. 1.2b and 2.3b), which is to be expected since the conditions of validity of

our solutions are fulfilled. Although not shown here, this agreement deteriorates for R < 1, a

condition that is rarely (if ever) met in the field (see the discussion in the previous section).
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1.4 Comparison with existing models

In this section we demonstrate that under certain conditions/assumptions our solutions

reduce to the classical solutions of [TFS81] for semi-infinite fractures.

1.4.1 No dispersion in semi-infinite fracture

Setting D f
L = 0, Dm

L = 0, and D f
T → ∞ (the complete mixing assumption) reduces our

general solution (1.8) to

T̃ f =−∆F (z;ξ;s)
αs +uξi

(1.15)

where αs = φm
√

Dm
T s/b+ s. For a point injection of fluid with temperature T0, i.e., for f =

T0uδ(x)H (t), this gives rise to the Laplace transform of temperature in the fracture,

T̄ f =
T0

s
exp
(
−αsx

u

)
, x≥ 0. (1.16)

This is identical to the analytical solution [TFS81] for heat transfer in a semi-infinite fracture with

a fixed temperature T0 at the fracture’s inlet x = 0. This solution ignores longitudinal dispersion

in the fracture and is referred to by [TFS81] as “transient solution with D = 0”.

1.4.2 Longitudinal dispersion in semi-infinite fracture

Setting Dm
L = 0 and D f

T → ∞ reduces our general solution (1.8) to

T̃ f =− ∆F (z;ξ;s)

αs +D f
Lξ2 +uξi

. (1.17)
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The “general transient solution” of [TFS81] is recovered from (1.17) by choosing the source

term to be

f̄ =
T0

s

√
u2 +4D f

Lαs δ(x). (1.18)

This choice accounts for the “lost” part of the injected flux due to the longitudinal diffusion

in the negative half (−∞ < x < 0) of the infinite fracture. The resulting Laplace transform of

temperature in the fracture is

T̄ f =
T0

s
exp

[
−
(√

u2

4
+D f

Lαs−
u
2

)
x

D f
L

]
, x≥ 0. (1.19)

1.5 Results and Discussion

The subsequent discussion serves to demonstrate the importance of accounting for two-

dimensional heat conduction in rock matrix. In this discussion, we refer to (1.13) and (1.16) as

“2-D solution” and “1-D solution”, respectively.

The results below correspond to continuous point injection (x = 0) of a fluid whose

temperature T0 is either warmer (T0 > 0) or colder (T0 < 0) than the host fluid (the initial

temperature Ti = 0). Unless specified otherwise, a shale matrix has the following characteristics:

Dm
L = Dm

T = 9.16−7 m2/s, φ = 0.1, ρs = 2757 kg/m3, and cs = 1180 J/kg K. Taking the fluid to be

water (ρ f = 1070 kg/m3 and c f = 4050 J/kg K) yields φm = [φ+(1−φ)ρscs/(ρ f c f )] = 0.78.

The results are reported in terms of the relative fracture temperature

T f
r (x, t) = T f (x, t)/T0, (1.20)

which ranges from 0 (temperature is at its initial value Ti) to 1 (temperature at the local heat

source).
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1.5.1 Effects of heat conduction in matrix

Figure 1.4 depicts the temporal evolution of relative temperature T f
r at the distance

x = 0.5 m from the heat source. Flow velocity in the fracture is set to u = 1.4×10−4 m/s, and

fracture aperture to 2b = 2×10−4 m (Fig. 1.4a), 5×10−4 m (Fig. 1.4b), and 10−3 m (Fig. 1.4c).

This choice of fracture apertures yields the values of the dimensionless ratio R = 50 (Fig. 1.4a),

R = 20 (Fig. 1.4b), and R = 10 (Fig. 1.4c).

In the diffusion-dominated regime (Fig. 1.4a), the 1-D solution (no longitudinal heat

conduction in the matrix) underestimates the relative temperature at short times and significantly

overestimates it at later times. The longitudinal heat conduction in the matrix (the 2-D solution)

causes the fracture temperature to rise at earlier times and shows that the local heat source

impacts on the fracture temperature (T f
r > 0) at much earlier times; after this initial time interval,

the 1-D solution predicts a much larger rate of increase of the fracture temperature than the 2-D

solutions do. This is because heat is transferred from the fracture into the matrix in the vicinity

of the localized injection, diffuses longitudinally in the matrix, and then returns to the fracture at

locations far from the injection. Our 2-D solution captures this heat transfer mechanism in the

diffusion-dominated regime, while the classical 1-D solution does not. Figures 1.4b and 1.4c

show that this mechanism does not occur in advection-dominated regimes.

In all heat transfer regimes (Figs. 1.4a–c), both temperature in the fracture and the time-

to-equilibrium increase as the matrix diffusion coefficient Dm
L decreases. The smaller the value

of R (i.e., the larger the fracture-matrix Péclet number), the more pronounced this effect becomes.

Ignoring longitudinal diffusion in the matrix (the 1-D solution) significantly underestimates the

fracture-matrix transfer and significantly overestimate both temperature in the fracture and the

time-to-equilibrium.

Overestimation of the time-to-equilibrium has important practical implications, since

determination of the time it takes a fracture-matrix system to reach thermal equilibrium (steady-

state) is essential for estimation of the matrix penetration depth. The latter determines the
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adequacy of conceptual representations of fracture-matrix systems, i.e., enables one to decide

whether a single-fracture-in-infinite-matrix model is sufficient or more evolved fracture-network

models are to be used instead. Our 2-D solution, which accounts for longitudinal heat conduction

in the matrix, demonstrates that heat sources in a fracture affect much smaller regions of

the adjacent matrix than would be predicted with the classical 1-D solution, which ignores

longitudinal conduction. Consequently, a conceptualization of heat dissipation in fractured rocks

as a system of isolated fractures in infinite matrix might be adequate for geothermal studies.

1.5.2 Performance of geothermal systems

Relative temperature drawdown, Pf (x, t) = 1− T f
r (x, t), is an effective performance

measure of geothermal systems. It quantifies the degree to which temperature at a point x is

affected (changes from initial temperature Ti) by injection of a fluid with temperature T0 at

another point (say, x = 0). The value Pf = 0 corresponds to zero cooling/heating efficiency

(the fluid extracted at point x has the same temperature as that of the fluid injected at x = 0),

and Pf = 1 represents the maximum cooling/heating efficiency (extracted fluid is at its initial

temperature). Its values provides a consistent measure of performance regardless of whether the

injected fluid is cooler (T0 < 0) or warmer (T0 > 0) than the host fluid.

Figure C.3 exhibits Pf (x, t) at x = 10 m for flow velocity u = 1.4× 10−3 m/s and

fracture aperture 2b = 10−3 m (Fig. C.3a), 5× 10−4 (Fig. C.3b), and 2× 10−4 m (Fig. C.3c).

These aperture values translate into the inverse fracture-matrix Péclet number R = 1, 2, and 5,

respectively. Isolines of Pf (x, t) are plotted as a function of advection (t∗a = tu/x) and diffusion

(t∗d = tDm
L /x2) times. This corresponds to physical time t ranging from 5×104 s to 109 s (from

hours to 30 years).

Geothermal performance increases with R: it is lowest in the advection-dominated regime

(Fig. C.3a) and highest in the diffusion-dominated regime (Fig. C.3c). In a given regime (as

characterized by the value of R), the performance varies only slightly with t∗a , i.e., it is relatively

insensitive to convective properties of fractured rocks. This is to be expected from Fig. 1.4,
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which shows that temperature in the fracture stabilizes quickly as the advection time t∗a increases,

so that subsequent increases in t∗a have a limited impact on system performance.

When R = O(1), the geothermal performance Pf depends strongly on the diffusion

time t∗d , with high performance occurring at small values of t∗d . Therefore, the cooling/heating

efficiency increases with the reservoir size (the distance x between fluid’s injection and extraction)

and decreases with exploitation time t. As R increases (from R = 1 in Fig. C.3a to R = 5 in

Fig. C.3c), the dependence of the geothermal performance Pf on t∗d diminishes, leading to

stable and efficient configurations in the diffusion-dominated regime. For large values of t∗d (the

top of Figs. C.3a-c), the geothermal performance is slightly higher at small values of t∗a . This

implies that for rocks with large thermal diffusivity Dm
L (large values of t∗d ), the largest changes

in fluid temperature in the fracture occur at early times ta and the geothermal performance can

be improved by decreasing flow velocity u.

Figure C.4 illustrates these points further. Extracted fluid remains at its initial temperature

regardless of the temperature of injected fluid for t∗d < 10−2. The latter inequality holds for

small values of Dm
L , short exploitation times t, and/or large distances (x) between the injection

and extraction points. This nearly perfect geothermal performance (Pf > 0.9) is observed when

R > 7. In other words, the diffusion-dominated regime is best suited for geothermal exploitation,

since it limits the thermal impact of injected fluids on the host fluid in a fracture by maximizing

heat dissipation into the matrix. In the advection-dominated regime with R < 5 (Fig. C.4b), the

geothermal performance depends strongly on t∗d , with small values of t∗d (short exploitation times

t or/and large injection-to-extraction distances x) improving Pf .

1.6 Conclusions

We developed analytical models for heat transfer in a single fracture surrounded by an

infinite matrix. These models account for advection and hydrodynamic dispersion in the fracture,

longitudinal and transverse conduction in the matrix, and a two-way coupling between heat
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transfer in the fracture and matrix. They also handle any heat source configuration, such as

distributed or localized heat sources of arbitrary duration.

In their most general form, these solutions are given by their Fourier and Laplace

transforms and require numerical inversion. Under conditions that are typical of geothermal

reservoirs, these solutions are inverted analytically, giving rise to an explicit closed-form model

of heat transfer in fractured rocks. By accounting for two-dimensional heat conduction in rock

matrix, this model represents a significant advance over the existing analytical solutions that

restrict matrix conduction to the direction perpendicular to the fracture. Our analysis leads to the

following major conclusions.

• Longitudinal thermal diffusivity in the matrix is a critical parameter that determines the

impact of local heat sources on fluid temperature in the fracture.

• By neglecting longitudinal conduction in the matrix, the classical models significantly

overestimate both fracture temperature and time-to-equilibrium.

• The inverse fracture-matrix Péclet number R and diffusion timescale t∗d are two parameters

that determine the efficiency of geothermal systems.

• The diffusion-dominated regime (R > 7) is ideal for geothermal exploitation, since it limits

the thermal impact of injected fluids on the host fluid in a fracture by maximizing heat

dissipation into the matrix.

• In the advection-dominated regime (R < 5), the geothermal performance depends strongly

on t∗d . It is highest at small values of t∗d (short exploitation times and/or large injection-to-

extraction distances).

Our analytical models provide an easy-to-use tool for parametric sensitivity analysis,

benchmark studies, and validation of numerical simulations. They can be used for geother-

mal site evaluation and parameter identification. They will improve field-scale studies of
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geothermal reservoirs, which rely on discrete-fracture-network approaches and consider only

one-dimensional heat conduction in the rock. Our solutions obviate the need for this strong and

limiting assumption, while retaining the analytic simplicity of the original approaches.

In the follow-up studies we will generalize these analytical models by incorporating the

following phenomena.

• Fracture wall roughness. The numerical simulations of [NTS10] demonstrated the effects

of fracture wall roughness on heat transfer in fractured rocks. Treating fracture walls

as random fields, and combining our solutions with stochastic domain mappings [XT06,

TX06, PIT12] and stochastic homogenization [TGR03], will enable us to investigate these

effects in a computationally efficient semi-analytical manner. The latter step will rely on

the Green’s functions derived in this study.

• Heat transfer in fracture networks. Multiscale modeling approaches to flow and transport in

fractured rocks [DM95, CPOS04, RLdD10, RdDT13] combine a discrete fracture network

(DFN) representation at the field scale with analytical solutions at the fracture scale. We

will embed our analytical solutions into particle-tracking DFN models to represent rock

conduction effects at the field scale with optimized computational cost and representation

accuracy.

1.7 Future Research

Recently, we have developed an analytical approximation for the temperature in the

matrix. Calculating the inverse FL transform of the expression (1.9) and applying the same

conditions of applicability that we imposed for the temperature in the fracture, we obtain the
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following expression

T m(x, t)∼ T0

π

1
R

{
2πsgn(x)T

(√
2λµsgn(x),

|x|
µ

)
− 1

2
REi

[
−λ

2(x2 +µ2)
]}

− T0√
4πν

1
µR

erfc(λµ)
(

νR2

R
− 1

4λ2

)
e−(x

′)2/4ν

− T0

2
1
R

erfc(λµ)erf
(

x′

2
√

ν

)

+
T0√
4πν

1
R

1√
πλR

e−λ2µ2−(x′)2/4ν for z ∈ (−∞,−b)∪ (b,∞), (1.21)

where

λ =
1

2
√

Dm
L t

, µ = |z−b|
√

Dm
L

Dm
T
, ν =

R2 +1
R

(
1

4λ2 +
µDm

L
Ru

)
, x′ = x+

µ
R
, (1.22)

and T(σ,η) is the Owen’s T function defined as follows

T(σ,ζ) =
1

2π

∫
ζ

0

e−
1
2 σ2(1+ζ2)

1+ζ2 dζ, for −∞ < σ,ζ < ∞. (1.23)

Figures 1.7 and 1.8 represent distributions of the relative matrix temperature T m
r = T m/T0

for two transport configurations. The first (Figs. 1.7) corresponds to a fracture whose aperture is

2b = 1.0×10−3 m, Dm
L = Dm

T = 9.16×10−7 m2/s, φm = 0.78, flow with velocity u = 1.4×10−3,

1.4×10−4, and 1.4×10−5 m/s or R = 1, 10, and 100, and distance from the center of the fracture

z = 5×10−2 m. The second (Figs. 1.8) corresponds to a distance from the center of the fracture

z = 5 m. Both cases demonstrate the agreement between the analytical and numerical solutions

for t = 1 day, t = 1 month, and t = 1 year (Figs. 1.7), and t = 5 and 10 years (Figs. 1.8), which

is to be expected since the conditions of validity of our solutions are fulfilled.

Since expression (1.21) provides with information of the temperature in the matrix at any

distance from the fracture, we propose to use our solutions and the principle of superposition

to develop simple analytical models for complex fracture networks. For instance, regardless of
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the spatial distribution of fractures, expression (1.13) can tell us the temperature in a particular

fracture due to a heat source and expression (1.21) can estimate the increment of temperature in

such fracture due to the influence of distant fractures.

Chapter 1, in part, is a reprint of the material as it appears in Analytical models of heat

conduction in fractured rocks 2014. Ruiz-Martı́nez, Á.; Roubinet, D.; and Tartakovsky, D.M.,

Journal of Geophysical Research, Solid Earth, 2014. The dissertation/thesis author was the

primary investigator and author of this paper.

Chapter 1, last pages, are currently being prepared for submission for publication of

the material. Ruiz-Martı́nez, Á. and Tartakovsky, D.M. The dissertation/thesis author was the

primary investigator and author of this material.
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Figure 1.1. Single fracture embedded in an infinite matrix.
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Figure 1.2. Distributions of the relative temperature along the fracture for flow velocity u =
1.4×10−4 m/s and different values of the dimensionless parameters R and K, computed with
the analytical and numerical solutions. The liquid is injected at x = 0 during (a) t = 1 month and
(b) t = 1 year.
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Figure 1.4. Relative temperature in the fracture T f
r , as a function of advection time t∗a = tu/x,

computed with the 1-D solution (red dotted lines) and the 2-D solution for Dm
L = 9.16× 109

(green dash-dotted lines), 9.16×108 (blue dashed lines), and 9.16×107 m2/s (black solid lines).
Fracture aperture 2b is set to (a) 2×104 m, (b) 5×104 m, and (c) 103 m.
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Figure 1.5. Isolines of the geothermal performance Pf in the space of advection (t∗a ) and diffusion
(t∗d ) times, for (a) R = 1, (b) R = 2, and (c) R = 5.
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Figure 1.6. Isolines of the geothermal performance Pf in the space of diffusion time t∗d and the
inverse fracture-matrix Péclet number R, for (a) 1≤ R≤ 20 and (b) 1≤ R≤ 5.
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Figure 1.7. Distributions of the relative temperature in the porous matrix for fracture aperture
2b = 1×10−3 m and distance from the center of the fracture z = 5×10−2 m computed with the
analytical (circles) and numerical solutions for dimensionless parameter R = 1, 10 and 100 (blue,
red and yellow lines, respectively). The liquid is injected at x = 0 during (a) t = 1 day, (b) t = 1
month and (c) t = 1 year.
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Figure 1.8. Distributions of the relative temperature in the porous matrix for fracture aperture
2b = 1× 10−3 m and distance from the center of the fracture z = 5 m computed with the
analytical (circles) and numerical solutions for dimensionless parameter R = 1, 10 and 100 (blue,
red and yellow lines, respectively). The liquid is injected at x = 0 during (a) t = 5 years and (b)
t = 10 years.
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Chapter 2

Efficient Multiscale Models of Polymeriza-
tion Applied to in vitro FtsZ Assembly

2.1 Introduction

Shape and internal organization of cells is regulated by the cytoskeleton, a three-

dimensional meshwork of filamentous proteins that also provides mechanical support for essential

processes such as cell division, motility and intracellular transport [WG11, IMG12, XBZ12,

YL12, FF15]. In a cell’s cytoplasm, interacting monomers form long polymers called “filaments”,

which assemble and disassemble dynamically by elongation and annealing mechanisms. These

filaments attach to the cell’s membrane and constitute fundamental building elements of the

cytoskeleton. Their arrangement into bundles contributes to the stability and strength of the net-

work [BHC+08, LPD12]. In eukaryotic cells, both actin-based microfilaments and tubulin-based

microtubules form bundles of different characteristics [DAR+08, EKC+14, WS10, SVM12].

For example, cell migration due to filopodia formation is regulated by the polymerization of

long and tight filaments and by their subsequent bundling [DAR+08, ML08]. Another example

is F-actin polymerization and bundling, both of which are critical processes in birth, growth

and final form of mushroom-shaped dendritic spines as well as in the guidance and migra-

tion of neuronal growth cones [ML08, KH14, MBF06, PR12]. In prokaryotic cells, such as

Escherichia coli or Bacillus subtilis, FtsZ and MreB proteins (homologs of eukaryotic tubu-

lins and actins) are the most dominant components of their cytoskeletons. Whereas FtsZ is
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responsible for division process, MreB controls the cell width. Different types of filaments

and bundles of these proteins have been studied in vitro [SZL09, NM13, AGFE04] and in

vivo [LTBJ07, FHB+10, SMMHB07]. In both eukaryotic and prokaryotic cells, continuous

turnover of monomers between the cytosol and the network of polymers regulates the shape and

size of filaments and bundles [KH14, MBF06, CE5b, CE09, RS11]. Assembly and disassembly

of polymers are, therefore, permanent activities even in the steady state.

Cytoskeletal ring formation, of which FtsZ protein is the main agent, is a key part of

prokaryotic cell division. In the cytosol of, e.g., E. coli, FtsZ monomers diffuse freely and

form no structures as long as they remain bound to guanosine diphosphate (GDP). Interactions

with guanosine triphosphate (GTP) initiate polymerization of FtsZ monomers. The resulting

protofilaments then attach themselves to the cell membrane, a process facilitated by FtsA and

ZipA proteins [HRRG+10, PL05, RM14, LM14]. In both the cytosol and membrane, these

protofilaments elongate, anneal, bundle and form complex structures, such as entanglements and

cross links. The in vitro experiments [MPV+09, BCH+13, DPLW10] suggest that proteins, such

as ZapA or ZapB, reinforce the lateral bonds between filaments and bundles. Several positive and

negative regulators of ring formation ensure that all of these processes take place in the center of

the cell. A chain of several proteins (MatP, ZapA, and ZapB) in the replication terminus region

(Ter macrodomain) promotes Z-ring formation at the midcell [MPS+08, BBW+14, MB15]. Both

Min proteins, which oscillate between the two poles of a cell [HMW03, MdB01, KLSR06], and

SlmA proteins, involved in nucleoid occlusion [CMDB11, TMC+13], inhibit polymerization

everywhere except at the midcell [SL10, APS14, SL09, DL14]. Once the Z-ring structure forms

in that location, it remains stable for several minutes [TRC+11], during which time there is still a

continuous exchange of monomers between the cytoplasm and the FtsZ structure [CE5b, CE09].

This exchange increases the scaffold’s robustness by modifying and repositioning the filaments.

After that time, once the two new nucleoids are separated, contraction of the Z-ring is triggered,

leading to the cell’s division [DRRv13, Eri09, LWS07, TPD+12].

The in vitro experiments [CE5b, CE09, LM14, APS14, ACFF+12, CBRE5a] provide
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further insight into the properties of FtsZ filaments. They established the existence of a critical

concentration at which FtsZ monomers begin to polymerize; this critical concentration coincides

with the concentration of FtsZ monomers observed in steady state. They showed that hydrolysis-

induced turnover between FtsZ monomers in the pool and in the polymers/bundles network occurs

at a constant rate in steady state; this phenomenon was also observed in vivo [SMSE02]. When

the total concentration of FtsZ monomers in all forms (Ctot) is high enough to observe bundle

formation, this turnover remains practically the same for higher Ctot [CE5b, RM04]. Finally, they

showed that while filaments have different lengths at different concentrations [CE09, CBRE5a],

the formation of bundles occurs only at high concentrations [CE5b, CE09, DLS+08, HLB+08,

PIN+09].

The importance and ubiquity of polymer assembly provided an impetus for development

of kinetics models of these processes. A number of these models [CE5b, DRRv13, CBRE5a,

SML08, LDWS08] aim to describe the in vivo and in vitro observations of FtsZ assembly.

Initial stages of FtsZ polymerization have been adequately captured with the eight-equation

model [CBRE5a, CE5b]. The latter describes only the first seconds of polymerization for

different FtsZ strains and buffer conditions, rather than the whole process of FtsZ assembly. The

model’s failure to handle later times and in vivo FtsZ concentrations stems from its inability to

account for hydrolysis effects and transformations of filaments and bundles. Current models

of full FtsZ assembly, e.g., [SML08, LDWS08, DRRv13], employ hundreds or even thousands

of rate equations. Despite their complexity, most of them find it necessary to oversimplify the

kinetics of hydrolysis and formation and dissociation of bundles, the processes that are known

to be important at high concentrations of FtsZ protein found in living cells. Table 3.1 provides

a comparison of these models in terms of their complexity, applicability range, and ability to

predict the salient features of FtsZ assembly observed by Chen et al., [CE5b, CBRE5a].

We present a model of FtsZ assembly that ameliorates many of the shortcomings of its

existing counterparts. It consists of only 17 equations, yet is capable of capturing the main

characteristics of the in vitro experiment conducted by Chen and Erickson [CE5b] over a wide

30



range of FtsZ concentrations. The predictive accuracy of our model exceeds that of the more

complex models (see Table 3.1). The significantly reduced complexity of our model stems from

its reliance on an average length of filaments and bundles, rather than on a length distribution of

different polymers. The initial stages of FtsZ assembly are described in our model with the eight

rate equations introduced in [CBRE5a].

This chapter is organized as follows. In Section 2.2, we formulate a model of FtsZ

assembly in terms of relevant unimolecular and bimolecular reactions and provide details on

model parametrization, i.e., on selection of values of the reaction rates. In Section 4.4, we discuss

the predictions and insights provided by our model, as well as its advantages over several other

models. Major conclusions from our study are summarized in Section 2.4.

2.2 Model of FtsZ Assembly

We use coarse-graining to reduce all different sizes of polymers to a species called

a filament whose average length is tracked in time during the entire process. The resulting

coarse-grained model comprises 17 ordinary differential equations (ODEs).

2.2.1 Model formulation

The first critical concentration C1
cr is the minimum concentration of FtsZ proteins in the

monomeric form at which polymerization begins, and it establishes two regimes of polymer-

ization. The first regime, Ctot ≤C1
cr, admits only monomers such that [Zna]+ [Z]≈Ctot, where

[Zna] and [Z] denote concentrations of nonactivated (GDP-bound) and activated (GTP-bound)

FtsZ monomers, respectively. The second regime, Ctot >C1
cr, allows for FtsZ polymerization

and bundling, with C1
cr = 0.7 µM, in accordance with the experimental evidence in [CE5b]. The

analysis presented below is concerned with the second regime of polymerization.

Let Zna and Z denote a nonactivated (GDP-bound) and activated (GTP-bound) monomer,

respectively. The first five polymers obtained by combining the corresponding number of

monomers are denoted by Zi, where i = 2, . . . ,6. Longer polymers (i.e., filaments) are denoted by
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F . Bundles of k filaments are denoted by Bk, where k = 2, . . . ,N and N is the maximum number

of filaments in a bundle; it is allowed to increase with the total concentration of FtsZ monomers in

all forms, Ctot. We show in Section B.1 of the Appendix B that N = 10 even in the physiologically

extreme case of Ctot = 10.0 µM, i.e., our model relies on 17 species and equations to capture

the process of FtsZ assembly. The basic structures (monomers, short polymers, filaments, and

bundles) and their graphical representations are summarized in Figure 2.1.

To avoid unphysical oversimplifications, we express the kinetics of the processes involved

in FtsZ assembly, from its nonactivated monomeric form to long bundles of filaments, in terms

of fundamental unimolecular and bimolecular reactions. The process of activation is described

by a reaction

Zna k+ac


k−ac

Z, (2.1)

with forward and backward reaction rates k+ac and k−ac, respectively. Activation and deactivation

of monomers occurs due to their interactions with GTP and GDP nucleotides, respectively, even

though GTP and GDP are not represented explicitly in our model. The process of nucleation is

represented by a reaction

Z +Z
k+nu


k−nu

Z2, (2.2)

where k+nu and k−nu are the forward and backward reaction rates, respectively. Formation of

nucleus of two monomers (nucleation or dimerization) is a critical stage of initialization of the

FtsZ assembly [CBRE5a]; it also determines the rate of assembly of the polymer network. The

elongation process is modeled by a set of reactions

Z +Zi
k+el


k−el

Zi+1, i = 2, . . . ,5, (2.3a)
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Z +Z6
k+el→ F, (2.3b)

Z +Fz−
k+el


k−el

Fz+, (2.3c)

with forward and backward reaction rates k+el and k−el , respectively.

The reactions defined above comprise the activation-nucleation-elongation model pro-

posed by Chen and Erickson [CE5b], and used in [FG83, SXPM99, FLKG12] to describe the

kinetics of actin polymerization. (These and other models, e.g., [CE5b, LDWS08], use the

notation Z +F 
 F in which a filament before and after elongation process is denoted by the

same letter. To differentiate between reactant-filaments and product-filaments in a given reaction,

we introduce subscripts that clarify the physical processes that these reactions represent. Thus, in

Eq. 2.3c, Fz− and Fz+ designate a filament F before and after the attachment of a monomer Z, re-

spectively. The forward reaction implies a decrement of the concentration of activated monomers

[Z] with the rate −k+el [Z][Fz−]. Similarly, the backward reaction represents the increment of the

concentration of activated monomers with the rate k−el [Fz+]. Like the aforementioned models,

our model assumes that all filaments are present in the same concentration regardless of their

length, such that [Fz−] = [Fz+] = [F ]. Section B.1 of the Appendix B extends this assumption to

other species and reactions in order to reduce the number of ODEs.) We posit that their model,

including its values of the reaction rate constants, is sufficient to describe short-time kinetics

and, hence, adopt it as a module in our model. This module is supplemented with models of

filament annealing, bundling of both filaments and bundles, and hydrolysis/dissociation reactions

to handle long-time kinetics, as described below. We assume that filaments and bundles have

the same length when they connect laterally and that bundles grow laterally in structures of two

dimensions. With these simplifications, the process of filament annealing is represented by a
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reaction

Ff−+Ff−
k+an


k−an

Ff+, (2.4)

where k+an and k−an are forward and backward reaction rates, respectively; and the subscripts f−

and f+ designate a filament F before and after the attachment of another filament F . The process

of filament bundling consists of reactions

F +F
k+bu


k−bu

B2, (2.5a)

F +Bi
k+bu


k−bu

Bi+1, i = 2, . . . ,N−1, (2.5b)

Bi +B j
k+bu


k−bu

Bi+ j, i+ j = 4, . . . ,N, (2.5c)

where k+bu and k−bu are the forward and backward reaction rates. The latter rate varies with L̄m
fb, an

average length of filaments of m monomers (or bundles made of filaments of m monomers), i.e.,

k−bu = k−bu(L̄
m
fb).

Two mechanisms contribute to the turnover of monomers between the solution and the

network of filaments and bundles: hydrolysis of filaments and hydrolysis of bundles. The

GTP-bound FtsZ monomers, which constitute the polymer network, exchange their nucleotides

to GDP by hydrolysis. Subsequently, those monomers can detach from a filament or a bundle,

restarting the polymerization process. In our model, dissociation of monomers from filaments

following GTP hydrolysis involves two reactions

Fz+
k1

hy/dis→ Fz−+Zna, (2.6a)
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Fz+, f+
k2

hy/dis→ Fz−, f−+Zna +Fz−, f−, (2.6b)

with reaction rates k1
hy/dis and k2

hy/dis, and dissociation of monomers from bundles following GTP

hydrolysis consists of two reactions,

Bi;z+,b+
k2

hy/dis→ Bi;z−,b−+Zna +Bi;z−,b−, i = 2,3, (2.7a)

Bi;z+
k3

hy/dis→ Bi;z−+Zna, i = 2, . . . ,N, (2.7b)

where k3
hy/dis is a reaction rate. It is worthwhile noting that the depolymerization process described

by Eqs. 2.6a and 2.6b ignores depolymerization of the first oligomers Z2, . . . ,Z6. GTP hydrolysis

does not affect either nucleation or first elongation phases because it occurs slowly, after the

entry of a FtsZ subunit into a filament [CE5b, RM04]. For longer filaments, GTP hydrolysis

precedes the loss of a nonactivated monomer from one of their ends, Eq. 2.6a, or even their

middle, Eq. 2.6b, [LM14, MGPH+12]. Equation 2.7a represents the loss of a monomer that

links both sides of a bundle; it implies a decrement of the bundle length (only applied to thin

bundles of two or three filaments). Equation 2.7b represents bundles that lose nonactivated

monomers from their middle or from their ends after GTP hydrolysis, without significantly

changing their dimensions [APS14]. The subscripts z±, f±, and b± indicate the loss or gain of

monomers, filaments, and bundles, respectively, i.e., indicate variations in the concentrations of

the corresponding species.

Our model does not provide explicit information about the binding sites where these

species attach or detach. Figure 2.2 illustrates the actual process of shortening of a thin bundle

after GTP hydrolysis and its simplified version implemented in our model. First, a bundle loses a

GDP-bound FtsZ monomer somewhere in its middle after GTP hydrolysis (a process represented

by Eq. 2.7b). Then, the same reaction can involve a monomer of the adjacent filament next to
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the position of the departed monomer, yielding two separated and shorter bundles (a process

described by Eq. 2.7a). An explicit description of these two processes would give information

about the location of the monomers before they leave the bundle and the length of the new

bundles. Our model lacks these details, providing information only about concentrations of both

monomers and bundles (hence, the subscripts z± and b± in Eqs. 2.7a and 2.7b).

Finally, attachment of monomers to bundles is represented by a reaction

Z +Bi;z−
kmb→ Bi;z+, i = 2, . . . ,N, (2.8)

where kmb is the attachment rate. This reaction accounts for interactions between activated

monomers and the bundles and attachment of the former to the latter.

A graphical representation of reactions in Eqs. 2.1–2.8 is depicted in Figure 2.1. ODEs

for each of the reactions in Eqs. 2.1–2.8 are provided in Section B.1 of the Appendix B.

Following other multifilament models, e.g., [LDWS08, FG83, SXPM99, FLKG12], we

use the conservation of mass to estimate the average length of filaments and bundles, L̄m
fb. At any

time, the total concentration of monomers, Ctot, is the sum of the concentration of nonactivated

and activated monomers, [Zna] and [Z], and the cumulative concentrations of monomers in

different forms, e.g., twice the concentration of dimers, three times the concentration of trimers,

etc. Because the length of filaments is a multiple of the monomers, this yields Ctot = [Zna]+

[Z]+∑
6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2 i[Bi]) or

L̄m
fb =

Ctot− [Zna]− [Z]−∑
6
i=2 i[Zi]

[F ]+∑
N
i=2 i[Bi]

. (2.9)

This quantity keeps track of the average number of monomers, hence the superscript m, lon-

gitudinally connected per filament/bundle during the entire assembly process. The smallest

length of a filament is L̄m
fb = 7, i.e., a filament consist of seven monomers. This value is achieved

instantaneously once [F ] becomes larger than zero. To avoid having to deal with this jump
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discontinuity in time, we define an average total length, L̄m
tot, which includes the first oligomers

(Z2, . . . ,Z6),

L̄m
tot =

∑
6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2 i[Bi])

∑
6
i=2[Zi]+ [F ]+∑

N
i=2 i[Bi]

. (2.10)

This parameter gives a complete description of the average length of filaments in all forms (short

oligomers and longer filaments) and bundles. The average characteristics L̄m
fb and L̄m

tot play a

crucial role in reducing the number of species and, therefore, the number of equations used to

describe the protein assembly process. In Section C.1.1 of the Appendix B, we demonstrate

that the definition of the average length in Eq. 3.4 enforces mass conservation. Energy is also

conserved, but the principle of microscopic reversibility, or detailed balance, is violated (see

Section C.1.1 for more detail).

Another important characteristic of the polymerization process is the average width of a

bundle, W̄ f
tot, or the average number of laments per bundle. It is defined as

W̄ f
tot =

∑
6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2 i[Bi])

∑
6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2[Bi])

. (2.11)

where the species Z2, . . . ,Z6 and F are treated as bundles of an average width 1.

Our model does not account for the “cozy corner association” [Eri09], which allows

for simultaneous formation of longitudinal and lateral bonds and acts as a sliding mechanism

between polymers. This omission is informed by the recent experimental study [APS14] that

indicates that filaments in a bundle network do not slide but, rather, exhibit a treadmill-like

behavior.

Models (2.1)–(3.4) consists of a system of 17 ODEs. This system was solved with an

ODE45 Matlab function (The MathWorks, Natick, MA), which implements a combination of

fourth- and fifth-order Runge-Kutta methods for nonstiff differential equations.
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2.2.2 Model parametrization

We use the in vitro study [CE5b] of FtsZ-F268C polymerization in MMK buffer to

parameterize our model, i.e., to determine values of the reaction rates in Eqs. 2.1–2.8. We

focus on this strain because it is an innocuous mutation that shows identical assembly to

the wild-type FtsZ [CE5b, CE09, APS14, ACFF+12]. Unlike wild-type FtsZ, the mutant

F268C has a single cysteine that provides a mechanism to attach the fluorescent labels and

facilitates the assembly assay based on fluorescence resonance energy transfer. The exper-

iments of Chen and Erickson [CE5b] cover a wide range of FtsZ concentrations, from the

critical concentration to polymerize (0.7 µM for this experiment) to the 5-10 µM represen-

tative of in vivo conditions [LDWS08, Lut07, ZML13], and their findings are in agreement

with other investigations. These findings include the average filament length of 100-200 nm,

also observed in [RSE01, DLS+08, PIN+09]; the average bundle width of 5-15 nm, as seen

in [CE09, DLS+08, HLB+08, RSE01]; and the monomer turnover rate of 0.143 s−1, which falls

within the range of 0.112–0.233 s−1 observed in in vitro experiments [APS14, RM04, RSBE05]

and is close to in vivo values of 0.111–0.128 s−1 [AGFE04].

Values of the reaction rates and other model parameters are summarized in Table 2.2.

Most of them are taken from the literature, while the remaining four are estimated in Section C.2.1

of the Appendix B by calibrating our model to the low steady-state concentration data (Ctot = 0.7-

3.0 µM) from [CE5b]. The low concentration data at short and long times are used in Section C.3

for model validation.

The values of the activation and nucleation reaction rates in Eqs. 2.1 and 2.2 are taken

from the model in [CE5b]. Following [CE5b, FG83], we both assume the forward (k+el) and

backward (k−el) reaction rates in Eq. 2.3 to be independent of a filament’s length (i.e., to be the

same for all i) and set k−7 = 0. By treating the reaction in Eq. 2.3b as irreversible, the latter

step allows one to avoid a buildup of Z6 polymers as the concentration of filaments F increases,

and ensures that the reaction rate values do not change when the number of elongation steps
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increases beyond seven [CE5b].

While elongation and annealing in Eq. 2.4 are diffusion-limited reactions, we treat

them as reaction-limited because of the small average size of the FtsZ polymers observed in the

experiments. Previous models [LDWS08, SML08, DRRv13] assume that rates for elongation and

annealing are equal and independent of the filament length, i.e., k+el = k+an = constant. Although

the authors of [LDWS08] explicitly mention the diffusion-limited character of these reactions,

they do not explain why the rates do not decrease as the filaments get longer; and the model

in [Eri09] does the same for bundling reactions. We justify this choice by proposing an analogy

between models of FtsZ filament growth and actin assembly. (For long filaments (L̄actin ≥ 100

monomers), the annealing reaction rate of actin polymerization, k+an, actin, decreases with the

average length [SXPM99, ABS+01, FPBM08]. For shorter filaments (L̄actin = 65 monomers),

k+an, actin is considered constant and smaller than the elongation rate k+el, actin [KSEG93]. For

small filaments (L̄actin < 30 monomers), the two rates are considered constant and similar,

k+an, actin ≈ k+el, actin ≈ 10 µM−1s−1 [MGGP88].) Because the longest average length of FtsZ

filaments in our model is L̄m
tot ≈ 30 monomers, this analogy suggests k+el = k+an = constant.

For the concentrations reported in [CE5b], the bundling reaction rates in Eq. 2.5 are

limited by the size of a filament bundling to either another filament or a bundle. Therefore, the

bundling rate k+bu should be close to the annealing rate k+an, and its value must fall within the

accepted range of protein-protein association rates, 2.0−7.5 µM−1s−1 [CE5b, APS14, NE92].

The parameter identification procedure described in Section C.2.1 of the Appendix B honors this

constraint.

The depolymerization reaction rates, k−el , k−an and k−bu, are determined from the respective

internal energies of filaments and bundles. Specifically, the backward reaction rates for elongation

and annealing are given by [LDWS08]

k−el = k−nu e−∆Ut and k−an = k−nu e−∆Um, (2.12)
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where ∆Ut and ∆Um are the increments in the energy of a monomer connected at the end and

middle of a filament, respectively. The value of ∆Ut is calculated from the first expression

in Eq. C.15, with the values for k−nu and k−el taken from [CE5b]. Conservation of energy sug-

gests [LDWS08] that ∆Um = 2∆Ut . The lateral dissociation rate k−bu decreases exponentially with

the average length of the connected filaments/bundles [LDWS08],

k−bu = k0
bu e−(L̄

m
fb−1)Ub , (2.13)

where Ub is the bond energy per lateral bond. Its value of Ub = 0.175 kBT represents both the

average of the values reported in [DLS+08] for the same strain as in [CE5b] but a different buffer

and the value used in [LDWS08] for a strain different from [CE5b] but for the same buffer. The

reference dissociation rate k0
bu is one of the four parameters used for model calibration. In the

absence of experimental evidence, we have explored a wide range of values (0.0−500 s−1) in

the calibration procedure described in Section C.2.1.

Dissociation of monomers after GTP hydrolysis is essentially absent in the beginning of

polymerization [CE5b, RM04]; it becomes more pronounced as the amount of polymers increases

and they interact more frequently with GDP. This dependence of the hydrolysis/dissociation rates

in Eqs. 2.6 and 2.7 on the amount of polymers is accounted for as

ki
hy/dis = ki

hss/dis
Ctot− [Zna]− [Z]

Ctot−C1
cr

, i = 1,2,3, (2.14)

where C1
cr < Ctot in the second regime of polymerization. At the beginning of the assembly

process, most FtsZ proteins are in the form of nonactivated (Zna) and activated (Z) monomers,

such that [Zna] + [Z] ≈ Ctot and ki
hy/dis → 0. At steady-state, when the polymer network is

formed and GDP deactivates monomers more often, these rates reach their maximum values,

ki
hy/dis ≈ ki

hss/dis for i = 1,2,3. They represent the rate with which a GTP-bound monomer in a

filament or a bundle changes its nucleotide and leaves the filament bounded to GDP, i.e., the
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turnover rate predominantly associated with GTP hydrolysis.

The reaction rates controlling dissociation after GTP hydrolysis depend on the location of

a deactivated monomer in the filament or bundle. In Table 2.2, ki
hss/dis (i = 1,2,3) denote values

of the hydrolysis rates for filaments and bundles at steady state. Only the rate for detachment of

monomers from filament ends, k1
hss/dis, was calibrated. The rate for detachment of monomers

from the middle of filaments and thin bundles, k2
hss/dis, is set to the average value reported

in [CE5b] for turnover of monomers at steady state (half-time of 7 s, i.e., 0.143 s−1), because

we assume that it is the depolymerization reaction that happens more often. This assumption

is based on two facts: the predominant species observed in the experiment are filaments and

thin bundles; and there are more monomers in the middle of filaments and bundles than in their

ends. The value of k3
hss/dis is determined in [APS14] by observing the detachment of nonactivated

monomers from thick bundles. These three rates satisfy the following order relations. It takes less

energy to break a longitudinal bond at the filament end than two bonds at its middle, therefore,

k1
hss/dis > k2

hss/dis [MGPH+12] (the condition imposed for calibration of k1
hss/dis in Section C.2.1

of the Appendix B). The values of k2
hss/dis for shortening of filaments and thin bundles are equal,

because both reactions describe the loss of a monomer in the middle of a filament. The value

of k3
hss/dis is the smallest of the three rates, because the monomers in a bundle can be doubly

connected both longitudinally and laterally.

The rate at which activated monomers in the solution attach themselves to bundles, a

process represented by Eq. 2.8, is quantified by the reaction rate constant kmb. The latter serves

as the final calibration parameter; its computed value (Table 2.2) is imposed to fall within the

range of values of the protein-protein interaction rates of 2–7.5 µM−1s−1. The condition kmb <

k+el = 6.6 µM−1s−1 is also imposed (see Section C.2.1), because pure longitudinal attachments

of monomers to filament ends are more favorable than combinations of both longitudinal and

lateral attachments in a monomer-bundle interaction.
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2.3 Results and Discussion

Results of model calibration and validation on the low concentration data from [CE5b],

Ctot = 0.7−3.0 µM, are presented in Sections C.2.1 and C.3 of the Appendix B, respectively.

In what follows, we present fit-free predictions for high concentrations of Ctot = 3.0−10.0 µM

(Section 2.3.1); discuss what are, to our knowledge, new insights provided by our model

(Section 2.3.2); and compare its performance with that of its counterparts (Section 2.3.3). The

steady-state data at high concentrations (Ctot = 3−10 µM) are taken from [CE5b] and used to

validate our model.

2.3.1 Model predictions at high concentrations, Ctot = 3.0 – 10.0 µM

Average size of the filaments and bundles.

Under physiologically relevant conditions, Ctot = 5.0−10.0 µM, our model captures the

observed tendency of the filaments to keep the same average length L̄m
tot ≈ 32−33 subunits at

steady state, regardless of the value of Ctot (Fig. 2.3). Tables 2.3 and C.5 (see the Appendix

B) show that, for Ctot = 2.0−10.0 µM, the predicted average length is L̄m
tot = 25−33 subunits

(125−165 nm), which is within the well-established range of 100−200 nm [Eri09, CBRE5a,

DLS+08, HLB+08, PIN+09, RSE01].

Almost all filaments remain single-stranded when Ctot < 2.0 µM (Table C.5 in the

Appendix B). For larger concentrations up to Ctot = 10.0 µM, and for various buffers and FtsZ

strains, filaments dominate and the majority of bundles consist of two filaments. All the computed

values of the average bundle width W̄ f
tot in Table 2.3 (and Fig. 2.3) are <2, which is in agreement

not only with [CE5b] but also with other experiments [CE09, DLS+08, HLB+08, RSE01].

Concentration of monomers at steady state.

In the physiologically relevant range of Ctot = 5.0− 10.0 µM, our model predicts the

steady-state concentration of monomers to be [Zna]ss+[Z]ss ≈ 0.7 µM (Table 2.3). This matches

the observed monomer concentration [CE5b] and equals the first critical concentration, C1
cr. The
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model presented in [CE5b] underestimates this observation, predicting a value of [Zna]ss +[Z]ss

≈ 0.5 µM.

2.3.2 Physiological insights

Second critical concentration.

An appreciable decrease in the fluorescence intensity at Ctot = 3.0 µM (or, more gener-

ally, at Ctot = 2.0−4.0 µM, depending on the concentration of Mg2+ contained in the buffer)

was observed, but not explained, by Chen and Erickson [CE5b]. A subsequent kinetics model

in [LDWS08] utilized the experimental data from [CBRE5a] and [CE5b] to describe this phe-

nomenon by identifying a critical concentration, C2
cr, at which the presence of bundles becomes

pronounced. The model in [LDWS08] does not specify the value of C2
cr and, crucially, predicts

formation of bundles comprising two or three filaments at low concentrations (Ctot = 2.0 µM),

which is not supported by the observations. Our model correctly predicts the average length/width

for filaments and bundles for a range of Ctot. This ratio reaches its maximum at Ctot = 2.5 µM,

the critical concentration C2
cr after which the longitudinal growth (elongation and/or annealing)

ceases to dominate the lateral growth (bundling) and bundles become an important factor in the

overall kinetics (Fig. 2.4). Our predicted value of C2
cr = 2.5 µM falls within the experimentally

observed range of 2−4 µM. We posit that the maximum average length/width corresponds to

the transition between a network formed entirely by filaments and a thicker network made of

both filaments and bundles.

Role of bundling in dissociation of monomers after hydrolysis.

Because the average length L̄m
tot remains nearly constant for Ctot > 3.0 µM or 29-33

subunits (Table 2.3), this characteristic length is probably sufficient for formation of stable

bundles. The bundling regulates turnover of monomers keeping GTP-hydrolysis/dissociation

rate constant for concentrations Ctot = 3.0-10.0 µM, at which bundles become relevant [CE5b].

That regulation also helps to maintain the average length of the filaments constant and to keep

the system at this equilibrium state regardless of the total concentration. Since this occurs at in
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vivo concentrations levels, Ctot = 3.0-10.0 µM, we posit that the interaction of bundle formation

and GTP hydrolysis is a key part of the FtsZ ring formation and steady-state equilibrium until

contraction.

Limitations of fluorescence resonance energy transfer assay for measurements related to
bundling.

The existence of the second critical concentration related to bundling, C2
cr, highlights a

potential limitation of the fluorescence resonance energy transfer assay used in [CE5b]. The

authors reported the fluorescence intensities, which serve as proxy for the amount of FtsZ in

filaments and bundles, to be lower than expected. Accounting for the exchange of monomers be-

tween solution and bundles (see Eqs. 2.7b and 2.8) provides an explanation for this phenomenon.

These reactions cause the bundles to continuously lose and gain monomers even at steady state,

which generates bundles partially connected longitudinally; this exchange can be described with

a stochastic model [APS14]. This longitudinal elongation of the bundles distorts the measured

fluorescence intensities, because the fluorescence resonance energy transfer assay signals are

direct measurements of the longitudinal contacts of FtsZ species.

2.3.3 Comparison with alternative models

Borrowing from [CE09], our model accounts for the following aspects of FtsZ assembly:

reversible exchange of monomers bounded to GTP at the end of filaments (Eq. 2.3c), irreversible

annealing (forward reaction in Eq. 2.4), and the loss of monomers bounded to GDP at the

ends (Eq. 2.6a) and middle of filaments (Eq. 2.6b) after GTP hydrolysis. Our model departs

from [CE09] by introducing a reversible annealing (Eq. 2.4) because fragmentation of a filament

in the middle can be due to the separation of two monomers bounded to GTP [RSE01]. Crucially,

our model includes a description of the depolymerization process by including reactions for

bundles (Eqs. 2.7a and 2.7b).

The predictive power of our model, which consists of 17 ODEs, compares favorably

with that of its more complex alternatives, which comprise hundreds or thousands of ODEs (see
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Table 3.1). Our model’s development was motivated by the three models of increasing complexity

introduced by Lan et al. [LDWS08]. The simplest, single-filament model (denoted by M1 in

Table 3.1) captures the kinetics of FtsZ assembly at low FtsZ concentrations, Ctot ≤ 2.0-3.0 µM.

Even though it employs 500 ODEs to determine the steady-state length distribution of filaments,

it does not account for filament bundling and is discarded by the authors in favor of the more

complex alternatives. By allowing formation of two-filament bundles, the second of these models

(denoted by M2 in Table 3.1, and comprising 500 ODEs) improves the predictive accuracy of

polymer length distribution at low concentrations (Ctot = 2.0 µM). Yet, model M2 significantly

overestimates the length of bundles at high concentrations (Ctot = 10.0 µM).

The third model in [LDWS08] consists of 1254 ODEs and, similar to our model, com-

putes an average length of filaments and bundles rather than a complete distribution of their

lengths. It has been rejected by the authors because of its complexity and apparent inability to

correctly predict the experimentally observed average length of filaments and bundles and the

average width of bundles. Specifically, this model predicts the average length L̄m
tot to be 300

nm instead of the experimentally observed value of ∼120 nm [CE5b]. Rather than attributing

this overestimation to the deficiency of the modeling approach, i.e., the reliance on the average

length, we believe it to stem both from an inappropriate choice of the value for reaction rate k−nu

and from the oversimplified representation of dissociation of monomers after GTP hydrolysis.

Likewise, their model overestimates the width of the bundles: it predicts an average of two or

three filaments per bundle for Ctot = 2.0 µM, while the experiment [CE5b] found almost all

filaments to be single-stranded. We attribute this discrepancy to an inappropriate selection of

values of the reaction rates k+bu and k0
bu, and to the overestimation of the average length (L̄m

tot≈ 300

nm). According to Eq. 2.13, the latter leads to an underestimation of the lateral dissociation rate

of filaments/bundles k−bu.

The model of Surovtsev et al. [SML08] and its subsequent generalization [DRRv13]

handle a distribution of polymer lengths (rather than their average) and explicitly account for

hydrolysis reactions at both the ends and middle of a filament. While these models assume
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that these two reactions have the same rate, our model assigns a higher rate for GDP-bound

monomer dissociation from the end of a filament after hydrolysis than from the middle, as

observed experimentally in [MGPH+12]. Consequently, our model makes better predictions

for dissociation after hydrolysis than [SML08] (they estimated concentration of monomers at

the steady-state 2-10 times lower than in vitro experimental values). Moreover, the models

in [SML08, DRRv13] consist of ∼300 ODEs and ignore filament bundling. The latter implies

that they predict neither a bundle size nor the critical concentration at which bundles become

pronounced. Finally, these models fail to identify the strong dependence between dissociation of

monomers after GTP hydrolysis and bundle formation [APS14, RM04, RSE01].

2.4 Conclusions

We developed a computationally efficient model of protein polymerization, which relies

on an average length of polymers (rather than on length distribution) to significantly reduce the

number of reaction rate equations. Our model of FtsZ assembly in E. coli, a phenomenon used

as an illustrative example, consists of 17 ODEs and equals or exceeds the predictive power of

its alternatives [SML08, DRRv13, LDWS08], which comprise hundreds or thousands of ODEs.

The simplicity and, hence, computability of our model are essential elements for its use as a

component in simulations of an E. coli cell lifecycle, which in addition to FtsZ assembly also

includes attachment/detachment to/from the cell membrane, polymerization inhibition by MinCD

and SlmA proteins, formation of bundles and clusters by other proteins, etc.

It is often argued, e.g., by [LDWS08], that reducing the number of species (and, hence,

ODEs) by defining an average concentration of filaments (and their average length) leads to

significant model errors. We demonstrated that an improved kinetic description of the FtsZ

assembly process yields more accurate and computationally efficient predictions than those

obtained with the multifilament model [LDWS08].

Despite its relative simplicity, our model captures key aspects of depolymerization after
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GTP hydrolysis and filament bundling in cytoskeletal structures in a way that its more complex

counterparts do not. FtsZ filaments in E. coli bundle by lateral bonds or through the action of other

proteins like ZapA or ZapB. Our model reproduces the experimental finding [DLS+08, LDWS08]

that lateral interactions between FtsZ monomers or small filaments are weak. It also shows that,

as filaments grow longitudinally, bundling becomes essential for the stability and robustness

of the scaffold. In the physiologically relevant conditions of the total monomer concentration

Ctot = 5.0−10.0 µM, once the filaments grow to the length of ∼30 subunits, they start forming

bundles. Our model reproduces, both qualitatively and quantitatively, this phenomenon as well

as the FtsZ polymerization at low concentrations (Ctot ≤ 2.0 µM) observed in [CE5b].

Because our model describes protein assembly in terms of elementary (and bimolecular)

reactions only, it is readily amenable to stochastic simulations that replace continuum reaction

rate ODEs with their discrete counterparts, e.g., [CMTS10]. Our model is directly applicable

to homogeneous systems, such as in vitro experiments in which the entire process of protein

assembly occurs in well-mixed solutions without spatial preferences to polymerize. It can be

generalized to account for the presence of concentration gradients either by adding diffusion

terms to the ODEs or by employing stochastic operator-splitting algorithms, e.g., [CMTS12].

Another approach to dealing with spatial heterogeneity ubiquitous in in vivo systems is

to partition a cell into homogeneous compartments. In the context of bacterial cell division, such

compartments are cell caps and a midcell region [DRRv13]. FtsZ filaments and bundles in the

cell caps are shorter and thinner than in the midsection, because of the action of MinCD and SlmA

proteins that continuously extract monomers from the FtsZ network [DL14, FFFG12, FFG11].

Deploying our model in each of the three homogeneous compartments and using Fick’s law to

compute fluxes of FtsZ species between any two adjacent components would yield spatially

varying average length of filaments and bundles.

Our reduced-order representation of reactions, such as bundling or turnover of subunits

as a consequence of hydrolysis, facilitates its adoption to other cytoskeletal biopolymers. Apart

from elongation and annealing, the formation of bundles with and without intervention of other
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proteins is a characteristic process in network assembly of actin filaments (by fimbrin or α-

actinin), microtubules (by MAP2) and intermediate filaments in eukaryotes, or MreB (by YeeU)

and ParM in prokaryotes [FLKG12, MTA+12, AJL+14]. Our FtsZ model can be modified to

define the characteristic net cycle balance of other cytoskeletal filaments [Nee15, SW11, Weg76]

in terms of simple reactions. Polymerization/depolymerization processes regulated by the action

of nucleotides, such as ATP/ADP or GTP/GDP, are also common in cytoskeleton formation. Our

model already includes reactions of this nature but it can be improved by defining nucleotides as

new species and describing more explicitly their interactions with biopolymers. We leave these

and other enhancements of our model for future studies.

Chapter 2, in full, is a reprint of the material as it appears in Efficient multiscale models

of polymer assembly 2016. Ruiz-Martı́nez; Á., Bartol, T.M.; Sejnowski, T.J.; and Tartakovsky,

D.M., Biophysical Journal, 2016. The dissertation/thesis author was the primary investigator and

author of this paper.
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Table 2.2. Reaction rates and bond energies. ‡The energy units are expressed in terms of the
Boltzmann constant kB and room temperature T. †Simple bundling model.

Parameter Units Value Reference

k+ac s−1 0.38 [CE5b]
k−ac s−1 0.01 [CE5b]
k+nu µM−1s−1 0.79 [CE5b]
k−nu s−1 199.8 [CE5b]
k+el µM−1s−1 6.6 [CE5b]
k+an µM−1s−1 6.6 [CE5b]
k+bu µM−1s−1 3.5981 Calibrated
k0

bu s−1 199.8221 Calibrated
kmb µM−1s−1 2.7288 Calibrated
k1

hss/dis s−1 0.6681 Calibrated
k2

hss/dis s−1 0.143 [CE5b]
k3

hss/dis s−1 0.112 [APS14]
∆Ut kBT‡ 4.05 [CE5b, LDWS08]
∆Um kBT‡ 8.10 [LDWS08]
Ub kBT‡ 0.175 [DLS+08, LDWS08]†
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Table 2.3. Steady-state monomer concentration, and average length and width, predicted with
our model and observed in experiments [CE5b].

Concentration Average length: L̄m
tot Average width: W̄ f

tot Monomer concentration: [Zna]ss+[Z]ss (µM)
Ctot (µM) Predicted Observed Predicted Observed Predicted Observed Model [CE5b]

4.0 31.42 30 1.39 < 2 0.693 0.7 0.537
5.0 32.14 30 1.50 < 2 0.691 0.7 0.538
6.0 32.55 30 1.60 < 2 0.690 0.7 0.538
7.0 32.81 30 1.69 < 2 0.690 0.7 0.539
8.0 32.99 30 1.77 < 2 0.689 0.7 0.539
9.0 33.12 30 1.84 < 2 0.689 0.7 0.539
10.0 33.21 30 1.91 < 2 0.690 0.7 0.539
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Figure 2.1. Basic polymer structures and reactions and their graphical representation.

52



Fi
gu

re
2.

2.
Sh

or
te

ni
ng

of
a

bu
nd

le
of

tw
o

fil
am

en
ts

by
hy

dr
ol

ys
is

(l
ef

t)
an

d
its

m
at

he
m

at
ic

al
re

pr
es

en
ta

tio
n

in
ou

rm
od

el
(r

ig
ht

).

53



0
10

20
30

40
05101520253035

t (
s)

Filament/Bundle Average Length (Ltot
m

)

3 
µM

5 
µM

10
 µ

M

0
10

20
30

40
1

1.
2

1.
4

1.
6

1.
82

t (
s)

Average Number Of Filaments Per Bundle (Wtot
f

)

3 
µM

5 
µM

10
 µ

M

Fi
gu

re
2.

3.
Te

m
po

ra
le

vo
lu

tio
n

of
th

e
av

er
ag

e
nu

m
be

ro
fm

on
om

er
s

co
nn

ec
te

d
lo

ng
itu

di
na

lly
in

to
fil

am
en

ts
an

d
bu

nd
le

s
(le

ft)
an

d
th

e
av

er
ag

e
nu

m
be

ro
ffi

la
m

en
ts

pe
rb

un
dl

e
(r

ig
ht

),
fo

rC
to

t
=

3.
0,

5.
0,

an
d

10
.0

µM
.

54



0 2 4 6 8 10
0

5

10

15

20

25

Total Concentration (µM)

R
at

io
 L

en
gt

h/
W

id
th

Figure 2.4. Length/width for the filaments and bundles at steady state, for a range of concentra-
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Chapter 3

Efficient Multiscale Models of Polymeriza-
tion Applied to in vivo FtsZ Ring Assembly
in Escherichia coli

3.1 Introduction

In this chapter, we present a new modeling framework that is (many) orders of magnitude

faster than the existing alternatives (e.g., those included in Table 3.1); this speed-up is achieved by

replacing distributions of lengths and widths with their average counterparts and by introducing

a hierarchical classification of species and reactions into sets. As in previous models, monomers,

filaments and bundles are defined as interacting species; a system of coupled ordinary differential

equations (ODEs) describes the temporal evolution of the species concentrations. Unlike those

models, our approach involves a hierarchical classification of these species such that, for example,

bundles are assembled from filaments which, in turn, are built from monomers. The resulting

model comprises ODEs describing the dynamics of the concentrations of species classes and the

exchange of elemental quantities (e.g., a monomer in filaments or a filament in bundles) between

the classes.

While some kinetic models gain in computational efficiency by replacing filaments of

different sizes with filaments of an average length [LDWS08, FLKG12, RMBST16], they all

treat bundles differing by a single filament as distinct species. Hence, their computational cost
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increases with total protein concentration, Ctot. That is because higher concentrations of Ctot

result in larger polymers and bundles and, consequently, increase the variability of their sizes;

the latter enlarges the number of species and ODEs describing their dynamics. At relatively

high concentrations, some of the models comprise hundreds or thousands ODEs (Table 3.1). In

contrast, the number of ODEs in our model (10 or 11, depending on the presence of a membrane)

does not change with Ctot.

We use in vitro and in vivo FtsZ ring assembly in E. coli to demonstrate the veracity

and computational efficiency of our model. This complex kinetics process involves a plethora

of chemical reactions and species; large concentrations accompanying in vivo assembly of the

FtsZ ring put this phenomenon out of reach of most current models. Our approach requires an

addition of a single ODE to account for the influence of the membrane and FtsA, ZipA and

ZapA proteins. The resulting 11-ODE model accurately predicts key observed features of the

ring formation, such as time to reach the steady state, total concentration of FtsZ species in the

ring, total concentration of monomers, and average dimensions of filaments and bundles. It also

allows one to generate a hypothesis, for example, about the role of ZapA proteins in positioning

and stability of the FtsZ-ring.

3.2 Average Feature Model of Polymerization

We reduce multiple sizes of polymers to species called a filament and a wide bundle

whose average features are tracked in time. The resulting model comprises 10 ODEs. Our model

does not provide information about the exact binding sites where species attach or detach. Instead,

it estimates variations in concentration of monomers, filaments and/or bundles. Consequently,

we refer to it as an Average Feature Model or AFM.

The first critical concentration C1
cr is the minimum concentration of FtsZ proteins in the

monomeric form at which polymerization begins, and it establishes two regimes of polymer-

ization. The first regime, Ctot ≤C1
cr, admits only monomers such that [Zna]+ [Z]≈Ctot, where
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[Zna] and [Z] denote concentrations of nonactivated (GDP-bound) and activated (GTP-bound)

FtsZ monomers, respectively. The second regime, Ctot >C1
cr, allows for FtsZ polymerization and

bundling, with C1
cr = 0.7 µM [CE5b].

3.2.1 Short-time kinetics

The first protofilaments obtained by combining the corresponding number of monomers

are denoted by Zi with i = 2,3. Longer polymers (i.e., filaments) are denoted by F . The basic

structures (monomers, protofilaments, filaments, thin bundles, and wide bundles) and their

graphical representations are summarized in Figure C.1 of the Appendix C. We describe the

early-time kinetics of polymerization with the reduced version [RMBST16] of the activation-

nucleation-elongation model [CE5b]; the latter was used in [FG83, SXPM99, FLKG12] to

describe the kinetics of actin polymerization. In so doing, we express the kinetics of all of the

processes involved in FtsZ assembly, from its nonactivated monomeric form to long bundles

of filaments, in terms of fundamental unimolecular and bimolecular reactions. These are

summarized in Table 3.2 and represented graphically in Figure C.1.

The process of activation is described by reaction I in Table 3.2, with forward and

backward reaction rates k+ac and k−ac, respectively. Activation and deactivation of monomers

occurs due to their interactions with GTP and GDP nucleotides, respectively, even though they

are not represented explicitly in our model. The process of nucleation is represented by reaction II

in Table 3.2, with forward and backward reaction rates k+nu and k−nu, respectively. Formation of

the nucleus of two monomers (nucleation or dimerization) is a critical stage of initialization of

the FtsZ assembly [CBRE5a]; it also determines the rate of assembly of the polymer network.

The elongation process is modeled by Reactions III–V in Table 3.2, with forward and backward

reaction rates k+el and k−el , respectively.
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3.2.2 Long-time kinetics

The first bundles of k filaments are denoted by Bk with k = 2,3. Bigger structures of

laterally attached filaments are referred to as wide bundles and are denoted by Bw. We assume

that filaments and bundles have the same length when they connect laterally and that bundles

grow laterally into 3D structures. With these simplifications, the process of filament annealing is

represented by reaction VI in Table 3.2, with forward and backward reaction rates k+an and k−an,

respectively. The process of filament bundling is modeled similarly to elongation/annealing of

filaments; that is, bundles of up to three filaments are explicitly defined by reactions VII–XI in

Table 3.2, with forward and backward reaction rates k+bu and k−bu, respectively. The former rate

depends on the number of filaments comprising both reactants; the latter rate varies with the

number of filaments comprising the reactant and L̄m
fb, an average filament length (expressed as

the number of monomers in a filament)–that is, k−bu = k−bu(L̄
m
fb).

Hydrolysis of both filaments and bundles contributes to the turnover of monomers

between a network of filaments/bundles and the ambient solution.

Dissociation of monomers from filaments after GTP hydrolysis is modeled by irreversible

reactions XII and XIII in Table 3.2, with rates k1
hy/dis and k2

hy/dis, respectively. To model dissoci-

ation of monomers from bundles after GTP hydrolysis, we supplement the two reactions used

in [RMBST16] with a third one for wide bundles (reactions XIV–XVI in Table 3.2). The first of

these reactions has rate k2
hy/dis, and the remaining two have rate k3

hy/dis. Biochemical implications

and limitations of our conceptualization of monomer turnover are discussed in [RMBST16].

Finally, attachment of monomers to bundles is represented by reactions XVII and XVIII

in Table 3.2, with attachment rate kmb. These reactions account for interactions between activated

monomers and the bundles and attachment of the former to the latter.
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3.2.3 Concentration of species sets

A key component of AFM is a classification of the FtsZ species into different sets

(Table 3.3). Exchange of FtsZ structures between these sets is defined in terms of the elementary

reactions collated in Table 3.2. A set containing all FtsZ species, Sz, includes monomers (m),

filaments ( f ) and bundles (b), and is endowed with average filament length (L̄m
fb) and bundle

width ( f̄wb, the number of filaments in a bundle). It comprises a subset of monomers and

protofilaments, Smp, and a subset of filaments and bundles, Sfb, such that Sz = Smp∪Sfb. The

total concentration (in Sz) of FtsZ monomers in all forms, Ctot, is the sum Ctot = Cm
mp +Cm

fb

of the concentration (in Smp) of monomers in the monomer and protofilament forms and the

concentration (in Sfb) of monomers in the filament and bundle forms, with both concentrations

defined in Table 3.3. Transfer of monomers from Smp to Sfb is due to a reaction set Rm
mp→fb (see

Table 3.3). The number of monomers (in both monomer and protofilament forms) involved in

reaction R1 is m1
r = 4 for the reactants and m1

p = 0 for the reaction product; the same for reaction

Rk (k = 2,3,4) is mk
r = 1 and mk

p = 0. Likewise, transfer of monomers from Sfb to Smp is due to

a reaction set Rm
fb→mp. For each reaction Rn (n = 1, · · · ,6), mn

r = 0 and mn
p = 1. Then,

dCm
fb

dt
=

4

∑
k=1

Rm
mp→fb

κk(mk
r −mk

p)−
6

∑
n=1

Rm
fb→mp

κn(mn
p−mn

r ), (3.1)

where κk (k = 1, · · · ,10) are the reaction rates for reactions Rk from the reaction sets Rm
mp→fb

and Rm
fb→mp. This formulation conserves mass and energy, although the principle of microscopic

reversibility, or detailed balance, is violated (see Section C.1.1 of the SI).

The subset Sfb is, in turn, subdivided into subsets of filaments and thin bundles, Sftb, and

wide bundles, Swb (see Table 3.3). The total concentration (in Sfb) of FtsZ filaments in filament

and bundle forms, C f
fb, is the sum C f

fb =C f
ftb +C f

wb of the concentration (in Sftb) of filaments in

the filament and thin bundle forms, C f
ftb, and the concentration (in Swb) of filaments in the wide

bundle form, C f
wb. (Both C f

ftb and C f
wb are defined in Table 3.3.) Transfer of filaments from Sftb to
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Swb is due to a reaction set R f
ftb→wb. The number of filaments (in both filament and thin bundle

forms) involved in reaction R1 is f 1
r = 4 for the reactants and f 1

p = 0 for the reaction product; for

reaction R2 these are f 2
r = 1 and f 2

p = 0. The transfer from Swb to Sftb is due to reaction R3; it

results in f 1
r = 0 and f 1

p = 1. Then

dC f
wb

dt
=

2

∑
k=1

R f
ftb→wb

κk( f k
r − f k

p )−
1

∑
n=1

R f
wb→ftb

κn( f n
p − f n

r ). (3.2)

where κk are the reaction rates for reactions Rk from the reaction sets R f
ftb→wb and R f

wb→ftb (see

Table 3.3).

The definitions of Cm
fb and C f

wb relate to the average structural features to the concentra-

tions

L̄m
fb =

Cm
fb

[F ]+2[B2]+3[B3]+C f
wb

, f̄wb =
C f

wb
[Bw]

. (3.3)

A smallest filament consists of four monomers (i.e., has the length L̄m
fb = 4). The latter is achieved

instantaneously once [F ] becomes larger than zero. To consider all species, we define an average

total length, L̄m
tot, which includes the first oligomers (Z2 and Z3),

L̄m
tot =

2[Z2]+3[Z3]+Cm
fb

[Z2]+ [Z3]+Cm
fb/L̄m

fb
. (3.4)

It represents the average length of filaments in all forms (short oligomers, longer filaments,

and bundles). Similarly, a smallest wide bundle consists of four filaments (i.e., has the width

f̄wb = 4). This value is achieved instantaneously once [Bw] becomes larger than zero. To consider

all species, we define an average total number of filaments per bundle, f̄tot, which includes the
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first oligomers (Z2 and Z3), longer filaments (F), and the first thin bundles (B2 and B3):

f̄tot =
2[Z2]+3[Z3]+Cm

fb
2[Z2]+3[Z3]+ L̄m

fb([F ]+ [B2]+ [B3]+ [Bw])
. (3.5)

Average characteristics L̄m
fb, L̄m

tot, f̄wb, and f̄tot play a crucial role in reducing the number

of species and, therefore, the number of equations used to describe the protein assembly process.

Section C.1 of the Appendix C contains ODEs corresponding to the reactions involved in the

short- and long-term kinetics processes described above.

3.2.4 Model’s calibration, validation, and computational cost

The system of 10 ODEs is parametrized and calibrated on the steady-state, low-con-

centration (Ctot = 0.7− 3.0 µM) data from [CE5b] (see Section C.2.1 of the Appendix C).

The resulting model is validated by comparing its fit-free predictions with the transient, low-

concentration data and the steady-state high-concentration (Ctot = 3.0− 10.0 µM) data, both

from [CE5b] (Section C.3). This comparison demonstrates AFM’s ability to accurately predict

time evolution of nonactivated and activated monomers, the first critical concentration C1
cr at

which polymerization begins, an average size of filaments and bundles, and the second critical

concentration C2
cr at which bundles appear.

This predictive power of AFM is achieved at a fraction of the cost of its nearest com-

petitor [RMBST16], which, in turn, is orders of magnitude faster than the models consisting of

hundreds of ODEs (see Table 3.1). The computational efficiency of AFM, vis-à-vis [RMBST16]

and other models of this kind, is magnified when it is used to simulate in vivo polymerization

phenomena, which are characterized by high total concentrations. For Ctot = 200 µM, AFM is

about 2 orders of magnitude faster than [RMBST16] (see Section C.4 for details).
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3.3 FtsZ-Ring Assembly in E. coli

We use AFM to describe the Z-ring formation in the middle of an E. coli cell, within

a torus adjacent to the cell membrane (CM) of volume VCM. A typical cell has a volume

VCELL = 1.374 µm3 and contains 5000−15000 FtsZ molecules, which translates into a range

of FtsZ concentrations in the cytosol, Ctot,C;0 = 6− 18 µM [HdB97, RVM03, EAO10]; at the

midcell, close to the membrane, the concentration is one to two orders of magnitude higher

than that. Only a few polymerization models can handle such concentrations, and even the

most computationally efficient among them, [RMBST16], (Table 3.1) would require hundreds

of ODEs to handle all bundle sizes. AFM accomplishes the same with 11 ODEs, adding only

one equation for the total concentration of FtsZ species (in all forms) attached to the membrane,

Ca
tot,CM.

CM contributes to significant physical, chemical and structural differences between in

vitro and in vivo polymerization. The augmented AFM accounts for some of these differences by

incorporating the FtsZ species’ attachment to and detachment from a CM. The parameters relevant

to this process as well as other parameters describing cell geometry and bundling/dissociation

kinetics come from the literature, so that predictions reported below are made without any fitting

parameters. (A detailed formulation of the augmented AFM is provided in Section C.5 of the

Appendix C.)

3.3.1 Timing of FtsZ ring formation

We define four stages of the ring formation in terms of their characteristic times: time it

takes the FtsZ protofilaments in the cytoplasm to attach to the mid-CM and occupy all binding

sites, tatt; time to reach a constant average length of all filaments and bundles in the ring, tL̄; time

to reach a constant concentration of monomers at the midcell region (Cd
m,CM), tmon; time to reach

a constant average number of filaments per bundle in the ring, t f̄ .

Let P denote an FtsZ ring property and P∞ its value at t→∞; P stands for Ca
tot,CM at time
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tatt, L̄m
tot at time tL̄, Cd

m,CM at time tmon, and f̄tot at time t f̄ . We compute these times by inverting

the condition |P(t)−P∞|/P∞ < 0.01. The results, reported in Table 3.4, reveal that changes in

the total concentration Ctot,C;0 appreciably affect tatt (early-time kinetics), while having an almost

negligible impact on the other three characteristic times (long-time kinetics). These results

identify the timing for three distinct stages of the ring formation (time t = 0 corresponds to the

moment at which the Ter region is already located at the center of the cell).

Short-time kinetics.

Attachment of FtsZ protofilaments to the binding sites at the midcell takes 8–19 s.

Although there are no data about the first seconds of in vivo polymerization to verify this

prediction, the values that our model estimates are quite similar to the turnover half-times of

FtsA (12-16.3 s) [GSM07] and ZipA mutants [(7.81-9.01 s, or 0.111–0.128 s−1) [AGFE04],

which is the range of FtsZ turnover rate values, since according to [SMSE02] both FtsZ and

ZipA may undergo similar dynamic exchanges. It seems reasonable to think that the emergence

of the first FtsZ oligomers at the membrane will depend strongly on the time that FtsA and ZipA,

both responsible of the attachment of FtsZ to the membrane, remain themselves attach to the

membrane].

Intermediate kinetics.

Elongation of the species up to their average length takes 40 to 50 s. This is in line with the

observations [ACL97, SM98] that ring assembly takes ∼ 1 min. This suggests correspondence

between the complete longitudinal elongation of the species and the ring formation.

Long-time kinetics.

Continuous exchange of monomers between the ring and the cytosol accompanies the

formation of large FtsZ structures, at 3.5–4 min. This is consistent with observed time interval,

∼ 4 min, between the ring’s central positioning and the onset of septation [TRC+11]. These

findings imply that dissociation of monomers after GTP hydrolysis plays a fundamental role

in rearrangement of filaments and bundles, while formation of wide bundles contributes to
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regulation of the dissociation in live cells, just as it does in in vitro studies [RMBST16]. Finally,

the timing predictions obtained with our model and the in vivo version of [RMBST16] are

compared in Section C.4 of the Appendix C.

3.3.2 FtsZ ring features

Our model predicts FtsZ concentrations in the ring to be around 40 times larger than

cytosolic concentrations (Table 3.5). Variations in the total concentration Ctot,C;0 do not materially

affect the average length of the species at steady state, L̄m,∞
tot = 24 to 25 monomers. That value

corresponds to the experimentally observed characteristic length of 120 to 125 nm (since the

monomer’s diameter is 5 nm) [CE5b], and falls within the range, 100−200 nm, found in other

in vitro experiments [RSE01, DLS+08, PIN+09].

The predicted steady-state concentration of attached monomers, Ca,∞
tot,CM = 0.9–1.25 µM,

is insensitive to the total concentration Ctot,C;0 (Table 3.5), and falls within the range of values of

the first critical concentration in wild-type cells, C1
cr,wt [CBRE5a]. We postulate this feature to

be representative of polymer assembly regulation, both in in vitro and in in vivo.

The total cytosolic concentration Ctot,C;0 does affect the average number of filaments

per bundle at steady state, f̄ ∞
tot (Table 3.5). To investigate the prevalence of this form of FtsZ

proteins at steady state, we consider the percentage of FtsZ proteins in the form of wide bundles,

R %
wb ≡ 100%×C f ,a

wb,CM/([F ]+2[B2]+3[Bw]+C f ,a
wb,CM). Table 3.6 reveals that, at steady state,

R %
wb = 85%–94%, depending on Ctot,C;0, that is, wide bundles are the dominant species.

Once Ca
tot,CM = Ca,max

tot,CM–that is, all FtsZ protofilaments are attached to the mid-CM–

bundles form cross-linked structures (CLSs) along the ring. We refer to these structures as

“clusters”, which in our model are formed at time t = tatt and consist of bundles with an average

number of filaments f̄clu = f̄tot(tatt). The predicted values f̄clu = 6.1−9.5 (Table 3.6) imply the

average width of FtsZ-ZapA sheets of 12.2− 19. This is consistent with the experimentally

observed maximal number of FtsZ-ZapA filaments perfectly aligned at the mid-CM, f̄clu,ZapA <

f̄ max
wb,ZapA = 20 (see Section C.7 for details). The predicted minimal value, f̄clu,ZapA = 12.2,
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indicates that the two-layered sheets have to occupy at least half of the axial width of the ring.

When that occurs, bundle interactions in the tangential direction, which induce bundles to push

and lift each other, dominate their axial interactions.

For t > tatt, f̄clu remains constant as clusters interact only along the ring-forming CLSs.

Since wide bundles contain most of the FtsZ at steady state, we define an average CLS width as

f̄CLS = f̄wb(t→ ∞). A number of clusters per CLS is N CLS
clu ≡ f̄CLS/ f̄clu and a number of CLSs

is NCLS ≡ [Bw]VCMNA/1021, where NA is Avogadro’s number. A number of clusters in the entire

ring is Nclu = N CLS
clu NCLS. Our model predicts Nclu = 9.0−18.9 (Table 3.6), which conforms

to the observed range of 10−20 clusters [CBPX16].

To sum up, our model predicts FtsZ rings that are mostly composed of 3 to 4 large

structures, which are partially attached to the membrane and comprise 3 to 5 cross-linked clusters

each. These clusters contain 6 to 10 filaments made up of 24 monomers each. The entire network

also includes ZapA tetramers, which reinforce the lateral bonds of the clusters and the cross

links between clusters, as observed in vitro [DPLW10] and in vivo [BCH+13]. Section C.4

includes a comparison between the ring feature predictions of our model and the in vivo version

of [RMBST16].

3.3.3 ZapA deficiency

A recent experimental study [BCH+13] investigated in vivo polymerization in the absence

of ZapA proteins. Our model predicts the resulting FtsZ concentrations to be only 10 times

larger than their in vitro counterparts (Table 3.7). The average length (L̄m
tot) and concentration

(Cd
m,CM) of detached monomers are insensitive to the total cytosolic concentration Ctot,C;0. The

predicted monomer concentrations Cd
m,CM fall within the experimentally observed range of

critical concentrations, Ca,∞
tot,CM = 0.9−1.25 µM.

The model also predicts the predominant presence of non-cross-linked and dispersed thin

clusters along the entire cell, as observed [BCH+13]. In the absence of ZapA, tatt = 20−30 s is

twice as long as that in the case with ZapA, while tL̄ = 40−50 s remains about the same. The
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times for bundling and dissociation of monomers after GTP hydrolysis, tmon ∼ t f̄ = 100−120 s,

are half of their counterparts in the presence of ZapA. Since FtsZ structures are more dispersed

and interactions happen less frequently, the equilibrium is reached faster.

3.4 Conclusions

We developed a computationally efficient model of protein polymerization, which relies

on concentrations and average features of different species. Orders of magnitude speed-up is

achieved by replacing distributions of lengths and widths with their average counterparts and

by introducing a hierarchical classification of species and reactions into sets. The resulting

model consists of 10 or 11 ODEs, regardless of the total concentration of proteins. This is in

contrast to previous polymerization models, in which the number of ODEs increases with the

total concentrations, reaching into the thousands. Consequently, our model can be used to predict

polymerization kinetics at high concentrations characteristic of in vivo processes and, especially,

their compartmentalized representations.

We have used this model to study in vitro and in vivo FtsZ ring assembly in E. coli,

a complex kinetics process with a large number of chemical reactions and species involved.

The model’s computational performance is not affected by the large concentrations of proteins

located at the midcell, near the membrane. The model’s prediction of key features of the ring

formation, such as time to reach the steady state, total concentration of FtsZ species in the ring,

total concentration of monomers, and average dimensions of filaments and bundles, are all in

agreement with the experimentally observed values. Besides validating our model against the

in vivo observations, this study fills some knowledge gaps by proposing a specific structure of

the ring, describing the influence of the total concentration in short and long kinetics processes,

determining some characteristic mechanisms in polymer assembly regulation, and providing

insights about the role of ZapA proteins, a critical component for both positioning and stability

of the ring.
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The orders of magnitude computational speed-up provided by our model comes at

a cost. An explicit representation of bundle size distribution [RMBST16] would improve a

description of the ring’s structure (e.g., heterogeneity of the bundle network). It would avoid

overestimation of robustness at the sides of the ring where proteins like MinC promote debundling

and depolymerization [DLS+08]. The influence of bundling on the dissociation of monomers

upon GTP-hydrolysis process is also related to the size of the bundles, which is captured by the

model [RMBST16]. Nevertheless, our results demonstrate that the models based on average

characteristics yield predictions at least as accurate as those computed with their distribution-

based models counterparts.

Chapter 3, in full, is a reprint of the material as it appears in Efficient models of poly-

merization applied to FtsZ ring assembly in Escherichia coli 2018. Ruiz-Martı́nez; Á., Bartol,

T.M.; Sejnowski, T.J.; and Tartakovsky, D.M., PNAS, 2018. The dissertation/thesis author was

the primary investigator and author of this paper.
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Table 3.2. Eighteen reactions comprizing our FtsZ kinetics model. The subscripts z−/ f−/b−

(and z+/ f+/b+) designate a monomer/filament/bundle lost (or gained) by a species.

Reactions Chemical equations

Reaction I Zna 
 Z
Reaction II 2Z 
 Z2
Reactions III–V Z +Z2 
 Z3, Z +Z3→ F , Z +Fz− 
 Fz+

Reaction VI 2Ff− 
 Ff+

Reactions VII–XI 2F 
 B2, F +B2 
 B3, F +B3→ Bw,
F +Bw; f−
 Bw; f+, 2Bw;b−
 Bw;b+

Reactions XII and XIII Fz+ → Fz−+Zna, Fz+, f+ → 2Fz−, f−+Zna

Reactions XIV–XVI Bi;z+,b+ → 2Bi;z−,b−+Zna,
with i = 2,3 Bi;z+ → Bi;z−+Zna, Bw;z+ → Bw;z−+Zna

Reactions XVII and XVIII Z +Bi;z− → Bi;z+ , Z +Bw;z− → Bw;z+

with i = 2,3
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Table 3.4. Timing of FtsZ ring formation for a characteristic range of in vivo FtsZ concentrations,
Ctot,C;0 = 6−18 µM.

Ctot,C;0 (µM) tatt (s) tL̄ (s) tmon (s) t f̄ (s)

6.0 19 49 220 244
12.0 10 53 217 240
18.0 8 40 210 233
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Table 3.5. FtsZ ring features for a characteristic range of in vivo FtsZ concentrations, Ctot,C;0 =
6−18 µM, at steady state (t→ ∞).

Ctot,C;0 (µM) Ca,∞
tot,CM (µM) L̄m,∞

tot Cd,∞
m,CM (µM) f̄ ∞

tot

6.0 237 24.43 1.13 9.4
12.0 474 24.47 1.20 16.4
18.0 711 24.49 1.25 22.7
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Table 3.6. Large FtsZ structures for a range of in vivo FtsZ concentrations, Ctot,C;0 = 6−18 µM.
The structures are characterized by the percentage of FtsZ proteins in the wide-bundles form,
R %

wb; the average number of filaments per bundle in a cluster, f̄clu; average width of CLSs, f̄CLS;
number of clusters per CLS, N CLS

clu ; number of CLSs, NCLS; and number of clusters, Nclu.

Ctot,C;0 (µM) R %
wb f̄clu f̄CLS N CLS

clu NCLS Nclu

6.0 85.1 6.1 19.6 3.2 2.8 9.0
12.0 91.6 7.6 35.0 4.6 3.4 15.6
18.0 94.0 9.5 48.5 5.1 3.7 18.9

74



Table 3.7. FtsZ species features for a characteristic range of in vivo FtsZ concentrations,
Ctot,C;0 = 6−18 µM, in the absence of ZapA at steady state.

Ctot,C;0 (µM) Ca,max
tot,CM (µM) L̄m

tot Cd
m,CM (µM) f̄tot

6.0 48 35.43 0.92 1.92
12.0 104 35.84 0.95 3.49
18.0 160 35.86 1.00 4.76
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Chapter 4

Stochastic self-tuning hybrid algorithm for
reaction-diffusion systems

4.1 Introduction

We present a self-tuning operator-splitting hybrid approach for the analysis of stochastic

reaction-diffusion systems by studying a simple bimolecular reaction A+B→C and improving

Choi et al., model [CMTS12], which in turn, improved the Gillespie Multi-Particle method

(GMP) proposed previously by [DRKB07, RKK+06]. GMP method employed an operator-

splitting scheme in which the Gillespie algorithm [Gil77] and cellular automata handled reactions

and diffusion, respectively. Choi et al., model improved it by using Brownian dynamics for

diffusion of particles, reducing the computational cost, and including an adaptive selection of

the time-step depending on the regime of the system. Taking the latter as a reference, here we

propose a new, more efficient, and versatile approach.

Firstly, although the accuracy and speed of Choi et al., model and our model highly

depend on the size and shape of the mesh compartments, only our model redefines such features

every time-step. This is remarkably important because the level of accuracy does not necessarily

increases as the compartment size decreases; the amount of particles that potentially react and

their spatial distribution are essential factors to redefine the compartment mesh. Secondly,

whereas Choi et al., model defines a time-step proportional to the diffusion time, our algorithm

chooses a time-step proportional to the maximum reaction time. Since the reaction time is
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proportional to the volume of the compartment, the time-step also changes proportionally to its

size, what makes our model both spatially and temporally adaptive. Finally, unlike its counterpart,

our model does not need to predefine parameters to determine if reaction or diffusion effects are

predominant or multiplicative factors to estimate a proper time-step.

In summary, we propose a hybrid micro-mesoscopic algorithm for the study of biological

systems that efficiently handles from diffusion- to reaction-controlled scenarios minimizing the

computational cost. Our presented results for an elemental bimolecular reaction in a system with

simple geometry demonstrate the importance of self-regulation in reaction-diffusion algorithms

to avoid the propagation of substantial errors in more complex systems. Hence, our novel

approach can be potentially developed for the study of multi-reaction systems ensuring both

accuracy and efficiency.

4.2 Description of the model

Similarly to Choi et al., model [CMTS12], we use an operator-splitting method to study

reaction-diffusion systems. Mainly, their approach consists of two steps: 1) diffusion of the

species a specific time-step using Brownian dynamics, i.e., diffusion at a particle level, and

2) reactions via the Gillespie algorithm [Gil77] in compartments where molecules ended up

after such time-step, i.e., reaction at a compartment-based level with propensities defined in

terms of the number of molecules in the compartments after diffusion. Our model also consists

of two steps, but it is slightly different: 1) diffusion of the species a specific time-step using

Brownian dynamics in order to estimate particle locations with no reaction effects, and 2)

diffusion using Brownian dynamics during a specific time calculated via the Gillespie algorithm

with propensities defined in terms of the particle locations before and after diffusion. Thus, the

first step (only diffusion) is an estimate that helps to make more accurate calculations in the

second step (diffusion until reaction happens).

As a general description, our stochastic operator-splitting algorithm can be outlined as
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follows:

• Lattice: The space is discretized into a lattice of compartments depending on the amount

of particles and their spatial distribution.

• Time: Maximum and minimum reaction times and diffusion time are calculated. The

optimal time-step is calculated; it is proportional to the maximum reaction time, therefore,

proportional to the compartment volume.

• System state: The ratio minimum reaction time/diffusion time defines whether the system

is at diffusion- or reaction-controlled state.

• Only diffusion process: Diffusion of species between compartments is modeled via

Brownian dynamics in order to estimate the concentration of species in each compartment

after the optimal time-step previously estimated.

• Combined diffusion-reaction process: Reactions within some compartments are simulated

via the Gillespie algorithm. Propensities are defined in terms of the concentrations before

and after the time-step from the only-diffusion scenario. The time estimated by the

Gillespie algorithm for every particle is assumed to be the time such particle is diffusing

until it reacts.

• Time is increased by the time-step size and the above steps are repeated until the final

desired time.

Now, we can observe that three main properties define our model: the appropiate choice

of the compartment size, the time-step proportional to the maximum reaction time and the

modified propensities for the Gillespie algorithm. The combination of such characteristics make

up a novel approach that stands out for its computational efficiency even in limit cases with

very low diffusion effects or, on the contrary, when the process is mainly controlled by reaction.

This work focuses on the study of a simple bimolecular reaction A+B→ C, so henceforth

mathematical expressions are defined in terms of the reactives A and B and the product C.
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4.2.1 Compartment size choice

Choi et al., asserted that the accuracy of their model increased as the size of the compart-

ment decreased. Nevertheless, our present work proves that it is not necessarily true, the right

choice for the compartment size is critical to make accurate predictions. Increasing or decreasing

such size can lead to wrong calculations when we use their model. In extreme cases (such as

systems highly controlled by diffusion), the shape of the compartment is also a relevant factor to

take into account.

Here, we suggest to choose different compartment sizes every time-step based on the

amount of particles present in the system and their spatial distribution. Assuming all compart-

ments are similar, we observe that an initial good estimate for the volume of a compartment i in

a time-step j in a 3D space is Vi j =Vsyst/min{nA
j ,n

B
j }, where Vsyst is the volume of the system

and nA
j and nB

j are the total amount of particles of species A and B, respectively, that exist during

a particular time-step j in the whole domain. For the cases presented in this work, we define

a regular compartment in 3D cartesian coordinates such that Vi j =Vj = ∆x j∆y j∆z j, where ∆s j

is the length of the compartment in a particular direction s = x,y,z. Once an initial size for

the compartment is estimated and a mesh is created, we calculate the product of the number

of particles A and B that can react in each compartment i in a time-step j according to the k

bimolecular reaction A+B→C with the expression Pi jk = (nA
i jn

B
i j)k. The criteria to decide when

the compartment size is good enough to make accurate predictions is to make it small enough so

the number of compartments where Pi jk = 1 is larger than the number of compartments where

Pi jk > 1. Therefore, we establish the condition

S1
jk/(S

1
jk +S2

jk)≥ α, (4.1)

where

S1
jk ≡ {total sum of compartments where Pi jk = 1}, (4.2)
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S2
jk ≡ {total sum of compartments where Pi jk > 1}, (4.3)

and α is a number in the interval [0.5,1] that sets the limits for a proper compartment

size. Our study shows that choosing the minimum value, 0.5, we get a good balance between

accuracy and computational efficiency.

4.2.2 Time-step choice

Choi et al., model defined a time-step proportional to the diffusion time. They also

defined a macroscopic time constant, TRi j = 1/ai j
sum, where ai j

sum is the sum of all propensities at

the compartment i at the time-step j. Then, they took the minimum value of the macroscopic

time constants over all compartments, T min
R j

, and defined a reaction time, τR j = T min
R j

ln(1/r),

where r is a random number distributed uniformly on the unit interval [0,1].

Here, we propose a different approach by introducing a time-step proportional to the

reaction time. Also, we define a maximum reaction time, T max
R j

, that corresponds to the situation

in which the minimum amount of particles react in a compartment, i.e., T max
R j

= 1/a jk
min, where

a jk
min is the propensity at the time-step j when there is a pair of molecules A and B that react

according to the reaction k. Thus, analogously to Choi et al., model [CMTS12], we redefine

the reaction time as τR j = T max
R j

ln(1/r). As they demonstrated, the cumulative probability of

ln(1/r)≤ 1 is 0.63, i.e., in our case, the probability of τR j ≤ T max
R j

is 63%. If the reaction time

is smaller than the maximum reaction time in about 63% of the cases, then we can define an

average value for the time-step such that,

∆t j = 0.63×T max
R j

= 0.63× 1

a jk
min

. (4.4)

Defining a constant reaction rate kr for the k bimolecular reaction A+B→ C, the minimum

propensity takes the value a jk
min = kr/Vj and, consequently, the time-step changes as long as the

volume of the compartments change as follows
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∆t j = 0.63× Vj

kr
. (4.5)

Choi et al., algorithm calculated diffusion times according to the expression τD = (∆x)2/(2d×

max{DA,DB}), where DA and DB are the diffusion coefficients of particles A and B, respectively,

and d is a dimensionality factor (1, 2, and 3 for 1D, 2D, and 3D systems, respectively). Besides

the fact that our diffusion time changes every time-step, we also introduce a modification in

order to consider the effects of non-regular shaped compartments in the calculations such that

τD j =
(max{∆s j})2

2d×max{DA,DB}
, where s = x,y,z. (4.6)

Now, in order to determine the regime of the system every time-step j, we use the minimum

macroscopic time proposed by Choi et al., T min
R j

, and define the ratio R j = T min
R j

/τD j . We

set R j < 10 for systems controlled by diffusion and R j ≥ 10 for systems where diffusion is

predominant.

4.2.3 Modified Gillespie algorithm

Once the proper compartment size, the time-step, and the system regime are defined,

we count the number of particles per compartment before any diffusion or reaction process

happens. Then, we diffuse the species a time-step ∆t j using Brownian dynamics and count the

molecules at each compartment after that. With such information and knowing the volume of

the compartments, our algorithm computes propensity functions along particle trajectories. In

order to study when and where a particle l reacts during time step ∆t j, we take the expression of

a continuous random value ∆t jkl , equivalent to the one defined by Gillespie algorithm [Gil77],
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such that

∆t jkl =
1

a jkl ln
(

1
r

)
or r = e−a jkl∆t jkl , (4.7)

where a jkl is the propensity at the time-step j that depends on the system state and the concentra-

tions of the species involved in the reaction k at the locations of the particle l before and after ∆t j

and r is a random number distributed uniformly on the unit interval [0,1]. For the k bimolecular

reaction A+B→C that we are studying, we define the propensity a jkl as

a jkl = kr[χcA
i j +(1−χ)cA

i′ j′][χcB
i j +(1−χ)cB

i′ j′], (4.8)

where the subscripts i and i′ refer to the compartments where the molecule l is located before

and after diffusing a time-step ∆t j, j and j′ denote the times before and after the time-step ∆t j

advances, cA
i j, cB

i j are the concentrations of molecules A and B in compartment i and time t,

cA
i′ j′ , cB

i′ j′ are the concentrations of molecules A and B in compartment i′ and time t +∆t j, and

χ is a factor that quantifies the probability of reaction of the molecule l at the initial and final

locations. The parameter χ takes the value 0.5 for reaction-controlled systems and 0.37 for

diffusion-controlled systems. For the former, the value 0.5 is chosen because diffusion dominates

and we can assume that the reaction of other particles do not have influence in the probability

of this particle to react. The propensity a jkl is, therefore, defined in terms of the average of the

initial and final concentrations. For the latter, reaction dominates and, according to our definition

of the time-step ∆t j (4.4), it is reasonable to assume that 63% of the particles at the initial location

i react fast and that only 37% of them have influence in the particle l. Consequently, our balance

gives us an estimate of 63% of molecules in compartment i′ that have noticeable influence in the

particle l.

Another factor that we need to consider is the fact that, as reaction effects become

dominant, the probability of other molecules reacting along the trajectory of the particle l
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increases. The bigger the value of ∆t jkl , the less accurate the estimate. Consequently, for

diffusion-controlled systems, instead of expression (4.4), we use a Taylor approximation of first

order (∆t jkl → 0) such that

∆t jkl ∼
r

a jkl
or r ∼ a jkl∆t jkl. (4.9)

In summary, we can define the following expressions to determine the value of ∆t jkl for every

particle l,

∆t jkl =
ln(1/r)

0.25kr[cA
i j + cA

i′ j′][c
B
i j + cB

i′ j′]
(4.10)

if the system is reaction-controlled (R j ≥ 10), or

∆t jkl =
r

kr[0.37cA
i j +0.63cA

i′ j′][0.37cB
i j +0.63cB

i′ j′]
(4.11)

if the system is diffusion-controlled (R j < 10).

4.3 Algorithm

A detailed algorithm for the numerical implementation of the above steps of our stochastic

operator-splitting method for a general bimolecular reaction A+B→C is provided below.

(1) Initialize t = 0.

(2) While t ≤ t f inal

(I) Set ∆t j = 0 and define initial compartment size.

(II) While ∆t j = 0

(A) For each compartment i

(i) calculate nA
i j and nB

i j,
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(ii) calculate Pi jk,

end

(B) Count compartments with Pi jk = 1 to obtain S1
jk.

(C) Count compartments with Pi jk > 1 to obtain S2
jk.

(D) If S1
jk/(S

1
jk +S2

jk)< α,

reduce compartment size,

else,

∆t j = 0.63×Vj/kr,

end

end

(III) Calculate concentration in all compartments before advancing species.

(IV) Use Brownian dynamics to advance species with time-step ∆t j and estimate their

concentrations with no reaction effects.

(V) Assign an initial time ti = t to all compartments i and reset told,i = ti.

(VI) Calculate T min
R j

, τD j and the ratio R j.

(VII) Set Ai = 0 and Bi = 0 for all cells.

(VIII) For each particle l (randomly selected from all the existent particles of species A or

B; let’s suppose a particle of A is selected)

(A) If the system is reaction-controlled (R j ≥ 10),

use expression (4.10) to determine ∆t jkl ,

if the system is diffusion-controlled (R j < 10),

use expression (4.11) to determine ∆t jkl ,

end

(B) If ∆t jkl < ∆t j,
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use Brownian dynamics to advance particle l with time-step ∆t jkl ,

else,

assume that the particle is at the location previously calculated in step (IV)

(in other words, ∆t jkl = ∆t j),

end

(C) Determine in which cell i∗ the particle l is located after ∆t jkl .

(D) If ti∗ ≤ ∆t j + told,i∗ ,

(i) Ai∗ = Ai∗+1,

(ii) define the reaction time associated to the particle l at the cell i∗ as tA
i∗l = ∆t jkl ,

(iii) if Ai∗ > 0 and Bi∗ > 0,

(a) a reaction is fired and t∗ = min{tA
i∗l, t

B
i∗l′} determines the reaction time of

a pair of particles l and l′ from A and B species, respectively, at cell i∗,

(b) update ti∗ such that ti∗ = t∗+ ti∗ ,

(c) remove molecule l of species A and molecule l′ of species B and generate

a molecule of C in a location halfway between the positions where such

pair of molecules where located,

(d) Ai∗ = Ai∗−1 and Bi∗ = Bi∗−1,

(e) if nA
i∗ j′ > 0 and nB

i∗ j′ > 0,

nA
i∗ j′ = nA

i∗ j′−1 and nB
i∗ j′ = nB

i∗ j′−1 and, consequently, update concen-

trations cA
i∗ j′ and cB

i∗ j′ ,

else,

do not update nA
i∗ j′ , nB

i∗ j′ , cA
i∗ j′ , and cB

i∗ j′ ,

end

else,

do not update, no reaction is fired,
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end

else,

do not update, no reaction is fired,

end

end

(3) Set t = t +∆t j.

end

4.4 Results and discussion

4.4.1 Performance analysis

We compare our model with Choi et al., approach to show that the former reaches a

higher balance of accuracy, speed and versatility. We use the Douglas Gunn alternating-direction-

implicit numerical method (ADI) to calculate a deterministic solution that we treat as a yardstick

for validation.

Assuming a cubic domain of volume V = 10−18 m3, i.e., a domain D defined as D ≡

{0 ≤ x ≤ L,0 ≤ y ≤ L,0 ≤ z ≤ L}, with L = V 1/3, we randomly position an initial number of

molecules of species A, NA0 , and species B, NB0 , in the half-domain region D ′ ≡ {0 ≤ x ≤

L/2,0≤ y≤ L,0≤ z≤ L}. Such molecules diffuse with the same diffusion coefficient D and

bounce on the boundaries so they never leave the domain. They also react according to the

chemical reaction A+B→C with the reaction rate kr. Molecules of species C are also assumed

to diffuse with the same diffusion coefficient D.

The first comparison between Choi et al., model and our approach aims to show the

importance of choosing the appropiate compartment size to get accurate results. We study the

variation of the concentration of the species C in time in the region D ′ in three different scenarios:

dominant diffusion effects (Figure 4.1), similar diffusion and reaction effects (Figure 4.2), and
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dominant reaction effects (Figure 4.3). The initial number of molecules of both species A and B

is 600, i.e., NA0 = NB0 = 600. Since the number of molecules of species A in the system will be

always the same than species B, we define the initial size compartment estimate for any time-step

j as follows

Vj =Vsyst/min{nA
j ,n

B
j }= L3/nA

j . (4.12)

The volume of a regular compartment can be expressed as

Vj = ∆x j∆y j∆z j = (∆x j)
3. (4.13)

Thus, from expressions (4.12) and (4.13), we can estimate a parameter κ j as follows

∆x j = L/(nA
j )

1/3→ κ j = L/∆x j = (nA
j )

1/3→ κ j ≈ b(nA
j )

1/3c, (4.14)

that we can modify before moving forward in time to meet the condition (4.1) so the next

time-step can be defined properly. By observing the distribution of the molecules at t = 0,

we find reasonable to assume that κ j is never smaller than 2 to ensure accurate results. Also,

in this particular study, we have imposed κ j to be an even number that increases by 2; thus,

∆x j = L/κ j is continually modified in step (II) of our algorithm until the condition (4.1) is met.

Once the most optimal compartment volume, Vj, is estimated, the most optimal time-step, ∆t j,

gets defined.

Now, we define the relative error as the ratio of the integrated absolute difference

between the deterministic solution and one of the methods to the integrated absolute value of the

deterministic solution over the time-course,

Relative error =
|Deterministic solution area - Model estimated area|

|Deterministic solution area| . (4.15)

Table 4.1 shows the values of the areas over 3 seconds of the deterministic solution and the
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solutions estimated by Choi et al., model and our model for three different cases: dominant

diffusion effects (D1 = D = 10−12 m2/s, kr1 = 3×103 mM−1s−1), similar diffusion and reaction

effects (D2 = D = 10−13 m2/s, kr1 = 3×103 mM−1s−1), and dominant reaction effects (D2 =

D = 10−13 m2/s, kr2 = 3×104 mM−1s−1). Similarly, relative errors for the studied cases are

presented.

From the obtained results, we remark some observations:

• Choi et al., model requires to predefine parameters (k1 and k′1, according to their notation)

to determine if reaction or diffusion effects are predominant as well as multiplicative

factors (k2 and k′2) to estimate a proper time-step [CMTS12]. On the contrary, the accuracy

of our model does not depend on values estimated by previous analysis but on the inherent

characteristics of the system such as the number of molecules, their spatial distribution,

diffusion coefficients or reaction rates.

• Our results show that Choi et al., model cannot ensure accurate results even defining

parameters, multiplicative factors and system properties for the cases presented in this

work similar to the ones proposed in their study. Their model only becomes accurate if the

appropiate compartment size is heuristically estimated. By contrast, our model self-tunes

every time-step to guarantee accuracy along the entire process.

• Regardless of the chosen compartment size, just by looking at Figures 4.1-4.3 and Table

4.1, we can conclude that the higher the reaction effects, the bigger the error of Choi et al.,

model in comparison to ours.

Now, we select ∆x = ∆y = ∆z = L/6 as a compartment size that maximizes Choi et

al., model efficiency in order to compare it to ours as fairly as possible. Table 4.2 and Figure

4.4 present the relative errors and the computational times of both models with respect to the

diffusion coefficient for cases with reaction rate constant kr = 3×103 mM−1s−1 and an initial

number of molecules for both species A and B of 600.
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Both models define two elemental states: reaction-controlled (RC) and diffusion-con-

trolled (DC), although Choi et al., model defines a third state in between called mixed-zone

(MZ). Table 4.2 also shows the regimes that define the state of the system until it reaches the

steady-state time, tss.

The results demonstrate that our model is always more accurate than Choi et al., model.

The highest differences in accuracy are reached in the diffusion-controlled regime, where the

relative error of our model is one order of magnitude smaller. Interestingly, the computational

time required by our model does not depend on the regime of the system. Choi et al., model

calculations, however, need longer times as the diffusion effects increase, reaching values 4-5-

fold the computational time required by our model. Although for diffusion-controlled scenarios

Choi et al., model is 2-3 times faster, its accuracy gets reduced by one order of magnitude.

4.4.2 Limit case scenarios

To see how our model performs in more extreme cases, we propose two scenarios with

high variations of the concentrations of the species in space and/or time. Figure 4.5 shows a very

fast variation of the concentration of the product species C; in less than 0.002 seconds almost all

molecules of A and B react in the half-domain D ′ before diffusion happens. It is, therefore, an

almost completely diffusion-controlled scenario (D = 10−13 m2/s, kr = 3×106 mM−1s−1) with

an average ratio R̄ j ∼ 10−2 for the first time-steps, i.e., three orders of magnitude smaller than

the transition regime value R j = 10.

Figure 4.5 also shows that, in scenarios with very low diffusion, Choi et al., model misses

high variations of concentration due to chemical reactions. Although, we set the most optimal

compartment size, the accuracy of the model in the first time steps of the process is quite low.

Besides that, Choi et al., model does not provide with information about events that happen

during a specific time-step, such as location and time of particle reactions.

Our model selects smaller time steps and makes better predictions. Despite that, it is

noticeable that our model loses accuracy when reaction effects dominate. In order to improve
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our model, we propose an additional approach. We suggest that, for low diffusion scenarios, it is

critical to determine in which spatial directions the concentration of molecules is changing more

drastically, i.e., we need to estimate or calculate the concentration gradient over time and modify

the compartment shape according to it. In the particular case that we are presenting here, we can

expect that the concentration gradient is going to be higher in the x-direction during the entire

process. Figure 4.5 shows that, if we define compartments with variable ∆x but constant step

sizes in the other directions, ∆y = ∆z = L, our model increases its sensitivity to detect variations

in the concentration due to low diffusion improving the level of accuracy remarkably. Although,

this adjustment implies high computational costs, we can counteract such drawback by making

(4.1) less rectrictive. Setting the parameter α to a smaller value reduces the computational cost

while keeping a high level of accuracy: α = 0.1 makes our non-regular-mesh model only three

times slower than our regular-mesh model, α = 0.01 makes it only twice slower, and even for

α = 0.001 the accuracy remains high with a negligible increment in the computational cost.

Figure 4.6 depicts a fast variation of the concentration of the reactive species A; in less

than 0.002 seconds almost half of the molecules of A diffuse from the half-domain D ′ before

reaction happens. It is, therefore, an almost completely reaction-controlled scenario (D = 10−10

m2/s, kr = 3×103 mM−1s−1) with an average ratio R̄ j ∼ 104 for the first time-steps, i.e., three

orders of magnitude larger than the transition regime value, R j = 10.

Choi et al., model makes very accurate predictions for this limit case when the appropiate

compartment size is estimated, as Figure 4.6 shows. Nevertheless, such accuracy comes at a

very high computational cost. Their model defines time-steps proportional to the diffusion time,

therefore, the larger the diffusion coefficient, the shorter the time-steps.

In Figure 4.6 we can see that our model does not need short time-steps to guarantee

high accuracy as diffusion effects increase. Long time-steps still ensure high levels of accuracy

and computational speeds. Also, in contrast to Choi et al., model, step (a) of our algorithm

makes possible to know what happens during the first time-step. It determines when and where

reactions are fired; in other words, t∗ = min{tA
i∗l, t

B
i∗l′} determines the reaction time of any pair of
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particles l and l′ from A and B species, respectively, at cell i∗, during any time-step ∆t j.

4.4.3 Effect of number of molecules

In this section we study the influence of the number of particles present in the system in

the accuracy and computational speed of our model. Figures D.1–D.4 of Appendix D.1 show

the evolution in time of the concentration of the species C in the region D ′ for different initial

number of molecules; we have set the diffusion coefficient equal to D = 10−13 m2/s and the

reaction rate constant equal to kr = 3×104 mM−1s−1. As expected, as the number of particles

increase, more interactions happen and the system becomes more controlled by diffusion. We

have chosen sizes for the compartments in Choi et al., model that maximize its efficiency. The

more particles react, the smaller the optimal compartment.

We now define a relative peak concentration, Nr, that indicates the amount of molecules

of C present in the subdomain D ′ when it reaches its maximum value divided by the initial

number of molecules of A or B,

Nr =
|Maximum number of molecules of C present in D ′|

|Initial number of molecules of A or B| . (4.16)

Also, we define the parameter ϕr to determine the relative time gap between the deterministic

solution and the model estimates,

ϕr =
|tds− tmd|

tds
, (4.17)

where tds is the required time to reach the maximum concentration predicted by the deterministic

solution and tmd is the required time to reach the maximum concentration predicted by one of the

models. Thus, Table 4.3 and Figure 4.7 show that our model predicts more accurate results than

Choi et al., model for any initial concentration, although both get less accurate as the number of

molecules increase.

Table 4.4 and Figure 4.7 show the computational times required by both models to reach

the steady-state. The computational time required by Choi et al., model gets longer than the one
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required by ours as the number of molecules in the system increases.

4.5 Conclusions

Based on previous works [CMTS12, DRKB07, RKK+06], we have developed a hybrid

multiscale model that improves its counterparts by finding a better balance between accuracy and

computational speed, by making it more versatile, and by increasing its range of applicability. In

terms of accuracy and computational cost, it stands out remarkably in scenarios with predominant

diffusion effects and high number of particles. In cases with predominant reaction effects and

high number of particles, it also keeps a solid and optimal balance.

Combining our model with particle-based methods for reactions will undoubtedly im-

prove estimates of steep variations of concentrations. It still misses the production of a small

percentage of particles in extreme diffusion-controlled scenarios that particle-based methods

would handle efficiently. Similarly, PDE-based methods would accelerate calculations for

scenarios with large number of particles. Since our model is focused on a basic bimolecular

reaction, A+B→C, from a micro-mesoscopic scale, it would be ideal as a centerpiece in a

future particle-based-PDE model where species A and B could be defined as deterministic and

stochastic, respectively.

Moreover, its self-tuning nature and the fact that it covers a wide range of regimes make

it appropiate for more complex scenarios with non-regular geometries and additional reactions.

By guaranteeing a decent level of efficiency for a simple system, we ensure a smaller propagation

of errors than its direct competitor [CMTS12].

Chapter 4, in part is currently being prepared for submission for publication of the

material. Ruiz-Martı́nez; Á., Bartol, T.M.; Sejnowski, T.J.; and Tartakovsky, D.M., The disserta-

tion/thesis author was the primary investigator and author of this material.
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Table 4.3. Values of relative peak concentration, Nr, and the relative time gap, ϕr, correspondent
to Choi et al., model and our model for different initial concentrations of molecules, NA0 and
NB0 , based on average of 1000 iterations.

NA0 and NB0 Det. sol Choi et al., model Our model
Nr Nr ϕr Nr ϕr

60 0.53 0.48 0.31 0.55 0
600 0.77 0.70 0.53 0.76 0
6000 0.89 0.81 1.25 0.88 0.13
60000 0.95 0.86 2.75 0.93 0.44
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Table 4.4. Values of the computational time until steady-state is reached correspondent to Choi
et al., model and our model for different initial concentrations of molecules, NA0 and NB0 , based
on average of 10 iterations.

NA0 and NB0 Computational time (s)
Choi et al., model Our model

60 0.18 0.37
600 0.29 0.52
6000 1.53 1.37
60000 30.48 9.63
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Figure 4.1. Temporal evolution of the concentration of the species C in the region D ′ for a case
with dominant diffusion effects (D1 = 10−12 m2/s, kr1 = 3×103 mM−1s−1). Solid line is the
deterministic solution in both graphics. Top: Dashed line is the solution obtained by our model
based on average of 1000 iterations. Bottom: Dashed, dash-dot, and dotted lines are the solutions
obtained by Choi et al., model setting ∆x = ∆y = ∆z = L/4, L/8, and L/16, respectively. All
results are based on average of 1000 iterations.
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Figure 4.2. Temporal evolution of the concentration of the species C in the region D ′ for a case
with similar diffusion and reaction effects (D2 = 10−13 m2/s, kr1 = 3×103 mM−1s−1). Solid
line is the deterministic solution in both graphics. Top: Dashed line is the solution obtained
by our model based on average of 1000 iterations. Bottom: Dashed, dash-dot, and dotted lines
are the solutions obtained by Choi et al., model setting ∆x = ∆y = ∆z = L/4, L/8, and L/16,
respectively. All results are based on average of 1000 iterations.
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Figure 4.3. Temporal evolution of the concentration of the species C in the region D ′ for a case
with dominant reaction effects (D2 = 10−13 m2/s, kr2 = 3× 104 mM−1s−1). Solid line is the
deterministic solution in both graphics. Top: Dashed line is the solution obtained by our model
based on average of 1000 iterations. Bottom: Dashed, dash-dot, and dotted lines are the solutions
obtained by Choi et al., model setting ∆x = ∆y = ∆z = L/4, L/8, and L/16, respectively. All
results are based on average of 1000 iterations.
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Figure 4.4. Top: Relative error for different regimes, from diffusion-controlled (D= 10−14 m2/s)
to reaction-controlled (D = 10−11 m2/s). Solid and dashed lines represent the relative errors of
our model and Choi et al., model with respect to the diffusion coefficient, respectively. Bottom:
Computational time for different regimes. Solid and dashed lines represent the computational
times of our model and Choi et al., model with respect to the diffusion coefficient, respectively.
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Figure 4.5. Temporal evolution of the concentration of the species C in the region D ′ for a case
with highly dominant reaction effects. Solid line is the deterministic solution in both graphics.
Top: Dashed, dash-dot, and dotted lines are the solutions obtained by Choi et al., model setting
∆x = ∆y = ∆z = L/6, our model with regular compartments, and our model with non-regular
compartments and α = 0.1, respectively, based on average of 1000 iterations. Bottom: Close-up
of the first time-steps.
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Figure 4.6. Temporal evolution of the concentration of the species A in the region D ′ for a
case with highly dominant diffusion effects. Solid line is the deterministic solution in both
graphics. Top: Dashed and dash-dot lines are the solutions obtained by Choi et al., model setting
∆x = ∆y = ∆z = L/6 based on average of 100 iterations and our model based on average of 1000
iterations, respectively. Bottom: Close-up of the first time-steps.
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Figure 4.7. Top: Relative peak concentration, Nr, for different initial number of molecules
of A. Solid, dashed, and dash-dot lines represent the values predicted by the deterministic
solution, Choi et al., model, and our model, respectively. Bottom: Computational time required
to reach the steady state for different initial number of molecules of A. Dashed and dash-dot
lines represent the times required by Choi et al., model and our model, respectively.
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Chapter 5

Conclusions

Based on our search for the optimal level of complexity, we have proposed approaches

from different perspectives depending on the information we have aimed to capture from specific

biophysical or geophysical processes: analytical solutions, coarse-grained models, and hybrid

self-tuning algorithms. Thus, this dissertation can be summarized in the following major

conclusions:

1. We have developed analytical models for advective and conductive heat transfer in a

fracture surrounded by an infinite matrix. These models account for longitudinal and transverse

diffusion in the matrix, a two-way coupling between heat transfer in the fracture and matrix,

and an arbitrary configuration of heat sources. This is in contrast to the existing analytical

solutions that restrict matrix conduction to the direction perpendicular to the fracture. We

have demonstrated that longitudinal thermal diffusivity in the matrix is a critical parameter that

determines the impact of local heat sources on fluid temperature in the fracture. By neglecting

longitudinal conduction in the matrix, the classical models significantly overestimate both

fracture temperature and time-to-equilibrium. We have also identified the fracture-matrix Péclet

number, defined as the ratio of advection time scale in the fracture to diffusion time scale in the

matrix, as a key parameter that determines the efficiency of geothermal systems. Our analytical

models have provided an easy-to-use tool for parametric sensitivity analysis, benchmark studies,

geothermal site evaluation, and parameter identification.
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2. We have presented an effective kinetics model of filament formation, bundling and

depolymerization following GTP-hydrolysis, which involves a relatively small number of species

and reactions, and remains robust over a wide range of concentrations and time scales. We have

applied this general model to study assembly of FtsZ protein, a basic element in the division

process of prokaryotic cells such as Escherichia coli, Bacillus subtilis or Caulobacter crescentus.

This analysis have demonstrated that our model outperforms its counterparts in terms of both

accuracy and computational efficiency. Since our model comprises “only” seventeen ordinary

differential equations (ODEs), its computational cost is orders of magnitude smaller than the

current alternatives consisting of up to a thousand ODEs. It has also provided a new insight into

the characteristics and functioning of FtsZ proteins at high concentrations. The simplicity and

versatility of our model render it a powerful computational tool, which can be used either as

a stand alone descriptor of other biopolymers’ assembly or as a component in more complete

kinetic models.

3. We have presented a modeling approach, which achieves orders of magnitude speed-

up by replacing distributions of lengths and widths with their average counterparts and by

introducing a hierarchical classification of species and reactions into sets. We have used this

model to study FtsZ ring assembly in E. coli. The model’s prediction of key features of the ring

formation, such as time to reach the steady state, total concentration of FtsZ species in the ring,

total concentration of monomers and average dimensions of filaments and bundles, have been all

in agreement with the experimentally observed values. Besides validating our model against the

in vivo observations, this study has filled some knowledge gaps by proposing a specific structure

of the ring, describing the influence of the total concentration in short and long kinetics processes,

determining some characteristic mechanisms in polymer assembly regulation and providing new

insights about the role of ZapA proteins, critical component for both positioning and stability of

the ring.

4. We have developed a hybrid self-tuning algorithm for the analysis of stochastic

reaction-diffusion systems that remains efficient in wide range of regimes or under scenarios
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with large variations of concentrations in time and/or space. By combining microscopic methods

for diffusion (Brownian dynamics) with mesoscopic methods for reaction (Gillespie algorithm),

refining the mesh, optimizing the time-step, and redefining propensities, we have achieved

a more optimal balance between accuracy, robustness, and versatility than previous works

based on similar approaches. We have studied a bimolecular reaction A+B→C in a simple

domain to show the potential of our model at a large range of scenarios, from almost completely

diffusion-controlled systems to cases where reactions rarely occur or take place very slowly.

We have also demonstrated that the amount of particles present in the system do not affect the

performance of our model with respect to its direct counterpart. The efficiency and versatility of

our algorithm makes it a powerful approach to develop more complex multi-reaction models

without propagating large calculation errors or increasing the computational time unnecessarily.
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Appendix A

Analytical Models of Heat Conduction in
Fractured Rocks

A.1 Green’s functions

A.1.1 Green’s function for fracture BVP

We represent the two-dimensional Green’s function G f as the product of two one-

dimensional Green’s functions, G f = G f
x (x;x′; t− t ′)G f

z (z;z′; t− t ′) [CJ59]

G f
x =

1

2
√

πD f
L(t− t ′)

exp

[
−[x′− x+u(t− t ′)]2

4D f
L(t− t ′)

]
(A.1)

and

G f
z =

1
b
+

2
b

∞

∑
n=1

e−α2
nD f

T (t−t ′) cos(αnz)cos(αnz′) (A.2)

where αn = nπ/b. The Fourier Laplace (FL) transform of G f has the form

G̃ f =
G̃ f

ξ
(s)

√
2πb

+

√
2
π

∞

∑
n=1

cos(αnz)cos(αnz′)
b

G̃ f
ξ
(s+α

2
nD f

T ) (A.3)
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where

G̃ f
ξ
(s) =

1

s+ξ2D f
L +uξi

. (A.4)

A.1.2 Green’s function for matrix BVP

The Green’s function Gm is computed as the product of one-dimensional Green’s func-

tions, Gm = Gm
x (x;x′; t− t ′)Gm

z (z;z′; t− t ′),

Gm
x =

1
2
√

πDm
L (t− t ′)

exp
[ −(x′− x)2

4Dm
L (t− t ′)

]
(A.5)

and

Gm
z =

e−(z
′−z)2/ω + e−(z

′+z−2b)2/ω

2
√

πDm
T (t− t ′)

. (A.6)

where ω = 4Dm
T (t− t ′). The FL transform of Gm is

G̃m =
e−ψ|z−z′|/

√
Dm

T + e−ψ|z+z′−2b|/
√

Dm
T

2
√

2πDm
T ψ

(A.7)

where ψ =
√

Dm
L ξ2 + s.

A.2 Integral solutions of BVPs

Solutions of the fracture and matrix BVPs, expressed in terms of the Green’s functions,

are

T f (x,z, t) =
t∫

0

∞∫
−∞

r(x′, t ′)G f (.;x′,b; .)dx′dt ′ (A.8)

+

t∫
0

b∫
0

∞∫
−∞

f (x′,z′, t ′)G f (.; .; .)dx′dz′dt ′
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and

T m(x,z, t) =− 1
φm

t∫
0

∞∫
−∞

r(x′, t ′)Gm(.;x′,b; .)dx′dt ′. (A.9)

Their FL transforms are

T̃ f =
√

2π


r̃G̃ f |z′=b +

b∫
0

f̃ G̃ f dz′


 (A.10)

T̃ m =−
√

2πr̃G̃m|z′=b

φm
, (A.11)

where G̃ f and G̃m are given by (A.3) and (A.7), respectively.

The FL transform of the fracture-matrix heat transfer, r̃(ξ,s), is obtained from the

continuity condition at the interface, T̃ f (ξ,z = b,s) = T̃ m(ξ,z = b,s).

A.3 Fourier-Laplace inversions

Since T̃ f (ξ,s) = T̃ ?(−ξ,s) (where T̃ ? denotes the conjugate of T̃ f , the inverse Fourier

transform of T̃ f is

T̄ f =
1√
2π

∞∫
0

[
T̃ f (ξ,s)e−ixξ + T̃ f (ξ,s)eixξ

]
dξ (A.12)

and its inverse Laplace transform is

T f =
1√
2π

∞∫
0

[
L−1[T̃ ?]e−ixξ +L−1[T̃ f ]eixξ

]
dξ (A.13)

where L−1[ ] represents the inverse Laplace operator.
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A.3.1 Inverse Laplace transform of T̃ f

We decompose the FL transform T̃ f in (1.11) into simple fractions

T̃ f = A
4

∑
i=1

Xi

ψ+bi
, A =

T0u√
2π

(A.14)

where b1 = B/2+
√

G−Di, b2 = B/2−
√

G−Di, b3 =−b4 =
√

C, X1 = 1/[(b1−b2)(C−b2
1)],

X2 =−1/[(b1−b2)(C−b2
2)], X3 =−1/{2

√
C[(C+b1b2)− (b1+b2)

√
C]}, X4 = 1/{2

√
C[(C+

b1b2)+(b1 +b2)
√

C]}, and

B =
φm
√

Dm
T

b
, C = Dm

L ξ
2, D = uξ, G =

B2

4
+C. (A.15)

Since only ψ =
√

C+ s depends on the Laplace variable s, and noticing that ∑
4
i=1 Xi = 0, the

inverse Laplace of T̃ f is

T̂ f =−Ae−Ct
4

∑
i=1

Xibieb2
i terfc(bi

√
t) (A.16)

which can be recast in terms of the function w(z) = e−z2
erfc(−iz) of a complex variable z [FT61]

as

T̂ f =
AB
√

C
B2C+D2 [1− erfc(

√
Ct)]

− ADi
B2C+D2 [1− e−Ctw(ib1

√
t)]

+AX2b2e−Ct [w(ib1
√

t)−w(ib2
√

t)], (A.17)
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A.3.2 Inverse Fourier transform of T̂ f

Recalling that b1 and b2 in (A.17) are given by

b1 =
B
2
+

√√
G2 +D2 +G

2
− i

√√
G2 +D2−G

2
(A.18)

b2 =
B
2
−

√√
G2 +D2 +G

2
+ i

√√
G2 +D2−G

2
, (A.19)

expanding the square roots into Taylor series, and requiring G� D leads to

b1 ≈
B
2
+

√
G+

D2

4G
− iD

2
√

G
, b2 ≈

B
2
−
√

G+
D2

4G
+

iD
2
√

G
. (A.20)

Requiring B2/4�C, and expanding the square roots into Taylor series, yields

b1 ≈ B− i
D
B
, b2 ≈−

C
B
− D2

B3 + i
D
B
. (A.21)

Similarly, X2b2 in (A.17) is approximated by

X2b2 ≈
1

B2 −
iD

B2C+D2 . (A.22)

Finally, for small values of ξ, we approximate b1 and b2 in the arguments of w(·) with b1 ≈ B

and b2 ≈ iD/B, so that

w(ib1
√

t)≈ eB2terfc(B
√

t)

w(ib2
√

t)≈ e−D2t/B2
erfc(iD

√
t/B). (A.23)
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For t > 104/B2, expanding erfc(iD
√

t/B) into a Taylor series yields

w(ib1
√

t)≈ 0

w(ib2
√

t)≈ e−ε2
[

1−
(

2√
π

ε+
2

3
√

π
ε

3 +
1

5
√

π
ε

5
)

i
]
, (A.24)

where ε = D
√

t/B. With these approximations, (A.17) is replaced with

T̂ f ≈ A
√

C
B2κ

erf(
√

Ct)− ADi
B2κ
− A(κ−Di)

B2κ

[
1−
(

2ε√
π
+

2ε3

3
√

π
+

ε5

5
√

π

)
i
]

e−κt (A.25)

where κ =C+D2/B2. Using (A.13) to compute the inverse Fourier transform leads to (1.13).

A.3.3 Limits of applicability of analytical model (1.13)

The Fourier transform of temperature in the fracture (A.25) and its exact analytical

inversion (1.13) are derived under the following three conditions:

1. B2/4+C� D

2. B2/4�C

3. t > 104/B2.

In what follows, we demonstrate the general applicability of these conditions.

Condition 1:

Solving the first condition B2/4+C� D as an equation results in

ξ
2 =

u2

2Dm
L

2 −
φ2

mDm
T

4b2Dm
L
± u

2Dm
L

2

√

u2− φ2
mDm

L Dm
T

b2 . (A.26)

Thus, ξ is real if

φm
√

Dm
L Dm

T

ub
> 1. (A.27)
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Condition 2:

Recalling (A.15), this condition implies ξ2 � φ2
mDm

T /(4Dm
L b2). When ξ > 1, this is

equivalent to ξ < φm
√

Dm
T /Dm

L /(2b), which gives

φm

2b

√
DT

m
DL

m
> 1. (A.28)

Condition 3:

For B2t = 104, eB2terfc(
√

B2t)≈ 0.0056 and we treat it as 0. This yields a third constraint,

t >
104b2

φ2
mDm

T
. (A.29)
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Appendix B

Efficient Multiscale Models of Polymeriza-
tion Applied to in vitro FtsZ Assembly

B.1 Ordinary differential equations for concentrations

Polymerization and bundling processes are represented by the reactions listed in Section

2.2.1. Monomer and protofilament concentrations, [Zna], [Z] and [Zi] with i = 2, . . . ,6, satisfy a

system of ODEs,

d[Zna]

dt
= − k+ac[Z

na]+ k−ac[Z]+ k1
hy/dis[F ]+ k2

hy/dis[F ]+ k2
hy/dis

3

∑
i=2

[Bi]+ k3
hy/dis

N

∑
i=2

[Bi], (B.1)

d[Z]
dt

=k+ac[Z
na]− k−ac[Z]−2k+nu[Z]

2 +2k−ac[Z2]− k+el [Z]
6

∑
i=2

[Zi]− k+el [Z][F ]

+k−el

6

∑
i=3

[Zi]+ k−el [F ]− kmb[Z]
N

∑
i=2

[Bi], (B.2)

d[Z2]

dt
=k+nu[Z]

2− k−nu[Z2]− k+el [Z][Z2]+ k−el [Z3], (B.3)

d[Zi]

dt
=k+el [Z]([Zi−1]− [Zi])+ k−el([Zi+1]− [Zi]), i = 3,4,5, (B.4)

d[Z6]

dt
=k+el [Z]([Z5]− [Z6])− k−el [Z6], (B.5)

where N is the maximum number of filaments in a bundle. Filaments and bundles are assumed

to be present in the same concentrations regardless of their length. Consequently, we set

[F ]≡ [Fz−] = [Fz+] = [Ff−] = [Ff+] = [Fz−, f−] = [Fz+, f+] and [Bi]≡ [Bi;z−] = [Bi;z+] = [Bi;b−] =
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[Bi;b+] = [Bi;z−,b−] = [Bi;z+,b+] with i = 2, . . . ,N. Thus, we only define ODEs for [F ] and [Bi],

d[F ]

dt
=k+el [Z][Z6]− k+an[F ]2 + k−an[F ]− k+bu[F ]

(
2[F ]+

N−1

∑
i=2

[Bi]

)
+ k−bu

(
2[B2]+

N

∑
i=3

[Bi]

)

+ k2
hy/dis[F ], (B.6)

d[Bi]

dt
= − i

2
k−bu[Bi]+ k+bu

(
[Bi/2]

2 +
i−1

∑
j=1

1−δ j,i− j

2
[B j][Bi− j]

)
− k+bu[Bi]

N−i

∑
j=1

([B j]+ [Bi]δi, j)

+ k−bu

N

∑
j=i+1

(1+δ2i, j)[B j]+ k2
hy/dis[Bi]δi,2, for i = 2,4, . . . ,





N−2 even N

N−1 odd N
,

(B.7)

d[Bi]

dt
= − i−1

2
k−bu[Bi]+

k+bu
2

i−1

∑
j=1

[B j][Bi− j]− k+bu[Bi]
N−i

∑
j=1

([B j]+ [Bi]δi, j)

+ k−bu

N

∑
j=i+1

(1+δ2i, j)[B j]+ k2
hy/dis[Bi]δi,3, for i = 3,5, . . . ,





N−1 even N

N−2 odd N
,

(B.8)

d[BN ]

dt
= − N

2
k−bu[BN ]+ k+bu

(
[BN/2]

2 +
N−1

∑
j=1

1−δ j,N− j

2
[B j][BN− j]

)
+ k2

hy/dis[BN ]δN,2, even N,

(B.9)

d[BN ]

dt
= − N−1

2
k−bu[BN ]+

1
2

k+bu

N−1

∑
j=1

[B j][BN− j]+ k2
hy/dis[BN ]δN,3, odd N. (B.10)

In Eqs. B.7–B.10, [B1] = [F ]. Equations C.1–B.10 are subject to the following initial conditions:

[Zna]0 =Ctot, [Z]0 = 0, [Zi]0 = 0, [F ]0 = 0 and [B j]0 = 0, with i = 2, ...,6 and j = 2, ...,N.

Figure B.1 demonstrates the fast converges of this system of ODEs with respect to N.

For the extreme case of Ctot = 10.0 µM, one does not need to account for bundles of more than 9

or 10 filaments. This gives N = 10 and, therefore, results in the 17 ODEs.
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B.2 Conservation of mass and energy

Conservation of mass.

For any Ctot >C1
cr, the system of ODEs for FtsZ concentrations in all forms, Eqs. C.1–

B.10, is solved numerically. Then, the average length, L̄m
fb, is defined as an unknown parameter

in the conservation of mass law,

Ctot = [Zna]+ [Z]︸ ︷︷ ︸
FtsZ in monomer form

+
6

∑
i=2

i[Zi]+ L̄m
fb[F ]

︸ ︷︷ ︸
FtsZ in filament form

+ L̄m
fb

N

∑
i=2

i[Bi]

︸ ︷︷ ︸
FtsZ in bundle form

. (B.11)

In other words, our way of calculating the average lengths of filaments and bundles automatically

conserves mass at all times. Figure B.2 exhibits the temporal evolution of these three forms of

FtsZ thus computed for Ctot = 2.0 and 10.0 µM. As expected, the summation of FtsZ in all forms

remains constant and equal to the total concentration Ctot for any Ctot at all times t.

Net cycle balance.

The detailed balance is violated because of the nature of the process that we are modeling.

Cytoskeletal polymers, such as actin filaments and microtubules in eukaryotes and FtsZ, MreB,

and ParM in prokaryotes, grow due to the accumulation of monomers bounded to ATP or GTP

(nucleotide triphosphates). Those polymerized monomers can exchange their nucleotides with

ADP or GDP (nucleotide diphosphates) and disassembly from the polymer structure. This

turnover of monomers between the network and the solution is a nonequilibrium steady-state

process (NESS), which violates the detailed balance; this is in contrast to equilibrium steady

states (ESS), where the rate of all molecular processes is exactly balanced by the rate of the

reverse processes [Nee15, SW11, Weg76, PCC01, Qia05, Qia07]. These cellular nonequilibrium

systems or structures are referred to as “active matter”, and they are maintained by constant

energy influx [Nee15]. In section 2.2.1, the reactions representing the assembly/disassembly of

FtsZ monomers (Eqs. 2.1–2.3 and 2.6–2.8) constitute a NESS or net cycle balance. Eqs. 2.6–2.8

are irreversible reactions that imply consumption of energy and conformational changes that
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destabilize the polymers [Nee15].

Regardless of the nonequilibrium steady state, it is important to note that Eq. 2.3b is an

artificial irreversible reaction that previous models defined to limit the explicit description of

the first steps of polymerization [FG83, SXPM99, CBRE5a, CE5b, FLKG12]. It can be viewed

as a transition between a model for short-time kinetics, which describes how fast monomers

assemble, and a model for long-time kinetics, which represent slow processes such as annealing,

bundling or disassembly of monomers following GTP hydrolysis.

B.3 Parameter identification from steady-state, low concen-
tration data (Ctot = 0.7−3.0 µM)

The steady-state experiments reported in [CE5b] reveal that

1. the amount of FtsZ in monomer form equals the first critical concentration, C1
cr = 0.7 µM,

regardless of the value of Ctot in the range between 0.7 µM and 3.0 µM;

2. the average length of filaments and bundles at Ctot = 2.0 µM is L̄tot = 120.0 nm. Since the

diameter of FtsZ monomers is 4.0−5.0 nm [CE5b, Eri09, FFFG12], this corresponds to

L̄m
tot = 24−30, i.e., the average length of filaments comprising 24−30 monomers;

3. the value of L̄m
tot remains practically unchanged for Ctot = 3.0 µM; and

4. the majority of filaments are single-stranded at all levels of Ctot in the range between

0.7 µM and 3.0 µM. This suggests an average width of a bundle to be not larger than

W̄ f
tot = 1.5, where the superscript f designates the number of filaments per bundle.

These observations are used to calibrate our model. The calibration procedure employs fmincon

Matlab optimization routine, which allows one to find minima of constrained nonlinear multi-

variable functions. Calibration of our model consists in the following steps.

1. Define the coupled functionals to be minimized at steady state:
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(a) the derivatives of all concentrations in Eqs. C.1–B.10;

(b) the difference between the first critical concentration and the sum of nonactivated

and activated monomers, [Zna]+ [Z]−C1
cr;

(c) the difference between the total amount of FtsZ in the experiment, Ctot, and the sum of

all forms in which FtsZ exists, Ctot−{[Zna]+[Z]+∑
6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2 i[Bi])};

(d) the difference between the average width of filaments and bundles, W̄ f
tot, and the total

FtsZ concentration in filament and bundle forms, normalized with the sum of the

concentration of filaments and bundles weighted by their lengths, W̄ f
tot−{[∑6

i=2 i[Zi]+

L̄m
fb([F ]+∑

N
i=2 i[Bi])]/[∑

6
i=2 i[Zi]+ L̄m

fb([F ]+∑
N
i=2[Bi])]}.

2. Define a set of Ctot-dependent constraints (for Ctot = 0.7, 0.8, 1.0, 1.5, 2.0, 2.5, and

3.0 µM):

(a) lower and upper bounds for the parameters to be calibrated (Table C.2);

(b) lower and upper bounds for the monomer concentration, average length and average

width (Table C.3);

(c) order relations for the average length, L̄m
fb(Ctot), and width, W̄ f

tot(Ctot): the higher the

total concentration Ctot (in µM), the longer and wider the filaments and bundles are,

i.e.,

L̄m
fb(0.7)< L̄m

fb(0.8)< L̄m
fb(1.0)< L̄m

fb(1.5)< L̄m
fb(2.0)< L̄m

fb(2.5)< L̄m
fb(3.0)

and

W̄ f
tot(0.7)< W̄ f

tot(0.8)< W̄ f
tot(1.0)< W̄ f

tot(1.5)< W̄ f
tot(2.0)< W̄ f

tot(2.5)< W̄ f
tot(3.0)

3. Pick initial guesses for the optimization variables (k+bu = 3.0 µM−1s−1, k0
bu = 200.0 s−1,

kmb = 2.0 µM−1s−1 and k1
hss/dis = 1.0 s−1) and functionals (see Table C.4).
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4. Run the Matlab subroutine fmincon with a tolerance of 10−8 to estimate the parameters

and use those estimates as new initial guesses. Repeat successively in a loop of 20 iterations.

Rerun fmincon while using the last estimates as new initial guesses and decreasing the

tolerance to 10−9 to get a second, more accurate calibration, iterating again 20 times.

This calibration procedure yields the values of k+bu, k0
bu, kmb and k1

hss/dis reported in Table 2.2 in

section C.2.

B.4 Model validation

With the parameters either found in the literature or calibrated on the steady-state ob-

servations, we use our model to predict short- and long-time FtsZ polymerization dynamics.

Comparison with the corresponding data serves to validate the model.

Short-time kinetics validation.

Annealing, bundling and GTP-hydrolysis/dissociation reactions are thought to be absent

during the first seconds of polymerization. The Fluorescence Resonance Energy Transfer

experiment [CE5b] yielded data, which provide information about the temporal evolution of

FtsZ-F268C that assembles into filaments or bundles. Fluorescence is defined in terms of the

concentrations of nonactivated (Zna) and activated (Z) monomers as

F = a1([Zna]+ [Z])+a2(Ctot− [Zna]− [Z]),

where the parameters a1 and a2 represent the fluorescence of monomers and proteins in polymer

form, respectively. Figure C.2 exhibits the temporal evolution of F for Ctot = 1.22, 1.98 and

3.12 µM observed in [CE5b] and predicted with our model. The agreement between the model

and the observations indicates the model’s validity at early times. The plateau of the intensity

curves corresponds to the situation in which all FtsZ-F268C proteins are assembled, except for

monomers with concentration similar to the first critical concentration, C1
cr = 0.7 µM. Although
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C1
cr is the same regardless of Ctot, the fluorescence intensities for each plateau are different. That

is because the fluorescence F is proportional to the amount of polymerized FtsZ-F268C and the

latter increases with Ctot.

Also shown in Figure C.2 are predictions of the Chen and Erickson (CE) model [CE5b]

of the early stages of FtsZ polymerization. The agreement between the two models illustrates

that annealing, bundling and GTP-hydrolysis/dissociation reactions (all of which are absent from

the CE model) do not have a strong influence in the beginning of assembly process.

Long-time kinetics validation.

The predicted steady-state statistics of FtsZ assembly, i.e., L̄m
tot, W̄ f

tot and C1
cr = [Zna]ss+

[Z]ss, are compared with their observed counterparts in Table C.5. Since the steady-state

data were used for parameter identification, it is to be expected that the steady-state model

predictions are in agreement with observations [CE5b]: the average length for Ctot = 2.0−3.0 µM

is between 24 and 30 monomers; the majority of the filaments are single-stranded for low

concentrations, i.e., W̄ f
tot < 1.5 for Ctot < 3.0 µM; and [Zna]ss+[Z]ss = 0.7 µM, which coincides

with the value reported in [CE5b] for Ctot in the range between 0.7 µM and 3.0 µM. While such an

agreement is not surprising, it is worthwhile pointing out that the CE model [CE5b], which was

designed to reproduce these experiments, underestimates the first critical concentration, yielding

[Zna]ss +[Z]ss ≈ 0.5 µM. This underestimation is due to both the dissociation of monomers from

filaments following GTP hydrolysis and the effects of bundling on the turnover rate. These two

processes are explicitly accounted for in our model, but are absent in the CE model.

The temporal evolution of both the average length of the first oligomers, polymers and

bundles (L̄m
tot) and the average width of a bundle (W̄ f

tot) is depicted in Figure B.4 for Ctot = 1.0,

2.0, and 3.0 µM.
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Table B.1. Lower and upper bounds for the kinetic parameters used in the model calibration
procedure.

k+bu (µM−1s−1) k0
bu (s−1) kmb (µM−1s−1) k1

hss/dis (s−1)

Lower bound 2.0 0.0 2.0 0.143
Upper bound 7.5 500.0 6.6 ∞
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Table B.2. Lower and upper bounds for the concentrations (in µM, with i = 2, . . . ,6 and
j = 2, . . . ,10), average length and average width, informed by the data in [CE5b].

[Zna] [Z] [Zi] [F ] [B j] L̄m
fb W̄ f

tot

Lower bound (Ctot = 0.7 µM) 0.0 0.0 0.0 0.0 0.0 1 1
Upper bound (Ctot = 0.7 µM) 0.7 0.7 ∞ ∞ ∞ 1 1
Lower bound (Ctot = 0.8 µM) 0.0 0.0 0.0 0.0 0.0 1 1
Upper bound (Ctot = 0.8 µM) 0.7 0.7 ∞ ∞ ∞ 27 1.5
Lower bound (Ctot = 1.0 µM) 0.0 0.0 0.0 0.0 0.0 1 1
Upper bound (Ctot = 1.0 µM) 0.7 0.7 ∞ ∞ ∞ 27 1.5
Lower bound (Ctot = 1.5 µM) 0.0 0.0 0.0 0.0 0.0 1 1
Upper bound (Ctot = 1.5 µM) 0.7 0.7 ∞ ∞ ∞ 27 1.5
Lower bound (Ctot = 2.0 µM) 0.0 0.0 0.0 0.0 0.0 24 1
Upper bound (Ctot = 2.0 µM) 0.7 0.7 ∞ ∞ ∞ 30 1.5
Lower bound (Ctot = 2.5 µM) 0.0 0.0 0.0 0.0 0.0 24 1
Upper bound (Ctot = 2.5 µM) 0.7 0.7 ∞ ∞ ∞ 30 1.5
Lower bound (Ctot = 3.0 µM) 0.0 0.0 0.0 0.0 0.0 24 1
Upper bound (Ctot = 3.0 µM) 0.7 0.7 ∞ ∞ ∞ 30 1.5
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Table B.3. Initial guesses for the concentrations (in µM, with i = 2, . . . ,6 and j = 2, . . . ,10),
average length and average width.

Ctot (µM) [Zna] [Z] [Zi] [F ] [B j] L̄m
fb W̄ f

tot

0.7 0.01 0.01 0 0.01 0.01 1 1
0.8 0.01 0.01 0 0.01 0.01 5 1
1.0 0.01 0.01 0 0.01 0.01 10 1
1.5 0.01 0.01 0 0.01 0.01 20 1
2.0 0.01 0.01 0 0.01 0.01 24 1
2.5 0.01 0.01 0 0.01 0.01 30 1
3.0 0.01 0.01 0 0.01 0.01 30 1
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Table B.4. Steady-state monomer concentration ([Zna]ss+[Z]ss), and average length (L̄m
tot) and

width (W̄ m
tot), predicted with our model and observed in experiments [CE5b].

Concentration Average length (L̄m
tot) Average width (W̄ f

tot) [Zna]ss+[Z]ss (µM)
Ctot (µM) Predicted Observed Predicted Observed Predicted Observed Model in [CE5b]

1.0 7 < 27 1.0 < 1.5 0.701 0.7 0.526
2.0 25 24−30 1.1 < 1.5 0.699 0.7 0.534
3.0 30 24−30 1.3 < 1.5 0.695 0.7 0.536
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Figure B.1. Convergence of the system at the maximum concentration Ctot = 10 µM. Bundles
with more than 10 filaments can be considered negligible.
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Figure B.3. Kinetics of the initial FtsZ-F268C assembly detected by the Fluorescence Resonance
Energy Transfer experiment [CE5b], for three values of total concentration Ctot. The data points
and solid lines represent the measurements and predictions of the Chen and Erickson (CE)
model [CE5b], respectively. The agreement between this model and ours (dashed lines) is to be
expected since annealing, bundling and GTP-hydrolysis/dissociation, all which are not accounted
for in the CE model, do not become pronounced until the later stages of polymerization.
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Appendix C

Efficient Multiscale Models of Polymeriza-
tion Applied to in vivo FtsZ Ring Assembly
in Escherichia coli

C.1 ODEs for in vitro Systems

Basic structures (monomers, protofilaments, filaments, thin bundles and wide bundles)

and their graphical representations are summarized in Figure C.1. The reactions involved in the

short- and long-time kinetics of polymerization and bundling are described in the eponymous

sections. The concentrations, [·], of nonactivated (Zna) and activated (Z) monomers, dimers (Z2)

and trimers (Z3) satisfy a system of ODEs,

d[Zna]

dt
= − k+ac[Z

na]+ k−ac[Z]+ k1
hy/dis[F ]+ k2

hy/dis
(
[F ]+ [B2]+ [B3]

)
+ k3

hy/disΣB, (C.1)

d[Z]
dt

=k+ac[Z
na]− k−ac[Z]−2k+nu[Z]

2 +2k−nu[Z2]− k+el [Z]
(
[Z2]+ [Z3]+ [F ]

)

+ k−el

(
[Z3]+ [F ]

)
− kmb[Z]ΣB, (C.2)

d[Z2]

dt
=k+nu[Z]

2− k−nu[Z2]− k+el [Z][Z2]+ k−el [Z3], (C.3)
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d[Z3]

dt
=k+el [Z]([Z2]− [Z3])− k−el [Z3]. (C.4)

where ΣB ≡ [B2]+ [B3]+ [Bw].

Filaments (F) and thin bundles (B2 and B3) are assumed to be present in the same

concentrations regardless of their length. Consequently, we set [F ] ≡ [Fz−] = [Fz+] = [Ff−] =

[Ff+] = [Fz−, f−] = [Fz+, f+], [Bi]≡ [Bi;z−] = [Bi;z+] = [Bi;b−] = [Bi;b+] = [Bi;z−,b−] = [Bi;z+,b+] with

i = 2,3. Likewise, wide bundles (Bw) are assumed to be present in the same concentrations

regardless of their length and number of filaments, so that [Bw]≡ [Bw;z−] = [Bw;z+] = [Bw;b−] =

[Bw;b+] = [Bw;z−,b−] = [Bw;z+,b+]. Thus, we only define ODEs for [F ], [B2], [B3] and [Bw],

d[F ]

dt
=k+el [Z][Z3]− k+an[F ]2 + k−an[F ]− k+bu[F ]

(
2[F ]+ΣB

)
+ k−bu ([B2]+ΣB)+ k2

hy/dis[F ], (C.5)

d[B2]

dt
=k−bu([B3]− [B2])+ k+bu[F ]([F ]− [B2])+ k2

hy/dis[B2], (C.6)

d[B3]

dt
=−k−bu[B3]+ k+bu[F ]([B2]− [B3])+ k2

hy/dis[B3], (C.7)

d[Bw]

dt
=k+bu[F ][B3]− k+bu[Bw]

2 + k−bu[Bw]. (C.8)

Finally, the concentration of monomers in long filaments and bundles (Cm
fb) and the

concentration of filaments in wide bundles (C f
wb) satisfy

dCm
fb

dt
= 4k+el [Z][Z3]+ k+el [Z][F ]− k−el [F ]− k1

hy/dis[F ]− k2
hy/dis

(
[F ]+ [B2]+ [B3]

)

− k3
hy/disΣB + kmb[Z]ΣB, (C.9)

130



dC f
wb

dt
=4k+bu[F ][B3]− k−bu[Bw]+ k+bu[F ][Bw]. (C.10)

Eqs. C.1–C.10 are subject to initial conditions [Zna]0 = Ctot, [Z]0 = 0, [Zi]0 = 0, [F ]0 = 0,

[Bi]0 = 0, [Bw]0 = 0, Cm
fb;0 = 0 and C f

wb;0 = 0, with i = 2,3. These equations form a system of

ten ODEs, which is solved with a combination of fourth- and fifth-order Runge-Kutta methods

for non-stiff ODEs, implemented in ODE45 Matlab function.

C.1.1 Conservation of mass

Recall that the total concentration of FtsZ monomers in all forms, Ctot, is the sum

Ctot = Cm
mp +Cm

fb of the concentration of monomers in the monomer and protofilament forms,

Cm
mp = [Zna]+ [Z]+2[Z2]+3[Z3], and the concentration of monomers in the filament and bundle

forms, Cm
fb = L̄m

fb
(
[F ]+2[B2]+3[B3]+ f̄wb[Bw]

)
. It follows from this definition of Cm

mp and

Eqs. C.1–C.4 that

dCm
mp

dt
=− k+el [Z](4[Z3]+ [F ])+ k−el [F ]+ k1

hy/dis[F ]+ k2
hy/dis

(
[F ]+ [B2]+ [B3]

)

+ k3
hy/disΣB− kmb[Z]ΣB. (C.11)

Combining Eqs. C.9 and C.11 with the definitions of Ctot and Cm
fb yields

dCtot

dt
= 0. (C.12)

This proves conservation of the total concentration of FtsZ monomers in all forms, Ctot.

C.1.2 Conservation of energy

In common with [RMBST16], our model does not satisfy the detailed (net cycle) balance.

That is because the turnover of monomers between the polymer structure and the solution is

a nonequilibrium steady-state process (NESS), which violates the detailed balance. While the
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reactions we used to model the assembly/disassembly of FtsZ monomers constitute a NESS and

satisfy the net cycle balance, the irreversible reactions describing the dissociation of monomers

from filaments and bundles imply consumption of energy and conformational changes that

destabilize the polymers [Nee15].

Regardless of the nonequilibrium steady state, artificial irreversible reactions Z+Z3→ F

and F +B3→ Bw provide a coarsened representation of a transition between a model for short-

time kinetics, which describes how fast monomers assemble, and a model for long-time kinetics,

which represent slow processes such as annealing, bundling or disassembly of monomers

following GTP hydrolysis. For a more detailed discussion, we refer the interested reader

to [RMBST16] and the references therein.

C.2 Model Parametrization

We use the in vitro study [CE5b] of FtsZ-F268C polymerization to determine values of

the reaction rates in ODEs C.1–C.10. The study covers a wide range of FtsZ concentrations, and

its findings are in agreement with other investigations.

All but four parameter values are taken from the literature (Table C.1). The remaining

four are estimated with a model calibration procedure described in the end of this section.

The calibration is carried out on the steady-state, low-concentration (Ctot = 0.7-3.0 µM) data

from [CE5b].

Following [CE5b, FG83, RMBST16] and reducing the number of elongation steps from

5 to 2, we assume the forward (k+el) and backward (k−el) reaction rates to be independent of a

filament length (i.e., to be the same for all i). This is in contrast to the variable bundling rates

k±bu = k±bu( f̄R1, f̄R2;R1,R2,P) of a generic bundling reaction,

R1 +R2
k+bu


k−bu

P, (C.13)

between two linear chain molecules Ri (i = 1,2) with average number of filaments f̄Ri , which
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diffuse and bind laterally to produce a species P. The bundling process, when it occurs, is mainly

diffusion-limited [RMBST16]. We show in Section C.6 that, for any two reactants Ri from the

set {F,B2,B3,Bw}, the forward bundling rate, k+bu( f̄R1, f̄R2;R1,R2,P), is given by

k+bu =
1
2

k0+
bu FF( f̄F)

2

∑
i=1

1
3
√

f̄RiFRi( f̄Ri)
, (C.14a)

where

f̄Ri =





1 if Ri = F

2 if Ri = B2

3 if Ri = B3

f̄wb if Ri = Bw

, i = 1,2; (C.14b)

and

FRi =
7

∑
k=0

akxk
Ri
, xRi =

1
2

ln[3/(2 f̄Ri)], (C.14c)

with values of the constants ak provided in Section C.6. The lateral association rate of two

filaments, k0+
bu , corresponds to a reaction involving R1 = F and R2 = F , such that Eq. C.14

yields k+bu = k0+
bu . A value of k0+

bu is uncertain but must fall within the accepted range of protein-

protein association rates, 2.0−7.5 µM−1s−1 [CE5b, APS14, NE92]. It is determined with our

model calibration procedure. Rate expression C.14 is valid for polymers whose size satisfies the

requirement f̄Ri ∈ [1.5×10−4,1.5×104]. This is not overly restrictive, since f̄Ri < 1.5×10−4 is

equivalent to the absence of filaments and bundles (in which case k+bu ≡ 0), and f̄Ri > 1.5×104

is not observed in the experiments [CE5b].

Our model achieves an orders-of-magnitude computational speed-up by postulating that

both elongation and bundling processes can be reduced to just a few steps (up to bundles of
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three filaments, in the case of bundling). We demonstrate the accuracy of this approximation in

Section C.3.

The depolymerization reaction rates, k−el , k−an and k−bu, are determined from the respective

internal energies of filaments and bundles. Specifically, the backward reaction rates for elongation

and annealing are given by [LDWS08]

k−el = k−nu e−∆Ut and k−an = k−nu e−∆Um, (C.15)

where ∆Ut and ∆Um are the increments in the energy of a monomer connected at the end and mid-

dle of a filament, respectively. The value of ∆Ut is calculated from the first expression in Eq. C.15,

with the values for k−nu and k−el taken from [CE5b]. Conservation of energy suggests [LDWS08]

that ∆Um = 2∆Ut .

The variable lateral dissociation rates k−bu in Eq. C.13 are computed as (Section C.6)

k−bu = k0−
bu





1 L̄m
fb ≤ 1

e−(L̄
m
fb−1)Ub L̄m

fb > 1
for P = B2 (C.16)

and

k−bu = k0−
bu e−∆Ub





1 L̄m
fb ≤ 1

e−(L̄
m
fb−1)(Ub+∆Ub) L̄m

fb > 1
for P = B3. (C.17)

The backward reaction with P≡Bw, R1 =F and R2 =Bw in Eq. C.13 does not take place (k−bu = 0)

until f̄wb > 1.5×10−4. After that, in the range of bundle sizes f̄wb ∈ (1.5×10−4,1.5×104),

k−bu = k0−
bu e−26(Ub+∆Ub)−∆Ub. (C.18)

Finally, reaction Eq. C.13 with P = Bw, R1 = Bw and R2 = Bw is shown to be practically
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irreversible within the given parameter range, i.e., its rate is k−bu = 0. The bond energy per

lateral bond, Ub, is set to Ub = 0.175 kBT, which represents both the average of the values

reported in [DLS+08] for the same strain as in [CE5b] but a different buffer and the value

used in [LDWS08] for a strain different from [CE5b] but for the same buffer. Experimental

evidence [DLS+08, LDWS08] suggests that the bond energy per longitudinal bond is around

100 times larger than the bond energy per lateral bond. Assuming that increments of longitudinal

and lateral energies keep the same proportion, we obtain ∆Ut/∆Ub ∼ 100, which gives ∆Ub =

0.0405 kBT. The reference dissociation rate k0−
bu is one of the four parameters used for model

calibration. In the absence of experimental evidence, we have explored a wide range of its values

(0.0−500 s−1) during the model calibration.

The choice of the remaining parameters is identical to that in [RMBST16]. Dissociation

of monomers following GTP hydrolysis is essentially absent in the beginning of polymeriza-

tion [CE5b, RM04], and becomes more pronounced as the amount of polymers increases and

they interact more frequently with GDP. This dependence of the hydrolysis/dissociation rates on

the polymer concentrations is accounted for as

ki
hy/dis = ki

hss/dis
Ctot− [Zna]− [Z]

Ctot−C1
cr

, i = 1,2,3, (C.19)

where C1
cr < Ctot in the second regime of polymerization. At the beginning of the assembly

process, most FtsZ proteins are in the form of nonactivated (Zna) and activated (Z) monomers,

such that [Zna] + [Z] ≈ Ctot and ki
hy/dis → 0. At steady-state, when the polymer network is

formed and GDP deactivates monomers more often, these rates reach their maximum values,

ki
hy/dis ≈ ki

hss/dis for i = 1,2,3.

The reaction rates controlling dissociation after GTP hydrolysis depend on the location of

a deactivated monomer in the filament or bundle. In Table C.1, ki
hss/dis (i = 1,2,3) denote values

of the hydrolysis rates for filaments and bundles at steady-state. Only the rate for detachment of

monomers from filament ends, k1
hss/dis, was calibrated. The rate for detachment of monomers
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from the middle of filaments and thin bundles, k2
hss/dis, is set to the average value reported

in [CE5b] for turnover of monomers at steady state (half-time of 7 s, i.e., 0.143 s−1), because

we assume that it is the depolymerization reaction that happens more often. This assumption

is based on two facts: the predominant species observed in the experiment are filaments and

thin bundles, and there are more monomers in the middle of filaments and bundles than in their

ends. The value of k3
hss/dis is determined in [APS14] by observing the detachment of nonactivated

monomers from thick bundles. These three rates satisfy the following order relations. It takes less

energy to break a longitudinal bond at the filament end than two bonds at its middle, therefore,

k1
hss/dis > k2

hss/dis [MGPH+12]. We use this condition for calibration of k1
hss/dis. The values of

k2
hss/dis for shortening of filaments and thin bundles are equal, because both reactions describe the

loss of a monomer in the middle of a filament. The value of k3
hss/dis is the smallest of the three

rates, since the monomers in a bundle can be doubly connected both longitudinally and laterally.

In the absence of wide bundles, i.e., for f̄wb ≤ 1.5×10−4, k3
hss/dis = 0.

The rate at which activated monomers in the solution attach themselves to bundles is

quantified by the reaction rate constant kmb. The latter serves as the final calibration parameter; its

computed value (Table C.1) falls within the range of values of the protein-protein interaction rates

of 2–7.5 µM−1s−1. The condition kmb < k+el = 6.6 µM−1s−1 is also imposed during calibration,

because pure longitudinal attachments of monomers to filament ends are more favorable than

combinations of both longitudinal and lateral attachments in a monomer-bundle interaction. In

the absence of wide bundles, i.e., for f̄wb ≤ 1.5×10−4, kmb is assumed to be zero.

C.2.1 Model calibration procedure

The steady-state experiments reported in [CE5b] reveal that

• the amount of FtsZ in monomer form equals the first critical concentration, C1
cr = 0.7 µM,

regardless of the value of Ctot in the range between 0.7 µM and 3.0 µM;

• the average length of filaments and bundles at Ctot = 2.0 µM is L̄tot = 120.0 nm. Since the
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diameter of FtsZ monomers is 4.0−5.0 nm [CE5b, Eri09, FFFG12], this corresponds to

L̄m
tot = 24−30, i.e., the average length of filaments comprising 24−30 monomers;

• the value of L̄m
tot remains practically unchanged for Ctot = 3.0 µM; and

• the majority of filaments are single-stranded at all levels of Ctot in the range between

0.7 µM and 3.0 µM. This suggests an average number of filaments per bundle to be no

larger than f̄tot = 1.5.

These observations serve to constrain the model calibration. We employ the Matlab optimization

routine fmincon, which enables one to find minima of constrained nonlinear multivariable

functions. Our calibration procedure is similar to that in [CE5b] and consists of the following

steps.

1. Define the coupled functionals to be minimized at steady state:

(a) Eqs. C.1–C.10 with the time derivatives set to 0;

(b) ([Zna]+ [Z])−C1
cr;

(c) Cm
fb− L̄m

fb([F ]+2[B2]+3[B3]+C f
wb);

(d) f̄tot−

3
∑

i=2
i[Zi]+ L̄m

fb([F ]+
3
∑

i=2
i[Bi]+ f̄wb[Bw])

3
∑

i=2
i[Zi]+ L̄m

fb([F ]+
3
∑

i=2
[Bi]+ [Bw])

.

2. Define a set of Ctot-dependent constraints (for Ctot = 0.7, 0.8, 1.0, 1.5, 2.0, 2.5, and

3.0 µM):

(a) lower and upper bounds for the parameters to be calibrated (Table C.2);

(b) lower and upper bounds for the monomer concentration, average length and average

number of filaments per bundle (Table C.3);

(c) order relations for the average length, L̄m
fb(Ctot), and number of filaments per bundle,

f̄tot(Ctot): the higher the total concentration Ctot (in µM), the longer and wider
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the filaments and bundles are, i.e., L̄m
fb(0.7) < L̄m

fb(0.8) < L̄m
fb(1.0) < L̄m

fb(1.5) <

L̄m
fb(2.0) < L̄m

fb(2.5) < L̄m
fb(3.0) and f̄tot(0.7) < f̄tot(0.8) < f̄tot(1.0) < f̄tot(1.5) <

f̄tot(2.0)< f̄tot(2.5)< f̄tot(3.0).

3. Make initial guesses for the optimization variables (Table C.2) and functionals (see Table

C.4).

4. Estimate the parameters by run fmincon with the Sequential Quadratic Programming

algorithm, sqp, and tolerance 10−8. Use the estimates as new initial guesses and repeat 20

times to get an accurate calibration.

This calibration procedure yields the values of k0+
bu , k0−

bu , kmb and k1
hss/dis reported in Table C.1.

C.3 Model Validation

With the parameter values fixed in the previous section, we use our model (hereafter

referred to as Average-Features Model or AFM) to obtain fit-free predictions of the FtsZ poly-

merization dynamics at low concentration (Ctot = 0.7− 3.0 µM) and its steady-state limit at

high concentrations (Ctot = 3.0−10.0 µM). Comparison with the corresponding data from the

Fluorescence Resonance Energy Transfer experiment [CE5b] serves to validate the model.

C.3.1 Transient, low-concentration phenomena

Short-time kinetics.

Annealing, bundling and GTP-hydrolysis/dissociation reactions are thought to be absent

during the first seconds of polymerization. The experiment [CE5b] yielded information about

the temporal evolution of FtsZ-F268C that assembles into filaments or bundles. Fluorescence

is defined in terms of the concentrations of nonactivated (Zna) and activated (Z) monomers

as F = α1([Zna]+ [Z])+α2(Ctot− [Zna]− [Z]), where the parameters α1 and α2 represent the

fluorescence of monomers and proteins in polymer form, respectively. Figure C.2 exhibits the

temporal evolution of F for Ctot = 1.22, 1.98 and 3.12 µM observed in [CE5b] and predicted
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with AFM. The agreement between the two indicates the model’s validity at early times. The

plateau of the intensity curves corresponds to the situation in which all FtsZ-F268C proteins are

assembled, except for monomers with concentration similar to the first critical concentration,

C1
cr = 0.7 µM. Although C1

cr is the same regardless of Ctot, the fluorescence intensities for each

plateau are different. That is because the fluorescence F is proportional to the amount of

polymerized FtsZ-F268C and the latter increases with Ctot. The agreement between the data and

AFM confirms that the reduced version of elongation process (up to trimers) is sufficient to make

accurate predictions.

Long-time kinetics.

The predicted steady-state statistics of FtsZ assembly, i.e., L̄m
tot, f̄tot and C1

cr = [Zna]ss+[Z]ss,

are compared with their observed counterparts in Table C.5. Since the steady-state data were

used for parameter identification, it is to be expected that the steady-state model predictions are

in agreement with observations [CE5b]: the average length for Ctot = 2.0−3.0 µM is between

24 and 30 monomers; the majority of the filaments are single-stranded for low concentrations,

i.e., f̄tot < 1.5 for Ctot < 3.0 µM; and [Zna]ss+[Z]ss = 0.7 µM, which coincides with the value

reported in [CE5b] for Ctot in the range between 0.7 µM and 3.0 µM. While such an agreement

is not surprising, it is worthwhile pointing out that the model in [CE5b], which was designed to

reproduce these experiments, underestimates the first critical concentration, yielding [Zna]ss +

[Z]ss ≈ 0.5 µM. This underestimation is due to both the dissociation of monomers from filaments

following GTP hydrolysis and the effects of bundling on the turnover rate. These two processes

are explicitly accounted for in our model, but are absent in the CE model. The agreement

between the data and AFM confirms that the reduced version of bundling process (up to bundles

of three filaments) is sufficient to make accurate predictions.
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C.3.2 Steady-state, high-concentration phenomena

Average size of filaments and bundles.

Under physiologically relevant conditions, Ctot = 5.0− 10.0 µM, AFM captures the

observed tendency of filaments to keep fixed length, L̄m
tot ≈ 32− 33 subunits at steady-state,

regardless of the value of Ctot. Tables C.5 and C.6 show that, for Ctot = 2.0− 10.0 µM, the

predicted average length is L̄m
tot = 25− 33 subunits (125− 165 nm), which is within the well

established range of 100−200 nm [Eri09, CBRE5a, DLS+08, HLB+08, PIN+09, RSE01].

Almost all filaments remain single-stranded when Ctot < 2.0 µM (Table C.5). For larger

concentrations, up to Ctot = 10.0 µM, and for various buffers and FtsZ strains, filaments dominate

and the majority of bundles consist of two filaments. All the computed values of f̄tot in Table C.6

are below 2, which is in agreement not only with [CE5b] but also with other experiments [CE09,

DLS+08, HLB+08, RSE01].

Concentration of monomers at steady state.

In the physiologically relevant range of Ctot = 5.0−10.0 µM, AFM predicts the steady-

state concentration of monomers to be [Zna]ss+[Z]ss ≈ 0.7 µM (Table C.6). This matches the

observed monomer concentration [CE5b] and equals the first critical concentration, C1
cr. The

model presented in [CE5b] underestimates this observation, predicting a value of [Zna]ss +[Z]ss

≈ 0.5 µM.

Second critical concentration.

An appreciable decrease in the fluorescence intensity at Ctot = 3.0 µM (or, more generally,

at Ctot = 2.0−4.0 µM, depending on the concentration of Mg2+ contained in the buffer) was

observed, but not explained, in [CE5b]. A subsequent kinetics model [LDWS08] utilized the

experimental data from [CBRE5a] and [CE5b] to describe this phenomenon by identifying a

critical concentration, C2
cr, at which the presence of bundles becomes pronounced. The model

in [LDWS08] does not specify the value of C2
cr and, crucially, predicts formation of bundles

comprised two or three filaments at low concentrations (Ctot = 2.0 µM), which is not supported
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by the observations. Our model correctly predicts the ratio of an average number of monomers

per filaments to an average number of filaments per bundle for a range of Ctot. This ratio

reaches its maximum at Ctot = 3.5 µM, the critical concentration C2
cr after which the longitudinal

growth (elongation and/or annealing) ceases to dominate the lateral growth (bundling) and

bundles become an important factor in the overall kinetics (Fig. C.3). Our predicted value of

C2
cr = 3.5 µM falls within the experimentally observed range of 2−4 µM.

C.4 Comparison of Computational Costs

The maximum number of filaments per bundle increases with the total concentration of

FtsZ monomers in all forms, Ctot. The resulting growth in the number of bundle sizes requires

more ODEs comprising the model [RMBST16], which raises the latter’s computational cost

(Fig. C.4). The computational time required to reach steady-state with the model [RMBST16]

increases linearly with the total concentration in both in vitro (Ctot = 0.7−20 µM, left column

of Fig. C.4) and in vivo (Ctot = 0.7− 200 µM, right column of Fig. C.4) regimes. Thus, the

computational cost of the simulations of the first 40 s of in vitro polymerization increases six-fold

as Ctot increases from 0.7 µM to 20 µM. This degradation in the computational efficiency of

the model [RMBST16] is due to the concomitant increase in both the number of species and in

the number of ODEs needed to describe their dynamics (Fig. C.4). This is in contrast to AFM,

which comprises 10 ODEs regardless of the value of total concentration Ctot. Consequently, its

computational cost remains the same over the full range of Ctot; it is more than half of the lowest

computational cost of the model [RMBST16] with Ctot = 0.7 µM.

The computational efficiency of our model is magnified when it is used to simulate

in vivo polymerization phenomena, which are characterized by high total concentrations. For

Ctot = 200 µM, AFM is about two orders-of-magnitude faster than its competitor [RMBST16]

(right column of Fig. C.4).
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C.4.1 Comparison of in vivo predictions

From all previous works presented in Table 3.1, we see that [RMBST16] is able to

make accurate predictions for the range of concentrations Ctot = 3−10 µM. By averaging the

concentration and size of bundles, we have seen that AFM makes similar predictions at a lower

computational cost. In Section C.5, we present variations associated to in vivo assembly to our

in vitro AFM version such as the influence of the membrane or the presence of FtsA, ZipA and

ZapA proteins. Introducing those modifications in the in vitro model from [RMBST16], we can

compare both models and see that our current work improves the applicability range, the ability

to predict ring features and the computational cost in a complex in vivo scenario.

All variations presented in C.5 are introduced in [RMBST16] except the ones related to

the bundling rates that are inherent to AFM. We keep the constant values for forward bundling

rates from [RMBST16] and modify the backward bundling rate to be able to introduce the

influence of ZapA protein. Our study in [RMBST16] did not distinguish between the different

backward bundling rates associated to the lateral dissociation of two filaments, a filament and a

bundle or two bundles, therefore, we redefine k−bu as follows,

k−bu = k0−
bu e−∆Umod

b





1 L̄m
fb ≤ 1

e−(L̄
m
fb−1)(Umod

b ) L̄m
fb > 1

(C.20)

where Umod
b and ∆Umod

b are the modified bond energy per lateral bond and the modified increment

of lateral energy, respectively. We define Umod
b as the average of the bond energies per lateral

bond correspondent to the three aforementioned types of dissociation, and ∆Umod
b as the average

increment of lateral energies associated to the last two dissociations in a similar way that

are presented for AFM in C.7, i.e., Umod
b = [Ub +(Ub +∆Ub,ZapA)+ (Ub +2∆Ub,ZapA)]/3 and

∆Umod
b = (∆Ub,ZapA +2∆Ub,ZapA)/2.

Table C.7 shows the timing predicted by the in vivo version of [RMBST16] in comparison
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to AFM predictions. Both intermediate and long kinetics predicted by [RMBST16] are not

accurate; except for the attachment time of polymers to the membrane, tatt, the rest of the times

are much shorter than the ones that have been observed experimentally.

Table C.8 shows correct predictions from both models for the amount of FtsZ attached to

the membrane and the average length of the polymers at the steady state. The concentration of

monomers at the steady state and the number of filaments per bundles, however, are overestimated

and underestimated, respectively, by [RMBST16].

The computational time required by the in vivo version of [RMBST16] is 64.11−174.74

seconds (37-61 ODEs) for the range of concentrations Ctot,C;0 = 6−18 µM, whereas AFM only

spends around 12−13 seconds (11 ODEs) regardless of the concentration, i.e., 6-14 times shorter.

The average number of filaments per bundle predicted by [RMBST16] is 2-3 times lower than

the number predicted by AFM and the ones estimated from the thick bundles/clusters observed

experimentally. It means that the computational time would be even much larger for an improved

in vivo version of [RMBST16] that predicted correct bundle sizes, since it would require even

more ODEs.

Table C.9 includes the time required by our computer, Windows 10 Home, Intel(R)

Core(TM) i7-6700HQ CPU 2.60 GHz, to execute six different MATLAB tasks: LU, perform LU

decomposition of a full matrix; FFT, perform fast Fourier transform of a full vector; ODE, solve

van der Pol equation with ODE45 subroutine; Sparse, solve a symmetric sparse linear system;

2-D, plot Lissajous curves; and 3-D, display colormapped peaks subroutine with clipping and

transforms. We have used version R2016b of MATLAB and the subroutine bench, that measures

the execution speed of six different MATLAB tasks and compares it to the speed of several other

computers. Since the majority of the calculations performed by this study have required the use

of the ODE45 subroutine, we highlight the correspondent computational times to that task. As we

can see, our computer is one of the fastest.

Some of the MATLAB codes developed for this study are available for download in the

github repository ‘AlvaroRuizMartinez/ecoliproject.github’.
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C.5 AFM-based Description of Z-ring Formation

C.5.1 Physiological considerations

In Escherichia coli cells, the Ter linkage, a chain made of several proteins (MatP, ZapA,

and ZapB), coordinates localization of both the Z-ring and the Ter macrodomain region of the

chromosome at the center of a mother cell. Once a daughter cell is born, its correspondent

linkage is localized at the nucleoid periphery close to one of its poles. Then, the Ter region moves

to the center of the nucleoid and promotes Z-ring formation in the middle of a cell [MPS+08,

BBW+14, MB15, EBD+12]. While this happens, FtsZ proteins in monomeric or protofilament

forms diffuse in the cytoplasm. FtsA and ZipA proteins are responsible for the attachment of

FtsZ to the membrane, while ZapA proteins increase the stiffness of FtsZ bundles.

Cell shape.

Since our model is designed for well-mixed systems, we focus on the concentration of

FtsZ proteins in a region in the middle of the cell and close to the membrane (Fig. C.5). We

conceptualize this region, CM, as a torus of elliptical cross-section with axial width wa and radial

width wr, so that its volume is

VCM = 2π

(
R− wr

2

)

︸ ︷︷ ︸
ring’s length

π
wa

2
wr

2︸ ︷︷ ︸
ring’s cross-section

(C.21)

where R is the cell’s radius. The cell of length L is composed of two semi-spherical caps, CC,

and a cylindrical middle, MID, whose volumes are VCC and VMID, respectively (Fig. C.5). Then,

the cell’s volume is

VCELL = 2
2
3

πR3

︸ ︷︷ ︸
2×VCC

+(L−2R)πR2
︸ ︷︷ ︸

VMID

. (C.22)
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The cell birth-growth-division process takes 20 min, with the period between Z-ring positioning

in the middle and the onset of septation occurring from 4.5 min to 8.5 min after the cell’s

birth [TRC+11]. We focus on the latter time interval, during which the cell length increases

from L ≈ 2.8 µm to ≈ 3.2 µm [RHK+14]. For this reason, we keep both L and R constant.

Their values, as well as values of the other parameters introduced in this section, are collated in

Table C.10.

Interactions between FtsZ species and the membrane.

The process of monomers interacting in the cytosol to form protofilaments is not explicitly

modeled in AFM. Instead, following [SML08], we assume that monomers and first protofilaments

diffuse in the cytosol and, upon attaching to the membrane at the midcell, they anneal and bundle

to form the ring.

Let Ctot,C;0 = Ncell
FtsZ/VCELL denote the total cytosolic concentration of FtsZ molecules (in

all forms) in the beginning of the assembly process, defined as the ratio of the total number

of molecules in a cell (Ncell
FtsZ) to the cell volume (VCELL). Let Ca

tot,CM and Cd
tot,CM designate the

concentrations of FtsZ species (in all forms) that are respectively attached to and detached from

the membrane within the CM region of the cell (Fig. C.5). As FtsZ molecules attach to the

membrane within the CM region, the total cytosolic concentration of detached FtsZ molecules in

the cell (Ctot,C) decreases,

Ctot,C =Ctot,C;0−Ca
tot,CM

VCM

VCELL
. (C.23)

This relation assumes that during the ring assembly, which takes approximately 1 min [ACL97,

SM98], the cell produces no appreciable amount of new FtsZ molecules. This is a reasonable

assumption, given that this time interval is a small fraction of the 20-min life cycle during which

the cell doubles the initial number of FtsZ proteins for its two descendants.

Detached FtsZ molecules in the CM region are assumed to be in the form of either

monomers or protofilaments, so that their total concentration Cd
tot,CM is the sum of the two,
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Cd
tot,CM =Cd

m,CM +Cd
p,CM, with Cd

m,CM and Cd
p,CM denoting the local (within CM) concentrations

of monomers and protofilaments, respectively. Henceforth, we assume that Cd
tot,CM =Ctot,C since

CM region is a subvolume of the entire cell; also Cd
m,CM = [Zna]+[Z], therefore, the concentration

of detached protofilaments in the CM region is defined as Cd
p,CM =Cd

tot,CM−Cd
m,CM =Ctot,CM−

[Zna]− [Z]. Experimental evidence [LM14] suggests that single monomers do not attach to the

membrane, while larger structures do, i.e., Ca
tot,CM ≈Ca

p,CM. Among the latter, FtsZ dimers are

shown to be too weak [CE5b], so that trimers are the smallest attached protofilaments in our

model. The rate with which FtsZ trimers are attached to the membrane is given by

k+bind

Cd
p,CM

3
(Ca,max

tot,CM−Ca
tot,CM), (C.24)

where k+bind is a rate constant [DRRv13]; and a value of the maximal concentration of FtsZ (in

all forms) attached to the membrane at the midcell, Ca,max
tot,CM, is estimated from the following

considerations.

In vivo model in [DRRv13] defined a fix number of FtsA and ZipA molecules per

cell. We, however, set constant FtsZ/FtsA and FtsZ/ZipA cytosolic concentration ratios from

experimental data so the number of binding sites is proportional to the FtsZ concentration. The

ratio of cytosolic concentrations of FtsA and FtsZ molecules is [FtsA]C/[FtsZ]C = 1/5 [RVM03];

and the number of ZipA and FtsZ molecules in a cell are, respectively, Ncell
ZipA = 100− 1000

and Ncell
Ftsz = 5000− 15000 [HdB97, RVM03, EAO10]. This gives a range [ZipA]C/[FtsZ]C ∈

[100/15000,1000/5000] = [0.007,0.2], of which we take an intermediate value [ZipA]C/[FtsZ]C

= 0.1. Approximately 30% of ZipA is incorporated into the ring [SMSE02]; the same percentage

of FtsA is assumed in our model. Therefore, the number of binding sites in the CM region is

Nbs =0.3([FtsA]C +[ZipA]C)
NAVCELL

1021 = 0.3
(

1
5

Ctot,C;0 +
1
10

Ctot,C;0

)
NAVCELL

1021

=
9

100
Ctot,C;0NAVCELL

1021 =
9

100
Ncell

FtsZ, (C.25)
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where NA is Avogadro’s number and Ctot,C;0 has been taken as a reference for the FtsZ/FtsA and

FtsZ/ZipA ratios such that [FtsZ]C =Ctot,C;0.

We estimate a molecule of FtsA or ZipA to include 3−4 FtsZ monomers. (This is consis-

tent with an average distance, dFtsA-ZipA, between the FtsA and ZipA molecules homogeneously

distributed at the membrane in the CM region. Indeed, for a midrange value Ncell
FtsZ = 10000,

dFtsA-ZipA =

√
Midcell area

Nbs
=

√
2πRwa

Nbs
= 16.7nm, (C.26)

which corresponds to the length of a FtsZ protofilament made of 3− 4 monomers of 5 nm

diameter per monomer.) Taking the midrange value of 3.5 FtsZ monomers per molecule of

FtsA or ZipA, the maximal concentration of FtsZ (in all forms) attached to the membrane at the

midcell is

Ca,max
tot,CM = 3.5

Nbs

VCM

1021

NA
≈ 0.315

VCELL

VCM
Ctot,C;0. (C.27)

This estimate is in agreement with an estimate that 30−35% of total FtsZ is incorporated into

the ring [SMSE02, AGFE04].

Finally, we allow the shortest and weakest protofilaments, i.e., dimers, to detach at the

rate

k−bind[Z2]. (C.28)

Bundling.

The FtsZ assembly process in wild-type cells remains unknown. However, there are

numerous of in vitro and in vivo studies that show filaments forming bundles and more complex

structures [GVJ+05, LRE00, DPLW10, HDHJ13, BCH+13, APS14]. Following a recent in vivo

study [CBPX16], which suggests a heterogeneous and discontinuous three-dimensional ring

structure made of FtsZ clusters, we propose a two-stages bundling process:
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1. FtsZ filaments, F , and first bundles, B2 and B3, associate laterally to form two-dimensional

sheets upon attaching to the membrane, as observed in vitro [ETTB96, APS14] and in

vivo [LTBJ07]. Wider bundles, Bw, grow in axial direction as long as the concentration of

FtsZ proteins at the membrane, Ca
tot,CM, increases. They are also allowed to grow in radial

direction by pushing and lifting each other from the membrane. That results in formation

of bundles partially attached to the membrane with more degrees of freedom to rearrange

into three-dimensional cross-linked clusters along the CM region.

2. In the second stage, all binding sites at the membrane are occupied by FtsZ proteins and

there is not much space for wide bundles to grow in two dimensions. Wide bundles only

form three-dimensional cross-linked clusters.

C.5.2 ODEs for in vivo systems

In vivo polymerization and bundling processes are represented by the following ODEs.

Concentrations in the CM region, in vivo reaction rates, and parameters θ and χ are defined in

this Section. Section C.7 includes information about in vivo bundling rates.

d[Zna]

dt
= − k+ac[Z

na]+ k−ac[Z]+ k1
hy/dis[F ]+ k2

hy/dis

(
[F ]+

3

∑
i=2

[Bi]

)
+ k3

hy/dis

(
3

∑
i=2

[Bi]+ [Bw]

)
,

(C.29)

d[Z]
dt

=k+ac[Z
na]− k−ac[Z]−2k+nu[Z]

2 +2k−nu[Z2]− k+el [Z]
3

∑
i=2

[Zi]− k+el [Z][F ]+ k−el [Z3]

+ k−el [F ]− kmb[Z]

(
3

∑
i=2

[Bi]+ [Bw]

)
, (C.30)
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d[Z2]

dt
=k+nu[Z]

2− k−nu[Z2]− k+el [Z][Z2]+ k−el [Z3]− k−bind[Z2], (C.31)

d[Z3]

dt
=k+el [Z]([Z2]− [Z3])− k−el [Z3]+

1
3

k+bindCd
p,CM(Ca,max

tot,CM−Ca
tot,CM), (C.32)

d[F ]

dt
=k+el [Z][Z3]− k+an[F ]2 + k−an[F ]− k+bu[F ]

(
2θ[F ]+θ

3

∑
i=2

[Bi]+χ[Bw]

)
+

k−bu (2[B2]+ [B3]+ [Bw])+ k2
hy/dis[F ], (C.33)

d[B2]

dt
=k−bu([B3]− [B2])+θk+bu[F ]([F ]− [B2])+ k2

hy/dis[B2], (C.34)

d[B3]

dt
= − k−bu[B3]+θk+bu[F ]([B2]− [B3])+ k2

hy/dis[B3], (C.35)

d[Bw]

dt
=θk+bu[F ][B3]−χk+bu[Bw]

2 + k−bu[Bw]. (C.36)

We also define ODEs for the concentration of monomers in long filaments and bundles

attached to the membrane, Cm,a
fb,CM, and the concentration of filaments in wide bundles at the

membrane, C f ,a
wb,CM,

dCm,a
fb,CM

dt
=4k+el [Z][Z3]+ k+el [Z][F ]− k−el [F ]− k1

hy/dis[F ]− k2
hy/dis

(
[F ]+

3

∑
i=2

[Bi]

)
−

k3
hy/dis

(
3

∑
i=2

[Bi]+ [Bw]

)
+ kmb[Z]

(
3

∑
i=2

[Bi]+ [Bw]

)
, (C.37)
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dC f ,a
wb,CM

dt
=4θk+bu[F ][B3]− k−bu[Bw]+χk+bu[F ][Bw]. (C.38)

Finally, the ODE for the concentration of FtsZ in polymer form attached to the membrane

is defined as follows,

dCa
tot,CM

dt
=2k+nu[Z]

2−2k−nu[Z2]+ k+el [Z]

(
3

∑
i=2

[Zi]+ [F ]

)
− k−el ([Z3]+ [F ])− k1

hy/dis[F ]−

k2
hy/dis

(
[F ]+

3

∑
i=2

[Bi]

)
− k3

hy/dis

(
3

∑
i=2

[Bi]+ [Bw]

)
+ kmb[Z]

(
3

∑
i=2

[Bi]+ [Bw]

)
+

k+bindCd
p,CM(Ca,max

tot,CM−Ca
tot,CM)−2k−bind[Z2]. (C.39)

Eqs. C.29–C.39 are subject to initial conditions [Zna]0 =Cd
m,CM;0, [Z]0 = 0, [Zi]0 = 0, [F ]0 = 0,

[Bi]0 = 0, [Bw]0 = 0, Cm,a
fb,CM;0 = 0, Cf,a

wb,CM;0 = 0 and Ca
tot,CM;0 = 0, with i = 2,3.

The system of 11 ODEs is solved with ODE15s Matlab function for stiff problems. It is

a variable-step, variable-order (VSVO) solver based on the numerical differentiation formulas

(NDFs) of orders 1 to 5.

C.5.3 Model parametrization

First critical concentration.

An experimentally determined range of the first critical concentration for FtsZ mutants,

C1
cr,mut = 0.1−0.7 µM (the majority of mutants from [CBRE5a]) and the mutant from [CE5b]),

is lower than the values observed in wild-type FtsZ proteins, C1
cr,wt = 0.9−1.25 µM [GJV+03,

CBRE5a]. In our model of in vivo wild-type FtsZ assembly, we take an intermediate value in the

latter range, C1
cr,wt = 1.1 µM, instead of the value C1

cr = 0.7 µM used in our model of the mutant

FtsZ-F268C.
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Bundling.

In both stages of the bundling process described above, ZapA tetramers contribute to

increase the size and the rigidity of the two-dimensional sheets and the three-dimensional cross-

linked clusters. Section C.7 shows the influence of these structural changes on the forward and

backward bundling rates.

Crowding at the membrane increases reaction rates of a reaction-limited bundling, i.e.,

when proteins are small and crowding favors protein-protein association; on the other hand,

crowding reduces reaction rates once the bundling reaction becomes diffusion-limited, i.e., when

molecules are large [Ell01]. As in the case of in vitro polymerization, we treat bundling as

a diffusion-limited reaction. Thus, the bundling reaction rate is reduced by a concentration-

depended factor θ that is defined as

θ = 1+(χ−1)
Ca

tot,CM

Ca,max
tot,CM

, (C.40)

where χ = Da
CM/Dd

CM is the ratio of the diffusion of the species attached to crowded membranes

to the diffusion of the ones that are not attached (see Table C.10). In the beginning of the

assembly process, the concentration of polymers attached to the membrane is Ca
tot,CM = 0. The

factor θ reaches its maximum value, θ = 1, in the absence of crowding effects, i.e., FtsZ species

bundle at the maximal rates. Once all binding sites are occupied by FtsZ species, the CM region

becomes completely crowded such that Ca
tot,CM = Ca,max

tot,CM and θ reaches its minimum value,

θ = χ.

As in the in vitro case, wide bundles, Bw, are relevant at long times and high concentra-

tions. Thus, we set θ = χ for any forward bundling reaction with Bw as a reactant.
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Hydrolysis/dissociation rates.

Dissociation upon hydrolysis rates are redefined for the CM region as

ki
hy/dis =ki

hss/dis
Ca

tot,CM +Cd
tot,CM− [Zna]− [Z]

Ca
tot,CM +Cd

tot,CM−C1
cr,wt

= ki
hss/dis

Ca
tot,CM +Ctot,C− [Zna]− [Z]

Ca
tot,CM +Ctot,C−C1

cr,wt
(C.41)

for i = 1,2,3.

C.5.4 ZapA deficiency

Lack of ZapA proteins introduces five modifications in our model.

1. The absence of ZapA alters the chain of molecules that compose the terminal Ter, therefore,

we assume that FtsZ attach to the whole membrane rather than its CM part. Consequently,

we redefine the CM region as a thin volume of radial width wr = 20 nm along the entire

cell,

VCM = 2π

(
R− wr

2

)
(L−2R)wr +4π

(
R− wr

2

)2
wr. (C.42)

2. The percentage of FtsA and ZipA at the membrane is assumed to be 100% instead of 30%.

3. The average number of filament per bundle is computed with Eq. C.14b.

4. The stiffness of FtsZ bundles is not altered by ZapA, so that ∆ZapA = 1.

5. An estimated average length for wide bundles is assumed to equal the maximum length

predicted by our in vitro model at high concentrations. We base this assumption on the

facts that concentrations at the membrane are higher than in vitro concentrations and also

that there are no ZapA proteins to stabilize longitudinal bonds. Consequently, we set

L̄m
fb = 35 in the backward bundling rate applied to wide bundles in Section C.7.
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C.6 In vitro bundling reactions and their rates

C.6.1 Forward bundling rate

A general forward bundling reaction can be defined as

R1 +R2
k+bu→ P, (C.43)

where R1 and R2 denote two linear chain molecules diffusing and binding laterally in order to

produce the species P. If bundling is a diffusion-limited process, then Smoluchowski’s formula,

k+bu = 4π(DR1 +DR2)(rh,R1 + rh,R2), (C.44)

enables one to express the bundling rate k+bu in terms of the diffusion coefficients, DR1 and DR2 ,

and the hydraulic radii, rh,R1 and rh,R2 , of the reactants R1 and R2.

To estimate values of DRi (i = 1,2), we deploy the Rouse model that treats a short unen-

tangled polymer as a linear series of n beads connected by springs with negligible hydrodynamic

interactions [Ter02]. This description is applicable to polymers with a number of beads smaller

than a characteristic entanglement length, ne ≈ 35 [KG90]. Treating each monomer as a “bead”,

the number of beads in a filament or bundle is given by the latter’s average length, i.e., n = L̄m
fb.

The Rouse model is applicable to the experiments [CE5b], since the observed average length

of FtsZ species is L̄m
fb < 30. Thus, if reactants Ri (i = 1,2) represent FtsZ filaments (F) and/or

bundles (B2, B3 and Bw), their diffusion coefficient is

DRi =
kBT

L̄m
fbζbead,Ri

, i = 1,2. (C.45)

Here kB is the Boltzmann constant, T is room temperature, and ζbead,Ri is the friction coefficient
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of a bead. For a non-spherical molecule (bead) in a solvent of viscosity ηs,

ζbead,Ri = 6πηsrs
bead,Ri

Fbead,Ri, i = 1,2, (C.46)

where rs
bead,Ri

is the radius of a sphere whose volume equals that of the bead, and Fbead,Ri is the

Perrin factor (or translational shape factor) defined as the ratio of the friction coefficient of a

non-spherical molecule to that of a spherical molecule of the same volume [Per36]. The volume

of a spherical monomer of radius rm is V = 4πr3
m/3. The volume of a bead comprising a filament

or bundle, Ri, with average number of filaments f̄Ri is

Vbead,Ri = f̄Ri

4π

3
r3

m. (C.47)

An equivalent spherical bead of the same volume, Vbead,Ri , has the radius

rs
bead,Ri

= 3
√

f̄Rirm. (C.48)

For filaments and bundles Ri with cylindrical shapes, the beads are disks of thickness 2rm

and volume V d
bead,Ri

= 2πrm(rd
bead,Ri

)2 (see Figure C.6 in which the bundle is composed of 9

filaments). This volume equals that in Eq. C.47 if the disk-shaped bead has a radius

rd
bead,Ri

=

√
2
3

f̄Ri rm. (C.49)

The Perrin factor for a disk of thickness 2rm and diameter 2rd
bead,Ri

is [Han04]

Fbead,Ri =
7

∑
k=0

akxk
Ri
, xRi = ln pRi, pRi =

rm

rd
bead,Ri

, (C.50)

where a0 = 1.0304, a1 = 0.0193, a2 = 0.06229, a3 = 0.00476, a4 = 0.00166, a5 = a6 = 0,

and a7 = 2.66× 10−6. This polynomial representation is valid on the range pRi ∈ [0.01,100].
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Substituting Eq. C.49 into Eq. C.50 yields p2
Ri
= 3/(2 f̄Ri) and defines the applicability range

for the Rouse model as f̄Ri ∈ [1.5×10−4,1.5×104]. This is not overly restrictive, since f̄Ri <

1.5× 10−4 is equivalent to the absence of filaments and bundles, and f̄Ri > 1.5× 104 is not

observed in the experiments [CE5b]. Substituting Eqs. C.46, C.48 and C.50 into Eq. C.45 gives

the Rouse diffusion coefficient for reactant Ri,

DRi =
A

L̄m
fb

3
√

f̄RiFbead,Ri( f̄Ri)
. (C.51)

where A is a computable constant.

The hydrodynamic radius of a chain of n molecules of radius rm is proportional to rmnν,

where

ν =





3/(d +2) d ≤ 4

1/2 d > 4
(C.52)

is referred to as the Flory exponent, a scaling factor for the average end-to-end distance of the

polymer introduced to consider polymer self-avoidance effects, and d is a dimensionality factor.

When d ≤ 1/2, polymers are represented by a d-dimensional sphere (line, circle, sphere for

d = 1,2,3) filled with n polymer segments with mutual repulsive interaction; d > 4 corresponds

to a particular case in which “real polymer chains” behave as if they were ideal, i.e. excluded

volume effects are negligible [vDW97, Ter02, BGM13]. We set d = 1, which corresponds to a

one-dimensional self-avoiding walk, i.e. a straight line with length n [vDW97]. The following

reasons justify this choice. First, FtsZ protofilaments and short filaments are usually straight

when GTP nucleotides are dominant in the structure [LRE00]. Second, our filaments and bundles

are relatively short, L̄m
fb ≤ 30, and bundles get stiffer as they get wider [DLS+08]. The resulting

FtsZ species are, approximately, straight three-dimensional cylindrical structures, as that shown

in Figure C.6. Setting d = 1 and, hence, ν = 1 translates into the hydrodynamic radius of reactant
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Ri,

rh,Ri ∝ rmL̄m
fb. (C.53)

Combining Eqs. C.51, C.53 and C.44 leads to

k+bu = M+
2

∑
i=1

1
3
√

f̄RiFbead,Ri( f̄Ri)
, (C.54)

where M+ = k0+
bu Fbead,F( f̄F)/2, and k0+

bu is the lateral association rate of two filaments.

C.6.2 Backward bundling rate

In a generic backward bundling reaction,

P
k−bu→ R1 +R2, (C.55)

a linear chain molecule P divides laterally into two thinner chain molecules R1 and R2. Follow-

ing [LDWS08], we pursue an approach based on the energetic balance of lateral fragmentation

of bundles. Let k0−
bu denote the rate of lateral detachment of two monomers, and Ub designate

the lateral interaction energy of two laterally-bound monomers. In analogy to Eq. C.15 for the

longitudinal detachment of filaments, the dissociation rates for the bonds at the lateral tip and in

the middle of bundles of one monomer long are, respectively,

k0−
bu e−∆Ub and k0−

bu e−2∆Ub, (C.56)

where ∆Ub is the increment in the energy of a laterally connected monomer. In analogy to the

backward rates for nucleation, elongation and annealing of bundles [LDWS08], we define the
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bundling backward rates for filament-filament,

k0−
bu e−(L̄

m
fb−1)Ub , (C.57a)

filament-bundle,

k0−
bu e−(L̄

m
fb−1)(Ub+∆Ub)−∆Ub (C.57b)

and bundle-bundle,

k0−
bu e−

√
2 f̄P/3[(L̄m

fb−1)(Ub+2∆Ub)+2∆Ub]. (C.57c)

Here f̄P is the average number of filaments in the product P; and the factor
√

2 f̄P/3 represents

the ratio of the radii of the product P and the filament, as defined in Eq. C.49. For our kinetics

model of bundling, we define bundling reaction backward rates as follows.

1. If a bundle of two filaments of average length L̄m
fb dissociates laterally to form two inde-

pendent filaments, i.e., if P = B2, then

k−bu = k0−
bu





1 L̄m
fb ≤ 1

e−(L̄
m
fb−1)Ub L̄m

fb > 1.
(C.58)

2. If a bundle of three filaments of average length L̄m
fb dissociates laterally to form a filament

and a bundle, i.e., if P = B3, then

k−bu = k0−
bu e−∆Ub





1 L̄m
fb ≤ 1

e−(L̄
m
fb−1)(Ub+∆Ub) L̄m

fb > 1.
(C.59)

3. Wide bundles are mainly present at long times and high concentrations, wherein the
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experimentally observed average length is in the range of 24−30 monomers [CE5b]. We

pick an intermediate value of L̄m
fb = 27. Thus, if a wide bundle, with average number of

filaments f̄wb and average length L̄m
fb, dissociates laterally to form a filament and another

bundle, i.e., if P = Bw, R1 = F and R2 = Bw, then

k−bu = k0−
bu e−26(Ub+∆Ub)−∆Ub. (C.60)

Wide bundles exist, and hence this dissociation reaction takes place and Eq. C.60 is

applicable, when 1.5× 10−4 ≤ f̄wb ≤ 1.5× 104 (see the preceding section). If f̄wb <

1.5×10−4, then this reaction is absent so that its rate is k−bu = 0.

4. If a wide bundle, with average number of filaments f̄wb and average length L̄m
fb = 27,

dissociates laterally to form two bundles, i.e., if P = Bw, R1 = Bw and R2 = Bw, then

k−bu = k0−
bu e−

√
2 f̄wb/3[26(Ub+2∆Ub)+2∆Ub]. (C.61)

This expression holds for 1.5×10−4 ≤ f̄wb ≤ 1.5×104; if f̄wb < 1.5×10−4, then k−bu = 0.

For the values of Ub and ∆Ub reported in Table C.1, and for f̄wb = 4 associated with case

4 above, Eq. C.61 gives an order-of-magnitude estimate

k−bu ∼ O(10−5) for reaction 4. (C.62)

Among the remaining three cases previously defined, case 3 is the least energetically favorable;

even for that case, an order-of-magnitude analysis of Eq. C.60 results in

k−bu ∼ O(10−3) for reaction 3. (C.63)

Hence, the backward bundling rate for case 4 is negligible relative to any other cases, i.e., case 4,
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or reaction 2Bw;b−→ Bw;b+, is assumed to be irreversible.

C.7 In vivo bundling reactions and their rates

In regions adjacent to membranes, we redefine bundles as two-dimensional sheets of

cylindrical beads. Overlapped bundles rearrange to form three-dimensional cross-linked clusters

along the CM region, which we conceptualize as long, thick structures composed of big spherical

beads.

Forward bundling rate.

The presence of ZapA proteins between FtsZ filaments changes a diffusion coefficient

of bundles and, consequently, diffusion-limited reaction rates. Guided by the in vitro obser-

vations [MPV+09], we consider structures with a pair of FtsZ filaments connected by ZapA

tetramers, and assumer that both ZapA and FtsZ monomers have the same diameter, φm ≈ 5 nm.

We allow these ZapA tetramers to diffuse like the pair of filaments. Table C.11 provides discrete

values of the average number of filaments of a reactant Ri without ( f̄Ri) and with ( f̄Ri,ZapA) ZapA

in between pairs of FtsZ filaments.

Geometric considerations give f̄Ri,ZapA = 2 f̄Ri for bundles of more than two filaments.

Consequently, we redefine Eq. C.14b as

f̄Ri,ZapA =





1 for Ri = F

2 for Ri = B2

6 for Ri = B3

f̄wb,ZapA for Ri = Bw,

(C.64)

where f̄wb,ZapA = 2 f̄wb. Now, we define a dimensionality factor d̃ that corresponds to a subse-

quent bundling stage: d̃ = 2 for bundling over the membrane, and d̃ = 3 for bundling over and

perpendicular to the membrane. For each d̃, we redefine the radius of the spherical beads and the
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Perrin factor as follows.

For d̃ = 2, bundles are distributed along a two dimensional membrane as sheets (Fig. C.7).

The radius of a spherical bead is defined as

rs(2)
bead,Ri

= rm
3
√

f̄Ri,ZapA (C.65)

by equating volumes of a bead and its spherical counterpart,

Vbead,Ri = f̄Ri,ZapA
4π

3
r3

m, V s
bead,Ri

=
4π

3
[rs(2)

bead,Ri
]3. (C.66)

The Perrin factor F(2)
bead,Ri,ZapA in Eq. C.50 is now computed for pRi = lc

bead,Ri
/φc

bead,Ri
, where

lc
bead,Ri

and φc
bead,Ri

are respectively the length and diameter of the bead. Since lc
bead,Ri

=

f̄Ri,ZapAφm and φc
bead,Ri

= φm, we have pRi = f̄Ri,ZapA. The Perrin factor expression for a cylin-

der [Han04], restricts values of f̄Ri,ZapA to the interval [0.01,100]. This constraint is always

satisfied for in vivo cases:

1. f̄Ri,ZapA only changes in time for wide bundles, i.e., when Ri = Bw. Our in vitro model

predicts f̄wb > 0.01 for Ctot = 4− 6 µM, which are the lowest cytosolic concentrations

observed experimentally (3000-5000 FtsZ molecules). Since concentrations are much

higher at the membrane than in the cytosol, and ZapA proteins (absent in the in vitro

experiment) promote bundling, f̄ in vivo
wb,ZapA� f̄ in vitro

wb > 0.01 for Ctot,C > 4 µM.

2. The maximal axial width of the CM region is wa = 100 nm (Table C.10). For monomer

diameter φm ≈ 5 nm, the maximal number of FtsZ/ZapA filaments laterally associated and

perfectly aligned is 20. Thus, f̄ max
wb,ZapA = 20 < 100 for any cytosolic concentration, Ctot, C.

For d̃ = 3, bundles are partially attached to the membrane and distributed along the

midcell region as long cross-linked bundles with more complex beads. Figure C.8 shows an

example of beads of three-dimensional wide bundles; the bead’s length (three monomers long in
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the longitudinal direction) is proportional to the number of cross-linked bundles. The radius of a

spherical bead is

rs(3)
bead,Ri

= rm
3
√

f̄Ri,ZapA, (C.67)

which is obtained by equating volumes of a bead and its spherical representation,

Vbead,Ri = f̄Ri,ZapA
4π

3
r3

m, V s
bead,Ri

=
4π

3
[rs(3)

bead,Ri
]3. (C.68)

The Rouse model’s condition for the number of beads to be smaller than the entanglement

length limit, n < ne, is still fulfilled. The length of the beads is taken proportional to the number

of cross-linked bundles connected longitudinally. Furthermore, for d̃ = 3, the Perrin factor is

defined for spheres, i.e., F(3)
bead,Ri,ZapA = 1,

The hydrodynamic radius rh,Ri is computed with Eq. C.53. This yields an expression for

the forward reaction rate,

k+bu = k̃0+
bu

2

∑
i=1

3

∑
d̃=2

γ
(d̃)
Ri

3
√

f̄Ri,ZapAF(d̃)
bead,Ri,ZapA( f̄Ri,ZapA)

, (C.69)

where

k̃0+
bu =

1
2

k0+
bu F(2)

F,ZapA( f̄F,ZapA), (C.70)

γ
(d̃)
Ri

=





1 d̃ = 2

0 d̃ = 3
if Ri = F,B2, or B3 (C.71a)
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and

γ
(d̃)
Ri

=





1−
Ca

tot,CM

Ca,max
tot,CM

d̃ = 2 ( f̄wb,ZapA ≤ 20)

Ca
tot,CM

Ca,max
tot,CM

d̃ = 3 ( f̄wb,ZapA > 20)
if Ri = Bw. (C.71b)

First species in the bundling process, F , B2 and B3, are assumed to grow exclusively over

the membrane. The amount of wide bundles growing over the membrane decreases as the total

FtsZ concentration at the membrane, Ca
tot,CM, increases, i.e., as the membrane gets crowded and

there is less space for bundles to diffuse and grow in two dimensions. On the other hand, the

amount of wide bundles growing in all directions and forming cross-linked structures increases

with the total FtsZ concentration at the membrane, i.e., when the membrane gets crowded and

bundles push and lift each other to rearrange in three dimensions. When Ca
tot,CM = Ca,max

tot,CM,

bundles grow exclusively in three dimensions.

Backward bundling rate.

Local concentration of ZapA interacting stoichiometrically with FtsZ at the division

site may be sufficient to induce a tetrameric conformation [LML04, GG12]. Some stud-

ies [GFL02, LML04, MPV+09] suggest the stoichiometry of ZapA-FtsZ interaction to be 1:1,

while others [DPLW10, PGCH+13] estimated stoichiometries up to 4:1 since ZapA concentra-

tion in the ring is four times higher than FtsZ concentration [DPLW10]. Nevertheless, in vitro

and in vivo experiments show interactions between ZapA and ZapB [BCH+13, BCS+15] and

sequestration of ZapA by ZapB [GG12] that can reduce the stoichiometry up to 1:2. We take the

intermediate value 1:1 for ZapA-FtsZ interaction.

We estimate the influence of ZapA proteins on the lateral bounds of FtsZ species from

the in vitro experiments [DPLW10] that studied different stiffness of FtsZ/H6-ZapA structures

by measuring their elastic modulus. At medium and long times, i.e., when bundling becomes

important, FtsZ bundles without the presence of H6-ZapA had an average elastic modulus of
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∼ 9 dyn/cm2. However, for a molar ratio of 1:1, the average elastic modulus was around 30

dyn/cm2. Defining ∆ZapA as the increment of the stiffness of FtsZ bundles by ZapA and taking

as a reference the scenario without ZapA, we have a value of ∆ZapA = 30/9 = 3.33. Since ZapA

molecules tend to connect pairs of FtsZ filaments instead of single filaments [MPV+09], we

multiply this factor by the increment of lateral bond energy associated to bundling of bundles

of two or more filaments, i.e., ∆Ub,ZapA = ∆ZapA∆Ub. Thus, we redefine the backward reaction

rates as follows.

1. If a bundle of two filaments of average length L̄m
fb detaches laterally to form two independent

filaments, i.e., if P = B2, then

k−bu = k0−
bu





1 L̄m
fb ≤ 1,

e−(L̄
m
fb−1)Ub L̄m

fb > 1.
(C.72)

If a bundle of three filaments of average length L̄m
fb detaches laterally to form a filament

and a bundle, i.e., if P = B3, then

k−bu = k0−
bu e−∆Ub,ZapA





1 L̄m
fb ≤ 1,

e−(L̄
m
fb−1)(Ub+∆Ub,ZapA) L̄m

fb > 1.
(C.73)

2. Wide bundles are mainly present at long times and high concentrations. The tendency

of ZapA proteins to make stiff bundles and to stabilize longitudinal bonds between FtsZ

monomers [DPLW10] suggests that the average length of the species remains practically

constant once ZapA proteins get attached to them. Our in vitro study demonstrated that

bundles of pairs of filaments start forming at Ctot = 2 µM. At that concentration the average

length of filaments and bundles is estimated by our model to be L̄m
fb = 25. Moreover, ZapA

intervenes in bundling process when bundles are made of at least 2 filaments [MPV+09].

Therefore, we set L̄m
fb = 25 as the expected length for wide bundles at steady state. Thus, if
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a wide bundle of average number of filaments f̄wb,ZapA and average length L̄m
fb detaches

laterally to form a filament and another bundle, i.e., if P = Bw, R1 = F and R2 = Bw, then

k−bu = k0−
bu e−24(Ub+∆Ub,ZapA)−∆Ub,ZapA, (C.74)

Here, we do not distinguish between two stages of bundling. We assume that filaments

detach at the same rate from sheets (d̃ = 2) and from long cross-linked clusters (d̃ = 3),

i.e., cross-links do not highly affect the detachment of thin filaments.

3. If a wide bundle of average number of filaments f̄wb,ZapA and average length L̄m
fb = 25

detaches laterally to form two bundles, i.e., if P = Bw, R1 = Bw and R2 = Bw, then

k−bu = k0−
bu e−[24(Ub+2∆Ub,ZapA)+2∆Ub,ZapA]

(
1−

Ca
tot,CM

Ca,max
tot,CM

)
(C.75)

where only the proportion of wide bundles in sheet form (d̃ = 2, Eq. C.71) is allowed to

dissasociate. The proportion of long cross-linked clusters (d̃ = 3, Eq. C.71) is not consid-

ered in Eq. C.75 since cross-links are very strong to allow cluster dissociation [FLKG12,

JMW15].
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Table C.1. Reaction rate constants and bond energies. The energy units are expressed in terms
of the Boltzmann constant kB and room temperature T.

Parameter Units Value Reference

k+ac s−1 0.38 [CE5b]
k−ac s−1 0.01 [CE5b]
k+nu µM−1s−1 0.79 [CE5b]
k−nu s−1 199.8 [CE5b]
k+el µM−1s−1 6.6 [CE5b]
k+an µM−1s−1 6.6 [CE5b]
k0+

bu µM−1s−1 4.0955 Calibrated
k0−

bu s−1 199.9704 Calibrated
kmb µM−1s−1 2.1957 Calibrated
k1

hss/dis s−1 0.6998 Calibrated
k2

hss/dis s−1 0.143 [CE5b]
k3

hss/dis s−1 0.112 [APS14]
∆Ut kBT 4.05 [CE5b, LDWS08]
∆Um kBT 8.10 [LDWS08]
Ub kBT 0.175 [DLS+08, LDWS08]
∆Ub kBT 0.0405 [DLS+08, LDWS08]

165



Table C.2. Lower and upper bounds, and initial guesses, for the kinetic parameters used in the
model calibration procedure.

k0+
bu (µM−1s−1) k0−

bu (s−1) kmb (µM−1s−1) k1
hss/dis (s−1)

Lower bound 2.0 0.0 2.0 0.143
Upper bound 7.5 500.0 6.6 ∞

Initial guess 4.0 200.0 2.0 0.7
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Table C.3. Lower and upper bounds for the concentrations (in µM, with i = 2,3 and j = 2,3),
average length and average number of filaments per bundle, informed by the data in [CE5b].

[Zna] [Z] [Zi] [F ] [B j] [Bw] Cm
fb C f

wb L̄m
fb f̄tot

Lower bound (Ctot = 0.7 µM) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1
Upper bound (Ctot = 0.7 µM) ∞ ∞ ∞ ∞ ∞ ∞ 0.0 ∞ 1 1
Lower bound (Ctot = 0.8 µM) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1 1
Upper bound (Ctot = 0.8 µM) ∞ ∞ ∞ ∞ ∞ ∞ 0.1 ∞ 27 1.5
Lower bound (Ctot = 1.0 µM) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1 1
Upper bound (Ctot = 1.0 µM) ∞ ∞ ∞ ∞ ∞ ∞ 0.3 ∞ 27 1.5
Lower bound (Ctot = 1.5 µM) 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1 1
Upper bound (Ctot = 1.5 µM) ∞ ∞ ∞ ∞ ∞ ∞ 0.8 ∞ 27 1.5
Lower bound (Ctot = 2.0 µM) 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 24 1
Upper bound (Ctot = 2.0 µM) ∞ ∞ ∞ ∞ ∞ ∞ 1.3 ∞ 30 1.5
Lower bound (Ctot = 2.5 µM) 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 24 1
Upper bound (Ctot = 2.5 µM) ∞ ∞ ∞ ∞ ∞ ∞ 1.8 ∞ 30 1.5
Lower bound (Ctot = 3.0 µM) 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 24 1
Upper bound (Ctot = 3.0 µM) ∞ ∞ ∞ ∞ ∞ ∞ 2.3 ∞ 30 1.5
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Table C.4. Initial guesses of the concentrations (in µM, with i = 2,3), average length and average
number of filaments per bundle.

Ctot (µM) [Zna] [Z] [Zi] [F ] [Bi] [Bw] Cm
fb C f

wb L̄m
fb f̄tot

0.7 0.0 0.0 0.0 0.01 0.01 0.01 0.0 0.0 1 1
0.8 0.0 0.0 0.0 0.01 0.01 0.01 0.1 0.0 5 1
1.0 0.0 0.0 0.0 0.01 0.01 0.01 0.3 0.0 10 1
1.5 0.0 0.0 0.0 0.01 0.01 0.01 0.8 0.0 18 1.02
2.0 0.0 0.0 0.0 0.01 0.01 0.01 1.3 0.0 25 1.04
2.5 0.0 0.0 0.0 0.01 0.01 0.01 1.8 0.0 27 1.08
3.0 0.0 0.0 0.0 0.01 0.01 0.01 2.3 0.0 28 1.11
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Table C.10. Parameters of the in vivo model.

Parameter Units Value Reference
L µm 3 [RHK+14]
R µm 0.4 [RHK+14]
wa µm 0.10 [FHB+10, CBPX16]
wr µm 0.06 [CBPX16]
C1

cr, wt µM 1.1 [CBRE5a, CE5b]
k+bind µM−1s−1 0.142 [DRRv13]
k−bind s−1 0.0284 [DRRv13]
[FtsZ]C/[FtsA]C − 5 [RVM03]
[FtsZ]C/[ZipA]C − 10 [HdB97]
Dd

CM µm2s−1 2.5 [FFFG12, CJR02]
Da

CM µm2s−1 0.1 [NY08]
∆ZapA − 3.33 [DLS+08, DPLW10]
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Table C.11. Average number of filaments in a reactant Ri without and with ZapA proteins.

f̄Ri f̄Ri,ZapA Scheme

2 4 (ZapA)2− (FtsZ)2− (ZapA)2
4 8 (FtsZ)− (ZapA)2− (FtsZ)2− (ZapA)2− (FtsZ)
6 12 (FtsZ)− (ZapA)2− (FtsZ)2− (ZapA)2− (FtsZ)2− (ZapA)2− (FtsZ)
.. .. ..
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Figure C.1. Graphical representation of basic polymer structures and reactions.
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Figure C.2. Kinetics of the initial FtsZ-F268C assembly observed in [CE5b], for three values of
total concentration Ctot. The data points and compared with predictions of the models in [CE5b]
(solid lines) and [RMBST16] (dashed lines), as well as with those of AFM (dotted lines). The
agreement between the three models is to be expected since annealing, bundling and GTP-
hydrolysis/dissociation, all which are not accounted for in the model [CE5b], do not become
pronounced until the later stages of polymerization.
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Appendix D

Stochastic self-tuning hybrid algorithm for
reaction-diffusion systems

D.1 Effect of number of molecules

Graphics of variations of the concentration of species C are presented in this Appendix.

Regardless of the number of particles, our model makes more accurate predictions than its

counterpart.
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Figure D.1. Temporal evolution of the concentration of the species C for NA0 = NB0 = 60
particles. Solid, dashed, and dash-dot lines are the deterministic solution, the solution obtained
by Choi et al., model setting ∆x = ∆y = ∆z = L/4, and the solution obtained by our model,
respectively. All results are based on average of 1000 iterations.
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Figure D.2. Temporal evolution of the concentration of the species C for NA0 = NB0 = 6×102

particles. Solid, dashed, and dash-dot lines are the deterministic solution, the solution obtained
by Choi et al., model setting ∆x = ∆y = ∆z = L/8, and the solution obtained by our model,
respectively. All results are based on average of 1000 iterations.
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Figure D.3. Temporal evolution of the concentration of the species C for NA0 = NB0 = 6×103

particles. Solid, dashed, and dash-dot lines are the deterministic solution, the solution obtained
by Choi et al., model setting ∆x = ∆y = ∆z = L/16, and the solution obtained by our model,
respectively. All results are based on average of 1000 iterations.
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Figure D.4. Temporal evolution of the concentration of the species C for NA0 = NB0 = 6×104

particles. Solid, dashed, and dash-dot lines are the deterministic solution, the solution obtained
by Choi et al., model setting ∆x = ∆y = ∆z = L/32, and the solution obtained by our model,
respectively. All results are based on average of 1000 iterations.
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