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Abstract

Fluid models play a critical role in a wide range of applications, such as oil and

gas exploration and production, chemical process design and optimization, and CO2

enhanced oil recovery projects. Accurate predictions of phase behavior and thermo-

physical properties are key to ensuring the safety, performance, and profitability of

these operations. However, predictions derived from fluid models inherently possess

uncertainties due to model and parametric factors. These uncertainties are especially

significant for hydrocarbon reservoir fluids, which exhibit complex phase behavior.

This dissertation discusses the sources of uncertainty in reservoir fluid modeling,

encompassing both empirical and compositional approaches, and provides a deeper

understanding of their impact on fluid and flow model predictions.

Initially, we demonstrate the uncertainty in model selection by comparing nine

traditional empirical models for solution gas-oil ratios against experimental data. The

results reveal that specific fluid compositions under different pressure and temperature

conditions are better represented by distinct models. Consequently, we propose a new

model that delivers superior overall performance.

We also explore the uncertainty in input parameters for compositional fluid mod-

els, specifically highlighting how subjective choices of optimization algorithms and

initial guesses impact the equation of state (EoS) regression process. As a result, EoS

predictions remain uncertain even after tuning the uncertain inputs to a limited set

of experimental data points. We present results for two hydrocarbon reservoir fluids,

treating five properties of the heaviest carbon fraction as design variables. Although

all considered optimization algorithms and initial guesses match experimental data

for gas and liquid properties, the resulting EoS parameterizations lead to dramatically
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different predictions of the fluid’s thermophysical behavior in unsampled pressure and

temperature regions.

Next, we investigate the uncertainty in input parameters for fluid models, intro-

ducing a framework to quantify the predictive uncertainty of multiphase pipe-flow

models due to correlated random inputs. A case study evaluates the uncertainty in

cumulative production for a reservoir with unknown fluid properties during the explo-

ration phase. Global Sensitivity Analysis using Sobol’s indices is employed to identify

inputs significantly contributing to the model’s predictive uncertainty. This frame-

work facilitates improved risk management and informed decision-making within the

energy industry.

Lastly, we discuss the calibration of inherently uncertain flow models when field

data is available. In particular, we propose a heuristic method for optimizing tuning

factors applied to calculated pressure and temperature gradients and demonstrate its

efficiency through a real case study.
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Abbreviations

ADAM Adaptive moment estimation method

ANOVA Analysis of variance

BO Black Oil

Cplus Hydrocarbon plus fraction
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Chapter 1

Introduction

Fluid models play a critical role in a wide range of applications, including the explo-

ration and production of oil and gas resources, chemical process design and optimiza-

tion, and CO2 enhanced oil recovery projects. Accurate predictions of phase behavior

are crucial in these applications, as they directly affect the operations’ performance

and profitability.

For instance, in reservoir fluid modeling, the estimation of the amount of oil

and gas that can be recovered from a reservoir depends on the prediction of fluid

properties and behavior under various conditions. Similarly, reliable predictions of

thermodynamic properties and phase behavior of fluid mixtures are essential in chem-

ical processes. In addition, CO2 enhanced oil recovery projects depend on accurate

predictions of phase behavior to optimize CO2 injection and increase oil recovery

efficiency.

Nonetheless, for complex fluid systems, uncertainty permeates the fluid model-

ing effort. This dissertation employs hydrocarbon reservoir fluids as a vehicle for

exploring uncertainty in fluid modeling, with the understanding that the methodolo-

gies and analyses presented herein can be seamlessly extended to other fluid mix-

tures. Hydrocarbon reservoir fluids are arguably the most compositionally complex

organic mixture [71], and thus serve as a nice example. They are a mixture of vari-

ous components, including light, medium, and heavy hydrocarbon fractions, as well

as nonhydrocarbon compounds. These components can exhibit behavior above their

5



CHAPTER 1. INTRODUCTION 6

critical pressure and temperature, requiring sophisticated modeling approaches that

go beyond classical fluid mechanics [51].

Uncertainty is interpreted here in its broader sense, i.e. as the lack of certainty

due to imperfect, incomplete or unknown information. It applies to predictions of

future events, to physical measurements, to mathematical models predictions, or to

any parameter whose value is not know “for sure”. Uncertainty in fluid modeling

arises from the limitations of our ability to fully comprehend or model the complex

physics and chemistry of fluid systems.

BO fluid models, for instance, rely on equations that were fit to a specific data set,

which can lead to significant errors when applied to different fluids or operating condi-

tions. In compositional fluid models, uncertainties arise from the lack of knowledge of

the fluid’s full composition, components parameters, and interaction parameters. The

properties of the heaviest hydrocarbon fraction are often obtained from BO models

or estimated through regression techniques, which can propagate through the models

and lead to large predictive uncertainties in the outputs, including phase behavior

and transport properties.

Thus, fluid behavior predictions should be accompanied by a measure of their

uncertainty. Put simply, the predictive uncertainty of the fluid behavior must be

assessed and quantified to enable more informed decisions. Such uncertainty quan-

tification effort aims to estimate the effects of epistemic uncertainty, which comprises

both structural uncertainty (uncertainty about the accuracy of a particular model)

and parametric uncertainty (uncertainty about parameters and driving forces in a par-

ticular model) [122]. Epistemic uncertainty can be reduced by collecting more data.

Conversely, aleatory or irreducible uncertainty refers to the limits of predictability of

inherently random phenomena and therefore cannot be reduced [122].

While some level of uncertainty is unavoidable, it is crucial to quantify epistemic

uncertainties to make more informed decisions. Neglecting to account for uncertain-

ties can lead to false confidence in the models’ predictions and ultimately result in

poor decision-making. Therefore, accurate modeling of hydrocarbon reservoir fluids

requires careful consideration of these uncertainties to properly quantify and manage

their impact on fluid and flow model predictions.
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Predictions obtained from fluid models are often used to inform critical business

decisions that can have significant financial implications, potentially worth millions

or billions of dollars. Furthermore, these models may impact the safety and envi-

ronmental sustainability of the systems being designed, underscoring the importance

of obtaining accurate and reliable predictions. Ultimately, a failure to account for

uncertainties in these models may pose human and environmental risks, highlighting

the critical need for effective uncertainty quantification methods.

Therefore, this dissertation investigates the sources of epistemic uncertainty as-

sociated with reservoir fluid modeling, both in Black Oil (BO) and compositional

approaches, and provides a better understanding of their impact on fluid and flow

model predictions. The dissertation emphasizes the importance of quantifying pre-

dictive uncertainties of fluid models and proposes novel methods for their estimation.

These methods are demonstrated using real-world data and case studies.

1.1 Objectives

The main objectives of this dissertation are:

• To investigate the sources of uncertainty associated with reservoir fluid model-

ing, both in BO and compositional approaches, and to provide a better under-

standing of their impact on fluid and flow models predictions.

• To emphasize the importance of quantifying predictive uncertainties of fluid

models and to propose novel methods for their estimation.

• To demonstrate the proposed methods using real-world data and case studies.

These overall objectives are broken into the following specific objectives:

• To investigate the applicability of traditional solution gas-oil ratio models on an

experimental data set containing CO2-rich reservoir fluids and propose a more

accurate model that is suitable for these types of fluids.
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• To demonstrate the impact of inaccurate solution gas-oil ratio predictions on

the multiphase flow simulation of a production system.

• To investigate the uncertainty arising from the equation of state (EoS) regression

process due to the choices of optimization algorithm and initial guess and its

impact on EoS predictions.

• To propose the probabilistic treatment of EoS predictions.

• To develop a framework for global sensitivity analysis in multiphase flow simu-

lation results to identify the model inputs contributing most to the predictive

uncertainty.

• To develop a framework for quantifying the predictive uncertainty of multiphase

pipe-flow models due to correlated random inputs.

1.2 Dissertation outline

This dissertation investigates uncertainties in reservoir fluid modeling, focusing on

both BO and compositional approaches. The following chapters present original con-

tributions to this field, addressing specific sources of uncertainty and proposing novel

methods to quantify and manage them.

Chapter 1 provides an introduction to the research, outlining the motivations and

objectives of this dissertation.

Chapter 2 reviews the theoretical basis for reservoir fluid modeling, covering the

two main approaches: BO and compositional. The BO model is empirical, simpler

and computationally cheaper, while the compositional approach is based on thermo-

dynamic relations and is therefore more theoretically robust. The concepts covered

in this chapter are central to this research.

Chapter 3 investigates the uncertainty associated with the selection of solution

gas-oil ratio (Rs) models. Many models are available in the literature, but their

accuracy varies depending on fluid compositions and operational conditions. For

some compositions, none of the models are accurate enough. To address this issue, we
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propose a generalist Rs model that is simple and ready for implementation, and shows

overall better performance on the training and test sets. Chapter 3 is a compilation

of two papers published in [41] and [42].

Chapter 4 investigates predictive uncertainties from compositional fluid models.

Specifically, we explore the equation of state (EoS) tuning to experimental data,

which consists on a nonlinear and non-convex multivariate optimization problem. We

demonstrate how different optimization algorithms and initial guesses can significantly

affect the predictive capabilities of the resulting models in unsampled pressure and

temperature regions. To address this issue, we propose a probabilistic treatment of

the design variables to quantify EoS predictive uncertainty. Chapter 4 reproduces a

paper accepted by the Geoenergy Science and Engineering journal.

Chapter 5 discusses the uncertainty associated with fluid models inputs and their

influence on the results of flow simulations of a production system. The BO approach

is used for the fluid modeling. We present a framework for quantifying the predictive

uncertainty of multiphase pipe-flow models due to correlated random inputs. We

demonstrate the framework’s effectiveness through a case study, which quantifies the

uncertainty of cumulative production for an oil reservoir whose fluid properties are

unknown during the exploration phase. Global Sensitivity Analysis through Sobol’s

indices is performed to identify the model inputs contributing the most to predictive

uncertainty. Chapter 5 reproduces a paper published in [44].

Chapter 6 investigates the calibration of pipe-flow models, addressing the inherent

uncertainties present in these models. In the oil and gas industry, it is a common

practice to use tuning factors to match field data and enhance the predictive capability

of flow models. In particular, we propose a heuristic method tailored to optimize these

tuning factors applied to calculated pressure and temperature gradients. A real case

study demonstrates the proposed heuristic efficiency. Chapter 6 reproduces a paper

to be submitted.

Chapter 7 summarizes the main conclusions of this dissertation and offer sugges-

tions for future work.



Chapter 2

Review of reservoir fluid modeling

Reservoir fluid modeling plays a pivotal role in understanding and predicting the

behavior of thermophysical of hydrocarbons mixtures within subsurface reservoirs,

as well as during production, transport, and processing. Accurate fluid modeling is

essential for making informed decisions related to reservoir management, production

strategies, and facilities design, among other areas. This chapter provides a review

of the two main approaches for reservoir fluid modeling: the Black Oil (BO) and the

compositional. Both approaches have advantages and limitations, which are discussed

in the following sections. The BO fluid modeling is used in Chapters 3 and 5, while

the compositional approach is employed in Chapter 4.

2.1 Black Oil fluid modeling

The Black Oil approach for fluid modeling, referred here as the BO approach, con-

sists of simple empirical equations for reservoir fluid properties proposed based on

experimental or field data. In today’s terms, it is a data-driven approach.

The primary advantage of the BO approach is its computational efficiency. Due to

the simplified representation of the fluid and the low number of required parameters,

black oil simulations can be carried out relatively quickly, making it a popular choice

for flow simulations requiring low computational costs.

The main limitation of the BO approach is that its models should be used only

10
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within the range of validity for which they were developed, i.e., for fluid compositions,

pressure, and temperature conditions that align with those included in the dataset

used for a model’s development. Nonetheless, it is common for such models to be used

indiscriminately. Extrapolations can be dangerous and lead to unphysical results, as

demonstrated in Chapter 3.

Figure 2.1: Representation of the Black Oil system. Reservoir fluid properties are
computed at any pressure and temperature condition (a) from information obtained
at standard conditions (b).

The BO approach characterizes each phase that can be present in a reservoir

fluid mixture (oil, gas, and water) through simple inputs, typically obtained at stan-

dard conditions. Essentially, this approach can be conceived of as a compositional

model, wherein each phase is represented by one pseudocomponent. The foundational

premises of the BO approach are concisely detailed as follows:
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• Component constitution: The system is structured around three distinct com-

ponents, namely oil, gas, and water components. Each component is defined

under standard conditions.

• Phase partitioning: The system accommodates the existence of three unique

phases, namely oil, gas, and water phases.

• Solubility dynamics: The gas component can be dissolved in the oil phase, but

not in the water phase. The oil and water components are strictly confined to

the oil and water phases, respectively.

• Thermodynamic equilibrium: The system instantaneously achieves a state of

thermodynamic equilibrium.

Figure 2.1 provides a visualization of the BO system. The diagram illustrates the

relationship between the volumes (V) of oil (o), gas (g), and water (w) phases at a

specific pressure (P) and temperature (T) condition (Figure 2.1a) and under standard

conditions (sc) (Figure 2.1b). In Figure 2.1a, the system is at a pressure below the

bubble point and a temperature near the reservoir temperature, hence the presence of

the gas phase with volume Vg. The oil phase contains dissolved gas, thus being a “live

oil”, and has volume Vo. The water phase volume is denoted by Vw. As this closed

system transitions to standard conditions, a change in volumes is noticed. The free

gas (fg) phase expands to a volume of V sc
fg . The dissolved gas (dg) in Vo is liberated,

its volume at standard conditions is V sc
dg . Therefore, the gas phase total volume under

standard conditions is given by V sc
g = V sc

fg + V sc
dg . Meanwhile, the volume of the oil

and water phases under standard conditions are denoted by V sc
o and V sc

w , respectively.

Since there is no dissolved gas in the oil phase under standard conditions, it is called

“dead oil”.

The phase behavior of the hydrocarbon fluid mixture is computed from informa-

tion obtained at standard conditions through BO properties:

• Solution gas-oil ratio (Rs) - represents the volume of dissolved gas at standard

conditions divided by the respective volume of stock-tank oil at standard con-

ditions:
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Rs =
V sc
dg

V sc
o

. (2.1)

For a constant temperature, as pressure decreases, more gas is released from

the oil, which is crucial to understanding the fluid’s multiphase behavior.

• Oil formation volume factor (Bo) - represents the volume of oil with dissolved

gas at a specific pressure and temperature condition divided by its respective

volume of stock-tank oil at standard conditions:

Bo =
Vo

V sc
o

. (2.2)

Bo accounts for the expansion or contraction of oil due to pressure and temper-

ature changes (including the release or dissolution of gas).

• Gas compressibility factor (Z) - represents the deviation of real gas behavior

from ideal gas behavior under specific temperature and pressure conditions:

Z =
Pv

RT
. (2.3)

The oil density (ρo) is computed from Bo and Rs at any pressure and temperature

condition according to:

ρo =
ρsco + ρscg Rs

Bo

. (2.4)

The gas formation volume factor (Bg) is obtained from Z:

Bg =
Vg

V sc
fg

=
P sc T

P T sc
Z. (2.5)
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Finally, the gas density is computed from Bg at any pressure and temperature

condition:

ρg =
ρscg
Bg

. (2.6)

Typically, the oil and gas phase densities at standard conditions and the reservoir

gas-oil ratio provide the essential inputs to the BO equations that characterize hy-

drocarbon fluid mixtures across a wide range of pressures and temperatures. Some

BO models might include additional inputs, such as the CO2 mole fraction of surface

gas [41, 48]. Pressure and temperature at which fluid properties are computed are

also required as inputs.

The generalized Black Oil approach relaxes some modeling premises of the BO

approach. The interested reader is referred to its description in [16].

2.2 Compositional fluid modeling

The compositional approach provides a more detailed representation of the fluid’s

components and their interactions using equations of state (EoS) based on thermo-

dynamic theory. In particular, this approach relies on the principle that fugacities of

each component must be the same across all phases at equilibrium.

EoS models are widely employed in the oil and gas industry to predict the phase

behavior of hydrocarbon fluids. The main advantage of the compositional approach

lies in its rigorous theoretical foundation. As the EoS connects thermodynamic the-

ory to the mechanical state of systems of interest [67], this approach offers theoretical

robustness to the fluid modeling. Moreover, the compositional approach provides

flexibility in modeling a variety of reservoir fluids. It can handle natural gases, crude

oils, condensates, volatile oils, and even complex mixtures involving non-hydrocarbon

components, such as CO2, H2S, and N2. This is particularly important when com-

pared to the BO approach, in which models are limited to their (sometimes small)

validity range.
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The most pronounced disadvantage of the compositional approach is its compu-

tational cost. It requires solving a series of non-linear equations to obtain phase equi-

librium, which can be time-consuming particularly for mixtures with a large number

of components. Additionally, this approach requires knowledge of the fluid mixture

composition, a piece of information that may not always be readily accessible. De-

spite its theoretical basis, empirical equations may be necessary to describe partially

characterized components such as the Cplus fraction. In such cases, the compositional

approach is considered to be semi-empirical. Lastly, the EoS model often necessi-

tates fine-tuning to align with experimental data, a procedure referred to as EoS

regression. As revealed in Chapter 4, this regression process can yield disparate fluid

models, depending on subjective choices of an optimization algorithm and an initial

estimate.

An EoS can be defined as a relationship between pressure (P), temperature (T),

and volume (V) that describes the thermophysical state of a fluid system, such that

F(P, T, V ) = 0. Originally proposed for pure components, EoS models were later

extended to accommodate fluid mixtures through the use of mixing rules.

The van der Waals EoS (vdW) [126] was the first to predict accurately vapor-

liquid equilibrium by incorporating corrections in the ideal gas equation of state,

PV = nRT . These corrections aimed to account for the size of real gas molecules and

the presence of intermolecular forces. They depend on empirical constants determined

experimentally for each substance and require mixing rules for fluid mixtures.

Numerous authors have proposed modifications to the original vdW equation, with

those proposed by Soave, Redlich, and Kwong (SRK) [115] and Peng and Robinson

(PR) [96] being the most popular in the oil and gas industry. These modified EoS

models are part of a class known as cubic EoS, as they involve cubic equations in

terms of the compressibility factor Z = Pv/RT . Cubic EoS models can be represented

by the following general formula:

Z3 − (1 +B − uB)Z2 + (A+ wB2 − uB − uB2)Z − (AB + wB2 + wB3) = 0,

(2.7a)
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where

A =
aP

R2T 2
, (2.7b)

B =
bP

RT
, (2.7c)

a and b are the attraction and covolume parameters, respectively, u and w are con-

stants specific to each cubic EoS model, and R is the universal gas constant. For

fluid mixtures, the attraction and covolume parameters are expressed as am and bm,

respectively, and are calculated via mixing rules derived from the parameters ai and

bi of individual components (as exemplified in Eqs. 2.7g and 2.7h).

In particular, we implement the modified Peng-Robinson EoS [96, 105] in Chap-

ter 4 because of its widespread usage in modeling reservoir fluids and simplicity. For

this EoS, u = 2 and w = −1 in Eq. 2.7a. The attraction and covolume parameters of

the ith component (i = 1, . . . , Ncomp) are computed from the acentric factor ωi as

ai =Ωa

R2T 2
cr,i

Pcr,i

[
1 +mi

(
1− T

Tcr,i

)1/2
]2
, (2.7d)

bi =Ωb
RTcr,i

Pcr,i

, (2.7e)

mi =

0.37464 + 1.54226ωi − 0.26992ω2
i , ωi ≤ 0.49

0.379642 + 1.48503ωi − 0.164423ω2
i + 0.016666ω3

i , ωi > 0.49,
(2.7f)

with Ωa = 0.45724 and Ωb = 0.07780.

The attraction, am, and covolume, bm, parameters are computed for the fluid

mixture of Ncomp components with composition z = (z1, . . . , zNcomp)
⊤ according to

the mixing rules

am =

Ncomp∑
i=1

Ncomp∑
j=1

zizj(aiaj)
1/2(1− BIPij), (2.7g)

bm =

Ncomp∑
i=1

zibi, (2.7h)
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where BIPij is the binary interaction parameter (BIP) between the ith and jth com-

ponents.

For given P and T , the molar volume v predicted with Eq. (2.7) is shifted to vPen

according to [95, 62]

vPen = v −
Ncomp∑
i=1

zici, (2.8)

where ci is the volume shift parameter for the ith component. Finally, density can

be computed based on the components molecular weights.

Other equations of state follow a different approach, and are known as non-cubic.

These are out of the scope of this work. For a thorough overview, [66] discusses the

main equations of state currently in use.

2.2.1 Characterization of hydrocarbon reservoir fluids

The hydrocarbon reservoir fluid mixture represents a complex fluid system that chal-

lenges classical fluid mechanics in accurately modeling its behavior [51]. These nat-

urally occurring mixtures of hydrocarbons contain hundreds or thousands of com-

ponents that cannot all be identified [23]. The fluid mixture is characterized by

multiphase, multicomponent interactions between various hydrocarbon components

(light, medium, and heavy) and nonhydrocarbon components, which may exist in

supercritical states depending on pressure and temperature conditions. For exam-

ple, the critical point of pure CO2 is 1070 psi and 87.8oF, indicating that in certain

production or injection systems, CO2 may exist in a supercritical state within the

pressure-temperature (P,T) space of interest. Furthermore, the characterization of

the heaviest hydrocarbon fractions is often performed with limited information. Such

heaviest hydrocarbon fractions are typically grouped into a Cplus fraction.

In order to model effectively and analyze hydrocarbon reservoir fluids, it is es-

sential to address the challenges posed by their complex nature. One approach to

simplifying this complexity involves the application of splitting and lumping proce-

dures, that are described below.
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Pseudoization procedure

Accurate phase behavior simulations in equations of state (EoS) calculations for hy-

drocarbon mixtures often face challenges due to the numerous fractions required to

describe the mixture [5]. The computational cost and resources needed for composi-

tional reservoir simulation increase significantly with the number of components used

to represent the reservoir fluid [5]. Consequently, property estimation of the fluid is

typically based on a limited number of compounds, referred to as pseudocomponents.

This simplified representation may not necessarily correspond to the actual mixture.

Also, numerous authors argue that splitting the heaviest hydrocarbon fraction

is essential for improved characterization [27, 92, 132], as treating this fraction as a

single pseudocomponent may result in significant errors in EoS predictions of pressure-

volume-temperature (PVT) behavior [67]. Splitting consists of describing the molar

distribution and properties of a mixture of components, which were grouped together

into a single pseudocomponent. Various methods have been proposed for distributing

the molar content of the heaviest hydrocarbon fraction into a more detailed descrip-

tion.

Pedersen et al. [93] recommend extending the plus fraction up to C200 to make

sure all carbon number fractions present in significant amounts are accounted for.

However, due to the large number of components, the computational cost of EoS

computation becomes increasingly prohibitive. As a result, lumping procedures are

required. Lumping involves grouping components together into pseudocomponents.

Alternative lumping methods are available in the literature.

The determination of pseudocomponents and use of an appropriate model to de-

scribe a mixture by a certain number of pseudocomponents is an engineering art in

the prediction of properties of petroleum mixtures [103]. Riazi et al. [104] show that

different C7+ characterization methods and number of C7+ fractions can have signifi-

cant impact on the estimation of physical properties and phase behavior. Even after

the splitting and lumping procedures, EoS predictions may not align with experimen-

tal data. The discrepancy may stem from experimental data inputs or equation of

state parameters [76].
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Equation of State regression

In order to improve the accuracy of EoS predictions, tuning procedures are commonly

recommended. The EoS regression consists of fitting the EoS model to experimental

data, i.e., solving a nonlinear, non-convex, multivariate optimization problem. The

latter requires one to select design variables, domains of each variable, and weights

assigned to individual measurements. The design variables can be chosen from a broad

range of parameters, including those associated with splitting and lumping, critical

properties, binary interaction coefficients, acentric factors, among others. Several EoS

regression procedures have been proposed in the literature (e.g., [30, 133, 27, 4, 8]).

Tuning EoS models to the experimental PVT data can be more of an art than

a science, and it requires the use of appropriate software programs [36]. This is at

least partially a result of the EoS models being highly nonlinear and the number of

adjustable parameters in the regression being large. Chapter 4 describes the EoS

regression and demonstrates that despite being more robust and theoretically sound

than the BO approach, the compositional approach has some degree of empiricism.

2.2.2 Thermodynamic calculations

Vapor-liquid equilibria

For each ith component of the mixture with mole fraction zi, the Rachford-Rice

equation (Eq. 2.9) establishes a condition for vapor-liquid equilibrium:

∑
i

zi(1−Ki)

Ki + (1−Ki)l
= 0, (2.9)

where

Ki =
yi
xi

, (2.10)

yi and xi are the ith component’s mole fractions in the vapor and liquid phases, re-

spectively, and l is the liquid mole fraction of the mixture. The first K-value Ki in
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a vapor-liquid equilibria calculation is typically guessed using an empirical correla-

tion. Wilson’s equation [134] is typically used for this initial guess. Recently, neural

networks have also been used for calculating initial K-values [141].

Eq. 2.9 is solved iteratively for l. If the fluid is in the two-phase region, the

EoS provides the molar volumes of the vapor and liquid mixtures (if both phases

are present), vv and vl, at the specified pressure and temperature condition. Fi-

nally, fugacities of the ith component in the vapor and liquid phases, f̂ v
i and f̂ l

i , are

computed.

Employing the general form of the cubic equation of state in Eq. 2.7a, the fugacity

coefficient ϕ can be computed after solving the EoS according to Eq. 2.11 (recall that

u = 2 and w = −1 for the modified Peng-Robinson EoS [96, 105]).

lnϕi =βi(Z − 1)− ln(Z −B)

+
A

B
√
u2 − 4w

(βi − δi) ln
2Z +B(u+

√
u2 − 4w)

2Z +B(u−
√
u2 − 4w)

,
(2.11)

where A and B are defined in Eqs. 2.7b and 2.7c respectively, while

βi =
Tci/Pci∑
j xjTcj/Pcj

, (2.12)

δi =
2
√
ai

a

∑
j

xj
√
aj(1− BIPij). (2.13)

A noteworthy point is that the liquid composition is being utilized in Eqs. 2.12

and 2.13. However, when determining the vapor fugacity, the vapor composition, yi,

should be implemented in place of the liquid composition, xi.

Fugacities in both phases are obtained from fugacity coefficients according to

f̂ v
i =ϕv

i yiP (2.14a)

f̂ l
i =ϕl

ixiP (2.14b)

The system is in equilibrium when f̂ v
i = f̂ l

i for all components. If the system
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is not in equilibrium for the current liquid mole fraction value, new K-values are

estimated and the entire process is repeated. A more detailed explanation of the

vapor-equilibrium calculation can be found in [67].

Phase envelope

The phase envelope construction consists of a series of bubble point and dew point

calculations. They are particular cases of the general flash calculation procedure, since

the composition of either the liquid or vapor phase and the liquid molar fraction

are known. Therefore, simplifications can be done to the Rachford-Rice equation

(Eq. 2.9). At the bubble point (xi = zi and l = 1), it becomes

∑
i

Kizi − 1 = 0 (2.15)

At the dew point (yi = zi and l = 0),

∑
i

zi
Ki

− 1 = 0 (2.16)

Dew and bubble points are calculated by solving Eqs. 2.15 and 2.16, respectively,

at specified pressures or temperatures around the phase envelope. However, the

number of solutions for a given initial state is not known in advance; there may be a

single solution, multiple solutions or no solution. Particularly at high pressures, the

possibility of multiple solutions and convergence to the so-called “trivial” solution

make the saturation point calculation more complex. Such complexities have been

reported in the literature (e.g., [77, 80]). Thus, carefully chosen initial guesses are

required for convergence to the correct solution.

Several procedures for the phase envelope construction have been proposed (e.g.,

[80, 130, 142]). Ziervogel and Poling’s [142] procedure is used in this work. It consists

of calculating bubble and and point points by iterating on a single variable - pressure

or temperature, depending on the value of |d(lnP )/d(lnT )| at each point. The critical

point is located by the intersection of the bubble and dew point curves.



CHAPTER 2. REVIEW OF RESERVOIR FLUID MODELING 22

PVT properties

“PVT properties” is a term commonly used to describe the volumetric behavior of

reservoir fluids as functions of pressure and temperature [88]. PVT experiments on

reservoir fluids offer valuable insights into the volumetric changes that occur within

the reservoir, wells, pipelines, and processing plants. Experimental data is essential

for validating fluid models.

PVT properties can be calculated from an EoS by performing a series of vapor-

liquid equilibrium calculations. This dissertation focuses on PVT properties measured

in a differential liberation experiment, which is described in Section 2.3.

2.2.3 Code implementation validation

We validate our implementation of the aforementioned thermodynamic equations

against results in [67]. The fluid mixture original composition is given in Table 2.1

along with the molecular weight and the density for the C7+ fractions. The bench-

mark case consists of the characterization and phase envelope construction for an

intermediate gravity crude oil. We compare our results in terms of the splitted and

lumped composition properties and phase envelopes. The goal is to demonstrate that

our code is able to reproduce accurately the reference solution, and therefore can be

used for the upcoming analyses.

Properties of well-defined components (C1 through C6 and nonhydrocarbons) are

reported in Table 2.2. Properties of the heavy end fractions (C7 to C11+) are calculated

according to [87]. Binary interaction coefficients are zero, except if specified otherwise

in Table 2.3. The SRK equation of state is used.

The C11+ plus fraction is expanded up to C200 according to Pedersen et al.’s [93]

procedure. Figures 2.2 and 2.4 compare the molar fraction, specific gravity, critical

pressure and temperature distribution along the fractions carbon numbers against

the reference plots in Figures 2.3 and 2.5.
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Table 2.1: Molar composition of an intermediate gravity oil and C7+ fractions prop-
erties (from Table 7.7 in [67])

Component
Mole fraction

(%)
Molecular weight

(g/mol)
Density
(g/cm3)

CO2 0.45
N2 1.64
C1 45.85
C2 7.15
C3 6.74
i-C4 0.84
C4 3.11
i-C5 1.03
C5 1.65
C6 2.52
C7 3.77 92 0.7294
C8 4.28 106 0.7509
C9 2.70 120 0.7739
C10 1.69 137 0.7835
C11+ 16.58 288 0.8835

Table 2.2: Well-defined components properties (adapted from Table 5.2 in [67])

Component

Critical
pressure
(bar)

Critical
temperature

(K)

Acentric
factor
(-)

Molecular
weight
(g/mol)

CO2 73.8 304.1 0.239 44.01
N2 33.9 126.2 0.039 28.013
C1 46.0 190.40 0.011 16.043
C2 48.8 305.4 0.099 30.070
C3 42.5 369.8 0.153 44.094
i-C4 36.5 408.2 0.183 58.124
C4 38.0 425.2 0.199 58.124
i-C5 33.8 460.4 0.227 72.15
C5 33.7 469.7 0.251 72.151
C6 30.1 507.5 0.299 86.178
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Table 2.3: Non-zero binary interaction coefficients

N2 CO2

C1 0.02 0.12
C2 0.06 0.15
C3 0.08 0.15
Cn>3 0.08 0.15

Figure 2.2: Splitting results: mole fraction and density distribution; validated against
Figure 7.3 in [67], which is reproduced here in Figure 2.3.
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Figure 2.3: Reproduction of Figure 7.3 in [67].

Figure 2.4: Splitting results: critical pressure and critical temperature; validated
against Figure 7.4 in [67], which is reproduced here in Figure 2.5.
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Figure 2.5: Reproduction of Figure 7.4 in [67].

C7+ components are lumped into four pseudocomponents. Group properties are

computed through mass fraction weighting, as recommended by [87]. Table 2.4 reports

the final fluid characterization. The four pseudocomponents are referred to as PS1,

PS2, PS3, and PS4. Their molar fractions and properties match those in [67].

Phase envelopes and predictions for PVT properties measured in a differential

liberation are validated against commercial simulator PVTsim results in Section 4.3.1.

2.3 Oil PVT Experiments

Standard PVT experiments performed on reservoir oils usually include constant com-

position expansion, differential liberation, and multistage-separator tests [133].

In the constant composition expansion experiment, a specialized cell is filled with

a known mass of the fluid mixture sample. The experiment is carried out under a

constant temperature. First, the cell is pressurized to a pressure above the saturation

pressure, ensuring that the fluid is single phase. The cell’s volume is then increased,

resulting in a reduction in pressure. Pressure and cell volume measurements are
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Table 2.4: Final characterized fluid mixture (reproduces Table 7.12 in [67])

Component

Mole
fraction
(%)

Critical
pressure
(bar)

Critical
temperature

(K)

Acentric
factor
(-)

Molecular
weight
(g/mol)

CO2 1.64 73.8 304.1 0.239 44.01
N2 0.45 33.9 126.2 0.039 28.013
C1 45.85 46.0 190.40 0.011 16.043
C2 7.15 48.8 305.4 0.099 30.070
C3 6.74 42.5 369.8 0.153 44.094
i-C4 0.84 36.5 408.2 0.183 58.124
C4 3.11 38.0 425.2 0.199 58.124
i-C5 1.03 33.8 460.4 0.227 72.15
C5 1.65 33.7 469.7 0.251 72.151
C6 2.52 30.1 507.5 0.299 86.178
PS1 13.97 26.2 577.91 0.401 113.49
PS2 7.4 21.1 674.22 0.647 206.30
PS3 5.01 16.4 792.01 0.902 318.72
PS4 2.64 12.8 1026.8 0.999 554.00

recorded at each step of volume expansion and subsequently plotted (as in Figure 2.6).

The bubble point pressure (pb) and volume can be read from the intersection of the

near-linear and non-linear segments of the curve, respectively representing the single-

phase and two-phase regions.

The differential liberation, or differential depletion, begins by transferring reservoir

fluid to a cell maintained at a constant temperature, often the reservoir temperature,

and a pressure above the reservoir pressure. The pressure is reduced until the satura-

tion pressure is achieved. The sample is then equilibrated at the first selected pressure

below the saturation pressure. Subsequently, the free gas is removed from the cell at a

constant pressure, and its composition is measured, allowing for the calculation of the

remaining liquid phase composition in the cell. These steps are repeated for further

pressure reduction steps until the desired range of pressures has been explored.

Primary results from a differential liberation experiment performed on an oil mix-

ture are: solution gas-oil ratio (Rs), oil formation volume factor (Bo), gas formation
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Figure 2.6: Bubble point pressure determination through a constant composition
expansion experiment

volume factor (Bg), oil density (ρo), gas specific gravity (γg), and gas compressibility

factor (Z). Such properties are described in Section 2.1. Due to the changing fluid

composition in the PVT cell during a differential liberation, McCain’s correction [74]

is employed to relate the experimentally measured volumes with those expected for

the reservoir fluid composition. Results from differential liberation experiments are

used in Chapter 3 as the data set in which traditional BO models are evaluated and

in Chapter 4 to tune equations of state.

The separator test provides a basis for converting residual-oil information mea-

sured in a differential liberation to a stock-tank-oil basis [133]. In the course of this

test, the oil fluid sample is placed into a cell at specific pressure and temperature

conditions, typically simulating varying operational settings that might be encoun-

tered in real-world production scenarios. The fluid subsequently separates into gas

and liquid phases. The gas phase is extracted from the cell, and its volume is mea-

sured at standard conditions. The remaining liquid is then subjected to a decrease

in pressure and temperature in what is termed as the second separation stage. This

process liberates additional dissolved gas. The gas phase is once again removed from

the cell and its volume measured at standard conditions. This process is repeated

at each separation stage. The oil from the final separation stage at standard con-

ditions is referred to as stock-tank oil. The term ’stock-tank’ indicates that under

atmospheric conditions, the oil does not liberate additional gas. It is common that
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different separator conditions are reproduced in separator tests to identify the specific

condition that maximizes stock-tank oil production.



Chapter 3

Uncertainty in fluid model

selection

The content of this chapter is a compilation from the following publications:

Ĺıvia Paiva Fulchignoni, Alcino R Almeida, and Roberto da Fonseca Jr. A novel

model for the solution gas-oil ratio suitable for CO2-rich reservoir fluids. Results in

Engineering, 16(100681), 2022.

Ĺıvia Paiva Fulchignoni, Alcino R Almeida, and Roberto Fonseca Jr. Evaluation

of the solution gas-oil ratio correlation proposed by Lasater applied to oils with high

CO2 and high GOR. Brazilian Journal of Petroleum and Gas, 15(3), 2021.

This chapter investigates the impact of model selection uncertainty in the context

of BO reservoir fluid modeling, with a focus on reservoir fluids that have high CO2

fraction in their compositions. Such fluids have unique thermophysical properties that

require specialized BO models for accurate characterization. However, BO models

that have been extensively used to model the reservoir fluid behavior originally did

not cover this particular composition, and their extrapolation to this subset of fluids

has been little explored in the literature. We first evaluate the performance of nine

such traditional BO models for the solution gas-oil ratio (Rs) property of reservoir

fluids using an experimental database containing 1457 data points covering a wide

30
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range of CO2 molar content and gas-oil ratio (GOR) values. Results indicate that

existing models yield poor predictions for reservoir fluids with high CO2 content,

with high deviations from experimental data and inconsistencies being observed. A

real well+pipe production system is used to illustrate the impact of the Rs model

selection on results from multiphase pipe-flow models, and a difference of up to 20oC

on the temperature profile is observed. To address this limitation, a novel Rs model

with superior overall performance is proposed. The proposed model outperforms the

existing models on both training and test sets, even for reservoir fluids with low or

no CO2 content.

3.1 Introduction

Carbon capture utilization and sequestration (CCUS) is recognized as a key technol-

ogy area for putting global CO2 emissions on a sustainable path [58]. It consists on

the capture of CO2 from large point sources or the atmosphere for subsequent use

or storage. If CO2 storage is achieved through injection into geological formations,

reservoir engineering practices largely follows those well established in petroleum en-

gineering [22], which include models for fluid, flow, geochemical, and geomechanical

properties of production/injection systems. Given that captured CO2 is at present

predominantly used for enhanced oil recovery (EOR) [72], the thermophysical behav-

ior of CO2-rich reservoir fluids has received growing attention.

In particular, the prediction of a reservoir fluid’s thermophysical behavior at dif-

ferent pressure and temperature conditions is essential for the estimation of the flow

behavior in subsurface reservoirs, wells and pipes. The bubble point, for instance,

determines the onset of two-phase flow, a landmark in flow simulations that indicates

that single-phase liquid models are no longer valid, and more sophisticated models

that would include effects such as phase slippage are therefore required. Accurate

models for the fluid properties are thus of extreme importance for multiphase flow

modeling of production and injections systems related to subsurface reservoirs, and

affect areas such as the fluid lifting, transportation and pumping. Their impact per-

meates both design and operation phases, including production/injection predictions,
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monitoring and optimization, and field layout design.

Even though obtaining such fluid properties experimentally is possible, those anal-

yses are neither cheap nor quick, as they entail the collection and transport of fluid

samples from the field to a lab. To overcome those drawbacks, methods to estimate

the fluid properties at any pressure and temperature have been proposed. Among

them is the Black Oil (BO) approach, which attempts to model the properties of the

oil and gas multiphase system through empirical models. The BO models have as

independent variables reservoir fluid properties that are easy to obtain, mainly the

stock-tank oil gravity (γAPI) and the surface gas specific gravity (γg). Nonetheless,

some authors (e.g., [48, 129]) introduce additional variables for better characteriza-

tion of the fluid. For example, [129] consider the bubble point and the solution gas-oil

ratio at the bubble point of the reservoir fluid as input parameters to their models.

An alternative to the BO approach are the computational packages that output

such fluid properties for any pressure and temperature conditions, based on the reser-

voir fluid’s composition and a suitable thermodynamic equation-of-state. There are

quite a few of those commercial packages in the industry. Nonetheless, even the

computational approach comes with a degree of empiricism in the equation of state

regression [46]. Moreover, in some cases the BO approach is preferred due to its low

computational cost and ease of implementation.

Those BO models are meant to be applied only to fluids whose properties are

covered in the sample set used in the development of the given model. Attempts to

extrapolate a model outside its domain of application might result in unpredictable

– and often disastrous – deviations from the actual value of a property, thus compro-

mising numerical flow simulations entirely. However, sometimes extrapolation is the

only option – especially during the early stages of a new project when fluid properties

and reservoir depletion data are not available. This may be critical to the economics

(i.e., the rate of return and the projected revenues) of a development project due to

poor production forecasts.

For instance, reservoir fluids from Brazil’s offshore pre-salt region in general

present high gas-oil ratio (GOR) and high CO2 content in their composition. These

will further increase along production time due to the use of water alternating gas
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(WAG), an enhanced oil recovery (EOR) method. Regrettably, little is known about

the prediction of properties associated with high-CO2 reservoir fluids, and the litera-

ture on this matter is sketchy at best. Under these circumstances, an investigation of

the applicability of conventional BO models to fluids with this peculiar characteristic

becomes necessary. In particular, this paper focuses on the solution gas-oil ratio (Rs)

property, defined as the standard volume of gas dissolved in a unity standard volume

of oil at a given pressure and temperature.

We evaluate the performance of nine BO Rs models on oils with high gas-oil ratio

and high CO2 content. The models were selected based on their relevance and/or on

the fitting technique and diversity of the data points used for their development. They

are, in alphabetic order: Al-Marhoun’s [7], Al-Shammasi’s [9], Alakbari et al.’s [11],

Glasø’s [48], Lasater’s [68], Petrosky and Farshad’s [98], Standing’s [118], Vazquez

and Beggs’s [128], and Velarde et al.’s [129] models. A dataset (training) containing

1457 Rs experimental points is considered for the evaluation. Among them, 829

experimental points are from reservoir fluids with CO2 molar content ranging from

11% to 38% (15% to 45% in the surface gas) and GOR from 1117 scf/STB to 2487

scf/STB, produced 200 km offshore Brazil, in the Santos Basin’s pre-salt layer. After

high prediction errors are found for this subset, a more general Rs model is proposed.

This novel model is validated against a test (holdout) dataset containing 173 data

points, with CO2 molar content in the surface gas ranging from 0% to 44% and GOR

from 19 to 2409 scf/STB. The mean average percentage error is 6% in the training

set and 8% in the test set, whereas the root mean square error is 27 scf/STB and

71 scf/STB, respectively.

3.2 Literature Review

Standing [118] was the first to propose a specific model for the bubble point pressure

(pb) of oils as a function of stock-tank oil gravity, gas specific gravity, gas-oil ratio and

temperature. Standing did not make clear, however, whether his model is suitable for

pressures below the bubble point – although this kind of extrapolation is commonly

made. This model was developed with the aid of an experimental data base containing
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105 bubble points from oils produced in California, USA. His expression may be easily

rearranged so as to provide an equation for Rs instead of pb.

Several other BO models for Rs (or pb) have been proposed since then. Lasater

[68] developed a model for the bubble point by fitting 158 experimental data points in

an equation based on Henry’s Law. No analytical expression was supplied; the author

rather relied on two graphical representations: one for the effective molecular weight

of the tank oil as a function of its gravity and another relating the gas mole fraction

in the reservoir oil to a pressure factor of the bubble point. Later, Whitson and Brulé

[133] proposed an equation describing Lasater’s chart for the bubble point’s pressure

factor and recommended Cragoe’s [31] model for estimating the effective molecular

weight of the tank oil.

Vazquez and Beggs [128] also proposed a model for Rs. They used over 5000

experimental data points from fields around the world. By increasing the number of

data points used to tune the equation, the authors claimed that their model results

should be applicable to a wider range of oil properties.

Glasø [48] included the effect of paraffinic compounds and contaminants (namely

CO2, N2 and H2S) in oil. He observed that “the effect of nonhydrocarbons on satu-

ration pressure can range from minimal to extreme, depending on the type of nonhy-

drocarbon, the quantity with which it is found in the reservoir oil, temperature, and

stock-tank oil gravity”. This observation corroborates the motivation of the present

work, given the unusually high contents of a nonhydrocarbon (CO2) in the fluids

produced from the pre-salt layers in the Santos Basin. Glasø’s models are based on

regression of data of reservoir fluids from the North Sea.

Al-Marhoun [7] presented a model for the bubble point pressure based on fitting

160 experimental data points from 69 Middle East reservoirs. Petrosky and Farshad

[98] developed a model for the bubble point pressure by introducing three additional

fitting parameters to Standing’s [118] model. The equation coefficients were fitted

against data from the Gulf of Mexico’s crude oils.

Verlarde et al. [129] proposed a model for Rs based on 2097 experimental values

of 195 PVT analysis, after verifying that published models did not match the concave

up – point of inflection – concave down shape of the Rs curve as pressure declined
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below the bubble point for a reservoir oil with high initial gas-in-solution. They also

proposed a model for the bubble point pressure that is independent from the Rs one.

Al-Shammasi [9] published a model for the bubble point pressure based on 1243

data points (from published literature and from unpublished data from Kuwaiti reser-

voirs). The author also evaluated thirteen published models against the database and

proposed new coefficients for each model, based on the overall data set.

Regarding the effect of nonhydrocarbons on saturation pressure, Ostermann et al.

[84] experimentally compared predictions given by several models with the measured

bubble point pressure of crudes containing high N2 and CO2 concentrations, from the

Alaskan North Slope. The study emphasized that the presence of nonhydrocarbons

in oils has a significant effect on the prediction of bubble point pressures, so that

correction factors must be applied.

More recently, novel models for the bubble point pressure have been proposed us-

ing machine learning techniques (e.g., [102, 10, 1, 56, 47, 11]). In particular, Heidarian

et al. [56] developed a pb model exclusively for Middle East crudes using a genetic

algorithm and compared its results with predictions from 16 existing BO models.

Ghorbani et al. [47] compare the performance of four machine learning techniques for

predicting the bubble point pressure of oils from the Ahvaz field, in Iran. They also

compare the four models’ results with predictions from 15 existing models. Alakbari

et al. [11] proposed a bubble point pressure model using a polynomial neural network

trained on a worldwide dataset, whose predictions were compared against 21 models

available in the literature. They also performed a sensitivity analysis on such models

and verified that some ([83, 54, 49, 37]) predicted inconsistent behaviors and that

extrapolations can lead to unphysical estimates.

Despite the recent efforts for improving the reservoir fluid behavior prediction

through empirical equations, the newer models have not seen widespread implemen-

tation - they are not included in the most popular commercial steady-state multiphase

flow simulators. PIPESIM version 2017, for instance, implements the following cor-

relations for the solution gas-oil ratio: Lasater [68], Standing [118], Vazquez and

Beggs [128], de Ghetto et al. [34], Glasø [48], and Petrosky and Farshad [98].
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3.3 Methodology

3.3.1 Data description

Our experimental database consists of 1457 Rs points, corresponding to 171 PVT

analyses of reservoir fluids from 112 Brazilian wells. This dataset is proprietary to

Petrobras and is therefore subject to confidentiality constraints.

The Rs data points were obtained after applying McCain’s [74] correction to the

volumes measured in differential liberation experiments at each pressure reduction

step. The reservoir fluids with CO2 molar fraction above 8% are all from the Santos

Basin pre-salt region. Table 3.1 describes the samples in terms of the stock-tank API

gravity (γAPI), the surface gas specific gravity (γg), the stock-tank gas-oil ratio (GOR)

and the bubble point pressure (pb).

Table 3.1 also shows the data set division into six groups according to the molar

fraction of CO2 in the stock-tank gas (yCO2). Group I is composed of 433 Rs points

from reservoir fluids with up to 2% CO2 in the stock-tank gas. Groups II to VI

contain 1024 samples with CO2% in the stock-tank gas ranging from 2% to 45%. The

stock-tank gas H2S and N2 molar fractions were less than 1% throughout the data

set, except for one sample with 4% of N2.

Table 3.1: Summary of the data set used to evaluate solution gas-oil ratio models

Group
yCO2

(mol %)
Number of

PVT analysis
Number of
Rs points γAPI γg

GOR
(scf/STB)

I ≤ 2 62 433 [12.6, 49.4] [0.57, 1.03] [75, 1620]
II 2 to 5 25 195 [14.4, 38.7] [0.60, 0.96] [214, 1927]
III 5 to 15 19 182 [16.6, 28.3] [0.63, 0.92] [225, 1447]
IV 15 to 20 14 137 [24.1, 29.5] [0.91, 0.94] [1117, 1553]
V 20 to 30 41 391 [25.5, 30.3] [0.94, 1.04] [1070, 2109]
VI 43 to 45 10 119 [26.5, 27.9] [1.10, 1.15] [2255, 2487]

TOTAL 171 1457

3.3.2 Numerical implementation

The nine Rs models [7, 9, 11, 48, 68, 98, 118, 128, 129] implemented in in this Chapter

are reported in Appendix A.
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3.3.3 Error metrics

For the sake of completion, prediction errors of each Rs model were computed accord-

ing to five different metrics, described below. In Eqs. 3.1 to 3.5, yexp is the measured

value, ŷ is the predicted value, and N is the sample size.

• Mean Percentage Error (MPE) – indicates the trend of the relative error

MPE =
1

N

N∑
i=1

yexp − ŷi
yexp

(3.1)

• Standard deviation of the percentage error (σPE) – a measure of the dispersion

of the relative error

σPE =

√√√√ 1

N

N∑
i=1

(
yexp − ŷi
yexp

−MPE

)2

(3.2)

• Mean Absolute Percentage Error (MAPE) – indicates the relative error’s am-

plitude

MAPE =
1

N

N∑
i=1

∣∣∣∣yexp − ŷi
yexp

∣∣∣∣ (3.3)

• Standard deviation on the absolute percentage error (σAPE) – gives the disper-

sion on the absolute percent error.

σAPE =

√√√√ 1

N

N∑
i=1

(∣∣∣∣yexp − ŷi
yexp

∣∣∣∣−MAPE

)2

(3.4)

• Root Mean Square Error (RMSE) – gives the amplitude of the absolute error,

but is more sensitive to larger errors than the MAPE

RMSE =

√√√√ 1

N

N∑
i=1

(
yexp − ŷi

)2
(3.5)
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The RMSE was used as the comparison criterion between the evaluated models,

due to its interpretability. The interested reader may find use in the other metrics.

3.4 Results

Because the bubble point pressure is not typically available in the BO modeling, Ve-

larde et al.’s model [129] is considered with both the experimental and the calculated

pb. The first is denoted “Velarde et al. [129] - pb exp.” and the second “Velarde et

al. [129] - pb est.”, in which pb is estimated according to Eq. A.29.

Figure 3.1 presents a comparison between lab-measured and predicted Rs values

for a well from each group. For the sake of clarity, only the five models with the

lowest RMSE are shown. For the representative wells of Groups I to V (Figures 3.1a

to 3.1d), there are Rs models able to model the experimental behavior. On the other

hand, for the representative well of Group VI (Figure 3.1f), all models highly deviate

from the experimental data.

Group VI deserves further attention for its peculiar PVT behavior. The Rs curve

shown in Figure 3.1a differs from the other ones by its sharp decline as the pressure

reduces near the bubble point region. This change in shape of the Rs curve according

to the fluid’s GOR is also reported in [129]. It is worth mentioning that, for Group

VI, McCain’s procedure [74] is even more relevant to correct the dissolved gas vol-

umes measured by the differential liberation technique, due to the greater divergence

between the gas-oil ratio at the bubble point obtained by the flash and differential

liberations.

Table 3.2 summarizes the results obtained for all Group I wells and highlights the

best and worst RMSE in green and red, respectively. Velarde et al.’s model [129]

presented the best RMSE, outperforming all the others, whereas Alakbari et al. [11]

yielded the poorest performance. As one could expect, Velarde et al. [129] performs

better when the experimental bubble point pressure is used as input, instead of its

estimate. Nonetheless, Velarde et al. [129] with estimated pb presents the second best

RMSE for Group I. The same does not hold for oils with higher CO2 content.

Similarly, Table 3.3 reports the results for Group II wells. Again, Velarde et al.’s



CHAPTER 3. UNCERTAINTY IN FLUID MODEL SELECTION 39

0 500 1000 1500 2000 2500 3000 3500
Pressure, p (psig)

0

100

200

300

400

500

600

700

800

900

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Al-Shammasi
Lasater
Standing
Velarde et al. - p

b
 est.

Velarde et al. - p
b
 exp.

T = 212 oF

g
 = 0.8

API
 = 29.5

y
CO

2

 = 0.6%

(a)

0 500 1000 1500 2000 2500 3000 3500
Pressure, p (psig)

0

200

400

600

800

1000

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Al-Shammasi
Lasater
Standing
Velarde et al. - p

b
 est.

Velarde et al. - p
b
 exp.

T = 216 oF

g
 = 0.9

API
 = 38.7

y
CO

2

 = 2.6%

(b)

0 1000 2000 3000 4000 5000 6000
Pressure, p (psig)

0

200

400

600

800

1000

1200

1400

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Alakbari et al.
Glaso
Petrosky and Farshad
Vazquez and Beggs
Velarde et al. - p

b
 exp.

T = 136 oF

g
 = 0.8

API
 = 28.3

y
CO

2

 = 7.0%

(c)

0 1000 2000 3000 4000 5000 6000
Pressure, p (psig)

0

200

400

600

800

1000

1200

1400

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Alakbari et al.
Glaso
Petrosky and Farshad
Standing
Velarde et al. - p

b
 exp.

T = 147 oF

g
 = 0.9

API
 = 29.5

y
CO

2

 = 17.7%

(d)

0 1000 2000 3000 4000 5000 6000
Pressure, p (psig)

0

200

400

600

800

1000

1200

1400

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Alakbari et al.
Glaso
Petrosky and Farshad
Standing
Velarde et al. - p

b
 exp.

T = 195 oF

g
 = 1.0

API
 = 27.4

y
CO

2

 = 23.5%

(e)

0 1000 2000 3000 4000 5000 6000 7000
Pressure, p (psig)

0

400

800

1200

1600

2000

2400

So
lu

tio
n 

ga
s-

oi
l r

at
io

, R
s (

sc
f/

ST
B

) Experimental
Glaso
Petrosky and Farshad
Standing
Vazquez and Beggs
Velarde et al. - p

b
 exp.

T = 187 oF

g
 = 1.1

API
 = 27.1

y
CO

2

 = 43.8%

(f)

Figure 3.1: Experimental and predicted solution gas-oil ratio from a differential lib-
eration for reservoir fluids representative of (a) Group I, (b) Group II, (c) Group III,
(d) Group IV, (e) Group V, and (f) Group VI. Pressures are plotted below and at
the bubble point.



CHAPTER 3. UNCERTAINTY IN FLUID MODEL SELECTION 40

Table 3.2: Summary of the Rs prediction errors for Group I

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] 30.17 23.19 30.97 22.11 68.71
Al-Shammasi [9] 10.07 23.77 19.26 17.19 58.73
Alakbari et al. [11] 54.69 93.51 55.63 92.95 87.11
Glasø [48] 23.13 16.25 24.65 13.84 70.10
Lasater [68] 3.25 18.05 13.43 12.49 45.87
Petrosky and Farshad [98] 0.28 23.44 14.72 18.25 52.31
Standing [118] 9.02 19.45 15.69 14.61 50.12
Vazquez and Beggs [128] 24.11 16.29 24.96 14.94 85.65
Velarde et al. [129] - pb est. -8.68 14.43 13.02 10.68 36.80
Velarde et al. [129] - pb exp. -3.57 11.94 8.41 9.20 20.87

model [129] presented the best performance: the lowest RMSE is obtained when the

measured pb is used and the second lowest RMSE when pb is estimated according

to the authors’ proposed equation. For this group, Vazquez and Beggs’ [128] model

presented the highest RMSE. For Group III (Table 3.4), Velarde et al. [129] gives the

best RMSE when the experimental pb is used as an input, and the worst RMSE when

pb is estimated. The same is observed for Groups VI and V, as shown in Tables 3.5

and 3.6, respectively.

Table 3.3: Summary of the Rs prediction errors for Group II

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] 23.29 23.91 25.06 22.05 75.88
Al-Shammasi [9] 13.46 22.95 19.95 17.59 75.31
Alakbari et al. [11] 41.73 57.08 42.12 56.80 108.43
Glasø [48] 28.11 12.54 28.69 11.16 110.31
Lasater [68] 4.74 20.55 16.63 12.97 67.88
Petrosky and Farshad [98] 7.30 21.57 15.72 16.47 104.12
Standing [118] 12.29 20.37 18.11 15.42 87.65
Vazquez and Beggs [128] 27.26 15.56 27.26 15.56 143.36
Velarde et al. [129] - pb est. -13.03 15.00 15.94 11.86 58.88
Velarde et al. [129] - pb exp. -2.61 11.48 7.05 9.43 35.88
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Table 3.4: Summary of the Rs prediction errors for Group III

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] 4.10 28.60 22.47 18.16 120.59
Al-Shammasi [9] 1.73 24.00 17.87 16.11 79.52
Alakbari et al. [11] 21.33 44.61 25.37 42.44 57.39
Glasø [48] 17.37 17.41 20.27 13.93 72.42
Lasater [68] -7.75 23.51 18.60 16.34 111.46
Petrosky and Farshad [98] -0.82 21.10 11.76 17.53 44.74
Standing [118] -0.85 21.30 15.52 14.62 72.96
Vazquez and Beggs [128] 16.31 17.19 19.31 13.73 84.21
Velarde et al. [129] - pb est. -32.18 21.84 32.18 21.84 151.52
Velarde et al. [129] - pb exp. -0.59 7.08 4.41 5.57 18.53

Table 3.5: Summary of the Rs prediction errors for Group IV

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] -9.06 28.14 24.36 16.75 197.98
Al-Shammasi [9] 7.10 22.04 16.75 15.99 98.33
Alakbari et al. [11] 9.84 17.21 13.10 14.88 66.94
Glasø [48] 14.84 15.82 16.15 14.48 83.39
Lasater [68] -2.58 22.56 18.55 13.09 160.44
Petrosky and Farshad [98] 4.39 9.94 8.56 6.70 57.32
Standing [118] 3.40 18.90 14.29 12.83 93.97
Vazquez and Beggs [128] 20.99 12.62 20.99 12.62 118.64
Velarde et al. [129] - pb est. -40.35 25.96 40.35 25.96 235.29
Velarde et al. [129] - pb exp. -1.43 9.07 4.66 7.91 25.71
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Table 3.6: Summary of the Rs prediction errors for Group V

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] -17.34 30.37 28.68 20.01 251.91
Al-Shammasi [9] 4.04 21.86 16.54 14.86 107.65
Alakbari et al. [11] 6.07 17.04 11.83 13.68 76.33
Glasø [48] 10.65 15.75 14.06 12.79 76.35
Lasater [68] -7.46 24.14 19.79 15.71 201.11
Petrosky and Farshad [98] -0.37 8.55 6.86 5.12 66.63
Standing [118] 2.91 18.24 13.48 12.62 91.06
Vazquez and Beggs [128] 19.86 12.06 19.86 12.06 125.64
Velarde et al. [129] - pb est. -48.20 30.38 48.20 30.38 281.68
Velarde et al. [129] - pb exp. -1.41 6.99 4.25 5.73 28.00

Table 3.7: Summary of the Rs prediction errors for Group VI

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] -106.65 68.08 106.83 67.79 933.45
Al-Shammasi [9] -46.33 35.75 49.87 30.62 540.53
Alakbari et al. [11] -47.04 32.87 48.01 31.44 552.32
Glasø [48] -44.26 33.13 44.55 32.74 527.19
Lasater [68] 187.33 935.25 322.96 897.49 11490.53
Petrosky and Farshad [98] -55.15 24.74 55.15 24.74 525.23
Standing [118] -43.74 31.10 45.44 28.56 484.97
Vazquez and Beggs [128] -15.14 20.55 21.85 13.20 262.00
Velarde et al. [129] - pb est. -133.44 67.19 133.44 67.19 900.89
Velarde et al. [129] - pb exp. 14.37 51.55 40.13 35.41 274.89
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Finally, Table 3.7 shows the results for reservoir fluids in Group VI, whose CO2

molar content in the surface gas ranges from 43 to 45%. All models incur high

prediction errors. In fact, Lasater [68] and Velarde et al. [129] can predict negative

values for Rs, which is physically unrealistic. An example of Velarde et al. [129]

providing a negative Rs value is illustrated in Figure 3.1f. As can be expected, an

unsuitable Rs model in a flow simulation can yield disastrous results [43].

In particular, for Lasater’s correlation applied to oils in Group VI, the high errors

are justified when its validity range is analyzed [42]. In terms of the primitive pa-

rameters (P , T , Rs, γAPI and γg), most of the experimental data is inside the ranges

covered by Lasater. However, the domain of the parameter pf goes up to the ap-

proximate value of 6.4 psia/◦R in Lasater’s data set whereas pf values in our sample

reaches up to 14.4 psia/◦R. In fact, checking individual properties ranges in a corre-

lation does not guarantee that a particular combination was covered in the original

work.

For a graphical comparison between the experimental data and the Lasater’s cor-

relation, Figure 3.2 presents experimental data on the pf vs yg chart. For the exper-

imental pf the corresponding yg was calculated from Eq. (A.15) using Eq. (A.18) for

Mo. Figure 3.2 also shows Whitson and Brulé’s fitting of Lasater’s original pf chart

(Eq. A.17). The domain region of Lasater’s original chart is highlighted in orange.

It is clear that Lasater’s chart is being used outside its domain for the specific kind

of fluid considered within this work. Indeed, deviations become progressively larger

as we move outside the correlation’s domain. Lasater’s correlation was based on sys-

tems essentially free of non-hydrocarbon material. The author suggests an error of

5% in the predicted bubble point pressure when the gas has 9.1% of CO2 content1.

However, for the CO2 content of our sample the resulting errors are unacceptable.

1It is not specified whether this fraction is in molar or mass basis.
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Moreover, checking extrapolation of a correlation is important because the results

obtained in a simulator may be the result of internal safeguards instead of the cor-

relation itself. For instance, PIPESIM® limits the original range of pf covered by

Lasater. In order to avoid extrapolation, the imposition of a limit to the maximum

value of yg obtained from the fitting equations is a common practice in oil and gas

multiphase flow simulators. In general, this limit value for yg is 0.85, which corre-

sponds to the highest yg value given in a table presented by Lasater for “smoothed

points” read from the pf versus yg chart.

In addition to assessing the fidelity of an BO equation when applied to a real

fluid, it is important to verify the influence of the model selection on the estimation

of relevant variables in real systems. As an example, we consider a well+pipeline

production system from Brazil’s presalt region to evaluate the impact of the selected

Rs correlation on pressure, temperature and void fraction profiles is constituted by a

vertical well with 3.6 km depth and 5.8” ID tubing and a flexible pipeline (flowline

and riser) of 5.6 km long and 8” ID. The reservoir fluid is characterized by an oil API

gravity of 27.2o and a reservoir fluid gas-oil ratio of 440 Sm3/Sm3. The flashed gas

has a CO2 molar fraction of 44% and a specific gravity of 1.12. No water production

is present. The boundary conditions are the pressures at the inlet (reservoir), the

reservoir’s Productivity Index (PI), and the outlet (surface). Flow simulations were

performed on the commercial simulator PIPESIM version 2015. Simulated pressure,

temperature and void fraction profiles simulated with Standing’s [118] and Lasater’s

[68] Rs models are shown in Figure 3.3, 3.4 and 3.5, respectively. The blue and the

green curve distinguish from each other only for the model selected for the solution

gas-oil ratio (Rs). The void fraction inside the well differs significantly, with Lasater’s

model indicating single phase flow during approximately the first two-thirds of the

well. However, there is no significant difference in the pressure profile since at those

high pressures and fluid composition the gas and liquid densities are very similar

inside the well. In its turn, the calculated temperature can differ up to 20◦C near

the wellhead due to the expansion of the gas (Standing’s case) against the friction

heating in single phase flow (Lasater’s case).
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Figure 3.3: Pressure profile for a well+pipeline production system considering Stand-
ing’s [118] and Lasater’s [68] Rs models.
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Standing’s [118] and Lasater’s [68] Rs models.
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Figure 3.5: Gas volume fraction profile for a well+pipeline production system con-
sidering Standing’s [118] and Lasater’s [68] Rs models.

Figure 3.6 summarizes the previous results by showing the RMSE per model per

group. There is an overall trend of increasing RMSE with increasing CO2 content in

the surface gas. The RMSE is particularly high for fluids in Group VI. Clearly, the

Rs models implemented in this study are unable to represent the behavior of reservoir

fluids from Group VI, i.e. reservoir fluids with high CO2 content and high GOR. This

observation motivates the proposition of a new Rs model that embraces this subset

of reservoir fluids.

3.5 Proposed model for Rs

Plenty of models have been proposed in the literature for the solution gas-oil ra-

tio (Rs). Those models are based on specific reservoir fluid samples, with particu-

lar properties and from different production regions around the world. This study

demonstrated that CO2-rich reservoir fluids lie outside the domain of application of

such models. As shown in Section 3.4, extrapolating the limits of the aforementioned
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Figure 3.6: Root Mean Square Error (RMSE) of Rs predictions given by nine models,
grouped by the CO2 content in the surface gas of the reservoir fluid sample.

models results in unacceptable errors for this subset of reservoir fluids. Therefore,

a model that embraces Brazilian pre-salt oils with high CO2 content and high GOR

needs to be developed.

Since Velarde et al.’s model [129] presented consistently good performance through

Groups I to V given that pb is known, it is used as the basis of our new model,

being modified to account for the presence of CO2. In fact, McCain et al. [73] also

recommend this equation, after evaluating ten BO Rs models on 5359 data points

from 718 reservoir fluids. In addition, inspired by Glasø’s [48] and Jacobson’s [60]

corrections for the presence of contaminants on the pressure term, a correction factor

f (Eq. 3.7g) that adjusts pb in Eqs. (3.7d), (3.7e), and (3.7f) is introduced. This

correction factor is a function of the CO2 fraction in the surface gas and of the pressure

in which Rs is being computed. Furthermore, the gas specific gravity was substituted

by the hydrocarbon gas specific gravity, calculated from
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γgHC
=

γg − (yN2
MN2

+yCO2
MCO2

+yH2SMH2S)/Mair

1− yN2 − yCO2 − yH2S

(3.6)

where yN2 , yCO2 , and yH2S are the molar fractions of N2, CO2, and H2S in the surface

gas, respectively; and MN2 , MCO2 , MH2S, and Mair are the N2, CO2, H2S, and air

molecular weights at standard conditions, respectively.

The coefficients of Velarde et al.’s equation [129] were fitted to match our experi-

mental data according to the gradient descent method, using their original values as

the initial guess. The proposed model for the solution gas-oil ratio is given in Eqs.

(3.7a) to (3.7g).

Rsr = a1 pr
a2 + (1− a1) pr

a3 (3.7a)

pr =
p

pb
(3.7b)

Rsr =
Rs

GOR
(3.7c)

a1 = A0 γgHC

A1 γA2
API T

A3 (pb fpb)
A4 (3.7d)

a2 = B0 γgHC

B1 γB2
API T

B3 (pb fpb)
B4 (3.7e)

a3 = C0 γgHC

C1 γC2
API T

C3 (pb fpb)
C4 (3.7f)

fpb = 1 + D0 yD1
CO2

pD2 (3.7g)

where

A0 = 2.826 773× 10−6 B0 = 8.902 647× 10−5 C0 = 0.014815 D0 = 0.028061

A1 = 0.099827 B1 = 0.515955 C1 = -0.431815 D1 = 5.237181

A2 = 2.431229 B2 = -0.346606 C2 = -0.185931 D2 = 1.043339

A3 = -0.030813 B3 = 0.421825 C3 = 0.232081

A4 = 0.359656 B4 = 1.153339 C4 = 0.390657

and p is the pressure in psig, T is the temperature in oF, γAPI is the API gravity of the

stock-tank oil in standard conditions, γg is the surface gas specific gravity in standard



CHAPTER 3. UNCERTAINTY IN FLUID MODEL SELECTION 50

conditions, yCO2 is the molar fraction of CO2 in the surface gas, pb is the bubble point

pressure in psig, GOR is the stock-tank gas-oil ratio in scf/STB, and Rs the solution

gas-oil ratio in scf/STB. The values of pb must refer to the same temperature T in

which Rs is being computed. Section 3.5.1 provides a numerical calculation example

for the prediction of a Rs point for the reservoir fluid represented in Figure 3.1f.

A drawback of the proposed model is the need for the bubble point pressure at

the desired temperature as an input, which may not be available. In that case, if the

bubble point pressure is unknown, it should be estimated according to an empirical

model. For reservoir fluids with yCO2 > 15%, we recommend Glasø’s pb model [48],

which was also the model of choice of Ostermann et al. [84] for reservoir fluids with

high N2 and CO2 content. However, we disregard Glasø’s [48] corrections for the

presence of paraffin and CO2. Rather, a new correction factor fCO2 (Eq. 3.8c) is

proposed for the CO2 presence as a function of the CO2 molar content in the surface

gas and the reservoir fluid GOR. Moreover, we also consider the hydrocarbon gas

specific gravity, obtained according to Eq. (3.6), as an input to the pb model. Glasø’s

[48] model is reproduced in Eqs. (3.8a) to (3.8e) with the aforementioned modifications

for completeness, where Pb is the bubble point pressure in psia. The uppercase P

distinguishes the absolute pressure in psia from p, the relative pressure in psig.

Pb =fCO2 fN2 fH2S 101.7669+1.7447 logP ∗
b −0.30218(logP ∗

b )
2

(3.8a)

P ∗
b =

(
GOR

γgHC

)0.816
T 0.172

γ0.989
API

(3.8b)

fCO2 =1.0− 0.1297 y0.5320CO2
GOR−0.3332 T 0.6235 (3.8c)

fN2 =1.0 +
[
(−2.65× 10−4γAPI + 5.5× 10−3)T + 0.0931γAPI − 0.8295

]
yN2

+ (1.954× 10−11γ4.699
API T + 0.027γAPI − 2.366)y2N2

(3.8d)

fH2S =1.0− (0.9035 + 0.0015γAPI)yH2S + 0.019(45− γAPI)y
2
H2S

(3.8e)

Besides pb, the inputs to the proposed Rs model are: surface gas specific gravity,

stock-tank oil API gravity, reservoir fluid gas-oil ratio, and pressure and temperature
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in which the solution gas-oil ratio is desired. It is worth noting that GOR is not a

common input in Rs models available in the literature. Nonetheless, in contrast to

the difficulty of measuring pb, we understand that GOR information can be easily

obtained. In case a reservoir fluid sample is available, it can be directly measured

through a flash liberation experiment. Otherwise, it can be estimated from the gas

and oil production volumetric flowrates.

3.5.1 Numerical calculation example

This section provides a calculation example for the Rs prediction by the proposed

model, which can be used for validating the numerical implementation of equations

(3.6) and (3.7a)-(3.7g). The inputs specified below refer to the reservoir fluid repre-

sented in Figures 3.1f and 3.8f.

p = 5831.4 psig T = 186.8 oF pb = 6901.0 psig

γAPI = 27.06o γg = 1.1252 GOR = 2487.4 scf/STB

yCO2 = 0.4383 yN2 = 0.0024 yH2S = 0

Proposed model prediction:

γgHC
= 0.8165

fpb = 4.1693

a1 = 0.2874

a2 = 32.2458

a3 = 1.6273

Rs = 1350.7 scf/STB
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3.5.2 Error analysis

Figure 3.7 compares, for each CO2 content group, the RMSE of the proposed pb model

with those given by Al-Marhoun [7], Al-Shammasi [9], Alakbari et al. [11], Glasø

[48], Standing [118], Vazquez and Beggs [128], and Velarde et al. [129]. Glasø’s [48]

pb modified model (Eqs. 3.8a-3.8e) predictions have a significantly lower error than

predictions obtained by other popular pb models for reservoir fluids with yCO2 > 15%

(Groups IV, V, and VI) in particular. As expected, as the CO2 content in the surface

gas decreases, the proposed modified Glasø model converges to the original model

([48]). For reservoir fluids with yCO2 < 15%, both original and modified Glasø models

provide a competitive pb estimate, but other models offer a more suitable alternative

for calculating pb.
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Figure 3.7: Root Mean Square Error (RMSE) of Pb predictions given by eight models,
grouped by the CO2 content in the surface gas of the reservoir fluid sample.

A seventh group, denoted “test group”, is introduced here for its evaluation against

a new set of data. It contains 173 Rs points from 22 differential liberation experiments

and 18 novel reservoir fluid compositions. The fluids in this group have CO2 content

ranging from 0% to 38% (0% to 44% in the surface gas), while their GOR ranges
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from 19 scf/STB to 2409 scf/STB, the stock tank API gravity from 11.8o to 32.8o,

and the surface gas specific gravity from 0.57 to 1.12. Table 3.8 shows the prediction

errors for the test set obtained by the aforementioned nine Rs models and by the Rs

proposed in this paper (Eqs. 3.7a to 3.7g), distinguishing two scenarios: when pb is

known (“Proposed model - pb exp.”) and estimated (“Proposed model - pb est.”).

In addition, Table 3.9 presents the prediction errors of the proposed Rs model for

all the groups. As expected, the novel model provides smaller errors if the bubble

point pressure is known, compared to estimated pb. In this case, the model is able to

provide low prediction errors - the MAPE is below 10% for all the groups - and to

match the experimental curve with excellent agreement.

Overall, the proposed Rs model outperforms the traditional models available in the

literature. If pb is known, the proposed model provides a RMSE of 17.76 scf/STB for

Group I, while the best RMSE among the exiting models is 20.87 scf/STB (Velarde

et al. [129]). For Groups II to VI, its RMSE is 37.04 scf/STB, 14.08 scf/STB,

18.81 scf/STB, 28.69 scf/STB, and 46.04 scf/STB; while the best performing existing

model provides a RMSE of 35.88 scf/STB (Velarde et al. [129]), 18.53 scf/STB

(Velarde et al. [129]), 25.71 scf/STB (Velarde et al. [129]), 28.00 scf/STB (Velarde

et al. [129]), and 262.00 scf/STB (Vazquez and Beggs [128]), respectively.

On the other hand, when pb is unknown, the error propagates from the pb estima-

tion to the Rs estimation, increasing the mismatch between the experimental and the

predicted Rs values. Consequently, using a better model to estimate pb will increase

the accuracy of the estimated Rs. The proposed modification to Glasø’s pb model

([48]) is recommended for reservoir fluids with surface gas CO2 fraction above 15%.

However, for smaller CO2 contents, other models may be more suitable, as already

observed in Figure 3.7.

The Rs curves from the differential liberation experiments shown in Figure 3.1 are

reported again in Figure 3.8, along with the estimates obtained by Eqs. (3.7a) to

(3.7g). The proposed Rs model is able to reproduce the experimental curve for reser-

voir fluids from all groups. It is especially worth noting that the proposed Rs model is

able to reproduce the behavior of the experimental curve even in the pressure regions

just below pb, in contrast with the five models reported in Figure 3.1. Once more,
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Table 3.8: Summary of the Rs prediction errors for the test set

Rs model
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Al-Marhoun [7] -7.51 48.93 35.37 34.64 350.72
Al-Shammasi [9] -0.42 28.30 22.08 17.69 196.36
Alakbari et al. [11] 26.53 104.27 40.93 99.50 198.42
Glasø [48] 10.74 23.92 21.05 15.65 148.94
Lasater [68] 5.83 131.76 43.89 124.37 2080.40
Petrosky and Farshad [98] -4.18 21.34 14.57 16.15 146.88
Standing [118] -1.30 23.77 18.68 14.76 165.33
Vazquez and Beggs [128] 17.07 16.75 19.65 13.64 121.23
Velarde et al. [129] - pb est. -37.39 36.33 38.88 34.73 347.25
Velarde et al. [129] - pb exp. 1.78 26.69 12.01 23.90 92.39
Proposed Rs model - pb est. 0.97 12.31 9.06 8.40 81.62
Proposed Rs model - pb exp. -3.33 12.09 8.35 9.36 71.31

Table 3.9: Proposed Rs model prediction errors, by group.

Proposed Rs correlation
with known pb

Proposed Rs correlation
with estimated pb

MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)
MPE
(%)

σPE

(%)
MAPE
(%)

σAPE

(%)
RMSE

(scf/STB)

Group I -6.79 15.96 9.28 14.65 17.76 3.67 20.78 14.65 15.19 51.60
Group II -4.46 12.85 7.59 11.28 37.04 7.57 15.21 11.34 12.66 73.49
Group III 1.22 5.41 3.53 4.28 14.08 0.69 14.62 6.78 12.97 25.07
Group IV 1.03 4.78 2.71 4.07 18.81 1.31 5.24 3.62 4.02 25.29
Group V 0.31 4.74 2.91 3.75 28.69 -0.12 5.11 3.77 3.45 33.97
Group VI -0.59 5.51 4.38 3.39 46.04 70.56 10.43 7.37 7.40 158.64
Groups I to VI -2.26 11.00 5.55 9.76 27.01 2.29 14.41 8.58 11.80 63.39
Test group -3.33 12.09 8.35 9.36 71.31 0.97 12.31 9.06 8.40 81.62
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Figure 3.8: Experimental solution gas-oil ratio from a differential liberation and new
model predictions for reservoir fluids representative of (a) Group I, (b) Group II, (c)
Group III, (d) Group IV, (e) Group V, and (f) Group VI.
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the error propagation of the pb estimation into the Rs estimation can be observed.

Nonetheless, even for unknown pb the proposed model is able to provide satisfactory

estimates. Despite the prediction of the Rs behavior specifically for reservoir fluids

with high CO2 content and high GOR being the main motivation for the development

of the new model, it proved to be also suitable for reservoir fluids with little or no

CO2.

Given the crucial aspect of an accurate reservoir characterization in developing,

monitoring, and optimizing production and reservoir management [32] and the com-

plexity of the multiphase flow modeling and simulation in this context [50], the impor-

tance of using representative models for the fluid properties cannot be underestimated.

Past Rs BO equations should not be used to model CO2-rich reservoir fluids. Rather,

the use of the proposed Rs model is strongly recommended for this subset.

3.6 Conclusion

Many attempts have been made to propose a general model for the solution gas-oil

ratio over the past several decades, with varying degrees of success. However, none of

these models used high CO2 and high GOR reservoir fluids in their development nor

were they evaluated for this particular subset of fluids. This Chapter fills this gap

in the literature by analysing the performance of traditional Rs BO models on this

subset of reservoir fluids and by proposing a general Rs model, suitable for CO2-rich

reservoir fluids. Major conclusions are summarized below.

• We investigated the performance of nine popular BO Rs models by compar-

ing their predictions against 1457 experimental data points (training dataset),

among which 829 data points are from reservoir fluids with CO2 molar content

ranging from 11% to 38% (15% to 45% in the surface gas) and GOR from 1117

scf/STB to 2487 scf/STB. The Rs models considered are Al-Marhoun’s [7], Al-

Shammasi’s [9], Alakbari et al.’s [11], Glasø’s [48], Lasater’s [68], Petrosky and

Farshad’s [98], Standing’s [118], Vazquez and Beggs’s [128], and Velarde et al.’s

[129].
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• These existing Rs models yielded unacceptably high prediction errors for CO2-

rich reservoir fluids, with some even exhibiting physically inconsistent behaviors.

• We proposed a general Rs model, suitable for CO2-rich reservoir fluids. It

requires as input: pressure, temperature, bubble point pressure, surface gas

specific gravity, stock-tank oil API gravity, and reservoir fluid gas-oil ratio.

• The proposed Rs model is general and outperforms traditional models even for

reservoir fluids with low or no CO2 content. This performance was evaluated

on a test dataset containing 173 data points with CO2 molar content in the

surface gas ranging from 0% to 44% and GOR from 19 to 2409 scf/STB. Its

mean average percentage error was 6% in the training set and 8% in the test set,

and the root mean square error was 27 scf/STB and 71 scf/STB, respectively.

• We also proposed a model for the bubble point pressure specific for reservoir flu-

ids whose stock-tank gas has a CO2 molar content greater than 15%. Otherwise,

for yCO2 < 15%, other models may be more suitable for estimating pb.

• The bubble point pressure input to the proposed Rs model can be estimated

through such empirical pb models in case experimental values are not available.

However, if a measured pb is available, it should be used as input to avoid error

propagation in the Rs estimation.

• If the proposed pb model is used to estimate this input, the Rs model provides

a mean average percentage error of 9% in the training set and 9% in the test

set, and a root mean square error of 63 scf/STB and 82 scf/STB, respectively.

• Representative fluid models should be used in multiphase flow simulations, be-

cause an erroneous prediction of the fluid thermophysical behavior can have a

significant negative impact on simulation results and, consequently, on economic

and feasibility studies of the design system, flow assurance and equipment in-

tegrity analyses, and operation optimization decisions, among others. In this

sense, the use of the proposed Rs model is strongly recommended for CO2-rich

reservoir fluids.



Chapter 4

Uncertainty in compositional fluid

modeling

The content of this chapter follows closely the manuscript:

Ĺıvia Paiva Fulchignoni, Daniel M. Tartakovsky. Uncertain characterization of

reservoir fluids due to brittleness of equation of state regression. Geoenergy Science

and Engineering, 2023 (accepted).

This chapter demonstrates that equations of state (EoS) predictions are inherently

uncertain, even after tuning the model to a limited set of experimental data points.

We investigate these uncertainties by explicitly describing the EoS regression as a

nonlinear and non-convex multivariate optimization problem, considering five prop-

erties of the heaviest hydrocarbon fraction as design variables. We explore the impact

of different optimization algorithms and initial guesses on the regression process and

demonstrate that these subjective choices can significantly affect the predictive ca-

pabilities of the resulting models in unsampled pressure and temperature regions.

Although all the optimization algorithms and initial guesses considered match exper-

imental data for the gas and liquid properties, the resulting EoS parameterizations can

yield vastly different predictions of the fluid’s thermophysical behavior. To address

this issue, we propose a probabilistic treatment of the design variables to quantify

58
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the predictive uncertainty of the resulting fluid models.

4.1 Introduction

Estimation of phase equilibria and thermophysical properties of complex fluid mix-

tures is central to a plethora of applications such as design of fuel/biofuel blends [116],

planning carbon capture and storage operations [137], and quantitative forecasting

of multiphase flow in the oil and gas industry [111]. This task typically relies on an

equation of state (EoS) to predict a complex fluid’s pressure, volume and temperature

(PVT) behavior at the macroscopic level. Parameters of a postulated EoS model are

adjusted to match experimental data via a fitting/tuning procedure (regression), in

which pre-selected variables are allowed to vary within a certain interval.

In a typical application, financial and operational constraints result in available

experimental data that cover only a small subset of the PVT conditions of interest.

The use of a data-tuned EoS in the unsampled PVT regions introduces uncertainty

in predictions of fluid behavior. Partial knowledge of a complex fluid’s composition is

another source of predictive uncertainty of an EoS. For example, in petroleum fluid

mixtures, it is only possible to make a component analysis for the lighter fractions

of the reservoir fluid [91], while the heavier fractions are lumped together in the so-

called Cplus fraction. Thus, petroleum compositions are most often reported to the

C7+, C10+, or C20+ fractions and, in rare cases, to the C30+ fraction [90]. The data

reported in this way pose an additional challenge to the EoS parameterization.

Commercial thermodynamic simulators, such as WinProp, Multiflash or PVTsim,

offer modules for the EoS regression and for the Cplus fraction characterization (split-

ting and lumping procedures). For instance, WinProp allows the regression process

to adjust the fluid components’ critical pressure Pcr, critical volume Vcr, critical tem-

perature Tcr, acentric factor ω, molecular weight M , among other properties. It also

allows the binary interaction parameter (BIP) to be included as fitting variables.

While a standard approach is to include into the tuning process the most uncertain

variables, e.g., the parameters related to the characterization of the Cplus fraction, its

optimal implementation remains unsettled.
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Several EoS regression procedures have been proposed in the literature. Coats

and Smart [30] state that it is usually sufficient to perform the cubic EoS regression

on the Ωa and Ωb parameters associated to the methane and plus fraction components

and on the methane-plus fraction BIP. Whitson and Brulé [133] suggest fitting the

Ωa and Ωb parameters of the next-to-heaviest Cplus fraction instead of those of the

methane or, alternatively, fitting Pcr and Tcr. Christensen [27] proposes first to fit the

MC7+ used for splitting and the volume shift parameters of the expanded components

to then adjust the two most sensitive coefficients in empirical correlations for Pcr, Tcr

and ω of the C7+ expanded components. Zurita and McCain [4] recommend tuning

first M of the plus fraction and then Pcr, Tcr and ω of single carbon number (SCN)

groups up to C45+. Al-Meshari [8] modifies the latter method by adjusting ω of the

heaviest multiple carbon number group to match the saturation pressure, instead of

its critical properties. This ambiguity is a reason why the detailed process of the EoS

parameter tuning is more of an art than a science [35].

Previous attempts to bring some rigor into the EoS regression involve the assess-

ment of the ability of alternative tuned EoS models to reproduce experimental data.

For example, a comparison of the performance of the alternative EoS regression pro-

cedures [30, 133, 27, 4, 8] on 30 fluid samples (19 oil and 11 gas) suggest that the

approaches from [8] and [133] perform best for oil and gas fluids, respectively [13].

Such comparative studies ignore the impact of the selection of an optimization algo-

rithm and initial guess for the design variables.

Our study focuses on these aspects of the EoS regression. The importance of this

hitherto unexplored aspect of complex fluid modeling stems from the fact that the EoS

regression is a nonlinear,non-convex, multivariate optimization problem that poses

multiple local minima. Since different optimization algorithms employ alternative

approaches to explore the search space, the choice of an optimization algorithm and its

hyperparameters is known to affect the optimization trajectory and final destination.

An initial guess can also impact the optimization path. In Section 4.2, we describe four

representative optimization algorithms considered in this work: the adaptive moment

estimation method (ADAM) [64], the Davidon-Fletcher-Powell method (DFP) [33,

40], the covariance matrix adaptation evolution strategy method (CMA-ES) [55], and
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the direct search method [57] (DSM). Section 4.3 contains our assessment of the

relative performance of these conceptually distinct optimization algorithms on the

EoS tuning of two hydrocarbon reservoir fluids. Main conclusions drawn from this

study are summarized in Section 4.5.

4.2 Methodology

To be specific, we consider the modified Peng-Robinson EoS [96, 105], described in

Section 2.2, because of its widespread usage and simplicity. The properties of pure

hydrocarbon components, generalized single carbon number fractions, and light gases

are reported in Table 4.1.

For given P and T , the molar volume v predicted with Eq. (2.7) is shifted to vPen

according to [95, 62], as described in Eq. 2.8. Finally, densities are computed based

on the components molecular weights.

4.2.1 Problem formulation

The design variables used to fit the EoS (2.7) to data are Pcr,i, Tcr,i, ωi, ci, and

the molecular weight Mi for the ith pseudocomponent corresponding to the heavi-

est hydrocarbon fraction, the Cplus fraction. The resulting set of design variables is

{Pcr,Cplus
, Tcr,Cplus

, ωCplus
, cCplus

,MCplus
}. A design point x = (P ∗

cr,Cplus
, T ∗

cr,Cplus
, ω∗

Cplus
, c∗Cplus

,M∗
Cplus

)⊤

is a vector containing these design variables non-dimensionalized by their initial val-

ues, so that x = 1 at the first iteration.

Eq. (2.7) is solved for a series of pressure and temperature conditions, under some

of which the fluid mixture separates into a gas phase and a liquid phase. When

two phases are present, the molar volumes of the gas and liquid phases, vPen,g and

vPen,l, are computed by the EoS, besides of the liquid fraction l obtained through the

equality of the components fugacity in each phase, the fundamental criteria for phase

equilibria. From these set of solutions, fluid properties measured experimentally are

predicted. The optimization is carried by minimizing the relative error for Nmeas
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Table 4.1: Properties of the reservoir fluid components (CO2, N2, and hydrocarbons
up to C19 fraction) [89]

Component

Critical
pressure
(bar)

Critical
temperature

(K)
Acentric
factor

Molecular
weight

CO2 73.8 304.2 0.225 44.0
N2 33.9 126.2 0.040 28.0
C1 46.0 190.6 0.008 16.0
C2 48.8 305.4 0.098 30.1
C3 42.5 369.8 0.152 44.1
i-C4 36.5 408.1 0.176 58.1
C4 38.0 425.2 0.193 58.1
i-C5 33.8 460.4 0.227 72.2
C5 33.7 469.5 0.251 72.2
C6 29.7 507.4 0.296 86.2
C7 31.1 548.0 0.280 95.0
C8 28.8 575.0 0.312 106.0
C9 26.3 603.0 0.348 116.0
C10 24.2 626.0 0.385 133.0
C11 22.3 648.0 0.419 152.0
C12 20.8 668.0 0.454 164.0
C13 19.6 687.0 0.484 179.0
C14 18.6 706.0 0.516 193.0
C15 17.6 724.0 0.550 209.0
C16 16.6 740.0 0.582 218.0
C17 15.9 755.0 0.613 239.0
C18 15.3 767.0 0.638 250.0
C19 14.8 778.0 0.662 264.0
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measurements,

Ek(x) =
ek(x)− yk

yk
, k = 1, . . . , Nmeas, (4.1)

between ek(x), the fluid property predicted by the EoS with design variables x, and

yk, the kth experimental data point. Following [3], we consider the objective function

F (x) =
Nmeas∑
k=1

w2
kE2k (x), (4.2)

where wk is the weight assigned to the kth measurement; we assign equal weights to

all measurements, such that w1 = · · · = wNmeas = 1/Nmeas.

The upper and lower bounds for each design variable are defined as a percentage

of their initial guesses. A maximum variation of 20% is permitted for P ∗
cr,Cplus

, T ∗
cr,Cplus

,

ω∗
Cplus

, and M∗
Cplus

; and 50% for c∗Cplus
. Representing these limits by the vector ∆x,

we formulate the EoS regression as a constrained optimization problem

minimize
x

F (x), subject to 1−∆xi ≤ xi ≤ 1 + ∆xi for all i. (4.3)

The initial values for Pcr,Cplus
and Tcr,Cplus

are obtained through Twu’s correlation [125];

for ωCplus
through Lee-Kesler’s correlation [63]; for the volume shift parameter cCplus

for all components through Jhaveri-Youngren’s correlation [62]. The initial guess for

MCplus
is its measured value reported in the PVT analysis.

The stopping criteria for the optimization process is either the convergence of the

objective function F within a tolerance of 10−8 for the change in |F | between two

consecutive iterations or a maximum number of 100 iterations.

4.2.2 Alternative minimization strategies

We discuss the four alternative minimization algorithms used in our comparative

study in this section. They are selected because of both their popularity in the

field and their conceptual dissimilarity from each other. For a fair comparison, their

hyperparameters were optimized for this particular application.
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The adaptive moment estimation method [64] ADAM is a first-order method

that computes individual adaptive learning rates for each parameter from estimates

of the first and second moments of the gradients of the objective function. At each

iteration, the intermediate variables

mt+1 ← β1mt + (1− β1)∇F (xt), m̂t+1 ←
mt+1

(1− βt+1
1 )

, (4.4a)

vt+1 ← β2vt + (1− β2)∇F (xt)⊙∇F (xt), v̂t+1 ←
vt+1

(1− βt+1
2 )

(4.4b)

are computed in order to update the design point,

xt+1 ← xt − α m̂t+1 ⊘ (
√
v̂t+1 + ϵ). (4.4c)

The symbols ⊙ and ⊘ refer to the element-wise vector product and division, respec-

tively. Algorithm 1 presents a pseudocode for the ADAM optimization algorithm for

a deterministic objective function.

The Davidon-Fletcher-Powell method [33, 40] DFP is a second-order gradient

descent method. It rests on Newton’s method,

xt+1 ← xt − (Ht)
−1∇F (xt), (4.5)

where the inverse of the Hessian matrix H is approximated by a symmetric and

positive definite matrix Q. Because the second-order information is approximated,

it is called a quasi-Newton method. At each iteration t, the design point is updated

according to

xt+1 ← xt − αt Qt∇F (xt), (4.6)

where αt is a scalar step factor. Algorithm 2 presents a pseudocode for the DFP

optimization algorithm.
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Algorithm 1 Adaptive Moment Estimation Method (ADAM) optimization algo-
rithm [64]

1: Require: α > 0: hyperparameter for the step size
2: Require: ϵ > 0: small value (∼ 10−8) to prevent division by zero
3: Require: β1, β2 ∈ [0, 1): hyperparameters for the exponential decay rates for the

moment estimates
4: Require: F (x): Objective function with parameters x
5: Require: x0: Initial guess
6: m0 ← 0 (Initialize 1st moment vector)
7: v0 ← 0 (Initialize 2nd moment vector)
8: t← 0 (Initialize iteration counter)
9: while stopping criteria not reached do

10: t← t+ 1 (Increment iteration counter)
11: mt ← β1mt−1 + (1− β1)∇F (xt−1) (Update biased first moment estimate)
12: vt ← β2vt−1 + (1 − β2)∇F (xt−1) ⊙ ∇F (xt−1) (Update biased second raw

moment estimate)
13: m̂t ←mt/(1− (β1)

t) (Compute bias-corrected first moment estimate)
14: v̂t ← vt/(1− (β2)

t) (Compute bias-corrected second raw moment estimate)
15: xt ← xt−1 − α m̂t ⊘ (

√
v̂t + ϵ) (Update parameters)

16: end while
17: Return xt (Resulting parameters)
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Algorithm 2 Davidon-Fletcher-Powell (DFP) optimization algorithm [33, 40]

1: Require: F (x): Objective function with parameters x
2: Require: x0: Initial guess
3: Require: Q0: Initial inverse Hessian approximation
4: t← 0 (Initialize iteration counter)
5: while stopping criteria not reached do
6: gt ← ∇F (xt) (Compute gradient at current point)
7: dt ← −Qtgt (Compute search direction)
8: αt ← minimize

αt

F (xt + αtdt) (Compute the step size)

9: xt+1 ← xt + αtdt (Update parameter vector)
10: gt+1 ← ∇F (xt+1) (Compute gradient at new point)
11: δt ← xt+1 − xt (Compute change in parameter vector)
12: γt ← gt+1 − gt (Compute change in gradient)

13: Qt+1 ← Qt +
δtδ⊤t
δ⊤t γt
− Qtγtγ⊤

t Qt

γ⊤
t Qtγt

(Update inverse Hessian approximation)

14: t← t+ 1 (Increment iteration counter)
15: end while
16: Return xt

The covariance matrix adaptation evolution strategy method [55] CMA-ES

is a stochastic method inspired by natural evolution strategies. It relies on recombi-

nation, mutation and elite selection techniques. At each iteration step, the algorithm

improves the parameters of a multivariate Gaussian search distribution. The change

rates for the mean and the covariance of the search distribution and for the step

size are updated separately. The CMA-ES is recognized to be among the leading

algorithms for optimization of real-valued functions [39].

Algorithms 3 and 4 present a pseudocode for the CMA-ES optimization algorithm.

A Matlab implementation of the CMA-ES algorithm can be found in [55].

Direct search method The Hooke-Jeeves algorithm [57], herein labeled DSM, per-

forms a direct search over the search space based on evaluations at steps of magnitude

α in each coordinate direction. At each iteration, for x ∈ R5, F [x + (α, 0, 0, 0, 0)⊤],

F [x+(−α, 0, 0, 0, 0)⊤], . . . , F [x+(0, 0, 0, 0, α)⊤] and F [x+(0, 0, 0, 0,−α)⊤] are eval-
uated. The anchoring point x thus moves to the position in which the objective

function is smaller, if any improvement is found. If no improvements are verified, the
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Algorithm 3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) opti-
mization algorithm [55] (Part 1)

1: Require: F (x): Objective function with parameters x
2: Require: x0: Initial guess
3: Require: σ > 0: Hyperparameter for step size
4: Require: λ: Hyperparameter for sample size
5: Require: µ: Hyperparameter for elite sample size
6: n← length(x) (Problem dimension)

7: w′
i ← ln

λ+ 1

2
− ln i for i = 1, . . . , λ

8: µeff ←
(
∑µ

i=1w
′
i)
2∑µ

i=1w
′2
i

(Variance-effective size of µ)

9: cm ← 1

10: cσ ←
µeff + 2

n+ µeff + 5

11: dσ ← 1 + 2max

(
0,

√
µeff − 1

n+ 1
− 1

)
+ cσ

12: cΣ ←
4 + µeff/n

n+ 4 + 2µeff/n
13: αcov ← 2

14: c1 ←
αcov

(n+ 1.3)2 + µeff

15: cµ ← min

(
1− c1, αcov

1/4 + µeff + 1/µeff − 2

(n+ 2)2 + αcovµeff/2

)
16: α−

µ = 1 + c1/cµ

17: α−
µeff

= 1 +
2µ−

eff

µeff+2

18: α−
pos def = 1−c1−cµ

ncµ

19: wi =


1∑λ

i=j|w′
j|+

w′
i if w′

i ≥ 0

min(α−
µ ,α−

µeff
,α−

pos def )∑λ
j=1|w′

j|−
w′

i if w′
i < 0

, i = 1, . . . , λ

20: E←
√
n

(
1− 1

4n
+

1

21n2

)
21: pσ,pΣ,Σ← 0,0, I
22: t← 0 (Initialize iteration counter)
23: mt ← x0 (Initialize distribution mean)
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Algorithm 4 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) opti-
mization algorithm [55] (Part 2)

24: while stopping criteria not reached do
25: Sample xk ∼ N (m, σ2Σ), k = 1, . . . , λ
26: F← Evaluate(F, {xk}λk=1) (Evaluate objective function)
27: idx← SortIndices(F) (Sort indices by objective function values)
28: yk ← (xk −m)/σ, k = 1, . . . , λ
29: ⟨y⟩w ←

∑µ
i=1 wi yidxi

30: mt+1 ←m+ cmσ⟨y⟩w (Update distribution mean)

31: pσ ← (1− cσ)pσ +
√

cσ (2− cσ)µeffΣ
− 1

2 ⟨y⟩w
32: σ ← σ × exp

(
cσ
dσ

(
∥pσ∥
E
− 1
))

(Update step size)

33: hσ ←

{
1 if ∥pσ∥√

1−(1−cσ)
2(t+1)

<
(
1.4 + 2

n+1

)
E

0 otherwise

34: pΣ ← (1− cΣ)pΣ + hσ

√
cΣ (2− cΣ)µeff⟨y⟩w

35: w◦
i ← wi ×

(
1 if wi ≥ 0 else n/

∥∥∥Σ− 1
2yidxi

∥∥∥2), i = 1, . . . , λ

36: Σ ←

1 + c1(1− hσ)cΣ(2− cΣ)− c1 − cµ

λ∑
i=1

wi︸ ︷︷ ︸
usually equals to 0

Σ + c1pΣp
⊤
Σ +

cµ
∑λ

i=1w
◦
i yidxi

y⊤
idxi

37: t← t+ 1 (Increment iteration counter)
38: end while
39: Return xt
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step size decreases for a finer search.

Algorithm 5 presents a pseudocode for the Hooke-Jeeves optimization algorithm.

Algorithm 5 Hooke-Jeeves optimization algorithm

1: Require: F (x): Objective function with parameters x
2: Require: x0: Initial guess
3: Require: α > 0: Hyperparameter for initial step size
4: Require: γ > 0: Hyperparameter for step decay
5: Require: ϵ > 0: Convergence tolerance
6: t← 0 (Initialize iteration counter)
7: while α > ϵ and stopping criteria not reached do
8: improved← False
9: xB ← xt

10: yB ← F (xt)
11: for each dimension i do
12: for sgn in {−1, 1} do
13: xT ← xt + sgn α êi (Exploratory move)
14: yT ← F (xT )
15: if yT < yB then
16: xB ← xT (Update best solution)
17: yB ← yT
18: improved← True (Indicate improvement)
19: end if
20: end for
21: end for
22: xt+1 ← xB (Update current solution)
23: if not improved then
24: α← γ α (Reduce step size)
25: end if
26: t← t+ 1 (Increment iteration counter)
27: end while
28: Return xt
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4.2.3 Numerical implementation

We implement the Peng-Robinson EoS [96, 105] and the optimization algorithms in

the Python and Julia programming languages, respectively. The Julia optimization

routine calls the Python EoS routine at each evaluation of the objective function to

compute the EoS predictions. Although not shown here, we validated our implemen-

tation against the commercial simulator PVTsim.

4.2.4 Data description

We investigate two reservoir fluid compositions. The first is a slightly volatile oil

with a bubble point pressure of 181.67 bar at 104oC and solution gas-oil ratio of

134 Sm3/Sm3 from [133], denoted here as fluid A. The second composition, denoted

here as fluid B, refers to a hydrocarbon reservoir fluid from the northern Campos basin

offshore Brazil. It has a bubble point pressure of 186.7 bar at 76oC and solution gas-

oil ratio of 48 Sm3/Sm3 [97]. Their compositions are described in Table 4.2, along

with the density and molecular weight of the plus fractions.

The data used for the EoS tuning consist of measurements from a differential

liberation: residual oil API, solution gas-oil ratio Rs, oil formation volume factor Bo,

gas formation volume factor Bg, oil density ρo, gas specific gravity γg (air = 1), and

gas compressibility factor Z. A total of 69 and 83 experimental points were used in

the regression of fluids A and B, respectively.

Non-hydrocarbon-hydrocarbon BIPs are set to their tabulated values in [133].

Hydrocarbon-hydrocarbon BIPs are set to zero, except for fluid A between methane

and C7+, which is computed according to [15]. Volume shift parameters were defined

according to [133] for fluid A and computed according to [62] for fluid B.

We treat the Cplus fraction as a single pseudocomponent as done in [105, 109, 119].

While this approach has its detractors [4, 27, 8, 144], three main reasons justify our

choice. First, our goal is to assess how the choice of an optimization routine and

the initial guess affect EoS predictions of the PVT fluid behavior. Demonstrating

that different combinations of values for the Cplus parameters can similarly represent
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Table 4.2: Molar composition and plus fraction properties of reservoir fluids A [133]
and B [97]

Component
Mole fraction (%)

Fluid A Fluid B

CO2 0.91 0.02
N2 0.16 0.21
C1 36.47 41.50
C2 9.67 2.35
C3 6.95 0.78
i-C4 1.44 0.32
C4 3.93 0.40
i-C5 1.44 0.19
C5 1.41 0.19
C6 4.33 0.31
C7 33.29∗ 0.83
C8 – 2.14
C9 – 1.30
C10 – 1.32
C11 – 1.31
C12 – 1.44
C13 – 1.62
C14 – 1.50
C15 – 1.65
C16 – 1.41
C17 – 1.48
C18 – 1.32
C19 – 1.10
C20+ – 35.32†

∗ Plus fraction. Density = 0.8515 g/cm3

at 60oF. Molecular weight = 218.
† Plus fraction. Density = 0.9811 g/cm3

at 60oF. Molecular weight = 505.
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experimental data is a simple and intuitive way to meet this purpose. In particu-

lar, we use experimental data measured at the differential liberation. Second, the

plus-fraction splitting and lumping procedures are empirical and ultimately the Cplus

characterization problem has only two independent variables: the measurements of

the molecular weight and the density of the plus fraction. Since the lumping scheme

influences the performance of the EoS regression on volumetric data [4], we ignore

this source of uncertainty. Third, the single-component approach is still seen in the

oil and gas industry (e.g., [70]).

4.3 Results

4.3.1 Optimization algorithm

Figure 4.1 exhibits fluid A’s convergence history of the normalized design variables

(P ∗
cr,Cplus

, T ∗
cr,Cplus

, ω∗
Cplus

, c∗Cplus
,M∗

Cplus
) for alternative optimization methods: ADAM [64],

DFP [33, 40], CMA-ES [55], and DSM [57]. Figure 4.2 does the same for fluid B.

These algorithms not only have distinct optimization paths, but also yield different

solutions (final values of the design variables); the latter are collated in Table 4.3 for

both fluids. This performance is to be expected given the high degree of nonlinearity

of the optimization problem.

The non-convexity of the objective function is depicted in Figure 4.3, in which the

curve was generated using 200 objective function evaluations. It shows the objective

function evaluated at convex combinations between the CMA-ES and DSM solutions

for fluid B. A convex combination of two points refers to the point that lies along

the line segment connecting these two points. The weight θ controls the position of

the point on the segment, such that θ = 0 corresponds to the CMA-ES solution and

θ = 1 to the DSM solution; the values of θ between 0 and 1 map out the landscape of

the objective function between these two solutions. All in all, the results presented in

Figures 4.1 - 4.3 and Table 4.3 demonstrate that results of the EoS regression depend

on the choice of an optimization algorithm.
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Figure 4.1: Convergence history of fluid A’s normalized design variables (P ∗
cr,Cplus

,

T ∗
cr,Cplus

, ω∗
Cplus

, M∗
Cplus

, and c∗Cplus
) for alternative optimization algorithms: adaptive

moment estimation (ADAM) [64], Davidon-Fletcher-Powell method (DFP) [33, 40],
covariance matrix adaptation evolution strategy (CMA-ES) [55], and direct search
method (DSM) [57].
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Figure 4.2: Convergence history of fluid B’s normalized design variables (P ∗
cr,Cplus

,

T ∗
cr,Cplus

, ω∗
Cplus

, M∗
Cplus

, and c∗Cplus
) for alternative optimization algorithms: adaptive

moment estimation (ADAM) [64], Davidon-Fletcher-Powell method (DFP) [33, 40],
covariance matrix adaptation evolution strategy (CMA-ES) [55], and direct search
method (DSM) [57].
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Figure 4.3: Objective function (squared relative error) evaluated for fluid B at convex
combinations between the solutions obtained by the covariance matrix adaptation
evolution strategy (CMA-ES) [55] (θ = 0) and the direct search method (DSM) [57]
(θ = 1). The curve is generated using 200 objective function evaluations.
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Table 4.3: EoS regression results obtained with four alternative optimization algo-
rithms: adaptive moment estimation (ADAM) [64], Davidon-Fletcher-Powell method
(DFP) [33, 40], covariance matrix adaptation evolution strategy (CMA-ES) [55], and
direct search method (DSM) [57].

Property Initial value ADAM DFP CMA-ES DSM

Fluid A
Critical pressure, Pcr,Cplus

(bar) 17.39 17.64 17.60 17.73 17.60
Critical temperature, Tcr,Cplus

(K) 772.24 747.76 736.81 686.74 772.24
Acentric factor, ωCplus

0.7207 0.6778 0.7174 0.8609 0.5971
Molecular weight, MCplus

218 210 208 209 214
Volume shift, cCplus

(cm3/mol) 44.2 46.1 44.3 22.1 51.4

Fluid B
Critical pressure, Pcr,Cplus

(bar) 13.10 10.88 10.96 10.48 11.14
Critical temperature, Tcr,Cplus

(K) 986.40 1041.93 1113.39 1129.58 1002.72
Acentric factor, ωCplus

1.2744 1.0944 1.0195 1.0542 1.1256
Molecular weight, MCplus

505 503 501 503 499
Volume shift, cCplus

(cm3/mol) 133.5 121.0 162.7 200.2 90.0

Figure 4.4 shows the decay of the objective function F with the number of itera-

tions, Niter, for both fluids. It further elucidates the challenge posed by nonlinearity of

the optimization problem (Equations 2.7 - 2.8). While the four optimization methods

significantly reduce F from its initial value and yield essentially the same value of F

at convergence, they do so for a distinctly different sets of the optimized design vari-

ables (Table 4.3). Since the objective function F is the sum of the square percentage

errors, different sets of the optimized design variables match the experimental data

with virtually the same level of accuracy.

Indeed, Figures 4.5 - 4.6 and Table 4.4 compare the tuned EoS predictions against

experimental data. It can be observed that all of these optimization algorithms

significantly improve experimental data representation compared to the original (not

tuned) EoS model and yield similar predictions.

The objective function F is defined for pressure-temperature regimes in which

experimental data are available. There is no guarantee that the design variables that

minimize F are appropriate outside these regimes. We investigate the ability of the

EoS models, tuned with the four alternative optimization techniques on “training”
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Figure 4.4: Convergence history of the objective function F for (a) fluid A and (b)
fluid B, and four optimization algorithms: adaptive moment estimation (ADAM)
[64], Davidon-Fletcher-Powell method (DFP) [33, 40], covariance matrix adaptation
evolution strategy (CMA-ES) [55], and direct search method (DSM) [57].
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Figure 4.5: Fluid A EoS predictions and experimental data at 104oC for (a) solution
gas-oil ratio, (b) oil formation volume factor, (c) gas compressibility factor, (d) gas
formation volume factor, (e) oil specific gravity, and (f) gas specific gravity. The
EoS tuning is carried out with four alternative optimization algorithms: adaptive
moment estimation (ADAM) [64], Davidon-Fletcher-Powell method (DFP) [33, 40],
covariance matrix adaptation evolution strategy (CMA-ES) [55], and direct search
method (DSM) [57].
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Figure 4.6: Fluid B EoS predictions and experimental data at 76oC for (a) solution
gas-oil ratio, (b) oil formation volume factor, (c) gas compressibility factor, (d) gas
formation volume factor, (e) oil specific gravity, and (f) gas specific gravity. The
EoS tuning is carried out with four alternative optimization algorithms: adaptive
moment estimation (ADAM) [64], Davidon-Fletcher-Powell method (DFP) [33, 40],
covariance matrix adaptation evolution strategy (CMA-ES) [55], and direct search
method (DSM) [57].
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Table 4.4: EoS predictions and experimental data for the saturation pressure and
the API gravity of the residual oil from the differential liberation at 104oC and 76oC
for fluids A and B, respectively. The EoS tuning is carried out with four alterna-
tive optimization algorithms: adaptive moment estimation (ADAM) [64], Davidon-
Fletcher-Powell method (DFP) [33, 40], covariance matrix adaptation evolution strat-
egy (CMA-ES) [55], and direct search method (DSM) [57].

Property Measurement Original ADAM DFP CMA-ES DSM

Fluid A
Saturation pressure (bar) 181.7 210.1 194.3 195.3 193.4 189.8
Residual oil API 35.1 39.4 36.7 36.6 36.6 36.5

Fluid B
Saturation pressure (bar) 186.7 232.3 173.9 176.0 174.4 175.4
Residual oil API 17.5 17.9 17.9 17.6 17.7 17.6

data, to extrapolate from such regimes, i.e., to represent the unseen data.

Figure 4.7 depicts fluids A and B’s phase envelopes from the EoS models tuned

with the four alternative optimization algorithms. Even though the phase equilib-

ria behavior and the critical points of the regressed fluids are distinct, the lack of

additional experimental data precludes any conclusion about the superiority of one

model over the others. The significant discrepancy between the predicted envelopes

may have severe consequences both during the design and operation of an oil and

gas production system, since the tuned fluid EoS feeds into flow simulations for the

reservoir and for the wellbore and pipeline.

Results validation

To validate the accuracy of the results obtained with our equation of state imple-

mentation, a comparison was made against results obtained with the commercial

simulator PVTsim. Specifically, the results shown in Figures 4.5, 4.6, and 4.7 were re-

produced in PVTsim. The comparison is shown in Figures 4.8-4.14. The comparison

of the results obtained from both approaches illustrates that our EoS implementation

is consistent with PVTsim, thus validating the accuracy of the results presented here.
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Figure 4.7: Phase envelopes (vapor liquid equilibrium) for the EoS models before
and after regression of (a) fluid A and (b) fluid B. The EoS tuning is carried out
with four alternative optimization algorithms: adaptive moment estimation (ADAM)
[64], Davidon-Fletcher-Powell method (DFP) [33, 40], covariance matrix adaptation
evolution strategy (CMA-ES) [55], and direct search method (DSM) [57]. The markers
indicate the critical point.
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Figure 4.8: Comparison between our EoS implementation and PVTsim predictions for
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Figure 4.9: Comparison between our EoS implementation and PVTsim predictions for
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Figure 4.10: Comparison between our EoS implementation and PVTsim predictions
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Figure 4.11: Comparison between our EoS implementation and PVTsim predictions
for gas formation volume factor of (a) Fluid A and (b) Fluid B.
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Figure 4.12: Comparison between our EoS implementation and PVTsim predictions
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Figure 4.13: Comparison between our EoS implementation and PVTsim predictions
for gas specific gravity of (a) Fluid A and (b) Fluid B.
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Figure 4.14: Comparison between our EoS implementation and PVTsim predictions
for phase envelopes of (a) Fluid A and (b) Fluid B.
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4.3.2 Initial guess

To ameliorate the EoS regression dependency on the optimization algorithm, we inves-

tigate a two-stage EoS-tuning procedure. The optimal values of the decision variables

obtained with ADAM, CMA-ES, or DSM serve as the initial guess for the subsequent

DFP minimization. The DFP is selected as the second stage optimization for being a

second-order minimization strategy. We note that the commercial simulator WinProp

v.2017 also employs a second-order algorithm, namely Agarwal et al.’s procedure [3].

The phase envelopes for thus refined EoS are plotted in Figure 4.15 for fluids A and

B, demonstrating the sensitivity of DFP minimization to an initial guess. The phase

envelopes optimized using the initial guesses from ADAM, CMA-ES, and DSM differ

significantly. Table 4.5 reports the corresponding optima design variables. Different

optimized values are reached by the same optimization algorithm with different initial

guesses. This proves that the EoS regression may also depend on the design variables

initialization besides of the optimization algorithm.

Table 4.5: EoS-regression results obtained via the two-step regression in which the
optimal values of the decision variables obtained with ADAM [64], CMA-ES [55], or
DSM [57] serve as the initial guess for the subsequent DFP minimization [33, 40].

Property Initial guess from
ADAM CMA-ES DSM

Fluid A
Critical pressure, Pcr,Cplus

(bar) 17.64 17.73 17.66
Critical temperature, Tcr,Cplus

(K) 746.46 686.75 771.37
Acentric factor, ωCplus

0.6783 0.8609 0.5966
Molecular weight, MCplus

210 209 213
Volume shift, cCplus

(cm3/mol) 45.3 22.1 51.4

Fluid B
Critical pressure, Pcr,Cplus

(bar) 10.90 10.49 11.04
Critical temperature, Tcr,Cplus

(K) 1042.20 1131.17 1003.53
Acentric factor, ωCplus

1.0933 1.0516 1.1228
Molecular weight, MCplus

504 504 504
Volume shift, cCplus

(cm3/mol) 121.1 200.6 90.1
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Figure 4.15: Phase envelopes (vapor liquid equilibrium) obtained for (a) fluid A and
(b) fluid B via the two-step EoS regression in which the optimal values of the decision
variables obtained with ADAM [64], CMA-ES [55], or DSM [57] serve as the initial
guess for the subsequent GD2O minimization [3]. The markers indicate the critical
point.
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4.4 Discussion

The EoS models obtained using four different optimization algorithms yield signif-

icantly different predictions of phase envelopes, and there is no clear evidence that

any single optimization algorithm outperforms the others during the EoS regression

with generic data. The EoS predictions impact multiphase flow simulations, giving

rise to predictive uncertainty in simulations of, e.g., oil and gas flow in the reservoir,

wellbore, and pipelines. Since an erroneous EoS might adversely impact economic fea-

sibility studies, cause severe flow assurance problems, and affect equipment integrity,

reliance on a single optimization algorithm and a single initial guess during the EoS

regression should be avoided. Yet, it is the strategy implemented in some commercial

thermodynamic simulators.

Given the variability in the optimization results for a given selection of the design

variables, comparative studies of different sets of the design variables and optimization

procedures might have to be revisited. This is especially so since many of them, e.g.,

those discussed in the Introduction, do not even mention the optimization algorithm

used.

Since both the initial guess and the optimization algorithm significantly impact

the EoS-regression results, predictions of the regressed EoS models are fundamentally

uncertain. This predictive uncertainty should be quantified, e.g., by treating the

design variables probabilistically.

Probability distributions of the fraction properties, e.g., Cplus, can be character-

ized from a sample of regressed values considering different optimization algorithms

and initial values. We demonstrate this approach for the design variables (P ∗
cr,Cplus

,

T ∗
cr,Cplus

, ω∗
Cplus

, M∗
Cplus

, and c∗Cplus
) of Fluid B, for which the optimized values are al-

ternatively obtained by the four optimization algorithms (Section 4.2.2) and by the

two-stage EoS-tuning procedure (Section 4.3.2) in which the optimized values from

one algorithm are used as initial guesses for the other algorithms. From these samples

containing 16 points each, we fit probability distributions to the Cplus properties in

Figure 4.16.

The Cplus fraction parameters are potentially correlated, implying that a joint
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Figure 4.16: Fitted probability density function (PDF) for the Cplus fraction proper-
ties: (a) critical pressure, (b) critical temperature, (c) acentric factor, (d) molecular
weight, and (e) volume shift parameter.
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distribution would represent their uncertainty more accurately. However, undertak-

ing such an analysis would require a more comprehensive examination and possibly

additional data points, which we plan to investigate in future research.

One way to quantify the subsequent uncertainty associated with the EoS regres-

sion is through the use of Monte Carlo simulations. In these simulations, a large

number of random realizations of the design variables are generated and used as in-

puts to the regression model. The resulting outputs can then be used to estimate the

distribution of the predicted fluid properties, as well as their associated confidence

intervals. This type of analysis provides a more comprehensive understanding of the

uncertainty associated with the EoS regression results and can be used to guide future

research efforts aimed at reducing the uncertainty of the EoS predictions in the con-

text of partially characterized hydrocarbon mixtures. Uncertainty in the fluid-model

characterization propagates through a modeling workflow, affecting the prediction

uncertainty of the pipe [12, 45] and porous media flow [138, 139] models. Quantifying

the EoS prediction uncertainty and its impact on the overall flow predictions is also

an area of future work.

4.5 Conclusions

EoS regression on experimental data is a vital component of complex fluids model-

ing. While previous studies have focused mainly on the influence of EoS regression

procedures and regression variables, we investigated the robustness of this nonlin-

ear regression to the choices of an optimization algorithm and an initial guess used

for its initialization. The four alternative optimization techniques considered are

the adaptive moment estimation (ADAM) [64], the Davidon-Fletcher-Powell method

(DFP) [33, 40], the covariance matrix adaptation evolution strategy (CMA-ES) [55],

and the direct search method (DSM) [57]. These were deployed to fit the Peng-

Robinson EoS [105] to experimental data for two hydrocarbon reservoir fluids. Our

study leads to the following major conclusions.

• While the four optimization algorithms yield comparable errors in the tuned EoS

representation of the experimental data, they lead to different EoS predictions of
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the thermophysical behavior in the unsampled PVT region. This demonstrates

that the choice of an optimization algorithm plays a key role in the EoS tuning.

• EoS regression is sensitive to the choice of an initial guess used to initiate the

optimization procedure. This conclusion holds even for initial guesses obtained

as solutions of the minimization problem obtained with different optimization

algorithms.

• Our findings suggest the necessity of reporting Cplus fraction parameters as dis-

tributions rather than unique (expected) values. These distributions should be

obtained from the optimized design variables considering different optimization

algorithms and initial guesses.

Future studies could explore variations to the EoS regression process. Incorporat-

ing the Cplus fraction expansion and lumping procedures would introduce more design

variables to the optimization problem. Including additional experimental data and

assigning different weights to the experimental data would change the objective func-

tion and, therefore, the optimization process. Future studies could also investigate

whether specific fluid compositions are more susceptible to disparate local minima

during the EoS regression. A key aspect of future research is to conduct a compre-

hensive analysis of the tuned EoS prediction uncertainty and assessing its influence

on the uncertainty in flow simulation results.



Chapter 5

Uncertainty in empirical fluid

modeling

The content of this section follows closely the publication:

Ĺıvia Paiva Fulchignoni, Christiano Garcia da Silva Santim, and Daniel M. Tar-

takovsky. Probabilistic forecasting of cumulative production of reservoir fluid with

uncertain properties. Geoenergy Science and Engineering, 227:211819, 2023.

This chapter discusses the predictive uncertainty of simulated production flow

rates arising from uncertainties in fluid characterization. We introduce a compre-

hensive framework for quantifying the predictive uncertainty of multiphase pipe-flow

models, accounting for correlated random inputs. Through a case study, we assess

the uncertainty of cumulative production for an oil reservoir with uncertain fluid

properties during the exploration phase. Furthermore, we conduct a Global Sensitiv-

ity Analysis using Sobol’s indices to pinpoint the model inputs that contribute most

significantly to the predictive uncertainty.

95
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5.1 Introduction

Energy companies make investment decisions based on technical and economic vi-

ability studies of exploration fields. The financial evaluation of revenues is mainly

dictated by the estimated production, i.e., the oil and gas (O&G) flow rates that a

reservoir can provide through its lifetime. This process is informed by simulations of

multiphase flow in the reservoir, wellbore and pipelines. For this reason, such simu-

lators are an essential tool during the design phase of a production system. Because

many model parameters must be specified to run a multiphase-flow simulator, and

because the values of these parameters are inherently uncertain, it is wise to evaluate

production flow rates under a probabilistic approach and to quantify the uncertainty

associated with their predicted values. This strategy renders the projected revenue a

random variable, whose value one can calculate for the required degree of certainty,

thus enabling one to make investment decisions based on risk and return.

Uncertainty quantification (UQ) gained popularity in the O&G industry in the

1960s [120] and has been evolving ever since, although at different rates among dif-

ferent disciplines (drilling, reservoir, production, operation, etc.) [20]. For reservoir

simulations, UQ is an established practice [75, 139]. In fact, it is standard in the in-

dustry to report O&G reserve estimations under three categories (proved, probable,

and possible), according to their likelihood (probability). Uncertainty in predictions

of the accumulation volume is ideally tracked over time from exploration through

discovery, development, and production [107]. In contrast, UQ for multiphase-flow

models used in flow assurance has not yet been thoroughly investigated [65].

Section 5.1.1 discusses the sources of uncertainty in these flow models and es-

tablishes uncertain parameters (reservoir fluid properties) that are considered in this

work. Section 5.1.2 introduces the Monte Carlo simulation (MCS) technique, reviews

the literature for applications in multiphase pipe-flow models, and specifies this pa-

per’s goals and contributions to the topic. Section 5.2 presents the UQ methodology

applied to model predictions of cumulative production, including a thorough descrip-

tion of the production system used as a case study. Section 5.3 discusses the results

obtained in this study. Section 5.4 summarizes major conclusions.
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5.1.1 Sources of uncertainty in flow simulations

Uncertainty in predictions of multiphase-flow models, which represent production

from a subsurface reservoir to the land-surface facilities, arises from multiple sources.

Structural or model uncertainty is due to inevitable approximations of “reality” intro-

duced by a model. Various models (e.g., the drift-flux [143, 131, 59] and two-fluid [19]

models), which encode the laws of conservation of mass, momentum and energy, rep-

resent the complex physics with different degrees of fidelity. These equations require

empirical constitutive relations of varying validity and generality. Such relations are

usually parameterized via small-scale experiments, whereas the flow models are used

on a much larger scale. These experiments are commonly carried out on small acrylic

pipes, with working fluids other than O&G.

Compositional and “black-oil” fluid models are a representative example of consti-

tutive relations. They are used to predict the thermophysical behavior of a reservoir

fluid by relating the properties of oil, gas, and water phases to pressure and tem-

perature. Compositional fluid models are grounded in thermodynamics, but have a

number of fitting parameters whose tuning is subjective and may yield different fluid

characterizations.1 In contrast, Black Oil fluid models are empirical but require only

a few inputs (i.e., density of each phase at standard conditions, watercut, and reser-

voir gas-oil ratio) to characterize the fluid mixture across a wide range of pressures

and temperatures. (Some black-oil formulations might include additional inputs, e.g.,

the CO2 mole fraction of surface gas [41, 48].) The largely subjective choice of the

constitutive fluid model yields predictions of the solution gas-oil ratio, oil formation

volume factors, gas compressibility factor, oil and gas viscosities, and other derived

quantities at each pressure and temperature pair in the flow simulation. This choice

can significantly impact the predictions of a flow simulator; for example, different

choices of the solution gas-oil ratio and gas-liquid drift models significantly influence

the calculated liquid holdup profile along the production line and temperature near

the outlet [111].

Other contributions to the structural uncertainty include the frequent use of a

1For example, the choice of characterization of the heaviest hydrocarbon fraction, and splitting
and lumping procedures, drastically affect the final fluid model.
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well/reservoir coupling model as boundary condition [52]. In these cases, the reservoir

behavior is described through an inflow performance relationship (IPR) curve that

relates the reservoir and well bottom hole pressures to production flow rates. Several

coupling models have been proposed [6], each of which require different uncertain

inputs to characterize the reservoir behavior.

Once the governing equations and accompanying constitutive relations have been

selected, they have to be parameterized, i.e., the values of the model parameters

have to be specified, usually by fitting the model predictions to experimental data.

Figure 5.1 collates the parameters (inputs) required by a steady-state black-oil flow

model, which we use in our numerical experiments because of its simplicity and low

computational cost. Data from the well perforation (drill-bit diameter, deviation

profile, casing diameter and thickness, etc.), completion (tubing diameter, thickness,

and roughness, gas lift, electric submersible pumps, etc.), flow lines and riser (layout,

diameter, thickness, roughness and thermal insulation, etc.) and subsea equipment

(separator, pump, etc.) are needed to describe fluid flow and heat transfer. Reser-

voir data (pressure, temperature, and productivity index) characterizes the source

boundary condition. Finally, fluid data—oil, gas, and water densities, gas-oil ratio,

and watercut—are inputs to the fluid models. Additional information, such as the

surface boundary conditions, is necessary to run a simulation. The need to specify

numerical values for all of these inputs introduces parametric uncertainty into the

modeling process.

Model parameters differ by both their degree of uncertainty and their impact on

the model’s prediction uncertainty. For instance, frequent measurement of reservoir

pressure through pressure buildup tests is expensive; infrequent measurements, the

industry standard, increase the uncertainty in this important boundary condition.

Conversely, the pipeline diameter is directly measurable and, thus, uncertainty in its

value is comparatively low, arising primarily from measurement errors. Within the

probabilistic framework, this statement is equivalent to saying that the normalized

standard deviation of reservoir pressure, σp, exceeds that of pipe diameter, σd. Model

nonlinearity implies that the condition σp ≫ σd does not automatically mean that

uncertainty in reservoir pressure has larger impact on prediction uncertainty of the
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Figure 5.1: Physical properties that provide input for a steady-state black-oil flow
simulation.
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pipe-flow simulations than uncertainty in pipe diameter does. Addressing the lat-

ter issue falls under the purview of global sensitivity analysis, which is discussed in

Section 5.2.3.

Our study focuses on parametric uncertainty associated with fluid properties,

which is prevalent during the exploration phase, when little site-specific information

is available. Fluid properties data are collected from a few exploration/appraisal wells.

In the absence of such wells, the reservoir fluid is modeled based on information from

a basin model whose parameterization relies on data from analogous geological areas.

Even when samples are available, their analysis is carried out in laboratory conditions

that can be quite different from the reservoir conditions [94]. For these reasons, we

treat as uncertain the following fluid-model parameters: oil and gas specific gravities

at standard conditions (γo and γg, respectively), reservoir fluid gas-oil ratio, and

watercut. We assume the water density at standard condition to be known with

certainty, even though the water properties depend on water salinity, which can be

uncertain. Furthermore, density and viscosity of each phase throughout the flow (at

varying pressure and temperature conditions) are computed through the black-oil

model, whose uncertainties are out of the scope of this study. Our primary goal is

to quantify the influence of parametric uncertainty in the fluid model on prediction

uncertainty of the cumulative production.

5.1.2 Uncertainty quantification for flow simulations

While many computationally efficient alternatives to Monte Carlo simulations (MCS)

have been used to evaluate prediction uncertainty of models of multiphase flow in

heterogeneous porous media [108, 123, 139], comparative UQ efforts for multiphase

flow in O&G pipes are scarce and mostly limited to MCS. Examples of the latter

include quantification of uncertainty in predictions of a two-phase pipe-flow simulator

(pressure drop and liquid holdup in an experimental pipe) with uncertain/random

inputs (flow rates, viscosities, and densities of both phases; diameter, inclination

angle, and length of the pipe; surface tension; and parameters of a non-Newtonian

fluid model) [99].



CHAPTER 5. UNCERTAINTY IN EMPIRICAL FLUID MODELING 101

In real production scenarios, MCS were deployed to quantify uncertainty in model

predictions of time-varying oil-flow rates from multiple producer wells during the

optimization of a field layout design, with the initial flow rates and the reservoir’s

decline rate acting as uncertain inputs [110]. They were also used to evaluate the

impact of the watercut uncertainty on model predictions of the oil production flow

rate [79], and to analyze the influence of uncertainty in the values of three input

parameters (outlet pressure, ambient temperature, and wall roughness) on predictions

of the pressure drop and liquid holdup [65].

We use an accelerated version of MCS, which relies on Latin hypercube sampling

[124], to investigate the impact of parametric uncertainty in the fluid model on model

predictions of the time-dependent production flow rate during the exploration phase,

in the context of flow assurance. The analysis is performed for an offshore production

scenario, based on a real well located in Campos Basin, Brazil. A result of our

analysis is the probabilistic forecast of cumulative oil production and, consequently,

the project’s revenue.

5.1.3 Global sensitivity analysis

Global sensitivity analysis (GSA) is a distinct and complementary facet of uncertainty

management and risk assessment [28]. It seeks to rank the random inputs by their

relative contribution to uncertainty in predictions of a quantity of interest (QoI).

Depending on whether prediction uncertainty is represented in terms of the QoI’s

variance or full distribution, GSA can be classified as variance- or distribution-based,

respectively; the latter is applicable to a wider range of inputs, while the former is

easier to compute [29]. Variance-based GSA ranks the input parameters by their

Sobol’ indices, whose definition derives from the multivariate analysis of variance

(ANOVA) [135]. These indices can be computed via either MCS [99] or polynomial

chaos expansions [121].

Undergirding the variance-based GSA is the requirement that random inputs are

mutually uncorrelated. This is a questionable assumption in the context of fluid

modeling, where many of the model parameters are inter-related. To account for this
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complication, we use the Rosenblatt transform to map the correlated model inputs

onto a set of uncorrelated random variables [29], which are then used to perform a

variance-based GSA. This enables us to identify the most influential parameters to

the production flow rate output at different stages of production lifetime.

5.2 Methodology

5.2.1 Probabilistic characterization of uncertain fluid prop-

erties

We focus on uncertainty in four fluid properties X = (X1, . . . , X4)
⊤ ∈ R4: the oil

and gas specific gravities (X1 = γo and X2 = γg), the gas-oil ratio (X3 = GOR), and

watercut (X4 = WC). Statistical properties of these parameters, e.g., their means

and variances, are estimated during the exploration phase, when little information

about the reservoir field and its fluid is available. For the sake of generalization and

interpretability of the results, and in the absence of evidence to the contrary, we use

a multivariate Gaussian probability density function (PDF),

fX(x) =
1

2π|Σ|1/2
exp

[
− 1

2
(x− µ)TΣ−1(x− µ)

]
, (5.1)

to characterize these random inputs. Here, the vector µ ∈ R4 comprises the means

of the four fluid properties, and the positive-definite matrix Σ ∈ R4×4 is composed of

the covariances between these properties.

The mean values in the vector µ are typically estimated by experts from their

knowledge of similar geological areas. As an example, we use the mean oil specific

gravity µγo , the mean gas specific gravity µγg , and the mean gas-oil ratio µGOR (with

units Sm3/Sm3), which are the values measured in a PVT analysis of a reservoir fluid

that is deemed representative. Following the treatment of Well 03 in [79], we assume

the mean watercut µWC(t) (in percentage) to vary linearly with production time t

(in months), increasing at a rate of 0.667%/month. In our experiments, we use the

following numbers:
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µ(t) = (µγo , µγg , µGOR, µWC(t))
⊤ = (0.944, 0.610, 163.0, 0.667t)⊤. (5.2)

The covariance matrixΣ encapsulates the degree of uncertainty in the values of the

model parameters and their correlations. Such uncertainty in the fluid description

arises from potential heterogeneity of fluid properties across the field. It can vary

greatly from field to field, as it is influenced by factors such as data acquisition,

production experience, and geological complexity. In the exploration phase, field

experience suggests the standard deviation of oil density and gas-oil ratio to be up

to 2% and 20% of their mean values, respectively [75]. We assume gas density to

be as uncertain as the oil density and the standard deviation of watercut to be 10%

of its mean value, approximately as in [79]. The watercut is independent of the

reservoir fluid composition. Our correlation analysis of 220 reservoir fluid samples

from Brazilian oil fields yields the correlation matrix

Σ(t) =


σ2
X1

CX1X2 CX1X3 CX1X4

CX2X1 σ2
X2

CX2X3 CX2X4

CX3X1 CX3X2 σ2
X3

CX3X4

CX4X1 CX4X2 CX4X3 σ2
X4
(t)



=


3.6 · 10−4 −9.4 · 10−5 −1.8 · 10−1 0

−9.4 · 10−5 1.5 · 10−4 2.7 · 10−1 0

−1.8 · 10−1 2.7 · 10−1 1.1 · 103 0

0 0 0 4.5 · 10−3t2

 . (5.3)

This analysis indicates the strong correlation between the inputs, especially between

the gas specific gravity and the gas-oil ratio.
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5.2.2 Monte Carlo simulations

MCS is an ensemble-based computation consisting of three steps. First, N real-

izations, x1, . . . ,xN , of the random input vector X are drawn from the joint PDF

in (5.1). Second, for each realization of the inputs, xn (n = 1, . . . , N), the flow

model is solved to obtain the corresponding realizations of the model output and

QoIs. Third, the sample statistics of the QoIs, including their PDFs, are computed.

The root mean squared error (RMSE) of an MC estimate of the QoI’s mean decays

as 1/
√
N [85]. This slow convergence rate is due to the purely random sampling in

which most of the samples come from the center of a PDF and relatively few sample

from the PDF’s tails. To accelerate convergence within a given tolerance, we deploy

the Latin hypercube sampling, in which the domain of definition of PDF fX(x) is

subdivided into equal intervals (“strata”) and random realizations xn are drawn from

each interval.

5.2.3 Global sensitivity analysis

The application of variance-based GSA is limited to uncorrelated random inputs. We

use the Rosenblatt transform [106] to mapX onto a random vectorU = (U1, . . . , U4)
⊤ ∈

R4 uniformly and independently distributed over the unit hypercube [0, 1]4. Let

FXi|X1,...,Xi−1
(xi|x1, . . . , xi−1) be the conditional cumulative distribution function of

Xi given X1, . . . , Xi−1. The Rosenblatt transform of X ∈ R4 is defined as T (X) = U

such that

u1 =FX1(x1), (5.4)

u2 =FX2|X1(x2|x1), (5.5)

u3 =FX3|X1,X2(x3|x1, x2), (5.6)

u4 =FX4|X1,X2,X3(x4|x1, x2, x3). (5.7)
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Because the Rosenblatt transform is bijective, we define

g(U) = h ◦ T−1(U) = h(X) = QoI.

In our example, QoI is the simulated oil flow rate at each time step. Thus, we perform

the GSA on g(U). The first-order, SXi
, and total, TXi

, Sobol’s indices are thus defined

as

SXi
=
Var[E[g(U)|Ui]]

Var[g(U)]
=

Var[E[QoI|Xi]]

Var[QoI]
(5.8)

TXi
=
E[Var[g(U)|U∼i]]

Var[g(U)]
=

E[Var[QoI|X∼i]]

Var[QoI]
(5.9)

where U∼i denotes all parameters but Ui; and E[·] and Var[·] are the mean and variance

operator, respectively. We rely on the R package sensobol [101] to compute SXi
and

TXi
.

5.2.4 Case study

We demonstrate our approach on a simplified model of a real offshore production

system located in Campos Basin, Brazil, denoted as “Well B” in [81]; the well is

assumed to produce by natural lift. Figure 5.2 shows a schematic representation

of the simplified production well in the multiphase flow simulator, along with some

general characteristics. The flow simulation boundary conditions are the separator

pressure of 16.6 bar; the linear IPR model is used for the reservoir, with the reservoir

pressure of 324.1 bar and the productivity index of 53.0 m3/(d.bar).

Table 5.1 fully describes the simplified production system represented in the mul-

tiphase flow simulation implemented in this work. For the fluid parameters treated

as random variables, the mean values of their respective probability distributions at

the beginning of the production life are reported. Table 5.2 shows the flow and fluid

correlations considered in the simulation. Fig. 5.3 presents the simulated flow behav-

ior at the beginning, middle and end of the production lifetime, considering the the

mean watercut values of 0%, 40%, and 80%, respectively. The pressure, temperature,
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Figure 5.2: Schematic of a simplified production well implemented in the flow simu-
lator.

and liquid holdup profiles along the wellbore and pipelines are reported.

Flow simulations are performed with the Petrobras in-house simulator MARLIM

II® (Multiphase flow and ARtificial LIft Modeling), which outputs the production

flow rates. The production lifetime is simulated in time steps of one month. The reser-

voir pressure and temperature are assumed to be constant throughout the production

lifetime due to the waterflooding process, a secondary recovery technique.

The cumulative oil production is computed via numerical integration over time

of the discrete flow rates. For that, we conduct additional MCS, in which flow rates

serve as the inputs whose realizations are drawn from the flow-rate PDFs obtained

at each time step.
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Figure 5.3: (a) Pressure, (b) temperature, and (c) liquid holdup behaviors at the
steady-state regime in the wellbore and production line for watercut values of 0%,
40%, and 80%, representing the beginning, middle and end of the production lifetime,
respectively.
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Table 5.1: Parameters and their numerical values used in the multiphase flow simu-
lations.

Parameter name Parameter value
Reservoir pressure 324.1 bar
Reservoir temperature 61.1oC

Reservoir
Productivity index 53.0 m3/(d.bar)
Tubing length 1433 m
Tubing internal diameter 5.92 in
Tubing thickness 0.0089 m
Tubing roughness 0.000178 m
Casing length 1433 m
Casing internal diameter 9.66 in
Casing thickness 0.0138 m
Cement thickness 0.03 m

Vertical
well

Overall heat transfer coefficient 7.1 J/(s.K.m2)
Length 1395 m
Internal diameter 6 in
Thickness 0.0783 m
Roughness 0.00061 m

Horizontal
flowline

Overall heat transfer coefficient 5.2 J/(s.K.m2)
Length 1556 m
Internal diameter 6 in
Thickness 0.0488 m
Roughness 0.00061 m

Vertical
riser

Overall heat transfer coefficient 8.4 J/(s.K.m2)
Soil temperature at reservoir 61.1oC
Soil temperature at wellhead 3.9oC
Soil temperature gradient Linear
Seawater temperature at seabed 3.9oC
Seawater temperature at surface 25oC
Seawater temperature gradient Linear
Seawater current velocity 0.1 m/s

Ambient
and outlet
conditions

Pressure at the outlet 16.6 bar
Stock-tank oil specific gravity (γo) 0.944
Stock-tank gas specific gravity (γg) 0.610
Water specific gravity (γw) 1.030
Reservoir fluid gas-oil ratio (GOR) 163.0 Sm3/Sm3

Black-oil
fluid

Watercut (WC) 0%
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Table 5.2: Flow and black-oil constitutive relations used in the multiphase-flow sim-
ulations.

Constitutive relation
Gas-oil solubility ratio Standing [118]
Oil formation volume factor Standing [118]
Gas compressibility factor Dranchuk et al. [38]
Undersaturated oil viscosity Vazquez and Beggs [128]
Live oil viscosity Beggs and Robinson [18]
Dead oil viscosity Beggs and Robinson [18]
Gas viscosity Lee et al.[69]
Water viscosity van Wingen [127]

Black-oil
fluid

property

Emulsion relative viscosity
Woelflin tight emulsion [136]
(inversion watercut of 90%)

Flow Beggs, Brill and Palmer [17, 86]

5.3 Results

5.3.1 Monte Carlo simulations

Figure 5.4 exhibits the results of our convergence study of MCS with Latin hypercube

sampling, with the flow rate at the end of the well’s lifetime (when the uncertainty on

the inputs is higher) playing the role of QoI. The sample mean, µ, and standard de-

viation, σ, of this QoI converge after N ≈ 5000 MC realizations (Figure 5.4a). This

result demonstrates the limited value of the QoI statistics obtained via MCS with

N = 100 Latin hypercube samples, as done in [79] for a similar setting. For instance,

the mean oil flow rate estimated with N = 100 MC realizations is µ = 218.4 Sm3/d,

which is 5% higher than µ = 207.7 Sm3/d estimated from N = 105 realizations. This

highlights the importance of a convergence analysis of MCS, including the establish-

ment of a convergence criteria that represents the specific goal of a study.

We define such a criteria in terms of the the absolute difference between two sample

standard deviations, |σ(N)−σ(N−100)| ≤ E , computed from N and N−100 Monte

Carlo realizations. For the tolerance level E = 1 Sm3/d, the MCS convergence is

attained after N ≈ 7300 realizations (Figure 5.4b). This is the number of realizations

used to obtain the results below. For this N , µ = 207.8 Sm3/d.
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Figure 5.4: Convergence analysis of MCS after 10 years of production: (a) sample
mean, µ, and standard deviation, σ, of the cumulative production at the end of the
well’s lifetime as function of the number of MC realizations, N ; (b) the absolute
difference between two sample standard deviations, |σ(N)− σ(N − 100)|, computed
from N and N − 100 MC realizations.
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Table 5.3: Descriptive statistics of the oil flow rate throughout production life.

Production time
(years)

Oil flow rate (Sm3/d)

µ σ min P25 P50 P75 max

0 3683.3 115.9 2655.4 3614.9 3691.4 3760.1 3994.4
1 3372.9 108.9 2625.2 3309.6 3380.4 3445.8 3715.0
2 3051.5 118.0 2312.6 2981.2 3059.2 3131.3 3450.4
3 2718.9 140.4 1877.6 2631.7 2725.2 2814.6 3218.9
4 2377.7 169.7 1348.6 2267.3 2382.2 2496.7 3121.2
5 2020.6 203.6 791.4 1883.3 2024.0 2162.4 2729.9
6 1670.4 237.2 0.0 1516.6 1667.3 1826.4 2630.4
7 1302.4 294.5 0.0 1155.0 1326.8 1489.0 2378.6
8 899.6 378.7 0.0 625.6 955.7 1179.2 2095.1
9 488.1 389.1 0.0 171.8 435.4 778.5 1927.1
10 207.8 280.3 0.0 0.0 97.6 333.0 1720.0

Table 5.3 reports MC estimates of the descriptive statistics of the oil flow through-

out the well’s production life. As expected, the mean oil flow rate, µ, decreases as

the mean watercut increases throughout the production lifetime, in accordance with

Eq. 5.2). The standard deviation, σ, increases due to higher uncertainty in the wa-

tercut, except at Year 10 when more realizations predict zero flow rate. While the

PDF of the oil flow rate is symmetric at earlier years, it becomes skewed to the right

towards the end of production lifetime (see, also, Figure 5.5). The positive skewness

of the PDFs at the end of production life reflects the large number of MC realizations

predicting no production, due to insufficient reservoir pressure to naturally lift fluid

from the formation to surface.

It is instructive to compare the probabilistic forecast of the oil flow rate with

its deterministic counterpart that uses the expected value of each input in the flow

simulation. The latter computation yields the oil flow rates of 3704.4 Sm3/d at

production start (WC = 0), 2057.4 Sm3/d after 5 years of production (WC = 40%),

and 2.0 Sm3/d after 10 years of production (WC = 80%). (Pressure, temperature,

and liquid holdup profiles of these simulations are reported in Fig. 5.3.) These

deterministic predictions differ significantly from the expected flow rates, especially

at the end of production lifetime (Table 5.3). Furthermore, the deterministic approach

lacks any uncertainty quantification associated with its predictions, the information
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Figure 5.5: Probability density function of the oil production flow rate throughout
the well’s production lifetime, at several times T .
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that is just as important as the prediction itself.

Mean cumulative production is computed via numerical integration of the mean

flow rates. Its statistics—mean and two confidence intervals—are shown in Figure 5.6,

together with its deterministic estimate. When the cumulative production is com-

puted from the monthly flow rates (Figure 5.6a), its expected value at the end of the

well’s lifetime is 7.20 Mm3 and the standard deviation is 0.08 Mm3, which is 1.1% of

the mean. Given that uncertainty in the inputs is significantly higher (20% for gas-oil

ratio and 10% for watercut), these results reveal that uncertainty in the values of the

reservoir fluid properties is attenuated in the process of computing the cumulative

production. The 95th percentile of the total cumulative production is 7.33 Mm3,

which is 0.27 Mm3 (3.8%) higher than the 5th percentile.
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Figure 5.6: Cumulative oil production through the well’s production lifetime consid-
ering as time step for the numerical integration of the flow rates: (a) one month and
(b) one year.

At the well’s production lifetime of 10 years, the deterministic computation of the

cumulative production (7.30 Mm3) overpredicts the the mean cumulative production

(7.20 Mm3). While this difference might appear to be small, such estimates serve

as input to financial evaluations of new production systems projects, in order to

quantify the expected revenue and its associated uncertainty. In monetary terms,

considering the oil price of the “North Sea Brent” (BRENT) closing value of US$92.36
on 09/01/2022 as the benchmark price, and applying no discount rate to account for
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the various production times, the deterministic framework overestimates the project’s

revenues by US$58.6M.

Both expected value and standard deviation of the final cumulative production

depend on the time-step size considered for the numerical integration (Figure 5.6).

Smaller time steps yield smaller standard deviations, i.e., tighter confidence intervals.

On the other hand, smaller time steps increase the computational time, which can be

prohibitive depending on the application. For example, the use of the yearly flow rates

instead of monthly ones reduces the computational cost of the numerical integration

of flow rates over 10 years by 92%. It results in the mean cumulative oil production

of 7.77 Mm3 and standard deviation of 0.27 Mm3 (Figure 5.6b). In this case, the

deterministic prediction overestimates the project’s revenue by US$63.8M. The 5th

and 95th percentiles of the total cumulative production are 7.32 Mm3 and 8.22 Mm3,

respectively. Therefore, the 92% reduction in computational time corresponds to

the 0.19 Mm3 (US$17.7M) increase in prediction uncertainty (standard deviation) of

cumulative production.

The aforementioned difference between the 5th and 95th percentiles of the cu-

mulative production is equivalent to US$24.6M and US$82.8M using the monthly

and yearly time steps, respectively. When such large sums of money are involved,

which is typical for complex engineering systems, a proper evaluation of the asso-

ciated risks is essential for making informed business decisions and, ultimately, for

the company’s success. Hence, it is important that O&G production estimates are

performed through the probabilistic approach, where uncertainties are accounted for

not only in reservoir flow simulations but also in wellbore and pipeline flow simula-

tions. Attempts to reduce the prediction uncertainty should be considered in view of

the cost of information, which may influence arguments in favor or against new data

acquisition.

5.3.2 Sensitivity Analysis

Figure 5.7 presents Sobol’s indices for the flow simulation model at the beginning,

middle, and end of production lifetime, i.e., at the well opening, and after five and ten
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years of production, respectively. The mean watercut at each snapshot is 0%, 40%,

and 80%, respectively. The sensitivity of the oil flow rate to the input parameters

depends on the production scenario. Here, as production time and, consequently,

the expected watercut increase, so does their influence on the predicted oil flow rate.

In the early production stages, the oil flow rate is more sensitive to the oil specific

gravity, while at the end of the production lifetime it is more sensitive to the watercut.

The fact that the well produces an emulsion, whose viscosity significantly increases

with watercut (according to Woelflin’s [136] tight emulsion model), contributes to the

great influence of watercut at later production stages. This result suggests that the

use of subsea demulsifying strategies may enhance oil production [81].

Throughout production lifetime, the variable with lowest effect on the predictive

uncertainty of the oil flow rate is the gas specific gravity, which means that the

multiphase model is less sensitive to variations in this input than to changes in oil

density, gas-oil ratio or watercut. Since first-order and total-order indices are similar,

the model has no significant interaction effects between γo, γg, gas-oil ratio, and

watercut.

5.4 Conclusion

Uncertainty quantification plays a key role in decision making for O&G projects, es-

pecially in risk assessment of its heavy investments. While uncertainty quantification

has been an established practice in reservoir simulation, it has not been thoroughly

investigated for multiphase flow models used in flow assurance. This paper quantifies

uncertainty in predictions of the production flow rate over the life time of a simplified

real production well and, consequently, of its cumulative production. The sources of

uncertainty are oil and gas specific gravities, reservoir fluid gas-oil ratio, and watercut.

Uncertainty of such inputs is modeled through a multivariate Gaussian probability

density function, while uncertainty in the flow simulation output (i.e., the production

flow rate) is quantified via Monte Carlo simulations with Latin hypercube sampling.

A global sensitivity analysis is performed to identify which of the four fluid parame-

ters affect most the overall predictive uncertainty. Major conclusions are summarized
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Figure 5.7: First-order and total-order Sobol’s indices for the input parameters
(γo, γg,GOR,WC) of flow simulation model (a) at the well opening, (b) after five
years of production, and (c) after ten years of production.
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below:

• The sensitivity of the simulated oil flow rate to input parameters depends on

the production stage. As production time and, consequently, the expected

watercut increase, so does their influence on the flow rate. By the end of the

well’s lifetime, watercut dominates the flow rate predictive uncertainty, followed

by oil density. Conversely, gas density is the input variable with lowest effect on

the predictive uncertainty of the oil flow rate throughout the whole production

lifetime.

• Convergence properties of Monte Carlo simulations were discussed. The sample

size depends on the goal of the study, i.e., on the acceptable error tolerance in

predictions of a quantity of interest.

• Flow rate probability distributions change over production time, not only in

their parameters but also in shape. While they are symmetric at early pro-

duction stages, they are skewed to the right at later stages due to the higher

number of realizations that result in a zero flow rate. This asymmetry of the

output distribution happens despite of the symmetry of the inputs distribution.

Also, the expected oil flow rate decreases with production time due to watercut

increase.

• Cumulative production estimates depend on the time step used in the numerical

integration of computed flow rates. Its expected value and standard deviation

at the end of the well’s lifetime are 7.20 Mm3 and 0.08 Mm3, respectively,

considering a monthly time step. For a yearly time step, these statistics are

7.77 Mm3 and 0.27 Mm3, respectively. These results indicate that uncertainties

associated with fluid properties are attenuated when computing the cumulative

production.

• The deterministic framework overestimates production when compared to the

probabilistic framework while suggesting certainty. This fact highlights the im-

portance of the probabilistic assessment of estimates from pipe flow simulation

models.
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• Uncertainty quantification of reservoir fluid properties is particularly important

during the design phase of a reservoir development project, when field data

of fluid properties or pressure and temperature in the wellbore and pipeline

are not available. Once field data is available, they can be used to restrict

the uncertainty on the simulation inputs parameters through data assimilation

techniques.

The analyses presented here are based on a simplified case study. We did not

consider a minimum production rate for the well to be operating, i.e., a minimum

revenue that covers operational costs and prevents the well from being shut down,

which would be a likely assumption in a real case scenario. The presence of flow in-

stabilities (such as severe slugging) that could reduce production was not evaluated.

Changes in fluid composition, i.e., in oil and gas densities and gas-oil ratio, may affect

the reservoir’s relative permeability [140] and consequently the reservoir’s productiv-

ity index. This and other-second order interactions were also not considered in this

work. They are expected to increase the uncertainty in predictions of the quantity of

interest even further, and should be a focus of future research.



Chapter 6

Uncertainty in flow modeling

Previous chapters have investigated uncertainties associated with BO and composi-

tional fluid models and their impact on flow model predictions. In the oil and gas

industry, it is widely acknowledged that flow simulation results inherently contain un-

certainties, even when the specific sources and magnitudes of these uncertainties are

not well-defined. Consequently, flow predictions are not expected to perfectly align

with field data. When field data is available, data assimilation techniques can be em-

ployed to enhance the predictive capacity of flow models. Nonetheless, the adoption

of these techniques in the realm of flow assurance has not yet become widespread.

In practical applications, pipe-flow models representing the flow within pipelines

and wells are often calibrated to field data through tuning factors. This chapter ex-

amines the implementation of tuning factors in flow models and proposes a heuristic

method for optimizing tuning factors applied to the calculated pressure and temper-

ature gradients.

6.1 Introduction

Multiphase pipe flow simulations play a key role in carbon capture, utilization and

storage (CCUS) applications and in the oil and gas (O&G) industry. The accurate

calculation of pressure and temperature profiles from/to the surface facility to/from

119
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the well bottom hole is essential to the design, operation, and optimization of injec-

tion/production systems. The enormous amount of research and development work

that has been invested in multiphase flow modeling over the past 60 years [114] evi-

dences the importance of the topic.

As a result of such work, several flow models historically applied mostly to petroleum

industry problems have been proposed in the literature. Until the 1980’s empirical

correlations for predicting the pressure gradient were most common; then mecha-

nistic models that better describe the flow physical phenomena gained traction [21].

More recently, machine learning techniques have been applied to characterize the

multiphase flow.

Nonetheless, even the best models are not always able to match experimental/field

data since their predictions are fundamentally uncertain. Such uncertainties can be

structural, due to inevitable approximations of “reality” introduced by a model, or

parametric, due to the need to specify numerical values for the model’s inputs [45].

Almost every model and simulator has been developed with a limited applicability

for some flow pattern and some pipe inclination [26], and most researchers agree that

no single correlation is applicable over all ranges of variables with suitable accuracy

[61].

For instance, different flow models may show an extreme variability in performance

when compared to real field data from oil and gas producing fields, with no model

giving the best results for all fields [100]. For a given real production system, governing

equations that most accurately predicts pressure, temperature and liquid holdup can

vary with operational conditions [111]. This uncertainty holds even for smaller-scale

experimental settings. An example is the phase slip and frictional pressure drop

models uncertainty for upward and downward two-phase flow of CO2 [53]. Regarding

the fluid modeling, subjective choices of optimization algorithm and initial guess used

in the equation of state regression may affect the final fluid characterization [46], and

consequently flow predictions. Also, uncertainties in the fluid model selection may

significantly impact flow simulation results [42, 41].

A common practice to increase the accuracy and predictability of flow models is

to apply tuning factors on calculated parameters in order to better represent field
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measurements available. Such tuning factors are essentially multiplicative correction

constants for one or more inputs and/or calculated variables. This is the approach

used by traditional simulators. For example, PIPESIM® v.2017 applies tuning factors

on computed friction factors, holdups and overall heat transfer coefficients (U-values).

Petrobras’ in-house steady-state multiphase simulator, Marlim II, applies them on

computed pressure and temperature gradients. The use of tuning factors in pipe

flow models is analogous to the well established practice of History Matching (HM)

in reservoir engineering. Nonetheless, while HM techniques focused on adjusting

reservoir models have been extensively studied [82], they have not yet been thoroughly

investigated for multiphase flow models used in flow assurance. This disparity may

be mainly due to the fact that reservoir simulations can take hours or even days for

more complex cases, whereas typical pipe flow simulations take seconds or minutes.

Finding optimal tuning factors to a particular flow model consists primarily of an

optimization problem. The tuning factors to be optimized are the design variables.

The constraints are the upper and lower bounds in which the tuning factors are

allowed to vary. The objective function to be minimized evaluates the flow model

prediction errors against measured data. In O&G applications, field data are usually

obtained during production tests given that production wells are required to undergo

periodic testing for regulatory compliance. In such tests, production flow is diverted

to a test separator, which is used to separate and measure the oil, gas, and water

flowrates.

Previous studies have applied traditional optimization algorithms to determine

the optimal tuning factors in pipe flow simulations. Monteiro et al. [78] and Chaves

et al. [24] adjust pressure gradients of well flow models using the bisection method.

Although this approach is efficient for adjusting solely pressure gradients, its perfor-

mance may deteriorate when incorporating additional measured variables, such as

temperature gradients, into the error function. Seman et al. [113] implement the

OrthoMADS direct-search algorithm [2] to compute tuning factors for pressure and

temperature gradients estimated by well flow models. The algorithm takes 464 s (in

a computer with two Intel Core Xeon E5-2630 v4 2.20 GHz processors and 64 GB of

RAM) and over 100 iterations to converge in a case study.
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We propose a heuristic strategy for optimizing tuning factors applied on pressure

and temperature gradients computed by pipe flow models. Heuristic techniques offer

satisfactory or near-optimal solutions to optimization problems more rapidly and

efficiently than traditional (generic) methods. These solutions can serve as informed

initial estimates to expedite the optimization process when identifying global minima

is crucial. The proposed method has been effectively employed to calibrate well flow

models at Petrobras for nearly a decade, demonstrating its computational efficiency

and efficacy.

To evaluate the performance of the proposed heuristic, we conduct a compara-

tive analysis of the tuning factor results obtained during the calibration of a real

well model, considering four alternative optimization methods. These alternative

methods, which employ distinct search space exploration strategies, include the adap-

tive moment estimation (ADAM), Davidon-Fletcher-Powell (DFP), covariance matrix

adaptation evolution strategy (CMA-ES), and Hooke-Jeeves (HJ) algorithms. Our

heuristic yields highly competitive results at a substantially reduced computational

cost. Moreover, we illustrate a two-step optimization approach, wherein the heuristic

method provides the initial estimates for the generic algorithms.

6.2 Methodology

Our methodology is flow model-independent, i.e. it is applicable to any set of govern-

ing equations and closure relations available in the literature (e.g. empirical, Two-

Fluid, and Drift-Flux approaches). We consider a general multiphase flow model

denoted by function f , with inputs denoted in vector form by x and outputs (i.e.

pressure and temperature values predicted throughout the domain of interest) de-

noted by ŷ, so that ŷ = f(x). The inputs vector contains the boundary conditions

to the flow simulation: outlet pressure, well bottom hole temperature and water, gas,

and oil production flow rates.

We assume that the system is equipped with two subsea sensors, known as per-

manent downhole gauge (PDG) and TPT, which are located in the tubing and at the

wellhead, respectively. Both sensors measure pressure and temperature. Moreover, a
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surface sensor measures pressure and temperature at the outlet. Since it is possible

to calculate measured pressure and temperature differences in two segments (well and

pipe), we assume four tuning factors among the inputs:

• ϕwell
P and ϕpipe

P are multipliers for the calculated pressure gradients in the tubing

and flowline, respectively;

• ϕwell
T and ϕpipe

T are multipliers for the calculated temperature gradient in the

tubing and flowline, respectively.

Therefore, keeping the fluid and flow characteristics constant, i.e. for a particular

production/injection system, ŷ = f(ϕ) = f((ϕwell
P , ϕpipe

P , ϕwell
T , ϕpipe

T )⊤). In particular,

the model ith outputs are obtained by imposing boundary conditions of the ith

production test, so that ŷi = fi(ϕ).

It is worth noticing that pressure and temperature gradients tuning factors must

represent flow segments for which measurements are available, for a well-formulated

problem. Because the numerical solver for the flow model associates both tuning

factors to each element of the spatial discretization (mesh), the methodology can be

easily adapted to include more tuning factors if additional pressure and/or temper-

ature measurements are available. Similarly, it can be easily adapted to reduce the

number of tuning factors in case no pressure and/or temperature measurements from

the TPT sensor are available.

6.2.1 Optimization problem formulation

The objective function F to be minimized is the mean absolute percentage error

(MAPE) of Nmeas pressure and temperature measurements from different sensors

obtained during Ntests production tests,

MAPE = F (ŷ1, ŷ2, . . . , ŷNtests)

= F (f(ϕ))
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=
1

Ntests +Nmeas

Ntests∑
i=1

Nmeas∑
j=1

∣∣∣∣yji − ŷji (ϕ)

yji

∣∣∣∣ (6.1)

where ŷji (ϕ) is the j th measurement of pressure or temperature predicted by the ith

production test flow model with design variables ϕ.

It is worth mentioning that PIPESIM® v.2017 uses the root mean square error

(RMSE) of the Nmeas measurements as the optimization problem’s objective function

[112], which can be misleading due to unit inconsistencies between the variables being

measured.

The tuning factors are initialized as 1. The upper and lower bounds for each design

variable are defined as a percentage of their initial guesses. A maximum variation

of 20% is permitted for the pressure and temperature gradient multipliers; higher

values would potentially indicate that the flow model is not able to represent the

underlying physics of the real system. Representing these limits by the vector ∆ϕ,

the constrained optimization problem is

minimize
ϕ

F (ϕ), subject to 1−∆ϕk ≤ ϕk ≤ 1 + ∆ϕk for all k. (6.2)

The stopping criteria for the optimization process is either the convergence of the

objective function F within a tolerance of 10−3 for the change in |F | between two

consecutive iterations or a maximum number of 20 iterations.

6.2.2 Alternative optimization strategies

Besides of the proposed optimization algorithm (described in Section 6.3), four al-

ternative algorithms were considered in this paper for comparison purposes. They

were selected both due to their popularity in the field and conceptual dissimilarity

from each other. They are, namely: adaptive moment estimation method (ADAM),

Davidon-Fletcher-Powell method (DFP), covariance matrix adaptation evolution strat-

egy method (CMA-ES), and Hooke-Jeeves algorithm (HJ); and are summarized be-

low. All of their hyperparameters were optimized for this particular application.
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The adaptive moment estimation method [64] ADAM is a first-order method

that computes individual adaptive learning rates for each parameter from estimates

of the first and second moments of the gradients of the objective function. At each

iteration, the intermediate variables

mt ← β1mt−1 + (1− β1)∇F (ϕt−1), (6.3a)

m̂t ←
m̂t

(1− βt
1)
, (6.3b)

vt ← β2vt−1 + (1− β2)∇F (ϕt−1)⊙∇F (ϕt−1), (6.3c)

v̂t ←
v̂t

(1− βt
2)

(6.3d)

are computed in order to update the design point

ϕt ← ϕt−1 − α m̂t ⊘ (
√
v̂t + 10−8). (6.3e)

The symbols ⊙ and ⊘ refer to the element-wise vector product and division, respec-

tively.

The Davidon-Fletcher-Powell method [33, 40] DFP is a second-order gradient

descent method. It rests on the Newton’s method,

xt ← xt−1 − (Ht−1)
−1∇F (xt−1), (6.4)

where the inverse of the Hessian matrix H is approximated by a symmetric and

positive definite matrix Q. Because the second-order information is approximated,

it is called a quasi-Newton method. At each iteration t, the design point is updated

according to

xt ← xt−1 − αt−1 Qt−1∇F (xt−1), (6.5)

where αt−1 is a scalar step factor.
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The covariance matrix adaptation evolution strategy method [55] CMA-ES

is a stochastic method inspired by natural evolution strategies such as recombination,

mutation and elite selection techniques. It is recognized to be among the leading

algorithms for optimization of real-valued functions [39]. At each iteration step, the

algorithm improves the mean and the covariance of a multivariate Gaussian search

distribution. Change rates for the search distribution parameters and for the step

size are updated separately.

Hooke-Jeeves algorithm [57] HJ performs a direct search over the search space

based on function evaluations in each coordinate direction, with steps of magnitude

α. At each iteration, for ϕ ∈ R4, F [ϕ + (α, 0, 0, 0)⊤], F [ϕ + (−α, 0, 0, 0)⊤], F [ϕ +

(0, α, 0, 0)⊤], F [ϕ+ (0,−α, 0, 0)⊤], . . ., F [ϕ+ (0, 0, 0, α)⊤], and F [ϕ+ (0, 0, 0,−α)⊤]
are evaluated. If any improvement is found, the anchoring point ϕ thus moves to

the position in which the objective function is smaller. On the other hand, if no

improvements are verified, the step size decreases for a finer search.

6.2.3 Case study

We demonstrate the proposed heuristic algorithm by applying it to the calibration of

a real offshore oil production well located in Campos Basin, Brazil. This well uses the

gas lift method for artificial lifting. A schematic representation of the well, along with

its key characteristics, can be found in Figure 6.1. Flow simulations are performed

with Petrobras’ in-house simulator MARLIM II® (Multiphase flow and ARtificial

LIft Modeling), which outputs pressure and temperature profiles.

The boundary conditions required for these flow simulations include the outlet

pressure (Pout), reservoir temperature, produced liquid flow rate (Qliq), watercut

(WC), gas-oil ratio (GOR), as well as the gas lift injection flow rate (Qgl) and tem-

perature. Our analysis incorporates nine production tests conducted over a 2.5-year

period, , with the aim of adjusting tuning factors to accurately represent the pro-

duction history. Table 6.1 reports of the boundary conditions associated with each

production test. Throughout these tests, reservoir and gas injection temperatures

remain constant at 61oC and 40oC, respectively, with the GOR held at 69 Sm3/Sm3.
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Figure 6.1: Schematic of a simplified production well implemented in the flow simu-
lator.

Pressure and temperature values measured at the PDG (P PDG and T PDG), TPT

(P TPT and T TPT ), and outlet (T out) during the production tests are reported in

Table 6.2.

6.3 Proposed optimization algorithm

The optimization starts from ϕ = (ϕwell
P , ϕpipe

P , ϕwell
T , ϕpipe

T )⊤ = (1, 1, 1, 1)⊤. With these

tuning factor values, flow simulations are performed for each ith production test,

i = 1, . . . , Ntests, i.e. with its specific boundary conditions. Each production test

simulation outputs a pressure and temperature profile.

We represent pressure predictions as vectors P̂ PDG, P̂ TPT , P̂ out ∈ RNtests , with

P̂ PDG
i , P̂ TPT

i , and P̂ out
i being the calculated pressures at the PDG sensor, TPT sensor,

and outlet, respectively, for the ith production test. For temperature predictions,

T̂ PDG
i , T̂ TPT

i , T̂ out
i ∈ RNtests , such that T̂ PDG

i , T̂ TPT
i , and T̂ out

i are the calculated

temperatures at the PDG sensor, TPT sensor, and outlet, respectively. ∆P̂ well,
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Production test
ID

Pout

(barg)
Qliq

(Sm3/d)
WC
(%)

Qgl

(Sm3/d)

1 27.1 4146 0.6 268522
2 20.0 4144 12.7 216059
3 13.9 4347 19.2 256944
4 13.9 4357 31.9 261032
5 12.5 4303 38.1 254150
6 12.7 4182 40.4 260798
7 12.6 4155 46.4 258019
8 11.8 4193 44.0 257558
9 12.0 4157 45.5 263600

Table 6.1: Boundary conditions from nine production tests.

Production test
ID

PPDG

(barg)
TPDG

(oC)
PTPT

(barg)
TTPT

(oC)
Tout

(oC)

1 215.0 60.3 132.3 51.4 35.3
2 212.4 60.4 126.9 53.2 38.8
3 212.3 60.6 125.4 53.3 39.3
4 213.6 60.6 125.7 53.7 41.4
5 215.6 60.8 127.4 54.3 42.2
6 216.8 60.8 126.3 54.8 43.9
7 216.8 60.9 126.2 54.9 43.3
8 217.7 60.9 126.7 55.0 44.0
9 218.1 61.0 127.4 55.0 44.0

Table 6.2: Pressure and temperature measurements at the PDG, TPT, and outlet
during nine production tests.
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∆P̂ pipe, ∆T̂ well, ∆T̂ pipe ∈ RNtests are thus obtained:

∆P̂ well = P̂ PDG − P̂ TPT (6.6)

∆P̂ pipe = P̂ TPT − P̂ out (6.7)

∆T̂ well = T̂ PDG − T̂ TPT (6.8)

∆T̂ pipe = T̂ TPT − T̂ out (6.9)

Analogously, we represent pressure measurements as P PDG, P TPT , P out,∈ RNtests ,

with P PDG
i , P TPT

i , and P out
i denoting the measured pressures at the PDG sensor, TPT

sensor, and outlet, respectively, during the ith production test. For temperature mea-

surements, T PDG, T TPT , T out ∈ RNtests , where T PDG
i , T TPT

i , and T out
i denotes the

measured temperatures at the PDG sensor, TPT sensor, and outlet, respectively,

during the ith production test. ∆P well, ∆P pipe, ∆T well, ∆T pipe ∈ RNtests are thus

calculated:

∆P well = P PDG − P TPT (6.10)

∆P pipe = P TPT − P out (6.11)

∆T well = T PDG − T TPT (6.12)

∆T pipe = T TPT − T out (6.13)

The tuning factors are updated at each iteration according to:

ϕwell
P ← ∥∆P well∥22

(
∆P well · ∆̂P

well)−1
ϕwell
P (6.14)

ϕpipe
P ← ∥∆P pipe∥22

(
∆P pipe · ∆̂P

pipe)−1
ϕpipe
P (6.15)

ϕwell
T ← ∥∆T well∥22

(
∆T well · ∆̂T

well)−1
ϕwell
T (6.16)

ϕpipe
T ← ∥∆T pipe∥22

(
∆T pipe · ∆̂T

pipe)−1
ϕpipe
T (6.17)

where · denotes the dot product.



CHAPTER 6. UNCERTAINTY IN FLOW MODELING 130

Constraints are imposed by limiting the tuning factors to the upper and lower

bounds at each iteration. For instance, considering ϕwell
P and a maximum variation of

20% allowed, imposing the constraints is implemented as:

ϕwell
P ← max(ϕwell

P , 0.8) (6.18)

ϕwell
P ← min(ϕwell

P , 1.2) (6.19)

The updated tuning factor values are utilized as input for the flow simulations

of production tests in the following iteration. This iterative process continues until

convergence is reached or a predefined termination criterion is satisfied. In this paper,

the convergence criteria is that the absolute difference between two successive objec-

tive function evaluations must be less than ϵ = 1 × 10−3, with a maximum number

of iterations set at Nmax = 20. The method involves solving a series of convex opti-

mization problems, which are local and approximate representations of the original

problem.

Algorithms 6-7 presents a pseudocode for the heuristic method implementation

and its auxiliary functions.

6.4 Results

Figure 6.2 presents the convergence history of the tuning parameters for the pro-

posed heuristic method along with the four alternative optimization methods. As

these algorithms employ distinct strategies for exploring the search space, both their

convergence history and final optimized points differ. Notably, the ADAM and Hooke-

Jeeves algorithms halt upon reaching the maximum number of iterations, set to 20

in this study. Interestingly, it has been observed that the heuristic method typically

converges in fewer than 10 iterations for a wide variety of models.

Figure 6.3 displays the Mean Absolute Percentage Error (MAPE) at each iteration,

representing the value of the objective function. All algorithms significantly reduce

the error of the original (untuned) model. Due to its stochastic nature, the initial

iterations of the CMA-ES method exhibit a high error, which is subsequently rectified
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Algorithm 6 Part 1. Proposed heuristic method for the constrained optimization of
tuning factors applied on pressure and temperature gradients calculated in flow pipe
simulations.

1: procedure FitTuningFactors(∆P well,∆P pipe,∆T well,∆T pipe)
2: ϵ← 10−3 ▷ Specify threshold for convergence criteria
3: Nmax ← 20 ▷ Specify maximum number of iterations
4: Niter ← 0 ▷ Initialize number of iterations
5: ∆F ← 10 ▷ Initialize ∆F > ϵ
6: (ϕwell

P , ϕpipe
P , ϕwell

T , ϕpipe
T ) = (1, 1, 1, 1) ▷ Initialize tuning factors

7: F,∆P̂ well,∆P̂ pipe,∆T̂ well,∆T̂ pipe ← ComputeObjectiveFunction(ϕwell
P , ϕpipe

P , ϕwell
T , ϕpipe

T )
8: while ∆F > ϵ & Niter < Nmax do
9: for all k ∈ well, pipe do

10: ϕk
P ← ∥∆P k∥22

(
∆P k ·∆P̂ k

)−1
ϕk
P

11: ϕk
T ← ∥∆T k∥22

(
∆T k ·∆T̂ k

)−1
ϕk
T

12: ▷ Impose specified constraints on tuning factors:
13: ϕk

P ← max(min(ϕk
P, 1.2), 0.8)

14: ϕk
T ← max(min(ϕk

T, 1.2), 0.8)
15: end for
16: F0 ← F
17: F,∆P̂ well,∆P̂ pipe,∆T̂ well,∆T̂ pipe ← ComputeObjectiveFunction(ϕwell

P , ϕpipe
P , ϕwell

T , ϕpipe
T )

18: ∆F ← |F − F0|
19: Niter ← Niter + 1
20: end while
21: end procedure
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Algorithm 7 Part 2. Auxiliary functions.

22: function ComputeObjectiveFunction(ϕwell
P , ϕpipe

P , ϕwell
T , ϕpipe

T )
23: for i = 1 to Ntests do
24: ŷi ← RunSimulation(i, (ϕwell

P , ϕpipe
P , ϕwell

T , ϕpipe
T )⊤)

25: ∆P̂well
i ,∆P̂ pipe

i ,∆T̂well
i ,∆T̂ pipe

i ← Get∆s(ŷi)
26: end for
27: F ← ComputeError(ŷ1, ŷ2, . . . , ŷNtests) ▷ According to Eq. (6.1), for

example
28: return F,∆P̂ well,∆P̂ pipe,∆T̂ well,∆T̂ pipe

29: end function

30: function RunSimulation(i, ϕ)
31: ŷ← fi(ϕ) ▷ fi runs the flow simulation of the ith production test
32: return ŷ
33: end function

34: function Get∆s(ŷ)
35: (. . . , P̂PDG, . . . , P̂TPT , . . . , P̂out, . . . , T̂PDG, . . . , T̂TPT , . . . , T̂out)← ŷ

36: ∆P̂well ← P̂PDG − P̂TPT

37: ∆P̂ pipe ← P̂TPT − P̂out

38: ∆T̂well ← T̂PDG − T̂TPT

39: ∆T̂ pipe ← T̂TPT − T̂out

40: return ∆P̂well,∆P̂ pipe,∆T̂well,∆T̂ pipe

41: end function

in later iterations. Despite their varying convergence histories and final outcomes, all

algorithms attain a comparable final MAPE.

Table 6.3 compares the running time of the five different algorithms for this specific

multiphase flow model. Our implementation was written in Julia version 1.6.3 and

run on a computer system with an Intel Core i7 processor running at 3.6 GHz, 16

GB of RAM. Our proposed heuristic method is approximately 40 times faster than

the alternative algorithms. The elapsed time is measured in Julia using the @btime

macro of the BenchmarkTools package [25].

It is important to note that the cost analysis presented here does not include

the computational time required for training the hyperparameters, which can be

considerable. In this regard, an additional benefit of the proposed algorithm is its
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Figure 6.2: Convergence history of the tuning factors (ϕwell
P , ϕpipe

P , ϕwell
T , and ϕpipe

T )
using: (a) proposed heuristic method (this work), (b) adaptive moment estimation
(ADAM) [64], (c) Davidon-Fletcher-Powell method (DFP) [33, 40], (d) covariance
matrix adaptation evolution strategy (CMA-ES) [55], and (e) Hooke-Jeeves (HJ) [57].
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Figure 6.3: Convergence history of the Mean Absolute Percentage Error (MAPE) us-
ing the proposed heuristic method (this work),adaptive moment estimation (ADAM)
[64], Davidon-Fletcher-Powell method (DFP) [33, 40], covariance matrix adaptation
evolution strategy (CMA-ES) [55], and Hooke-Jeeves (HJ) [57].

Table 6.3: Comparison of computational time (normalized) for the tuning factors
regression performed with different optimization algorithms: ADAM, DFP, CMA-
ES, HJ, and proposed heuristic algorithm.

Optimization algorithm

Proposed heuristic
(this work) ADAM DFP CMA-ES HJ

Normalized
1 43.8 43.2 37.8 39.3

computational time
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lack of hyperparameters, further simplifying the optimization process.

In summary, the heuristic demonstrates a competitive prediction MAPE in com-

parison to alternative optimization algorithms while being an order of magnitude

faster. When contrasted with Hooke-Jeeves (the alternative algorithm yielding the

smallest error), the heuristic method is 37.8 times faster and attains a MAPE that is

13% higher.

We further explore a two-step optimization approach, wherein the heuristic solu-

tion serves as an informed initial guess for the generic optimization algorithms. This

strategy can be employed when a more refined optimization is necessary. Figure 6.4

illustrates the convergence history of the ADAM, DFP, CMA-ES, and HJ algorithms

when utilizing the heuristic solution as the initial guess. Notably, the DFP algorithm

is unable to further decrease the MAPE, resulting in the optimal point being the

initial guess itself. Figure 6.5 displays the MAPE at each iteration. Although the

HJ algorithm manages to further reduce the MAPE, the achieved reduction is not

substantial.

6.5 Conclusions

We propose an efficient, derivative-free heuristic algorithm specifically tailored for

adjusting tuning factors applied to pressure and temperature gradients predicted by

multiphase pipe-flow simulators. As the algorithm is designed for this particular prob-

lem, it provides a competitive approximate solution at a significantly reduced compu-

tational cost compared to generic optimization methods. By applying our heuristic

algorithm to the calibration of a real offshore oil production well, we demonstrated

its effectiveness and efficiency when compared to four alternative optimization algo-

rithms with different optimization strategies, namely: adaptive moment estimation

method, Davidon-Fletcher-Powell method, covariance matrix adaptation evolution

strategy method, and Hooke-Jeeves algorithm.

The proposed heuristic method not only achieves a highly competitive optimized
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Figure 6.4: Convergence history of the tuning factors (ϕwell
P , ϕpipe

P , ϕwell
T , and ϕpipe

T )
using the proposed heuristic for the initial guess of four optimization algorithms:
(a) adaptive moment estimation (ADAM) [64], (b) Davidon-Fletcher-Powell method
(DFP) [33, 40], (c) covariance matrix adaptation evolution strategy (CMA-ES) [55],
and (d) Hooke-Jeeves (HJ) [57].
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Figure 6.5: Convergence history of the Mean Absolute Percentage Error (MAPE)
using the proposed heuristic for the initial guess of four optimization algorithms:
adaptive moment estimation (ADAM) [64], Davidon-Fletcher-Powell method (DFP)
[33, 40], covariance matrix adaptation evolution strategy (CMA-ES) [55], and Hooke-
Jeeves (HJ) [57].
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outcome but also accomplishes this task approximately 40 times faster than the al-

ternative algorithms. Moreover, the algorithm does not rely on derivatives or hy-

perparameters, which simplifies the optimization process and further enhances its

computational efficiency. We also explore a two-step optimization approach, wherein

the heuristic solution serves as an informed initial guess for the generic optimization

algorithms.

Accurate prediction of pipe flow behavior across the diverse conditions encoun-

tered in oil and gas fields is a complex task. Often, tuning factors must be applied

to flow models to improve their accuracy and predictability by aligning them with

available measurements. By incorporating a history of production tests during model

calibration, the refined model is expected to better represent the underlying physics

of the flow problem. The proposed heuristic algorithm offers a practical and compu-

tationally efficient means to achieve these improvements, enabling enhanced design,

operation, and optimization of production/injection systems in the energy industry.



Chapter 7

Overall Conclusions and Future

Work

7.1 Conclusions and Discussion

This dissertation examined uncertainties associated with complex fluid models through

various perspectives. In particular, we scrutinized uncertainties arising from model

selection, uncertain model inputs (i.e., parametric uncertainty), and uncertain models

(i.e., structural uncertainty).

In Chapter 3, we explored the uncertainty in fluid model selection, focusing on

empirical models for the the solution gas-oil ratio. We established that existing mod-

els for this property are insufficient in accurately predicting specific reservoir fluid

compositions. Consequently, we proposed a generalized model for the gas-oil solution

ratio of hydrocarbon reservoir fluid that exhibits superior performance across our

database.

In Chapter 4, we showed the influence of subjective choices, such as optimization

algorithms and initial guesses used in the equation of state regression, on resulting

predictions of the reservoir fluid’s thermophysical behavior. We suggested a prob-

abilistic approach to treating the heaviest hydrocarbon properties to quantify the

predictive uncertainty of the resulting fluid models.

In Chapter 5, we examined the consequences of uncertainties in input parameters

139
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to fluid models on crucial flow predictions, specifically focusing on cumulative pro-

duction. We introduced a comprehensive framework for quantifying the predictive

uncertainty of multiphase pipe-flow models, accounting for correlated random inputs.

In Chapter 6, we addressed pipe-flow model calibration to field data using tuning

factors, a common technique in the oil and gas industry to enhance the accuracy and

predictability of such models. We presented an affordable, efficient, and derivative-

free heuristic algorithm specifically tailored for adjusting tuning factors applied to

pressure and temperature gradients predicted by multiphase pipe-flow simulators.

This research underscores the significance of quantifying predictive uncertainties

in fluid models. We hope that our findings will contribute to an improved under-

standing and management of uncertainties in reservoir fluid modeling. A thorough

characterization and understanding of predictive uncertainty in fluid models hold

significant implications for enhancing the accuracy and reliability of reservoir and

flow assurance engineering simulations, ultimately fostering efficient and sustainable

management of production and injection systems.

7.2 Future work

While specific avenues for future work have been outlined in each chapter, there are

several general directions that can further enhance the probabilistic characterization

of flow and fluid model predictions. Potential future work includes:

• Considering the variability in predictions offered by different empirical fluid

models, as observed in Chapter 3, the exploration of Bayesian Model Averaging

(BMA) and Bayesian Model Selection (BMS) methods could provide valuable

insights.

• Further investigating the impact of uncertainties in fluid model selection on

reservoir and pipe-flow simulations can lead to a better understanding of their

implications.

• Evaluating the proposed empirical model for the solution gas-oil ratio property

using an extended database will help in validating its effectiveness.
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• Exploring variations in the equation of state regression process, such as incor-

porating the Cplus fraction expansion and lumping procedures, and examining

their impact on the fluid model’s predictive uncertainty.

• Developing a framework to characterize the joint distribution of unknown fluid

model parameters, specifically tailored for the production system under inves-

tigation, can improve prediction accuracy.

• For characterizing the uncertainty in cumulative production, incorporating a

wider range of unknown inputs, from reservoir descriptions to the fluid models

selection, can offer a more comprehensive understanding.

• Integrating reservoir and pipe-flow models into the analysis of probabilistic fore-

casting for cumulative production of reservoir fluid with uncertain properties

can provide more holistic insights into the system’s behavior.

• Assessing the influence of equation of state predictive uncertainty on the uncer-

tainty in porous media and pipe-flow simulation outcomes.



Appendix A

Implemented Rs BO models

The nine Rs models [7, 9, 11, 48, 68, 98, 118, 128, 129] implemented in Chapter 3

are reported below. In the upcoming equations, following this thesis notation unless

stated otherwise, Rs is the solution gas-oil ratio in scf/STB, Rsb is the reservoir fluid

gas-oil ratio in scf/STB, γg is the gas specific gravity, γAPI is the oil API gravity, P

is the pressure in psia, and T is the temperature in oF.

Al-Marhoun [7]:

Rs =
P 1.398441 γ2.626048

g (γAPI + 131.5)4.396279

1.914 510× 106 (T + 460)1.855130
(A.1)

Al-Shammasi [9]:

Rs =
P 1.275972 (γAPI + 131.5)7.052572

1.473 546× 1015 γg (T + 460)
exp

(
332.4663 γg
γAPI + 131.5

)
(A.2)

142



APPENDIX A. IMPLEMENTED RS BO MODELS 143

Alakbari et al. [11]: Rs is obtained by solving the nonlinear system of equations

(Eqs. A.3 to A.8).

A1 =4.36× 103 − 88.1γAPI − 5.1× 103γg + 8.37Rs + 71.5γgγAPI

− 0.0857RsγAPI − 1.74Rsγg + 0.359γ2
API + 969γ2

g − 0.000533R2
s

(A.3)

A2 =933 + 1.2T − 43.4γAPI + 5.83Rs + 0.113γAPIT + 0.00387RsT

− 0.0706RsγAPI − 0.0112T 2 + 0.207γ2
API − 0.000792R2

s

(A.4)

A3 =929− 34.6γAPI + 6.55Rs − 0.0719RsγAPI + 0.371γ2
API

− 0.000648R2
s

(A.5)

A4 =− 385 + 0.581A1 + 5.21T − 0.0217Rs − 0.00132TA1 − 0.00173RsA1

+ 0.00848RsT + 0.000405A2
1 − 0.00989T 2 + 0.0016R2

s

(A.6)

A5 =− 51.4− 0.253A3 + 0.773A2 + 0.526A1 + 0.000949A2A3

− 9.93× 10−5A1A3 − 0.000614A1A2 − 0.000625A2
3

− 8.53× 10−5A2
2 + 0.000489A2

1

(A.7)

P =− 66.1 + 0.183A5 + 0.82A4 + 0.721T − 0.00287A4A5 − 0.00307TA5

+ 0.00334TA4 + 0.00157A2
5 + 0.00129A2

4 − 0.00326T 2 + 14.7
(A.8)

Glasø [48]:

Rs = γg

(
p∗ γ0.989

API

T 0.172

)1.2255

(A.9)

where p∗ is given by Eq. (A.10), in which pcorr (Eq. A.11) is the corrected pressure

through the correction factors fCO2 , fN2 , fH2S (Eqs. A.12-A.14) to account for the

presence of CO2, N2 and H2S, respectively. The CO2, N2 and H2S molar fractions in
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the surface gas are yCO2 , yN2 , and yH2S, respectively.

p∗ =10
2.8869−1.6546

√
5.1797−1.2087 log

(
pcorr

)
(A.10)

pcorr =
p

fCO2fN2fH2S

(A.11)

fCO2 =1.0− 693.8 yCO2 T−1.553 (A.12)

fN2 =1.0 +
[
(−2.65× 10−4γAPI + 5.5× 10−3)T + 0.0931γAPI − 0.8295

]
yN2

+ (1.954× 10−11γ4.699
API T + 0.027γAPI − 2.366)y2N2

(A.13)

fH2S =1.0− (0.9035 + 0.0015γAPI)yH2S + 0.019(45− γAPI)y
2
H2S

(A.14)

Glaso proposes correcting the flash γAPI for paraffinicity. However, this correction

worsened the results in 91% of the cases. Therefore, it is not included here.

Lasater [68]:

Rs =
1.878 483 25× 107yg

(1− yg)(γAPI + 131.5)Mo

(A.15)

pf =
P γg

T + 459.6
(A.16)

where yg is obtained from pf (Eq. A.16) and the chart presented in Fig. 2 of Lasater’s

[68] original paper. We use Whitson and Brulé’s [133] curve fitting (Eq. A.17) for

the original chart.

pf =

{
0.83918 × 101.17664 yg yg

0.57246 yg ≤ 0.6

0.83918 × 101.08000 yg yg
0.31109 yg > 0.6

(A.17)

The original relationship between γAPI and Mo is also graphical and is shown in

Figure A.1 (black curve). For the sake of completion, we show three alternative curve

fittings of Lasater’s original chart in Figure A.1. The fittings proposed by Almeida

[14] and Cragoe [31] are given in Eqs. (A.18) and (A.19) respectively. The last is rec-

ommended by Whitson and Brulé [133]. The commercial flow simulator PIPESIM®

version 2015 calculates Mo through Eq (A.20).
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Figure A.1: Adaptation of Lasater’s [68] original chart for the relationship between
the stock-tank oil gravity (◦API) and the effective molecular weight (Mo) superposed
by the curve fittings proposed by Cragoe [31], Almeida [14], and Pipesim® v.2015
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Mo =558.16 + 1.1025γAPI − 0.50033γ2
API

+ 8.3259× 10−3γ3
API − 3.8688× 10−5γ4

API

(A.18)

Mo =
6084

γAPI − 5.9
(A.19)

Mo =677.3893− 13.2161 ◦API + 0.024775 ◦API2 + 0.00067851◦API3 (A.20)

It is clear that Almeida gives a better representation of the original Lasater’s

chart. Moreover, Cragoes’s equation gives unrealistic Mo values for low values of

γAPI. Al-Shammasi [9] also presents fitting equations, but they are less precise than

Almeida’s since they involve 2nd degree polynomials.

In this dissertation,Mo follows Eq. (A.18), and yg is obtained by solving Eq. (A.17)

[133], in which pf is given by Eq. (A.16).

Petrosky and Farshad [98]:

Rs =

[(
P

112.727
+ 12.340

)
γ0.8439
g 107.916×10−4γ1.5410

API −4.561×10−5T 1.3911

]1.73184
(A.21)

Standing [118, 117]:

Rs = γg

[(
P

18.2
+ 1.4

)
100.0125γAPI−0.00091T

]1.2048
(A.22)
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Vazquez and Beggs [128]:

Rs = C1dgsP
C2 exp

(
C3

γAPI

T + 460

)
(A.23)

where C1, C2, and C3 are constants, respectively equal to 0.0362, 1.0937, 25.7240

for API ≤ 30; and to 0.0178, 1.1870, 23.9310 for API > 30. The term dgs is the

corrected gas gravity for separator conditions of 100 psig, given by Eq. (A.24) with

Tref = 60oF and Pref = 14.7 psia.

dgs = γg

[
1 + 5.912× 10−5γAPI Tref log

(
pref
114.7

)]
(A.24)

Velarde et al. [129]:

Rs =

[
a1

(
P − 14.7

Pb − 14.7

)a2

+ (1− a1)

(
P − 14.7

Pb − 14.7

)a3
]
GOR (A.25)

a1 = A0 γA1
g γA2

API T
A3 (Pb − 14.7)A4 (A.26)

a2 = B0 γB1
g γB2

API T
B3 (Pb − 14.7)B4 (A.27)

a3 = C0 γC1
g γC2

API T
C3 (Pb − 14.7)C4 (A.28)

where the coefficients (A0, ..., A4, B0, ..., B4, C0, ..., C4) are given below and Pb is the

bubble point pressure in psia. In the lack of measured data, Pb is estimated through

Eq. (A.29), in which γgs is the gas gravity at (unspecified) separator conditions and

considered in this study to be equal to γg.

A0 = 9.73× 10−7 B0 = 0.022339 C0 = 0.725167
A1 = 1.672608 B1 = −1.004750 C1 = −1.485480
A2 = 0.929870 B2 = 0.337711 C2 = −0.164741
A3 = 0.247235 B3 = 0.132795 C3 = −0.091330
A4 = 1.056052 B4 = 0.302065 C4 = 0.047094
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Pb = 1091.47
[
R0.081465

sb γ−0.161488
gs 100.013098T

0.282372−8.2×10−6γ2.176124
API − 0.740152

]5.354891
(A.29)
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for Redlich-Kwong-Soave volumes. Fluid Phase Equilibria, 8(1):7–23, 1982.



BIBLIOGRAPHY 159

[96] Ding-Yu Peng and Donald B Robinson. A new two-constant equation of state.

Industrial & Engineering Chemistry Fundamentals, 15(1):59–64, 1976.
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A proper cubic EoS for modelling fluids involved in the design and operation

of carbon dioxide capture and storage (CCS) processes. International Journal

of Greenhouse Gas Control, 56:126–154, 2017.

[138] H.-J. Yang, F. Boso, H. A. Tchelepi, and D. M. Tartakovsky. Method of dis-

tributions for quantification of geologic uncertainty in flow simulations. Water

Resources Research, 56(7):e2020WR027643, 2020.

[139] H.-J. Yang, H. A. Tchelepi, and D. M. Tartakovsky. Method of distribu-

tions for two-phase flow in heterogeneous porous media. Water Resour. Res.,

58(12):e2022WR032607, 2022.

[140] Larry C Young. Compositional reservoir simulation: A review. SPE Journal,

pages 1–47, 2022.

[141] Zhixue Zheng, Yuan Di, and Enyi Yu. A dl-kf modeling for acceleration of

flash calculations in phase equilibrium using deep learning methods. Available

at SSRN 3991785, 2023.

[142] RG Ziervogel and BE Poling. A simple method for constructing phase envelopes

for multicomponent mixtures. Fluid Phase Equilibria, 11(2):127–135, 1983.

[143] Novak Zuber and J ASME Findlay. Average volumetric concentration in two-

phase flow systems. J. Heat Transf.-Trans. ASME, 87:453–468, 1965.

[144] Julian Y Zuo and Dan Zhang. Plus fraction characterization and PVT data

regression for reservoir fluids near critical conditions. In SPE Asia Pacific Oil

and Gas Conference and Exhibition, pages SPE–64520–MS. OnePetro, 2000.


	Abstract
	Acknowledgements
	Introduction
	Objectives
	Dissertation outline

	Review of reservoir fluid modeling
	Black Oil fluid modeling
	Compositional fluid modeling
	Characterization of hydrocarbon reservoir fluids
	Thermodynamic calculations
	Code implementation validation

	Oil PVT Experiments

	Uncertainty in fluid model selection
	Introduction
	Literature Review
	Methodology
	Data description
	Numerical implementation
	Error metrics

	Results
	Proposed model for Rs
	Numerical calculation example
	Error analysis

	Conclusion

	Uncertainty in compositional fluid modeling
	Introduction
	Methodology
	Problem formulation
	Alternative minimization strategies
	Numerical implementation
	Data description

	Results
	Optimization algorithm
	Initial guess

	Discussion
	Conclusions

	Uncertainty in empirical fluid modeling
	Introduction
	Sources of uncertainty in flow simulations
	Uncertainty quantification for flow simulations
	Global sensitivity analysis

	Methodology
	Probabilistic characterization of uncertain fluid properties
	Monte Carlo simulations
	Global sensitivity analysis
	Case study

	Results
	Monte Carlo simulations
	Sensitivity Analysis

	Conclusion

	Uncertainty in flow modeling
	Introduction
	Methodology
	Optimization problem formulation
	Alternative optimization strategies
	Case study

	Proposed optimization algorithm
	Results
	Conclusions

	Overall Conclusions and Future Work
	Conclusions and Discussion
	Future work

	Implemented Rs BO models

