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ABSTRACT OF THE DISSERTATION

Stochastic Analysis of Fluid Flows in Domains, whose Rough Surfaces are modeled as Random
Fields

by

Yawo Semanu Ezunkpe

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2018

Professor Daniel M. Tartakovsky, Chair
Professor Bo Li, Co-Chair

This dissertation deals with flows impacted by wall roughness and/or uncertain flow-

domain geometry. Specifically, it focuses on stochastic analysis of fluid flows in domains whose

rough surfaces are modeled as random fields. More broadly, this work addresses some of

the unresolved theoretical and practical questions concerning differential equations defined on

random domains. It has significant impact on geophysical and biological flows, and can be

extended to other areas where surface roughness affects fluid flows, such as nanoscale devices.

In the first part of this thesis, we present the background and the mathematical tools

used in our study. They were presented in a manner to help engineers, engineering students and
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practitionners to grasp the concepts.

The second part of this work discusses the stochastic modeling of Stokes flow in a channel

with rough walls. The adopted approach consists of regarding the rough surface as a random field

characterized by its statistical moments, a mapping of the stochastic domain of definition onto

a deterministic domain, and stochastic homogenization of the resulting differential equations

with random coefficients. This enables one to obtain closed-form expressions for the effective

or apparent viscosity in terms of the statistical moments characterizing the wall roughness to

fluid viscosity, and the Poiseuille number. The most important consequence of this analysis

is a rigorous explanation of why Stokes flows drastically change their behavior depending on

whether the flow takes place in a micro or macro channel. The results were validated using

Comsol multiphysics software to simulate flow through domain bounded at the top by smooth

wall and at the bottom by a sinusoidal wall with various amplitudes and different periods.

The third part deals with the application of the proposed approach to technology and life

science. In technology, we investigate the impacts of the roughness of the boundary surfaces on

the average flow thermal properties.

In the fourth and final part, we dicuss our findings and describe the future direction of

this work. This elucidates the mechanical effects that take place at the stochastic solid/fluid

interface in biological systems (blood/endothelial lining). This result has important implications

for biology, physiology and medicine, and micro/nano technology because these interfaces are

incredibly complex and difficult to quantify deterministically.
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Chapter 1

Introduction

The word “perfection” does not belong to this world and the idea that a model can be

built to describe perfectly or to explain with 100% accuracy any physical phenomenon is not

realistic. It is at least good to make an approximation or to predict within a margin of error

working model. We should not dig far into the litterature to find a corroborative statement from

Albert Einstein when he addressed the ”Pruissian Academy of Sciences in January of 1921.

“ As far as the laws of mathematics refer to reality, they are not certain; and as far as they

refer they are certain, they do not refer to relality.” It is therefore clear that using Stochastic

analysis would be the appropriate way to build model and it is trivial the title of this thesis. Fluid

mechanics in the course of its several decades of evolution, have focused attentively on the flow

field characterization upon the velocity fields and the dynamic pressure for a specific fluid and

for a given geometry. The majority of thermo-fluid problems in mainly engineering fields have

encountered major difficulties because of the complexity of the geometries of the flow domains.

Despite the availability of the technology, recents models and approaches that evolve over the

time still to be improved. The main difficulty always resides in the shapes of the fluid/solid

interface which often, lack a symmetry. Moreover, some of these problems are time dependent

and higher dimension problems make them even harder to deal with, see more complicated.

The irregulariry of the surface texture known as roughness was considered as a defection

which occurs on a surface of material. Often considered as a result of an accident it is therfore
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assumed to cause an imperfection of the material. Recently, it could be intentionally introduced.

Wall roughness affects a number of physical, biological, and chemical phenomena. In the natural

(macro-scale) environments, the surfaces of rock-fractures are highly irregular and non-smooth,

therefore impacting both the extraction of natural resources (such oil, gas, and water), and the

propagation of solute plumes[?, see, e.g.]brown1987fluid,brown1989transport,

zimmerman1991lubrication. At the micro-scale, with the miniaturization of traditional devices in

electro-mechanical systems, the roughness of the surfaces has an important role for the design [?].

Similarly, in computer technologies the hard drive head is suspended within a rough domain,

and concurrently dealing with rough surfaces becomes of paramount importance [?, ?]. In bio-

engineering, the effects of the endothelial tissues as determined by the irregularity of the surfaces

of the vessels can greatly alter the blood flows [?]. Such a state of affair notwithstanding, only

recently researchers have become more and more interested into studying the influence of rough

walls upon laminar flow. The main reason is that in channels of conventional size (the relative

roughness’s height is less or equal than 5%) the impact of the roughness could be neglected [?,

see e.g.]]moody1944friction,webb1994principl. However, this is not the case in numerous

situations of practical interest, where instead a correlation between the surface texture and the

flow variables has been clearly highlighted [?, see, e.g.]]brown1987fluid, brown1989transport,

kandlikar2005characterization.

The main difficulty related to modeling of Stokes flow in rough channels is about

the proper conceptualization of the geometry of the roughness. One approach consists into

representing the surface by simple geometrical shapes (e.g. sinusoidal, sawtooth, and cell).

However, such a methodology results in most of the cases too simplistic, and incapable to

mimic the complex structure of the roughness [?, ?, ?, ?, ?]. Alternatively, the fractal ap-

proach has been proposed by [?]. Nevertheless, all these studies have highlighted that the

pressure drop is largely influenced by the roughness of the wall, and a few perturbation ap-

proaches have been used to come up with a better characterization of the flow field [?, see,

e.g.]]plouraboue2004conductances,Tavakol2017ExtendedLT.
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Likewise, the Poiseuille number Po is also significantly affected by the wall’s roughness.

In particular, it was shown that Po may increase up to 2–3 times the Poiseuille number in case of

smooth surface [?, see]and references therein]kandlikar2005characterization. Another parameter

that is strongly influenced by the roughness of the wall is the friction factor [?]. However, the

above well defined geometrical shapes are not adequate to mimic the increase of the friction

factor due to the lack of available data. Finally, measured values are biased by experimental

errors, therefore rendering the roughness uncertain, and concurrently the corresponding Stokes

flow equations stochastic [?, ?, ?, ?].

In Chapter ??, we lay out some important concepts in mathematics definitions and

properties especially for vector space, tensors calculus,and random variables. The third chapter

?? deals with the study of the impact of wall roughness on the average behaviour Stokes flow in

channel with walls treated as random fields. This is followed by application in technology where

we invistigate the heat transfer in domain bounded by rough walls in chapter ??. And finally in

the conclusion ??, we present our recommendation and the future direction of this work.
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Chapter 2

Mathematical Review

2.1 Objective

During a faculty meeting at Yale university the famous Mathematician Josiah Willard

Gibbs was asked about the importance of mathematics in undergrad curriculum. He responded

with four words: “Mathematics is a language”. We stretch his view in here to give the priliminar-

ies on properties of vectors and tensors which are some of the specific languges often spoken in

mechanics of continuum medium. While we are aware of the plethora of books, where these

two concepts are well-detailled, we must admit that based on personal expreience, that there are

several reasons to give an a short overview in this section. Most importantly, it is beleived that

most of the mathematics textbooks cover these concepts in a way that they are unlikely to be

in the firm grasp of the majority of practitioners and engineering students or other technology

majors.

Our hope is to lay out the basic these concepts in a way to

• make it easier for the reader to understand the foregoing material without any mathematical

hindered,

• help refresh the readers on the concepts and notations,

• avoid a confusion on the notation
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2.2 Vectors and Vector Space

In mechanics of continium medium such fluid mechanics, the manipulation of vectors

is of great importance. Vectors can defined as quantities with magnitude, direction and has an

origin. Elegantly, we can define a vector as directed segment. Vectors are governed by rules.

Lets consider a set of vectors E associated with two operations addition (+) and multiplication

(·). Let assume that E is closed under the addition and multiplication by a scalar. i.e if x,y ∈ E ,

x+y ∈ E and for α ∈ R,y ∈ E , α ·x ∈ E . E is said to constitute a vector space over the field of

the real number R if E of vector elements in arbitrary order x, y, z... is such that the following

properties for addition in R and multiplication by scalar are satisfied:

x+y = y+x ∀x,y ∈ E commutativity of elelments (2.1)

x+(y+ z) = (x+y)+ z ∀x,y,z ∈ E associativity of elements (2.2)

x+0 = 0+x = x identity element of addition zero vector 0 (2.3)

∀x ∈ E , ∃−x ∈ E such that x+(−x) = 0 inverse element of addition (2.4)

∃1 ∈ R s.t ∀x ∈ E , 1 ·x = x identity of multiplication (2.5)

∀α,β ∈ R, ∀x ∈ E (α +β ) ·x = α ·x+β ·x distributivity + onto · (2.6)
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∀α ∈ R, ∀x,y ∈ E α · (x+y) = α ·x+α ·y distributivity of multiplication

onto addition
(2.7)

∀α,β ∈ R, ∀x ∈ E α(β ·x) = (αβ ) ·x associativity of scalar elements (2.8)

The element 0 is called null vector. By the mean of these eight properties, we defined the concept

of the vector space. We might give an example but the goal here is to refresh the readers minds.

However if we define x(x1,x2,x3, ....xn) and y (y1,y2,y3, ....yn) in n-dimensional space, we have

x+y = (x1 + y1,x2 + y2,x3 + y3, ...,xn + yn) and α ·x = (α · x1,α · x2,α · x3, ....α · xn)

Let us insert here the definition of the linear independence and a dimension of a space

vector. Consider n vectors x1,x2,x3, ....xn in a vector E . If αixi = 0 (Einstein notation adopted

here over n) implies that αi = 0 for all i = 1,2,3.....n, then x1,x2,x3, ....xn are said to be linearly

independent. One can say that the dimension of E is n and we note En

2.2.1 Basis

For an arbitrary n-dimensional vector u ∈ En suppose that there exists linearly indepen-

dent set of n vectors ε1,ε2,ε3, ...,εn. One can therefore xpress in vertue of the definition of the

dimension of vector space that

u =
n

∑
i=1

αiεi or u = αiεi Einstein notation (2.9)

. Any set of linearly independent vectors (ε1,ε2,ε3, ....εn) constitutes a basis in a vector space En.

It follows that any vector in the vector space En can be expressed as unique linear combination

the basis vectors. The more practical and familar example is the cartesian coordinate with basis

vectors (i, j,k).
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2.2.2 Scalar Multiplication of vectors

In this section, we are introducing the notion of scalar multiplication or dot product

known also as inner product.This operation is mapped as follow:

E ×E −→ R

(x,y) 7→ x ·y

(2.10)

and can be interpreted as given two vectors x and y in the vector space, the dot product is a scalar

(we often write))x ·y ∈ R. It has the folowing properties:

1. ∀x,y ∈ E ,x ·y = y ·x

2. ∀x,y,z ∈ E ,∀α ∈ R,(αx) · (y+ z) = x · (αy)+α(x+ z)

3. ∀x, x ·x= x2 where x2 ≥ 0

In vertue of these aforementioned properties, we can write that with the coordinate basis vectors

εi that x ·y = xiyjεjεi. We can also relate dot product concept to the magnitude or Euclidean

norm of a vector as ‖x‖=
√

x ·x.

2.2.3 Orthogonality and Orthonormality

Two vectors are said to be orthogonal if their dot product is equal to zero. This means

in mathematical notation that x ·y = 0 ∀x,y ∈ R. This could also mean that the two vectors are

perpendicular if we define the cosine of the angle between the two vectors to be the ratio of

the dot product to the product of their magnitude, i.e. cosθ = (x ·y)/(‖x‖‖y‖) which will be

equal to zero. If in addition to the fact that the dot product between the two vectors are zero, we

have ‖x‖= 1 = ‖y‖ then x,y are said to be orthonormal. In more generalize way one, a basis

(ε1,ε2, ...,εn) in mathcalE is an orthonormal basis if εi ·εj = δij, where δi j is the Kronecker delta

defined as follow i = j⇒ δi j = 1 and 0 otherwise.
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2.2.4 Contravariant and Covariant Components of vectors:(Reciprocal
of a Basis)

Let assume that the vector u is an arbitrary vector in the vector space En. Recall

(ε1,ε2, ...,εn) and arbitrary basis in En. u is said to have a contravariant component if there exists

a set of number α i such that u = α iεi. If there exists another basis ε1,ε2, ...,εn of En such that u

can be written as linear combination of these basis vectors , i.e ∃α i ∈ R such that u = αiε
i, then

α i and αi are referred to as contravariant and covariant components of the vector u respectively.

It results that εi ·ε j = δ
j

i . One can easily obtain this result from u = α iεi and u = αiε
i. Forgoing,

we will be using Einstein notation to indicate the summation over the repeated indices otherwise

will be idicated. We also using {εi} to denote the arbitrary basis vectors ε1,ε2, ...,εn and {ε i} to

denote the set of vectors ε1,ε2, ...,εn uniquely defined in terms of {εi}.

2.3 Tensors

The concept of tensor is one of the important tools in mechanic of contnuum medium.

Since we have used intensively tensorial notation in the work presented in the future sections, we

judge it meaningful to shed light on some of the terms and properties used. The notion of tensor

is sometime mixed up with the notion of matrix, therefore we present the concept of tensor from

vectors and vector space standpoint to allow the engineers and practitioners who will be reading

this work. Suppose that there exists r,s ∈ N and a vector space with dimenstion r×s. We can

define a tensor as a product of two vector spaces Er and Es of dimensions r and s respectively

which we denote by Er⊗Es. In simple language, Tensors could be seen as higher–order vectors

with different components that depend upon their orders and the dimension of their space. We

limit our work to tensor description in Euclidean space since that is where most fluid mechanics

problems take place.
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2.3.1 Tensor Algebra

Consider Ai
jk, Bi

jk and Ci
jk three tensors defined in Euclidean space. It is shown that the

sum of two tensors is also a tensor and that is

Ci
jk = Ai

jk +Bi
jk. (2.11)

It is also shown that the product of two tensors is a tensor with higher order. For given Pi
jkl there

exists two variants Ai
j and Bkl such that

Pi
jkl = Ai

jBkl. (2.12)

2.3.2 Covariant and Contravariant metric Tensors

Consider the covariant basis {εi} and the contravariant basis {ε i} defined in the previous

section. The covariant metric gi j is defined as the pairwise dot product of the covariant basis i.e.

gi j = εi · εj and it plays a central role in tensor calculus. The reader will see in the forgoing work

how intensively this concept is used. In other literatures, it referred to as fundamental tensor. it

also possesses the property of symmetry that is gi j = g ji given the fact that the dot product is

comutative. it is an indication of measurement such as quatifying lenghts, areas and volumes as

one can see in the term ” Metric”. For example, if given two arbitrary vectors u and v, the dot

product of these two vectors can be expressed in term of the covariant metric tensor that is

u ·v = gijuivj and ‖u‖=
√

gijuiuj. (2.13)

The contravariant metric tensor (often referred to as metric tensor) is the conjugate metric

tensor or inverse metric tensor of the covariant metric tensor. It can be written as gi j = ε i · ε j

or gikgk j = δ i
j. Itis trivial to see that this is basically the inverse matrix of the {gi j}. As it

counterpart covariant metric tensor, Contravariant metric tensor gi j is symmetric i.e. (gi j = g ji

9



for all i, j ∈ N. It can be shown that covariant basis view as matrix form is a positive definite

matrix. It also can be proven that {gi j} is positive definite.

2.3.3 Raising and Lowering of Indices

The raising and lowering of indices is a very important juggling mind exercise in tensor

calculus. generally speaking, since it is possible to write any basis vector as linear combination

of another basis vectors over the same space, we have

ε
i = gij

εj (2.14)

. In general manner, one can write

T i = Tjg ji, (2.15)

and the raising of the index is basically the contraction of an arbitrary tensor with the contravariant

metric tensor. similarly, the lowering of index is a contraction of a variant with the covariant

metric tensor.That is,

εi = gijε
j, (2.16)

which in general way writes

Ti = T jg ji. (2.17)

Here we give a scenario where for a tensor Ai
j, the upper index is lowered and the lower index is

raised. we have

Ak
l = Ai

jgilg jk (2.18)

2.3.4 Christoffel symbols and Covariant Derivative

It is worthy to point out that Christoffel symbol in any guesses is not a tensor. It captures

something very fundamental about the coordinates systems and how they are defined in space. it

captures the rate of change of the metric tensor in a way that it is always referred to as connecting
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element. if we denote by ξ i the curvilinear coordinate components, the variation of the basis

from one point to another is given by the ∂εi/∂ξ j. Since εi depend upon position, the partial

derivative can be expressed in terms of the set of the basis vectors and a set of other quantities

called Christoffel symbols of second kind Γk
i j which results in dim3 coefficients.exemple if we

are dealing with two dimensional space, we will have 23 = 8 coefficients and if it is in dimension

three, then we will have 33 = 27 coefficients. We then have

∂εi
∂ξ j = Γ

k
i jεk (2.19)

. If we dot both sides of this expression by εk, we obtain that

Γ
k
i j =

∂εi
∂ξ j ε

k. (2.20)

Using the product rule, one can can show that

Γ
k
i j =

∂ (εk · εi)

∂ξj
− ∂εk

∂ξj
· εi (2.21)

Therefore it is trivial to note that

Γ
k
i j =−

∂εk

∂ξ j · εi (2.22)

An alternative and useful expression of the Christoffel symbols of second kind is

Γ
k
i j =

1
2

gkm
(

∂gmi

∂ξ j
+

∂gm j

∂ξi
−

∂gi j

∂ξm

)
. (2.23)

2.4 Random Variables

One cannot talk about stochastic analysis without talking about the basic concepts

involved in the study of this process. Therefore it is important to define some frequently used
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concepts and give some useful properties. Starting with the Random event, we can asy that a

random event is an outcome of an experiment of observation, a random variable is a quantity

taking on different values depending on the observations. However when the random functions

is merely time dependent, U(t) is said to be random process and random field if U(x) is solely

space- dependent. For example, erradic behavior of surfaces or boundaries causing fluctuation in

the velocity, temperature and pressure in a flow field domain. A random function is a function

U(x, t) of space x and or of time t that varies randomly with (x, t). Another important concept is

a Statistical Ensemble of a random function can be seen as the set of all possible realizations

u(x, t) of U(x). However it is noted here that any realization could be a subset of more than

one ensemble. More importantly, the moments of random functions are the useful tool to

characterize the random variable. Among the frequently used moments one can note the mean or

mathematical expectation which is the first moment, the variance and autocovariance which are

the second order moment.

〈U(x)〉=
∫

up(u;x)du (2.24)

The autovariance is defined by:

CU(x1,x2) = 〈U′(x1)U′(x2)〉=
∫∫

u1u2 p(u1,u2)du1du2−〈u1〉〈u2〉. (2.25)

The variance is also defined by:

σ
2
U(x) = CU(x,x) =

∫
u2 p(u;x)du−〈u(x)〉2 (2.26)

The autocorrelation coefficient can be written as:

ρU(x1,x2) =
CU(x1,x2)

σU(x1)σU(x2)
(2.27)
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Moreover, a given spatial random function is said to be stationary or homogeneous if given

x (a space coordinates), U(x) is insensitive to the vectors shift. Also said to be second order

stationary if the following three properties are valid.

〈U(x)〉= 〈U〉= constant (2.28)

CU(x,x+ r) = CU(r) = CU(−r) =⇒ symmetry (2.29)

σ
2
U(x) = CU(0) = constant (2.30)

which, in another words means that the covariance does not depend on the individual position in

space but depend upon the shift r.
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Chapter 3

Stokes Flow in channel with randomly
varying rough walls

3.1 Objective

Surface roughness is a key property affecting fluid flow in bounded domains. Its effect on

bulk flow is usually quantified by means of anempirical roughness coefficient which is introduced

into models that treat bounding surfaces as smooth. We present a new approach, which treats

the irregular geometry of rough walls as a random field, whose statistical properties (mean,

standard deviation, and spatial correlation) are inferred from measurements. The subsequent

stochastic mapping of a random flow domain onto its deterministic counterpart and stochastic

homogenization of the transformed Stokes equations yield an expression for the roughness

coefficient in terms of the wall’s statistical parameters. The analytical nature of our solutions

allows us to handle random surfaces with short correlations lengths, which cannot be treated by

numerical stochastic simulations.

3.2 Review Stokes flow

We consider an infinitesimal fluid element to possess a well-defined density ρ , pressure

p, and the velocity vector u(x, t) at a position x and at instant t. The substantial derivative D/Dt

14



is given by
D
Dt

=
∂

∂ t
+u ·∇ or

∂

∂ t
+ui

∂

∂xi
. (3.1)

3.2.1 Mass conservation

For the fluid particle considered, we assume it has a cubic form with sides dx1, dx2, dx3

and volume element is dx1dx2dx3. The rate of linear deformation in each of the direction of the

coordinate system is
∂u1

∂x1
dx1,

∂u2

∂x2
dx2,

∂u3

∂x3
dx3. (3.2)

By multiplying each of the linear deformation term by the area of by their perspective faces

which summmed up to zero, that is

∂u1

∂x1
dx1(dx2dx3)+

∂u2

∂x2
dx2(dx1dx3)+

∂u3

∂x3
dx3(dx1dx2) = 0. (3.3)

It is trivial that the elementary volume element dx1dx2dx3 is not zero, therefore by dividing the

latter equation by the volume element, one gets

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0≡ divu = 0, (3.4)

which is the continuity equation (conservation of mass) of a fluid with a constant density. The

Mass conservation states that the velocity cannot vary (increase or decrease ) in all three direction

at the same time together; thus

0 =
∂ρ

∂ t
+∇ · (ρu) or

∂ρ

∂ t
+

∂ui

∂xi
= 0. (3.5)

which for an impressible fluid reduced to

Dρ

Dt
= 0 =⇒ ∇ ·u = 0 (3.6)
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3.2.2 Equation of Motion

Assuming that the infinitesimal cubic fluid particle considered earlier has its origin

coincides with the origin of the coordinate system and whose sides are parallel to the principal

axis of the coordinate system. Let assume that there pressure force acting on it has different

components according to the normal surface they are applied to p1, p2 and p3. Eventually, since

the fluid has a viscosity, one may consider the shear stress denoted τ and has six components

τ12, τ21, τ31, τ13. τ32, τ23 for which the first subscript denotes the normal of the plane it is acting

on and the second the direction. When Newton’s second law of motion is applied to the fluid

elelment in a control volume under assumption of continuous medium, we can write that

ρ
Du
Dt

= ∇ · τ +F or ρ
Dui

Dt
=

∂τij

∂xj
+Fi, (3.7)

where the substantial or material derivative known also as convective derivative is defined as

D
Dt

=
∂

∂ t
+u ·∇ or

∂

∂ t
+ui

∂

∂xi
(3.8)

In Newtonian fluid, the strain rate or shear rate tensor e is produced by the deformation of the

fluid. It is the symmetric term of the velocity gradient tensor ∇u. The relationship between σi j

and the deformation rate isinstantaneous, linear, local and isotropic and is given by the expression

σ =−pI+2µe (3.9)

e =
1
2

[
(∇u)+(∇u)>

]
or eij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3.10)

In the recent expression, we denote the transpose by >. One must deduce that for an incompress-

ible fluid, the divergence free is applied and therefore, the trace of the rate of the deformation
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results in zero. This translates mathematically by

Tr(e) = 0 =⇒ e11 + e22 + e33 = 0 or eii = 0, summation applied (3.11)

From the Newton’s constitutive relations, we can write that the shear stress tensor is proportional

to the strain rate tensor and that is τ = 2µe, the fluid equation can be written as

ρ

(
∂ui

∂ t
+uk

∂ui

∂xk

)
=− ∂ p

∂xi
+µ

∂ 2ui

∂xk∂xk
(3.12)

Realizing that in case of incompressibility, that the continuity equation leads to divergence free

∇ ·u = 0, that is:
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (3.13)

In vertue of the mass conservation, we can write in contract form using ∇2 in component form

that:
Du1

Dt
=− ∂

ρ∂x1
(p+ γh)+ν∇

2u1 (3.14)

Du1

Dt
=− ∂

ρ∂x2
(p+ γh)+ν∇

2u2 (3.15)

Du1

Dt
=− ∂

ρ∂x3
(p+ γh)+ν∇

2u3 (3.16)

These equations are known as equations of Navier–Stokes for incompressible flow,

constant viscosity with general form

ρ

(
∂u
∂ t

+u ·∇u
)
= µ∇

2u+ f−∇p (3.17)

∇ ·u = 0. (3.18)
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Very often the force is related to the potential function φ such that f = ∇φ and incorporated in

the modified pressure term. Strictly speaking, the assumption of uniform movement of viscous

fluid prohibits the possibility of local variation which will result in absence of fluctuation in the

velocity. This in fact translates to the motion of the fluid particles in layers known as laminae,

owing the term or expression of ”laminar flow”. Aditionally, if the acceleration of the fluid

particle due to the time variation of the velocity term vanishes for example if there is no sudden

acceleration or an absence of pulsatile regime etc.. which means that the flow is time independent

and characterized as contant flow in time; that is Steady state. Also in case that the convective

acceleration of the fluid particle due to a spatial variation of the velocity vector (note that this

is independently of whether the flow is steady or unsteady) is zero(inertial force is negligible

) vis -a-vis of the viscous force and the pressure force, i.e very Low Reynolds number from

(dimensional analysis), we have a simplified form or Navier-Stokes equations known as Stokes

equation. The equations of motion maybe written as

∇ ·σ = 0 or
∂σik
∂xk

= 0 =⇒ ∇ · (τ−pI) = 0 or
∂τik

∂xk
−δik

∂p
∂xk

= 0 (3.19)

where σ is the Cauchy stress tensor. which can be written in more convenient way relating the

pressure to the velocity for a Newtonian fluid as

µ∇
2u−∇p = 0 or µ

∂ 2ui

∂xk∂xk
− ∂p

∂xi
= 0 (3.20)

One of the most intriguing fact about the Laminar Stokes flow is that the pattern of the stream

lines in the horizontal plane (x1x2) in this case will remain invariant across the flow. Despite the

variation in the speed in the x3 direction, it’s improtant to point out that the hydrostatic pressure

is normally distributed (underlining the fact that they are normal to the boundary surfaces),

therefore the pressure gradient is independent of x3. The stationary Stokes flows are basically

flows which ocur at very low Reynolds number which could be seen as a balance of the pressure
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gradient and the viscous friction independently of the time. It is shown that taking divergence of

the Stokes equations leads to an expression of the harmonic function of the pressure. Foregoing,

we consider only the Stokes flows described in above ??. Note that a typical Stokes flow problem

leads to incompressible, Newtonian with constant density and viscosity in the flow domain

associated withe the boundary conditions. some properties such as linearity, reversibility and the

uniqueness related to Stokes flows help a lot in solving Stokes flows problems. The linearlity is

used in decomposing and writing the Stokes problems as linear combination of subproblems,

making it easy to find an individual solution. Also the fact that the Stokes flow is reversible could

be viewed as a scenario where it is very difficult to mix two fluids otherwise turbulent induced.

This leads to the uniqueness of the solution

3.3 Problem Formulation

We consider steady, isothermal and fully developed Stokes flow of an incompressible

fluid with viscosity µ and density ρ . The flow takes place in an infinite horizontal channel and

is driven by pressure gradient ∇p. Flow velocity u≡ (u1,u2,u3)
> is described by equations of

conservation of momentum and mass,

µ∇
2u = ∇p, ∇ ·u = 0, x = (x,y,z)> ∈D . (3.21)

If the channel’s aperture were constant, b, and impermeable walls were perfectly smooth, these

equations would give rise to a parabolic velocity profile, i.e., the Hagen-Poiseuille law. Our

focus, instead, is on a channel D = {x : |x|< ∞, |y|< ∞,zl < z < zu}, which is bounded at the

top and bottom by rough surfaces zu ≡ zu(x,y) and zl ≡ zl(x,y), respectively. The small-scale

erratic variability of these surfaces is modeled by treating them as random fields, zu ≡ zu(x,y,ω)

and zl ≡ zl(x,y,ω), where ω is a realization or “coordinate” in the sample space Ω.

We assume these fields and, hence, the random channel aperture w(x,y,ω)≡ zu(x,y,ω)−

zl(x,y,ω) to be second-order stationary (statistically homogeneous), i.e., to have constant en-
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semble mean 〈w〉= b and variance σ2
w and a correlation function Cw(r) that depends only on the

distance between two points r =
√
(x1− x2)2 +(y1− y2)2 rather than on two points separately.

We also assume the random fields zu(x,y,ω) and zl(x,y,ω) to be differentiable with respect to x

and y, so that no-slip and no-flow boundary conditions are defined in each realization ω .

3.4 Domain Transformation

NOTE: We would like to notify the reader that some slight modifications have been

done to the conventional notations to avoid confusion and to make sense of some expression.

Hence cartesian coordinate is denoted (xi ≡ x,y,z) respectively for i = 1,2,3; The curvilinear

coordinate system (xi ≡ ξi) for i = 1,2,3 in the same way the contravariant component (ui ≡ vi)

for i = 1,2,3. Instead of solving the Stokes equations on a random domain D we map the latter

onto a deterministic domain A . The central idea is the need to provide an algorithm in order

to develop expressions that are consistent and valid in both domains. This allows us to take

advantage of the existing methods of solving differential equations in a deterministic domain.

Specifically, we introduce a transformation of coordinates,

We introduce the dimensionless quantities:

x̂ =
x
b
, ŷ =

y
b
, ẑ =

z
b
. (3.22)

ξ1 = x̂, ξ2 = ŷ, ξ3 =
ẑ− ẑl

ẑu− ẑl
(3.23)

and

û =
µ

b2ρg
u and ĥ =

h
b
=

p
bρg

which maps the random domain D onto A = {ξ : |ξ1|< ∞, |ξ2|< ∞,0≤ ξ3 ≤ 1}. where

we denote the Cartesian coordinate reference by (x,y,z) and the coordinate reference frame of the

new domain ξi. For any transformation or domain mapping, one needs to compute the Jacobian

20



which is need to scale the element from one domain to another.

J≡


∂ x̂
∂ξ1

∂ x̂
∂ξ2

∂ x̂
∂ξ3

∂ ŷ
∂ξ1

∂ ŷ
∂ξ2

∂ ŷ
∂ξ3

∂ ẑ
∂ξ1

∂ ẑ
∂ξ2

∂ ẑ
∂ξ3

=


1 0 0

0 1 0

ζ1 ζ2 w

 , ζ1 =
∂ ẑ
∂ξ1

, ζ2 =
∂ ẑ
∂ξ2

, (3.24)

∂ ẑ
∂ξ1

= (1−ξ3)
∂ ẑl

∂ξ1
+ξ3

∂ ẑu

∂ξ1
,

∂ ẑ
∂ξ2

= (1−ξ3)
∂ ẑl

∂ξ2
+ξ3

∂ ẑu

∂ξ2
(3.25)

and has a determinant w which is nonzero. The guiding principle of this transformation is the

fact that the fundamental physics laws are independent of the choice of coordinate system under

any circumstances. For the classic orthogonal coordinate system, if we denote by ds2 the element

of the differential line, one can write that:

ds2 = dxdx+dydy+dzdz or ds2 = (dx)2 +(dy)2 +(dz)2, (3.26)

which will be later used to define the metric elements. The basis vectors of the new coordinate

frame are defined as εi = ∂x/∂ξi. The covariant metric elements gi j = εi ·εj are calculated. Given

tha the determinant g of the metric tensor is related to the determinant w of the jacobian matrix by

the expression w =
√

g. It is trivial that the inverse of metric tensor called here conjugate tensor

gi j and is explicitly defined as gi j = ε i · ε j. They are symmetric and very important quantities

because both of these quantities relate contravariant quantities and covariant quantities in the

same reference system.
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3.4.1 Stokes equations transformed

In reality, Stokes equations can be expressed in any coordinate system as long as the

coordinate system is well defined.We know that the strain rate in local coordinate system is

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
≡ ei j =

1
2
(
∇iu j +∇ jui

)
(3.27)

Note here that in cartesian coordinate system, the covariant derivative is reduced to a simple

partial differentiation. To tansform the viscous term in the equation (??) to obtain its expression

in the new domain, we need to note first that τi j− pδi jin the new coordinate system becomes

τ i j−gi j p. From the relation τi j = 2µei j,we can write the expression of τ i j once we rewrite ei j

in the new coordinate frame which is E i j. We have :

E i j =
1
2
(gik

∇kv j +g jk
∇kvi), (3.28)

where ∇kv represents the covariant derivative of the contravriant velocity v with respect to ξk.

We have:

∇kvi =
∂vi

∂ξk
+Γ

i
jkv j. (3.29)

Here and foregoing, the usual notation vi;k which refers to the covariant derivative of the

contravariant velocity ∇kvi is used. We take the covariant derivative of E i j with respect to ξl . The

commutativity property of covariant differentiation in the Euclidean space allows us to simplify

the obtained result especially. Next we use the metrinillic property which states that the covariant

derivatives of the covariant metric and the contravariant metric vanishe , see [?].

E i j
;l =

1
2

(
gik(v j;k);l +g jk(vi;k);l

)
. (3.30)
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Finally, we let l = j and consequently (??) simplifies to

E i j
; j =

1
2

gik(vi;k); j, (3.31)

because gik(v j;k); j = 0 for divergence free which in this case is translates to v j; j = 0. The

implication of contracting l to j is to recover the complete expression of the viscous stess tensor

for incompressible and Newtonian fluid in this new coordinate system. We note that. Since the

(??) is reduced to evaluating the expression of (vi;k); j, which is found to be written as : Using

the definition of covariant derivative of a a given tensor T i
j tensor given as :

(T i
j );k =

∂T i
j

∂xi +Γ
i
kmT m

j −Γ
m
k jT

i
m, (3.32)

we can further expand the expression of (vi;k); j to obtain

(vi;k); j =
∂ 2vi

∂ξ jξk
−Γ

m
k j

∂vi

∂ξm
+Γ

i
jr

∂vr

∂ξk
+Γ

i
kr

∂vr

∂ξ j
+Γ

i
krΓ

r
jmvm

+
∂Γi

kr
∂ξ j

vr +Γ
i
jmΓ

m
krvr−Γ

n
jkΓ

i
nrvr−Γ

n
r jΓ

i
knvr,

(3.33)

This expression (??) can be re-arranged and grouped in way to further simplification by indices

juggling.

(vi;k); j =

(
∂ 2vi

∂ξ jξk
−Γ

m
k j

∂vi

∂ξm

)
+

(
Γ

i
jr

∂vr

∂ξk
+Γ

i
kr

∂vr

∂ξ j

)
+

(
∂Γi

kr
∂ξ j

vr +Γ
i
jmΓ

m
krvr−Γ

n
jkΓ

i
nrvr

)
−
(
Γ

n
r jΓ

i
knvr−Γ

i
krΓ

r
jmvm

) (3.34)

We then proceed to simplify (??) to give a more convenient and shorter expression.

2E i j
; j = ∇

2vi +2g jk
Γ

i
jr

∂vr

∂ξk
+g jk

(
∂Γi

kr
∂ξ j

+Γ
i
jmΓ

m
kr−Γ

n
jkΓ

i
nr

)
vr. (3.35)
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By adding and substracting ∂Γ
j
kr

∂ξi
, we notice that from Riemann - Christoffel theorem on Euclidean

space, one can write that

∂Γ
j
kr

∂ξi
−

∂Γ
j
ki

∂ξr
+

∂Γi
kr

∂ξ j
+Γ

i
jmΓ

m
kr−Γ

n
jkΓ

i
nr =

∂Γi
kr

∂ξ j
(3.36)

because
∂Γ

j
kr

∂ξi
−

∂Γ
j
ki

∂ξr
+Γ

j
imΓ

m
kr−Γ

n
ikΓ

j
nr = 0 (3.37)

Therefore,

E i j
; j =

1
2

{
∇

2vi +2g jk
Γ

i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr

}
. (3.38)

In Vertue of the viscous stress tensor to the strain rate relation: τ
i j
; j = 2µE i j

; j , where µ is the fluid

viscosity. We can write that

gi j ∂ ĥ
∂ξ j

= µ

(
∇

2vi +2g jk
Γ

i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr

)
. (3.39)

where

∇
2 = g jk ∂ 2

∂ξ j∂ξk
−g jk

Γ
m
jk

∂

∂ξm
, (3.40)

noted form (??) is the general expression of the laplacian in general curvilinear system which is

derived in [?] (pp.110) for more details. We further decompose the right hand side of this general

expression of Stokes equations as sum of Laplacian in the orthogonal coordinate system along

the principal axes and a force term:

gi j ∂ ĥ
∂ξ j

= ∇
2
⊥vi +

(
2g jk

Γ
i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr−g jk
Γ

m
jk

∂vi

∂ξm

)
+

(
g jk ∂ 2vi

∂ξ j∂ξk

)
k 6= j

, (3.41)

where

∇
2
⊥vi = g11 ∂ 2vi

∂ξ 2
1
+g22 ∂ 2vi

∂ξ 2
2
+g33 ∂ 2vi

∂ξ 2
3
. (3.42)
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We introduce the conservative force fi given by

fi =

(
2g jk

Γ
i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr−g jk
Γ

m
jk

∂vi

∂ξm

)
+

(
g jk ∂ 2vi

∂ξ j∂ξk

)
k 6= j

(3.43)

which can be related to the potential Φ via

gi j ∂ ĥ
∂ξ j
−gi j ∂Φ

∂ξ j
= ∇

2
⊥vi. (3.44)

The Stokes equations are then simplified to:


gi j ∂ ĥ

∂ξ j
− ∂Φ

∂ξ j
= ∇2

⊥vi,

1
g1/2

∂ (g1/2vi)
∂ξi

= 0
(3.45)

We define the dimensionless quantity ∂H/∂ξ j = gi j∂ ĥ/∂ξ j−gi j∂Φ/∂ξ j the modified

pressure gradientoverall flow field along the jth direction in the curvilinear system.. Thus the

mass-momentum conservation equations write:


∂H
∂ξ j

= g11 ∂ 2v j

∂ξ 2
1
+g22 ∂ 2v j

∂ξ 2
2
+g33 ∂ 2v j

∂ξ 2
3

∂ (wv j)
∂ξ j

= 0,
(3.46)

and since we are using dimensionless quantities, the µ appears implicitly in the v. The map-

ping introduced earlier is a one-to-one mapping and it is worth pointing out that by changing

coordinate system through a mapping, flow field remains invariant under no other additional

external influence. Thus the velocity field and the pressure force remain invariant under this

transformation. Also, to reduce the order to infinitesimal, we now consider the truncation of the

terms in note-8 using the expression ζ1&ζ2 in Appendix in the limit where the deformation on

ẑu and on ẑl are very small owing the finite linear term of ζ1,ζ2. Thus we can write metric with
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an approximation of g33 ≈ 1/w2, in components form


∂H
∂ξ j

=
∂ 2v j

∂ξ 2
1
+

∂ 2v j

∂ξ 2
2
+ 1

w2
∂ 2v j

∂ξ 2
3

(momentum),

∂ (wv j)
∂ξ j

= 0 (mass− conservation).
(3.47)

3.5 Ensemble Average

The first step to take in computing the moment of the differential equation is to perform the

Reynolds decomposition of all the intrinsic random variables:

v = 〈v〉+v′, H = 〈H〉+H′,

w = 〈w〉+w′, where 〈w〉= 1,

where brackets 〈·〉 represent the ensemble average or mathematical expectation of the intrinsic

variables, while the primed quantities indicate the zero-mean fluctuations.

Substituting these decomposed expressions in the momentum and continuity equations

while neglecting the higher order moment terms (third, fourth..), and taking the ensemble average,

we obtain: 
∇2〈v〉+σ2

w∇2
h〈v〉+2〈w′∇2

hv′〉= ∇〈H〉+σ2
w∇〈H〉+2〈w′∇H′〉,

∇ · 〈v〉+∇ · 〈w′v′〉= 0.
(3.48)

We subtract equations (??) from (??), and multiply the obtained expressions by w′(ξ ) and then
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take the ensemble average. The expressions obtained are:


2σ2

ε ∇2
h〈v〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2σ2
w∇〈H〉+ 〈w′∇H′〉,

〈∇ ·v〉+∇ ·Cwv = 0.
(3.49)

Similar algebraic technique is perfomed; the result is being multiplied by w′(ζ ) at another

location ζ and we then take the expectation to obtain the covariance Cw and cross-covariance

Cwv: 
2Cw∇2

h〈v〉+∇2Cwv = 2Cw∇〈H〉+∇CwH,

∇ ·Cwv = 0.
(3.50)

Putting together and re-writing these expressions (??) – (??) as a system of equations gives:



∇2〈v〉+σ2
w∇2

h〈v〉+2〈w′∇2
hv′〉= ∇〈H〉+σ2

w∇〈H〉+2〈w′∇H′〉,

2σ2
w∇2

h〈v〉+ 〈w′∇2
hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2σ2
w∇〈H〉+ 〈w′∇H′〉,

2Cw∇2
h〈v〉+∇2Cwv = 2Cw∇〈H〉+∇CwH,

〈∇ ·v〉+∇ ·Cwv = 0,

∇ ·Cwv = 0.

(3.51)

3.6 Perturbation

As often used to analyze problems involving non linear cases, perturbation technique is

also used in stochastic analysis. the central idea is to Taylor-expanded the functions and operators

involved about their expected values. Perturbation approach are applicable when the parametric
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variations are ’weak’ or ’small’. In other words, given that the aperture function w, velocity

function and the pressure head function are assumed to be expanded in asymptotic series in very

small parameters σ2
w� 1, we represent each intrinsic variable as an infinite sum as follows:

v =
∞

∑
k=0

σ
2k
w v(k), H =

∞

∑
k=0

σ
2k
w H(k),

〈v〉=
∞

∑
k=0

σ
2k
w 〈v(k)〉, 〈H〉=

∞

∑
k=0

σ
2k
w 〈H(k)〉,

(3.52)

where the superscript (k) indicates terms of the k-th order in σ2
w Replacing and collecting the

same order terms of σw, one gets for zero order (σ0
w):


∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0.
(3.53)

We have for second order i.e (σ2
w):



∇2〈v(1)〉+∇2
h〈v(0)〉+2〈w′∇2

hv′〉= ∇〈H(1)〉+∇〈H(0)〉+2〈w′∇H′〉,

2∇2
h〈v(0)〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2∇〈H(0)〉+ 〈w′∇H′〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(3.54)
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Rearranging (??) & (??) for convenience,we have



∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0,

∇2〈v(1)〉+∇2
h〈v(0)〉+2〈w′∇2

hv′〉= ∇〈H(1)〉+∇〈H(0)〉+2〈w′∇H′〉,

2∇2
h〈v(0)〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2∇〈H(0)〉+ 〈w′∇H′〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(3.55)

Multiplying the 4th equation by minus two then adding it to the third equation of (??) to eliminate

some terms in order to solve the system. The resulting system writes:



∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0,

∇2〈v(1)〉−3∇2
h〈v(0)〉−2

∂ 2Cwv

∂ξ 2
3

= ∇〈H(1)〉−3∇〈H(0)〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(3.56)

For a fully developed and unidirectional Poiseuille flow, we have:

∇
2
h〈v(0)〉= 0 = ∇〈H(1)〉,

〈v(0)〉 ≡ (〈v(0)1 〉,0,0) =
J
2

ξ3(1−ξ3), −J≡ ∇〈H〉= ∂ 〈H(0)〉
∂ξ1

.
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Substituting the latter in the system from ??, we have :



∇2〈v(0)〉=−J,

∇2〈v(1)〉= 3J+2
∂ 2Cwv

∂ξ 2
3

,

∇2Cwv =−2JCw +∇CwH ,

∇ ·Cwv = 0.

(3.57)

To obtain the expression for ∇2〈v(1)〉 in the second equation of ??, it is necessary to solve the

third equation in terms of J and Cw. In particular, for the special case where CwH = 0 , we have:


∇2Cwv =−2CwJ |ξ1|< ∞, |ξ2|< ∞, and 0≤ ξ3 ≤ 1,

Cwv(ξ1,ξ2,0) = 0,

Cwv(ξ1,ξ2,1) = 0.

(3.58)

3.7 Green’s Function

Let F be a smooth function in Rn with n≥ 1, the divergence theorem states that :

∫
Ω

∇ ·Fdx =
∫

∂Ω

F ·NdS (3.59)

where the Ω⊂ Rd and ∂Ω is the boundary . N denotes the unit normal vector orthogonal to the

tangent to the boundary contour. And in vertue of the Green’s identities (first and second),

∫
Ω

v
∂u
∂N

dS =
∫

Ω

(v∇
2u+∇u ·∇v)dx, first identity (3.60)
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∫
Ω

(v
∂u
∂N
−u

∂v
∂N

)dS =
∫

Ω

(v∇
2u−u ·∇2v)dx, second identity (3.61)

The fundamental solution for : 
−∇2u = f , x ∈Ω

u = g, x ∈ ∂Ω

(3.62)

is given by:

u(x) =−
∫

Ω

G(x,y)f(x)dy−
∫

∂Ω

g(y)
∂G(x,y)

∂Ny
dSy x ∈Ω (3.63)

where the green’s function satisfies


−∇2G(x,y) = δ d(x−y) y ∈Ω

G(x,y) = 0 y ∈ ∂Ω

(3.64)

Let G be the Green’s function associated with eq.?? which is defined as follows:


∇2G = δ (ξ −ζ ) |ξ1|< ∞, |ξ2|< ∞, and 0≤ ξ3 ≤ 1,

G(ξ1,ξ2,0,ζ1,ζ2,ζ3) = 0, |ξ1|< ∞, |ξ2|< ∞,

G(ξ1,ξ2,1,ζ1,ζ2,ζ3) = 0, |ξ1|< ∞, |ξ2|< ∞.

(3.65)

The Green’s function is given by

G(ξ ,ζ ) =
1

4π

∞

∑
−∞

1√
(ξ1−ζ1)2 +(ξ2−ζ2)2 +(ξ3−ζ3−2n)2

− 1√
(ξ1−ζ1)2 +(ξ2−ζ2)2 +(ξ3 +ζ3−2n)2

.

31



[?]. Let ρw(‖ζ −η‖) be the correlation function of Cw(ζ ,η):

Cw(ζ ,η) = σ
2
wρw(‖ζ −η‖). (3.66)

From (??)–(??),

∇
2〈v(1)〉= 3J−4J

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη . (3.67)

In particular, up to the first order we have:

∇
2〈v〉= ∇

2

(
1

∑
k=0

σ
2k
w 〈v(k)〉

)
= ∇

2〈v(0)〉+σ
2
w∇

2〈v(1)〉. (3.68)

It follows from (??) that

∇
2〈v〉=−J+3σ

2
wJ−4σ

2
wJ
∫

Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη , (3.69)

where σ2
w

(
3J−4J

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη

)
is the correction term.

By analogy to the classical Stokes flow, one can express the dimensionless effective

viscosity as

µeff =
1

1−σ2
w

(
3−4

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη

) , (3.70)

where

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη =
∫ 1

0

∫
∞

−∞

∫
∞

−∞

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3. (3.71)
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and

∂ 2G
∂ξ 2

3
=− 1

4π

∞

∑
−∞

1(
(ξ3 +η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 3

2
(3.72)

− 1(
(ξ3−η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 3

2

− 3(2ξ3 +2η3−4n)2

4
(
(ξ3 +η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 5

2

+
3(2ξ3−2η3−4n)2

4
(
(ξ3−η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 5

2
.

We obtain the general form of the effective viscosity:

µeff =
1

1−σ2
w

(
3−4

∫ 1
0
∫

∞

−∞

∫
∞

−∞
ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3

) . (3.73)

We also check if the variation of the µe f f is sensitive to the variation in ξ3 direction by computing

the average effective viscosity which is given by:

〈µeff〉=
∫ 1

0

 1

1−σ2
w

(
3−4

∫ 1
0
∫

∞

−∞

∫
∞

−∞
ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3

)
dξ3. (3.74)

3.8 Results and Discussion

Figure ?? shows the effective viscosity versus the relative roughness height σw over the

range 0 ≤ σw ≤ 0.35 which is relevant to applications. We observe that in the hypothetical limit

of ideal smooth wall geometry, the corresponding contribution to adjust the scaled viscosity

vanishes.This means that the viscosity remains unaffected, i.e µeff → 1, and the mean flow

rate does not drop rapidly. However, in the presence of small relative roughness, the effective
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properties start changing from their raw state. We observe a slow increase in the viscosity and

slow decrease in the mean flow rate. As the roughness becomes important, a significant change

in the effective properties of the flow is expected. Figure ?? shows how the correlation length lc

affects the effective properties of the flow. Decreasing the correlation length lc while keeping

the relative roughness height σw constant, increases the effective viscosity. This emphasizes the

importance of the correlation length. To better understand the effect of the surface roughness,

in other words the impact of the correlation length on the effective properties, we choose two

additional correlation functions ρw to be a delta function for a very short correlation length and

ρw = 1 for very long correlation length. The closed-form expression (??) shows that the presence

of the roughness on the wall adjusts the fluid viscosity µ . It is reasonable to say that a rough wall

induces viscosity, µind ≥ 0. We can, therefore, write µe f f = µ +µind . The minimum value of

the effective viscosity is 1 which occurs for σ2
w = 0 which implies µind = 0; this corresponds to

a roughness-free surface and this is in agreement with the classical Poiseuille flow in the Stokes

regime.

In Figure ??, we present the effective viscosity ratio µe f f /µ as a function of the relative

roughness height σw for different correlation functions ρw. The results suggest that the correlation

length does have a significant effect on the effective properties of the flow regime. This result

also shows that the effective properties do not change as functions of the position in the channel,

but instead are only sensitive to the relative roughness height and correlation length.

We also note that the average effective viscosity 〈µeff〉 (given in Appendix ??) can be

used to verify the spatial dependence of the effective viscosity. The first order correction to the

viscosity is still a fluid property which depends on the roughness, but does not depend upon the

position, as it does in the theory of heterogeneous porous media. This lack of spatial dependence

is due to the fact that we have considered an infinite domain with flow generated by a uniform

pressure gradient; this will differ for a source-type flow. This result is analogous to findings from

the stochastic theory of groundwater flow [?, e.g.,].

The relationship between the wall characteristic elements and the dimensionless effective
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properties of the flow allows us to examine the effects of the wall on the flow resistance. The

coefficient of the fluid resistance (CFR) per unit length is defined as the ratio of the average

pressure gradient over the effective flow rate, i.e.

RF =
∆p
Q

. (3.75)

A simplified expression given by CFR = 12µe f f (Appendix ??) enables one to measure the

friction between the outer layer of the fluid and the wall surfaces. It is important to note that the

friction between fluid layers can be neglected, because there is no mixing in the fluid. In Figure

??, it is observed that the fluid must overcome more resistance when the area decreases; the latter

is represented by the presence of roughness on the walls which narrows the cross section area.

The expression for the coefficient of the fluid resistance (CFR) given above enables us

to further investigate the effect of the friction factor associated with the rough channel. The

friction factor fKw given by (??) provides an explicit relation between the relative roughness

heights and the Reynolds number in laminar Poiseuille flow in plane channels with randomly

varying aperture. In contrast, in the classical theory of laminar flow regime, the friction factor

does not depend on the relative roughness since rough channels or pipes exhibit friction factor

independent of the relative roughness; instead it depends on the Reynolds number similarly

to the smooth channel case. Figure ?? shows the friction factor fKw for a rough channel as a

function of Reynolds numbers for given relative roughness heights σw and correlation length lc.

Based on our results, we observe that the Poiseuille number is not constant, but it is intrinsically

linked to the wall’s properties. However, we recover the expression 24
Re for the case Kσw = 1,

where Kσw is defined to be equal to µe f f /µ . As the channel height increases to the limit of

the ideal aperture (small relative roughness heights), the Poiseuille number Po approaches the

conventional value 24 as shown in the expression of fKw . We remark that the relative roughness

is a factor in determining the friction factor especially in the case of highly viscous laminar

creeping motion (Re < 1). In the latter case, the friction factor decreases rapidly compared to the
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case of a laminar flow with strong Reynolds number dependence motion (1 < Re ≤ 100). This is

shown in the Figure ??. Note that the Poiseuille number is related to the dimensionless boundary

shear stress by the Reynolds number. Decreasing the effective Reynolds number implies an

increase in the Poiseuille number as the roughness height increases. Figure ?? shows the velocity

profile as function of the channel aperture.It is shown that the profile stay parabolic for the

average velocity, but it decreases as the walls become rougher. The figure?? shows the effective

conductivity as function of the relative roughness heights. The graph shows the comparison

of our model to the empirical models obtained from studying the flow over single fracture of

Lomize (195) and for Louis (1969).

The last three graphs show that the induced viscosity is more important near the walls

than far away from the walls. However, the sensitivity in the change of the effectivity with

respect to the aperture is not important because of the infinite domain considered for this study.
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Figure 3.1. Effective viscosity ratio µe f f /µ as a function of the relative roughness height σw for
very short correlation length lc =0.1.
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Figure 3.2. Mean effective viscosity as a function of relative roughness heights σw
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Figure 3.3. Effective viscosity ratio µe f f /µ as a function of the relative roughness height σw for
different correlation functions ρw.
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Figure 3.4. Flow resistance coefficient (CFR) per unit length as a function of the relative
roughness height σw for a given small correlation length lc= 0.1.
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Figure 3.5. Friction factor fKw for a rough channel as a function of Reynolds numbers for given
relative roughness heights σw and correlation length lc = 0.1.
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Figure 3.6. Velocity profiles as a function of the aperture ξ3 for different relative roughness
heights σw at a given small correlation length lc= 0.1.
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Figure 3.7. Effective conductivity ratio as a function of relative roughness heights σw
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Chapter 4

Effective parameters of heat transfer in
single fracture metamaterial

4.1 Objective

Cooling material mechanism is important in technology especial in the micro and nano

technology. For example keep chips in electronic devices from overheating. This process often

becomes tidious and complicated with the miniaturization of the devices and the involvement of

the material properties and the biggest impact that the interface physics on the system. As we

mentioned it earlier in the introduction, the thermo - fluid study is used to investigate this kind of

phenomena. Given the irregularity of the walls of the materials, we introduce a new approach

which allows us to effectively capture the physics at the interface. The goal of this study is to

find the meaningful effective parameters necessary to characterize a heat convection in a channel

with rough boundaries.

4.2 Problem Statement

We consider three - dimensional laminar heat transfer and Stokes flow in infinite domain

bounded by two horizontal parallel plates within the region of thermally and hydrodynamically

fully- developped. In the limit of imcompressibility of the fluid and in the absence of heat source,

the steady state governing equations are written in cartesian cordinate system in tensorial form
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as follow:

(ρui),i = 0, (4.1)

−p,i + τi j, j = 0, (4.2)

(ρcpuiT ),i = (kT,i),i +µΦ. (4.3)

Where ρ,µ,cp and k represent the fluid constant density, the viscousity, the isobaric heat capacity

and the thermal conductivity of the medium respectively. If the aperture of the channel was

constant to b, the solution could be computed in reference to plethora of existing methods;

instead, the non homogeneity of the wall surfaces induces an uncertainty in the heat-fluid system

making the domain random.

4.3 Approach

The small erradic variability of the surfaces is a driven reason to model these surfaces as

random fields zu(x,y,ω) and zl(x,y,ω) where, ω is a realization or ”coordinate” in the sample

space Ω. Give that these fields, the direct implication is that the aperture becomes random

function defined as w(x,y,ω)≡ zu(x,y,ω)− zl(x,y,ω), which is assumed to be a second-order

stationary (statistically homogeneous). We also assume that the random functions zu(x,y,ω) and

zu(x,y,ω) are differentiable almost everywhere (a.e) in Ω with respect to x and y so that no-slip

and impermeable flow boundary conditions are defined in each realization ω .

4.3.1 Domain Transformation

As it is posed initially, we are dealing with deterministic differential equations defined

in random domain with cannot be solved. To come up with a solvable system, we define a

coordinate change that maps the random domain to a deterministic counterpart and to obtain

a stochastic differential equations with deterministic domain. Among other transformations,

the suitable mapping used here has a non zero determinant and allows us to recover identity in
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case of roughness free, is assumed to possess one-to-one properties with the original coordinate

system (inversibility guaranteed under this circumstance) and continuous up to second derivative

(which guarantees the computation of the derivative 1st and second order of the Christoffel

symbols second kind ). After taking in account the constant properties of the fluid, the resulting

governing equations become:

(vi);i = 0, (4.4)

−gi j p; j + τ
i j
; j = 0, (4.5)

(viT );i = (αg jiT, j);i +µΦ. (4.6)

where α = k/(ρcp). In the (??) we can further expand the expressions involved in term of simple

partial differentiation .

(p);k = (p),k, (4.7)

(vi);k = (vi),k +Γ
i
kmvm, (4.8)

(t i)i;k = t i
j;k−Γ

m
ikt i

m +Γ
i
kmtm

i , (4.9)

outlines the definition of the covariant derivative of the scalar, vector and tensor respectively.

The (;k) and (,k) denote the covariant derivative (simple partial differentiation) in k direction of

the curvilinear component.

4.4 Results and Interpretation
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Chapter 5

Conclusion and Future direction

Generally in fluid dynamics, the flow resistance coefficient problems can be grouped into

two distinct categories: to problems where the flow rate is fixed (known and constant) and other

properties of the fluid are given and to those where only the geometry is fixed (known under

certain conditions) and fluid properties are given. It is clear that our problem falls into the second

category where the geometry is fixed, but uncertainties of the geometry at each cross-section

of the flow channel complicate the understanding of dynamics close to the wall. In this work,

we proposed a theoretical novel approach to solving and predicting a laminar three-dimensional

channel with highly irregular boundaries. Based on the model, we have shown that roughness

has an effect on the laminar flow especially when the relative roughness is higher than 10%

in general and more importantly when the correlation length is short which corresponds to a

rougher surface.

Despite the presence of correlation in the roughness, there is a change in the effective

properties.This is due to the fact that we considered an infinite domain in the horizontal plane.

The induced viscosity from the wall due to the roughness affects the flow by decreasing the flow

rate. In addition, the correlation between the two surfaces implies that the apparent viscosity

increases as the surfaces get rougher. It is mathematically shown that for rough surfaces, the

volumetric flow rate decreases faster than in the case of smooth surfaces. As a consequence, the

Poiseuille number is affected by the surface texture, as well as the flow resistance coefficient. The
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friction factor increases as the surfaces get rougher which is a result of the dissipative energy on

the wall. Our theoretical model demonstrates that one cannot neglect the effect of the roughness

for viscous flow in laminar regime even in microchannels.

We conclude by summarizing the key point of our work. First, we have obtained a closed

form expression for the effective roughness and the friction factor in terms of the stochastic

functions of the wall roughness which enables one to predict viscosity of fluids that would give

the same resulting flow as in a smooth channel. Secondly, we have provided a closed-form

relation between the relative roughness height and the coefficient of fluid resistance (CFR) which

is very important to improve the existing empirical correlations. Moreover, the theoretical and

stochastic approach presented here is practical in the sense that the fluid-boundary interface can

be represented using a consistent and rigorous representation owing to the parameters availability

which describe the surface texture topology. Finally, our approach offers the ability to predict a

bulk flow in a plane channel, given the parameters describing the rough wall.

The advantage of this work is to have the following:

• A closed form expression of the effective roughness and the friction factor in terms of the

stochastic functions of the wall roughness, which could enable one to predict viscosity of

fluids that would give the same outcome as a smooth channel.

• The ability to link the relative roughness height to the Coefficient of Fluid Resistance

(CFR) in closed-form expression is very important to improve the existing empirical

correlations.

• This theoretical and stochastic approach is practical in a sense that the fluid/boundary

interface will not longer be represented arbitrary but instead can have a consistent and

rigorous representation due to the availability of the parameters describing the topology of

the surface texture.

• The ability of one to predict a bulk flow in a plane channel if given the parameters
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describing the rough wall.

We would like to expand this work to life sciences with an application to hemodynamics.

It will deals with microcirculation and hemodynamic to investigate how closely cardiovascular

disease (CVD) as is related to the structural damage and malfunctioning of blood vessels

specifically tissue-blood flow interaction. The fluid and pressure variations near and far from a

rough endothelium surface are key to understaning hemodynamic epigenetic mechanisms that

modify gene expression and under what conditions this normal genetic adaptation results in a

disease maladaptive remodeling state. The study of a two layer-fluid flow consists of a red blood

cell region and a cell-free region ineracting with the endothelium surface.

The Jacobian matrix J(ξ ) of the coordinate transformation x̂ 7→ ξ is given by

J =


1 0 0

0 1 0

ζ1 ζ2 w

 , ζ1 =
∂ ẑ
∂ξ1

, ζ2 =
∂ ẑ
∂ξ2

, (1)

∂ ẑ
∂ξ1

= (1−ξ3)
∂ ẑl

∂ξ1
+ξ3

∂ ẑu

∂ξ1
,

∂ ẑ
∂ξ2

= (1−ξ3)
∂ ẑl

∂ξ2
+ξ3

∂ ẑu

∂ξ2
(2)

and has determinant
√

g≡ detJ = w. The covariant basis vectors are ∂ξi are explicitly

given by

ε1 = (1,0,ζ1)
>, ε2 = (0,1,ζ2)

>, ε3 = (0,0,w)>. (3)

The covariant metric tensor gi j = ε i · ε j are written as
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(gi j) =


1+ζ 2

1 ζ1ζ2 wζ1

ζ1ζ2 1+ζ 2
2 wζ2

wζ1 wζ2 w2

 . (4)

The contravariant basis ε i = ∂ξ/∂ x̂i are

ε
1 = (1,0,−ζ1/w)>, ε

2 = (0,1,−ζ2/w)>, ε
3 = (0,0,

1
w
)>, (5)

−ζ1/w =
∂ξ3

∂ x̂
, −ζ2/w =

∂ξ3

∂ ŷ
,

Using the expression that relates the contravariant and covariant basis in chapter ??,

ε i = gikεk, the evaluation of the contravariant metric tensor gives

(gi j) = (ε i · ε j) =


1 0 −ζ1/w

0 1 −ζ2/w

−ζ1/w −ζ2/w (1+ζ 2
1 +ζ 2

2 )/w2

 (6)

Christoffel symbols of the second kind, denoted here by Γi
k,m and defined by

Γ
i
k,m =

1
2

gip
(

∂gkp

∂ξk
+

∂gmp

∂ξm
− ∂gmk

∂ξp

)
. (7)

The computation of the Christoffel gives

Γ
1
k,m = 0 and Γ

2
k,m = 0 for any k,m = 1,2,3. (8)
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Next, we compute Γ3
k,m:

Γ
3
k,m =

1
2

g3p
(

∂gkp

∂ξk
+

∂gmp

∂ξm
− ∂gmk

∂ξp

)
. (9)

The algebraic refinement leads to the following:

Γ
3
k,m =

1
w

(
∂ 2ẑl

∂ x̂k∂ x̂m
+

∂ 2w
∂ x̂k∂ x̂m

ξ3

)
, for k,m = 1,2, (10)

and, in particular, for m = 3, one has:

Γ
3
k,3 =

1
w

∂w
∂ x̂k

, for k = 1,2, and Γ
3
3,3 = 0, (11)

which are in accordance with the results found by [?].

E i j is the strain-rate tensor which, in the new coordinates system, is defined by:

E i j =
1
2
(gik

∇kv j +g jk
∇kvi), (12)

where ∇kv represents the covariant derivative of the contravriant velocity v (defined forehand)

with respect to ξk which writes as

∇kvi =
∂vi

∂ξk
+Γ

i
jkv j. (13)

Here vi;k ≡ ∇kvi which refers to the covariant derivative of the contravariant velocity. the

covariant derivative of E i j with respect to ξl gives

E i j
;l =

1
2

(
gik(v j;k);l +g jk(vi;k);l

)
. (14)
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For l = j and consequently (??) simplifies to

E i j
; j =

1
2

gik(v j;k); j. (15)

Note that

(v j;k);l = (v j;l);k = (
∂v j

∂ξl
+Γ

j
ilvi);k. (16)

We also know that the viscous stress tensor is related to the strain rate by τ i j = 2µE i j
; j ,

where µ is the fluid viscosity. Thus we have

gi j ∂ ĥ
∂ξ j

= ∇
2vi +2g jk

Γ
i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr. (17)

where general expression of Laplacian in curvilinear is given by

∇
2 = g jk ∂ 2

∂ξ j∂ξk
−g jk

Γ
m
jk

∂

∂ξm
, (18)

see [?] (pp.110) for complete derivation. We further decompose the right hand side of this

general expression of Stokes equations as sum of Laplacian in the orthogonal coordinate system

along the principal axes and a force term:

gi j ∂ ĥ
∂ξ j

= ∇
2
⊥vi +

(
2g jk

Γ
i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr−g jk
Γ

m
jk

∂vi

∂ξm

)
+

(
g jk ∂ 2vi

∂ξ j∂ξk

)
k 6= j

, (19)

where

∇
2
⊥vi = g11 ∂ 2vi

∂ξ 2
1
+g22 ∂ 2vi

∂ξ 2
2
+g33 ∂ 2vi

∂ξ 2
3
.

We introduce the conservative force fi given by

fi =

(
2g jk

Γ
i
jr

∂vr

∂ξk
+g jk ∂Γi

kr
∂ξ j

vr−g jk
Γ

m
jk

∂vi

∂ξm

)
+

(
g jk ∂ 2vi

∂ξ j∂ξk

)
k 6= j
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which can be related to the potential Φ via

gi j ∂ ĥ
∂ξ j
− ∂Φ

∂ξ j
= ∇

2
⊥vi. (20)

The Stokes equations are then simplified to:


gi j ∂ ĥ

∂ξ j
− ∂Φ

∂ξ j
= ∇2

⊥vi (momentum),

1
g1/2

∂ (g1/2vi)

∂ξi
= 0 (mass− conservation).

(21)

We recall the dimensionless quantity ∂H/∂ξ j = gi j∂ ĥ/∂ξ j−∂Φ/∂ξ j the overall result-

ing pressure head on the flow field. Thus the mass-momentum conservation equations write:


∂H
∂ξ j

= g11 ∂ 2v j

∂ξ 2
1
+g22 ∂ 2v j

∂ξ 2
2
+g33 ∂ 2v j

∂ξ 2
3

(momentum)

∂ (wv j)

∂ξ j
= 0 (mass− conservation),

(22)

and since we are using dimensionless quantities, the µ appears implicitly in the v. The map-

ping introduced earlier is a one-to-one mapping and it is worth pointing out that by changing

coordinate system through a mapping, flow field remains invariant under no other additional

external influence. Thus the velocity field and the pressure force remain invariant under this

transformation. Also, to reduce the order to infinitesimal, we now consider the truncation of

the terms in (??) using the expression ζ1&ζ2 in (??) in the limit where the deformation on ẑu

and on ẑl are very small owing the finite linear term of ζ1,ζ2. Thus we can write metric with an

approximation of g33 ≈ 1/w2, in components form


∂H
∂ξ j

=
∂ 2v j

∂ξ 2
1
+

∂ 2v j

∂ξ 2
2
+

1
w2

∂ 2v j

∂ξ 2
3

(momentum),

∂ (wv j)

∂ξ j
= 0 (mass− conservation).

(23)
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In Compact vector form


(∇H)> = ∇2

hv+
1

w2
∂ 2v
∂ξ 2

3
(momentum),

∇ · (wv) = 0 (mass− conservation).

(24)

where ∇2
h represents the 2-D Lapacian in the horizontal plane i.e (ξ1,ξ2 -plane) rewriting

conveniently the latter, we obtain


w2∇2

hv+
∂ 2v
∂ξ 2

3
= (w2∇H)>,

∇ · (wv) = 0.
(25)

This system of equations is stochastic and we therefore need to quantify the solution by computing

the first and the second moments.

Ensemble Average

We introduce Reynolds decomposition of all the intrinsic random variables:

v = 〈v〉+v′, H = 〈H〉+H ′,

w = 〈w〉+w′, where 〈w〉= 1,

where brackets 〈·〉 represent the ensemble average or mathematical expectation of the intrinsic

variables, while the primed quantities indicate the zero-mean fluctuations.

Substituting these decomposed expressions in the momentum and continuity equations

while neglecting the higher order moment terms (third, fourth..), and taking the ensemble average,
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we obtain: 
∇2〈v〉+σ2

w∇2
h〈v〉+2〈w′∇2

hv′〉= ∇〈H〉+σ2
w∇〈H〉+2〈w′∇H′〉,

∇ · 〈v〉+∇ · 〈w′v′〉= 0.
(26)

We subtract equations (??) from (??), and multiply the obtained expressions by w′(ξ ) and then

take the ensemble average. The expressions obtained are:


2σ2

ε ∇2
h〈v〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2σ2
w∇〈H〉+ 〈w′∇H′〉,

〈∇ ·v〉+∇ ·Cwv = 0.
(27)

Similar algebraic technique is perfomed; the result is being multiplied by w′(ζ ) at another

location ζ and we then take the expectation to obtain the covariance Cw and cross-covariance

Cwv: 
2Cw∇2

h〈v〉+∇2Cwv = 2Cw∇〈H〉+∇CwH,

∇ ·Cwv = 0.
(28)
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Putting together and re-writing these expressions (??) – (??) as a system of equations gives:



∇2〈v〉+σ2
ε ∇2

h〈v〉+2〈w′∇2
hv′〉= ∇〈H〉+σ2

ε ∇〈H〉+2〈w′∇H′〉,

2σ2
ε ∇2

h〈v〉+ 〈w′∇2
hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2σ2
w∇〈H〉+ 〈w′∇H′〉,

2Cw∇2
h〈v〉+∇2Cwv = 2Cw∇〈H〉+∇CwH,

〈∇ ·v〉+∇ ·Cwv = 0,

∇ ·Cwv = 0.

(29)

We represent each intrinsic variable as an infinite sum as follows:

v =
∞

∑
k=0

σ
2k
w v(k), H =

∞

∑
k=0

σ
2k
w H(k),

〈v〉=
∞

∑
k=0

σ
2k
w 〈v(k)〉, 〈H〉=

∞

∑
k=0

σ
2k
w 〈H(k)〉,

(30)

Replacing and collecting the same order terms of σε , one gets for zero order (σ0
w):


∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0.
(31)
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We have for second order i.e (σ2
w):



∇2〈v(1)〉+∇2
h〈v(0)〉+2〈w′∇2

hv′〉= ∇〈H(1)〉+∇〈H(0)〉+2〈w′∇H′〉,

2∇2
h〈v(0)〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2∇〈H(0)〉+ 〈w′∇H′〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(32)

Rearranging (??) & (??) for convenience,we have



∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0,

∇2〈v(1)〉+∇2
h〈v(0)〉+2〈w′∇2

hv′〉= ∇〈H(1)〉+∇〈H(0)〉+2〈w′∇H′〉,

2∇2
h〈v(0)〉+ 〈w′∇2

hv′〉+ ∂ 2Cwv

∂ξ 2
3

= 2∇〈H(0)〉+ 〈w′∇H′〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(33)

Multiplying the 4th equation by minus two then adding it to the third equation of (??) to eliminate
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some terms in order to solve the system. The resulting system writes:



∇2〈v(0)〉= ∇〈H(0)〉,

∇ · 〈v(0)〉= 0,

∇2〈v(1)〉−3∇2
h〈v(0)〉−2

∂ 2Cwv

∂ξ 2
3

= ∇〈H(1)〉−3∇〈H(0)〉,

2Cw∇2
h〈v(0)〉+∇2Cwv = 2Cw∇〈H(0)〉+∇CwH,

∇ · 〈v(1)〉= 0.

(34)

For a fully developed and unidirectional Poiseuille flow, we have:

∇
2
h〈v(0)〉= 0 = ∇〈H(1)〉,

〈v(0)〉 ≡ (〈v(0)1 〉,0,0) =
J
2

ξ3(1−ξ3), −J≡ ∇〈H〉= ∂ 〈H(0)〉
∂ξ1

.

Substituting the latter in the system from note-31, we have :



∇2〈v(0)〉=−J,

∇2〈v(1)〉= 3J+2
∂ 2Cwv

∂ξ 2
3

,

∇2Cwv =−2JCw +∇CwH ,

∇ ·Cwv = 0.

(35)

To obtain the expression for ∇2〈v(1)〉 in the second equation of (??), it is necessary to solve the
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third equation in terms of J and Cw. In particular, for the special case where CwH = 0 , we have:


∇2Cwv =−2CwJ |ξ1|< ∞, |ξ2|< ∞, and 0≤ ξ3 ≤ 1,

Cwv(ξ1,ξ2,0) = 0,

Cwv(ξ1,ξ2,1) = 0.

(36)

Let G be the Green’s function associated with (??) which is defined as follows:


∇2G = δ (ξ −ζ ) |ξ1|< ∞, |ξ2|< ∞, and 0≤ ξ3 ≤ 1,

G(ξ1,ξ2,0,ζ1,ζ2,ζ3) = 0, |ξ1|< ∞, |ξ2|< ∞,

G(ξ1,ξ2,1,ζ1,ζ2,ζ3) = 0, |ξ1|< ∞, |ξ2|< ∞.

(37)

The Green’s function is given by

G(ξ ,ζ ) =
1

4π

∞

∑
−∞

1√
(ξ1−ζ1)2 +(ξ2−ζ2)2 +(ξ3−ζ3−2n)2

− 1√
(ξ1−ζ1)2 +(ξ2−ζ2)2 +(ξ3 +ζ3−2n)2

.

[?]. Let ρw(‖ζ −η‖) be the correlation function of Cw(ζ ,η):

Cw(ζ ,η) = σ
2
wρw(‖ζ −η‖). (38)

From (??)–(??),

∇
2〈v(1)〉= 3J−4J

∫
ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη . (39)

In particular, up to the first order we have:

∇
2〈v〉= ∇

2

(
1

∑
k=0

σ
2k
w 〈v(k)〉

)
= ∇

2〈v(0)〉+σ
2
w∇

2〈v(1)〉. (40)
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It follows from (??) that

∇
2〈v〉=−J+3σ

2
wJ−4σ

2
wJ
∫

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη , (41)

where σ2
w

(
3J−4J

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη

)
is the correction term.

By analogy to the classical Stokes flow, one can express the dimensionless effective

viscosity as

µeff =
1

1−σ2
w

(
3−4

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη

) , (42)

where

∫
Ω

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη =
∫ 1

0

∫
∞

−∞

∫
∞

−∞

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3. (43)

and

∂ 2G
∂ξ 2

3
=− 1

4π

∞

∑
−∞

1(
(ξ3 +η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 3

2
(44)

− 1(
(ξ3−η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 3

2

− 3(2ξ3 +2η3−4n)2

4
(
(ξ3 +η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 5

2

+
3(2ξ3−2η3−4n)2

4
(
(ξ3−η3−2n)2 +(ξ1−η1)

2 +(ξ2−η2)
2
) 5

2
.

We obtain the general form of the effective viscosity:

µeff =
1

1−σ2
w

(
3−4

∫ 1
0
∫

∞

−∞

∫
∞

−∞
ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3

) . (45)
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We also check if the variation of the µe f f is sensitive to the variation in ξ3 direction by computing

the average effective viscosity which is given by:

〈µeff〉=
∫ 1

0

 1

1−σ2
w

(
3−4

∫ 1
0
∫

∞

−∞

∫
∞

−∞
ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3

)
dξ3. (46)

Consequently the ratio between the effective and the original flowrates can be written as

Qe f f

Q
= 1−σ

2
w

(
3−4

∫ 1

0

∫
∞

−∞

∫
∞

−∞

ρw(‖ζ −η‖)∂ 2G(ξ ,η)

∂ξ 2
3

dη1dη2dη3

)
. (47)

The resistance in the flow system is defined as the ratio of the pressure drop over the volumetric

flow rate:

RF =
∆p
Q

. (48)

We divide both sides by the specific weight γ and the characteristic length Lξ1
(stream-wise

direction) of the channel to obtain :

RF/(γLξ1
) =

∆p
γLξ1

Q
. (49)

We define the ratio RF/Lξ1
to be the coefficient of the fluid resistance (CFR). and we rewrite the

expression as follows:

CFR =

∆p
γLξ1

Q
=

12µe f f

〈d〉3
. (50)

Further algebraic refinement leads to a simplified expression of CFR with the dimensionless

average channel height 〈d〉 being unit:

CFR = 12µe f f . (51)

The effective viscosity’s expression obtained (??) shows that there exists a positive real number
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Kσw ≥ 1 such that:

µe f f = Kσw µ (52)

Note here that Kσw is the ratio of µe f f over µ . To carry our analysis further, we multiply both

sides of the expression of (??) by 1/V̄ and using the expression (??), we obtain:

CFR/V̄ =
24Kσw µ

2V̄
, (53)

where V̄ is the average velocity defined as 2/3〈v1〉max.

Recall CFR/V̄ the rough channel friction factor fw. We can then express this parameter

in term of σw and the Reynold’s number Re after some algebraic refinements:

fw =
24Kσw

Re
(54)

Appendix B

(p);i =
∂ p
∂xi , for a given scalar p, (55)

(ui); j =
∂ui

∂x j +Γ
i
jmum, for a given vector ui, (56)

(t i
j);k = (t i

j);k−Γ
m
jkt i

m +Γ
i
kmtm

i for a given tensor. (57)

The energy equation can be written as :

(viT );i = (α i
jT, j);i +µΦ (58)
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