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ABSTRACT OF THE DISSERTATION

Stochastic Modeling of Advection-Diffusion-Reaction Processes in
Biological Systems

by

TaiJung Choi

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2013

Daniel M. Tartakovsky, Chair
Shankar Subramaniam, Co-Chair

This dissertation deals with complex and multi-scale biological processes.

In general, these phenomena can be described by ordinary or partial differential

equations and treated with deterministic methods such as Runge-Kutta and al-

ternating direction implicit algorithms. However, these approaches cannot predict

the random effects caused by the low number of molecules involved and can re-

sult in severe stability and accuracy problem due to wide range of time or length

scales depending upon the system being studied. In the first part of the disserta-

tion, therefore, we develope the stochastic hybrid algorithm for complex reaction

networks. Deterministic models of biochemical processes at the subcellular level

might become inadequate when a cascade of chemical reactions is induced by a few
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molecules. Inherent randomness of such phenomena calls for the use of stochastic

simulations. However, being computationally intensive, such simulations become

infeasible for large and complex reaction networks. To improve their computa-

tional efficiency in handling these networks, we present a hybrid approach, in

which slow reactions and fluxes are handled through exact stochastic simulation

and their fast counterparts are treated partially deterministically through chemical

Langevin equation. The classification of reactions as fast or slow is accompanied

by the assumption that in the time-scale of fast reactions, slow reactions do not

occur and hence do not affect the probability of the state. In the second and third

part of the dissertation, we employ stochastic operator splitting algorithm for

(chemotaxis-)diffusion-reaction processes. The reaction and diffusion steps employ

stochastic simulation algorithm and Brownian dynamics, respectively. Through

theoretical analysis, we develop an algorithm to identify if the system is reaction-

controlled, diffusion-controlled or is in an intermediate regime. The time-step size

is chosen accordingly at each step of the simulation. We apply our algorithm to

several examples in order to demonstrate the accuracy, efficiency and robustness

of the proposed algorithm comparing with the solutions obtained from determin-

istic partial differential equations and Gillespie multi-particle method. The third

part deals with application of the stochastic-operator splitting approach to model

the chemotaxis of leukocytes as part of the inflammation process during wound

healing. We analyze both chemotaxis as well as the diffusion process as a drift

phenomenon. We use two dimensionless numbers, Damköhler and Pèclet num-

xiv



ber, in order to analyze the system. Damköhler number determines if the system

is reaction-controlled or drift controlled and Pèclet number identifies which phe-

nomenon is dominant between diffusion and chemotaxis.
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Chapter 1

Introduction

1.1 Multi-scale modeling in biology

Biological systems involve various processes taking place at a wide range

of spatial and temporal scales. Biological systems have spatial scales which range

from kilometers, e.g. the habitat of animals, to micrometers such as phenomena at

the cellular level. The spatial scales can range from meters to microns in dealing

with a single organism. Within the intercellular space, depending upon the context,

the spatial domain of interest can vary from nanometers to micrometers. Similar

phenomena is observed for the temporal scale. For example, population fluctuation

of some animal group can be detected at the time scale of years whereas events

such as cell division occur on a scale of hours and molecular chemical reactions

take place within milliseconds to minutes. Specially at subcellular volumes when

the number of molecules can be low so that the continuum approximation becomes

1
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invalid, stochastic effects become important. The interplay of stochasticity with

the multiplicity in the spatial and temporal domains is complex. Not accounting

the different time and spatial scales in the modeling and simulation of stochastic

systems results in errors and/or large simulation times. The development of robust

mathematical techniques for the modeling and simulation of stochastic biological

systems with multiscale temporal and spatial scales is the main focus of this dis-

sertation. The stochasticity is quantitatively modeled through the use of random

variables. In addition, this dissertation also deals with approaches to account for

multiple spatial and temporal scales. In this dissertation, several biological sys-

tems are used to demonstrate the effectiveness of methodologies developed. The

biological systems include (1) regulation of the dynamics of intracellular calcium

ion levels, (2) molecular diffusion and reactions in E coli and (3) leukocyte chemo-

taxis through the tissue during the inflammation phase of wound healing process.

These case studies are linked with each other in various ways and at various bio-

logical scales (from intracellular to tissue level) and serve as excellent test-beds in

multi-scale mathematical modeling and quantitative systems biology.

1.2 Stochasticity in biology

Over the last few decades, in the field of molecular biology, the importance

of stochasticity has been increasingly recognized and outstanding developments

have led to a better understanding of biological systems at the subcellular level.
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At the level of micro-scale systems such as the interactions between molecules, e.g.

DNA, mRNA, protein, small molecules, it follow an important law of physics, i.e.,

randomness or fluctuations in a system are inversely proportional to the square

root of the number of particles [1]. Therefore, a lower number of molecules (or low

concentration) results in high fluctuation which is largely due to thermal oscilla-

tions. For example, in processes such as gene transcription/regulation and signal

transduction [2], number of molecules involved in the chemical reactions is usually

low, e.g., a single DNA template, tens of mRNA molecules and around hundred

molecules of transcription factors. Such stochastic effects arising due to the in-

herent nature of biochemical interactions are often termed as intrinsic noise. In

addition, there exists an extrinsic noise as well caused by random fluctuations in

other factors such as the number of ribosomes, the stage of the cell cycle, mRNA

degradation, and the cellular environment [3]. Yarchuk et al. showed that protein

production occurs in short bursts at random time intervals rather than in a contin-

uous manner [4]. In addition, spatial randomness plays an important role during

processes such as E. coli movement [5], tumor growth [6] and leukocyte chemotaxis

[7].
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1.3 Hybrid algorithms for multi-scale systems

1.3.1 Motivation

Intracellular signaling is an important event in cellular life that mediates

most of cell functions, such as adaptation in response to environmental changes,

metabolism, cellular growth and proliferation. Mathematical modeling, tradition-

ally based on ordinary differential equations, helped to explain and illustrate many

of these complex phenomena, including the bistability and graded versus switch-

like response in intracellular signaling [8] and sub-population variability [9]. ODE-

based formulations offer accurate predictions of biochemical dynamics with large

numbers of molecules, but are expected to fail if the numbers of reacting molecules

become exceedingly small. When this occurs, randomness associated with the

dynamics of individual molecules becomes important and calls for a probabilistic

(stochastic) description. Chapter 2 provides an example of such modeling in the

context of intracellular calcium dynamics.

All ODE-based models, and most of stochastic models of the type dis-

cussed above, are based on the assumption of a perfectly mixed (homogeneous)

system, in which every point (or volume) in space has the same concentration

(or number of molecules) of reacting species. This assumption becomes invalid

when the number of reacting molecules becomes small and transport also take

place in heterogeneous crowded environments. In Chapters 3 and 4, we develop

computational methods to deal with such spatial heterogeneity in the context of
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molecular diffusion and reactions in E. coli (Chapter 3) and leukocyte chemo-

taxis (Chapter 4). These two biological phenomena illustrate the complexity of

most cellular processes by exhibiting multiple time and length scales, randomness

and spatial inhomogeneity. These chapters present a new stochastic hybrid algo-

rithm for multi-scale systems and a new stochastic operator splitting algorithm for

(chemotaxis-)diffusion-reaction systems, respectively.

1.3.2 Temporal multi-scale processes

In Chapter 2, we present a novel algorithm for the stochastic simulation

of multi-scale (time-domain) biochemical processes. The methodology is applied

to study intracellular calcium dynamics in mouse RAW 264.7 macrophage cells.

Intracellular signaling plays an important role in cellular life that regulates most of

its functions, such as adaptation in response to environmental changes and regular

functions including metabolism, cellular growth and proliferation. Mass balance

for chemical reactions which is described by ordinary differential equations (ODE)

is generally applied to analyze these chemical reactions. These ODE-based for-

mulations can predict accurately the dynamics of biochemical pathways with large

numbers of molecules of all reacting species. However, it might fail in the case that

the concentrations of involved chemical species become exceedingly small [10]. In

this case, it is necessary to apply stochastic analysis which treat chemical reactions

as random events. A chemical master equation (CME) yields an exact probabilistic

description of multi-species reactions, but its high dimensionality renders it com-
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putationally prohibitive. Gillespie algorithm [11], a good approximation of CMEs,

deals with all possible reactions using uniformly distributed random variables in

[0,1]. A tau-leap algorithm [12] or chemical Langevin equation (CLE) [13] can

further approximate CME using Poisson random variables and Gaussian random

variables, respectively. Implicit in these and other approximations of the SSA is a

trade-off between computational speed-up and accuracy, which undermines their

use in complex multi-scale biochemical phenomena involving fast and slow reac-

tions. Therefore, we present a hybrid algorithm in which slow and fast reactions

are identified, they can be reclassified during simulation in response to changes

in concentrations, and we can deal with complex fluxes that cannot be modeled

explicitly through reactions.

1.3.3 Temporal and spatial multi-scale processes

In Chapters 3 and 4, we investigate diffusion-reaction systems in various

biological systems such as CheY diffusion in E. coli (Chapter 3) and inflammation

process during wound healing (Chapter 4). In addition to randomness from small

number of molecules, we have stochasticity due to inhomogeneity of molecules

across the space. In order to simulate the spatial variation, mesh/grid-based ap-

proaches are used. The number of molecules within each voxel can be low resulting

in stochasticity. Therefore, we have to deal with two types of randomness, i.e., in

the temporal domain and in the spatial domain. Partial differential equations

(PDEs) can predict accurately the dynamics of spatially heterogeneous systems
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composed of chemical species with high concentration. However, similar to ODE-

based models, they fail to account for the randomness inherent in a system com-

prised of small number of molecules. A number of simulation methods have been

developed for the simulation of reaction-diffusion systems. The Green’s function

reaction dynamics [14] and Smoldyn’s algorithm [15], employs Brownian dynam-

ics to track the diffusion of molecules and assume that bimolecular reactions can

take place when two molecules exist within a certain distance. These requirements

necessitate the tracking of individual particles and/or distances between them,

which makes such algorithms computationally expensive. MesoRD [16] and the

Gillespie multi-particle (GMP) methods [17, 18] trade representational accuracy

for computational efficiency. They are based on a reaction-diffusion master equa-

tion [19], which generalizes a chemical master equation developed for well-mixed

chemical reactions by discretizing the space into a collection of cells and treating

each cell as a well mixed system. MesoRD [16] treats diffusion as a unimolecular

reaction whose reaction rate is related to the corresponding diffusion coefficient.

The GMP method [17, 18] employs an operator-splitting scheme in which the Gille-

spie algorithm and cellular automata [20] handle reaction and diffusion processes,

respectively.

We have developed a stochastic numerical algorithm to simulate reaction-

diffusion processes with a small number of non-uniformly distributed molecules. It

employs an operator-splitting, in which the Gillespie algorithm [11] and Brownian

dynamics are used to simulate reaction and diffusion processes, respectively. Our
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algorithm is conceptually similar to the GMP method in that it relies on operator-

splitting. However, it offers a number of computational advantages in terms of both

accuracy and efficiency. First, the cellular automata used in the GMP method re-

strict a particle’s movement during one fixed time-step to the adjacent cells only,

while Brownian motion places no restrictions on the distance particles can travel

during one time-step, thus gaining in computational efficiency. Second, Brown-

ian dynamics provides a more accurate representation of diffusion than cellular

automata. Third, our algorithm offers the flexibility of adaptive selection of the

time-step sizes for operator-splitting, depending on whether the system is reaction-

or diffusion-controlled.

We have also studied the inflammation process during wound healing in

which leukocyte cells sense the gradient of chemoattractants from the wound site

and chemotax in the direction of higher concentration while also diffusing ran-

domly. It involves three processes, diffusion, reaction and chemotaxis. In addition

to the diffusion-reaction processes explained above, we also have to deal with the

chemotaxis process. In order to identify the drift (chemotaxis + diffusion) time

scale, Péclet number is introduced. Damköhler number decides if system is diffu-

sion or reaction controlled.
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1.4 Conclusions and future directions

In biological systems, randomness is caused by small number of molecules

and spatial inhomogeneity. Therefore, we have developed stochastic hybrid algo-

rithms for multi-scale reaction systems, in which chemical reactions are classified

as fast or slow according to propensity functions and chemical species are clas-

sified as low or high based on the number of molecules. We applied our hybrid

algorithm to intracellular calcium dynamics in mouse macrophage cells by apply-

ing Gillespie algorithm or Chemical Langevin equation appropriately according

to system’s state. Next, we have developed stochastic operator-splitting method

for (chemotaxis)-diffusion-reaction systems. Proper selection of time step is very

important because drift (chemotaxis, diffusion) time constant and reaction time

constant may be significantly different. Furthermore, one needs to identify the

dominant process between diffusion and chemotaxis. Hence, we use Damköhler

and Péclet numbers. In this dissertation, these novel methodologies have been

developed and applied to interesting biological systems in order to verify accu-

racy, efficiency and robustness of the proposed algorithms. We have applied these

approaches to several biological systems of low to moderate complexity.

In the future, these approaches can be tested on more complex and realis-

tic systems. For example, stem cells exist during all phases of development, e.g.,

embryonic stem (ES) cells during the embryonic stage and adult stem cells after

all the organs are formed. Stem cells are characterized by two important abilities,



10

viz., renew themselves and differentiate into a variety of distinct lineages. ES cells

are omnipotent or pluripotent i.e., they have the ability to generate all embryonic

tissues. Due to their potential to regenerate tissue damaged due to disease or in-

jury, stem cell-based therapies for various degenerative diseases are being developed

[?]. Stem cell properties are governed by a complex set of interactions between

signaling from the extracellular and intercellular environment and the dynamics

of core transcriptional machinery. Spatial variability plays an important role in

this process. Therefore, we can apply our operator-splitting approach to stochas-

tic stem-cell fate decision modeling in order to quantitatively study the molecular

mechanism of ES cells [?]. In another application, we will consider all processes

from rolling to chemotaxis of leukocytes based on our stochastic operator-splitting

method because spatial variation is important for the leukocyte movement inside

the capillary, across endothelial cell wall and through the tissue. We will employ

different boundary and initial conditions for these three connected spatial zones.

We will perform a comprehensive quantitative analysis of leukocyte motion during

wound healing process by accounting for blood flow, wall shear stress and contact

force between endothelial cells.



Chapter 2

Stochastic Hybrid Modeling of

Intracellular Calcium Dynamics

2.1 Introduction

Intracellular signaling is an important event in cellular life that mediates

most of its functions, such as adaptation in response to environmental changes and

regular functions including metabolism, cellular growth and proliferation. Math-

ematical modeling has helped to explain and illustrate many of these complex

phenomena, including the bistability and graded versus switch-like response in in-

tracellular signaling [8], auto-catalysis as a mechanism of positive feedback in the

cell cycle [21], and sub-population variability [9]. Much of this modeling is done in

a deterministic setting, and involves systems of coupled ordinary differential equa-

tions (ODEs) describing the rate of change of components (reactants and products)

11
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of the biochemical reactions and other processes involved in the pathway.

ODE-based formulations provide accurate predictions of the dynamics of

biochemical pathways with large numbers of molecules of all reacting species, but

might fail when the concentrations of reactants and/or products become exceed-

ingly small so than only a few molecules (less than 10 in some cases) are involved

[10]. Indeed, for small volumes and small concentrations that often characterize

sub-cellular processes, the very concept of concentration breaks down. When this

occurs, randomness associated with the dynamics of individual molecules becomes

pronounced, necessitating the use of probabilistic (stochastic) models. A chemical

master equation (CME) yields an exact probabilistic description of multi-species

reactions, but its high dimensionality renders it computationally prohibitive.

Gillespie’s stochastic simulation algorithm (SSA) [11] provides an exact

sampling of the solution of the CME, thus providing highly accurate results with

sufficient sampling. The computational efficiency of the SSA can be increased by

adopting, for example, a tau-leap algorithm [12] or its continuous-limit approxi-

mation in the form of a chemical Langevin equation (CLE) [13]. Implicit in these

and other approximations of the SSA is a trade-off between computational speed-

up and accuracy, which undermines their use in complex multi-scale biochemical

phenomena involving fast and slow reactions. A quasi-steady-state approximation

[22], which neglects the fast reactions by assuming that a subset of chemical species

is at steady state at the timescale of interest, is efficient but clearly inexact.

Some of the more recent contributions in this area include: (1) speed-up of
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computation through a binomial tau-leaping approach [23] and k-skip method [24],

(2) time-scale/reaction partitioning based on the propensity values [25], a hybrid

approach [26] and quasi-steady-state approximation [27], (3) partial-propensity-

based approach [28] and (4) alternative formulations of CLE [29]. Besides, [30] has

developed an approach to perform stochastic simulation of reaction systems with

time-delays. [31] have developed a software called Biomolecular Network Simulator

to study various aspects of stochastic simulation of complex biomolecular reaction

networks. [32] have presented a detailed analysis of issues in simplification of

Michaelis-Menten formulation into a single-step reaction in stochastic simulation.

[33] have developed a methodology for parametric sensitivity analysis in stochastic

simulation of reaction networks. By no means this is an exhaustive list.

Hybrid methods, e.g., by [26], which we pursue here, address the multi-scale

nature of reactive systems by identifying fast and slow reactions, and simulating the

former with a CLE and the latter with Gillespie’s SSA. This approach significantly

reduces simulation time without compromising the accuracy of the outputs. We

present a hybrid algorithm in which slow and fast reactions are identified a priori,

they can be reclassified during simulation in response to changes in concentrations,

and we can deal with complex fluxes that cannot be modeled explicitly through

reactions. An example of such as flux, in the model of cytosolic calcium dynamics,

is the flux of [Ca2+] from the endoplasmic reticulum to the cytosol through inositol

1,4,5- trisphosphate receptor channels (please see the expression for Jch in Section

2.3.3).
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We have used the dynamics of cytosolic calcium as a case study to test

our approach. The cytosolic calcium dynamics and its mathematical descriptions

are briefly discussed in Section 3.2 to motivate the development of a multi-scale

stochastic hybrid algorithm (SHA) in section 2.3, which consists of the following

steps. Section 2.3.1 contains a formulation of the calcium dynamics model used in

our analysis. In Section 2.3.2, we compare the performance of existing stochastic

approaches, i.e., the Gillespie’s SSA, a tau-leap algorithm, and a chemical Langevin

equation. In Section 2.3.3, we present the SHA, which consists of deterministic

and stochastic components, explicitly accounts for the presence of slow and fast

reactions, and incorporates complex fluxes that cannot be modeled through reac-

tions explicitly. An approach to handle reactions with complex rate expressions

is also presented in this section explaining why the existing approaches to deal

with complex rates laws such as Michaelis-Menten mechanism [22, 27, 32] may not

be directly applicable. The practical implementation of the SHA to the cytosolic

calcium dynamics model [9] is presented in Section 2.3.4. Section 2.4 contains the

results of stochastic simulations of cytosolic calcium dynamics, whose biological

implications are further discussed in Section 2.5.

2.2 Dynamics of Cytosolic Calcium

Cytosolic calcium is a second messenger that plays an important role in

intracellular signaling. Dynamic changes in intracellular calcium serve both as an
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important indicator of cellular events and as a quantitative measure of cellular

response to stimuli. In addition to affecting gene regulation, calcium regulates

the activity of many proteins such as calmodulin [34], calreticulin [35, 36, 37]

and calcineurin [38]. Through such regulation, cytosolic calcium affects many

functions including muscle contraction, fertilization, learning and memory, among

many others.

2.2.1 Biological mechanisms and pathways

Following [9], we consider a signaling network for calcium dynamics (Fig. 2.1),

which represents the ligand-induced release of calcium from the ER into cytosol,

binding of calcium (Cai) to proteins (Pr) in the cytosol (shown) and in the ER

(not shown) and other calcium exchange fluxes to/from the ER, the extra-cellular

space and mitochondria. In the basal state, the channel flux from the ER is very

small and, along with the leakage flux from the ER, is balanced by the Ca2+ uptake

back into the ER by the sarco(endo)plasmic reticulum calcium ATPase (SERCA)

pump; the net flux across the mitochondria and the PM is zero; and the Ca2+

outflux from the cytosol to the extracellular matrix (ECM) is mediated by the

plasma membrane calcium ATPase (PMCA) pump and the Na+/Ca2+ exchanger

(NCX). The influx across the plasma membrane consists of a non-specific leakage

flux and an [IP3]-dependent specific flux, which combines many fluxes including

the entry through store-operated channels in response to the ER depletion and

other effects [39]. Ca2+ binds to buffer proteins in all three compartments, the
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cytosol, the ER and the mitochondria, for which rapid buffering kinetics suggested

earlier [40, 41] is used. For a more detailed analysis of the perturbation of the

calcium network, we refer the reader to [42]. Maurya et al. [9] developed a kinetic

model for calcium signaling in mouse macrophage-like RAW 264.7 cell and simu-

lated the calcium dynamics for the ligand Complement 5a (C5a). In non-excitable

cells, such as macrophages, ligand-induced release of calcium from the endoplas-

mic reticulum (ER) is the main initiator of calcium dynamics. Upon stimulation

with C5a, the C5a receptor (C5aR) becomes activated leading to activation of G-

protein, Gα,i followed by activation of phospholipase C (PLC) β (PLCβ). The net

result is increased hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into

inositol 1,4,5-trisphosphate (IP3) and increase in the levels of cytosolic calcium

([Ca2+]i) due to the opening of IP3 receptor (IP3R) channels on the endoplasmic

(or sarcoplasmic) reticulum (ER/SR) membrane [43]. The concentration of cal-

cium in the cytosol is in sub-micromolar range whereas it can be 10’s to 100’s

micromolar (µM) in the ER [43]. Hence, upon opening of the IP3R channels,

the large gradient of calcium between the ER and the cytosol results in a burst

(large peak) of [Ca2+]i response [43]. Through a positive feedback mechanism, also

known as calcium-induced calcium release (CICR) [44, 45], more Ca2+ is released

from the ER into the cytosol. Most of the calcium released binds to various pro-

teins, such as calmodulin (CaM). Calcium is also pumped back to the ER by the

SERCA pump. Some calcium is also expelled to the extracellular space through

the Na2+/Ca2+ exchanger (NCX) and the PMCA pump. The resulting calcium



17

current facilitates the cross-talk between calcium dynamics and action potential in

cardiac pacemaker cells [46]. Calcium exchange between cytosol and mitochondria

also has been observed at elevated level of [Ca2+]i.

2.2.2 Mathematical representations of calcium dynamics

Mathematical models of cytosolic calcium dynamics were developed for both

excitable [47, 48, 49, 50, 51] cells and non-excitable [41, 47, 52] cells. Many of

these models deal with spatial distribution of calcium by employing two- or three-

dimensional partial-differential equations [53]. Most of such models rely on non-

specific (independent of cell-type) parameter values and provide qualitative (rather

than quantitative) predictions of the behavior of various cell types. Moreover, they

fail to capture the calcium dynamics in RAW 264.7 cells without parameter-tuning

[9].

The Maurya et al. [9] model overcomes these limitations by using experi-

mental measurements in RAW cells to constrain parameter values. The model ne-

glects molecular diffusion, the presence of IP3R clusters, and local-concentration

effects in the mechanism for calcium release from the ER [54], all of which are

accounted for in the work by [55, 56, 49]. On the other hand, it includes detailed

mechanisms of G-protein coupled receptor and G-protein activation and inactiva-

tion, which are absent in the Refs. [39, 41, 52, 53]. The model enables the analysis

of the effects of single and multiple knockdowns of proteins and sub-populational

variability, i.e., to account for the fact that different cell-populations, when trig-



18

gered by the same strength of a stimulus, result in quantitatively and qualitatively

different responses (different peak heights, rise-time, etc.) [57]. Hence, we adopt

the signaling network identified by [9] as the basis for the present analysis. The

focus of the modeling studies is on the sensitivity analysis of the peak-height of

cytosolic Ca2+ to stochastic versus deterministic simulation.

2.3 Materials and Methods

A mathematical representation of the signaling network identified by [9]

is presented in Section 2.3.1. The performance of standard stochastic simulation

algorithms is compared in Section 2.3.2. A new hybrid algorithm that significantly

improves the computational efficiency of the standard stochastic algorithms is pre-

sented in Section 2.3.3. The application of the hybrid algorithm to the cytosolic

calcium dynamics model [9] is presented in Section 2.3.4.

2.3.1 The mathematical model of cytosolic calcium dynam-

ics

A system of ordinary differential equations (ODEs) that describe the cy-

tosolic calcium dynamics [9] accounts for the chemical reactions grouped into the

four modules in Fig. 2.1B. The receptor module (box 1) consists of the reactions

1-11 responsible for receptor activation, desensitization of the ligand-bound active

receptor due to its phosphorylation, internalization of the ligand-bound phospho-
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rylated receptor and receptor recycle. The GTPase cycle module (box 2) consists

of reactions 12-16 corresponding to activation and deactivation of G-protein (G-

protein is active when Gβγ and Gα,iT are separated). The IP3 module (box 3)

includes activation of PLCβ upon binding of Gβγ and cytosolic Ca2+ and sub-

sequently catalyzed hydrolysis of PIP2 into IP3 and DAG. Reactions 19 and 20

capture IP3 metabolism, i.e. its degradation/conversion to/from other inositol-

phosphates and back to PIP2, with only one intermediate pseudo-species, namely

IP3,p or IP3 product (Fig. 2.1A) [41]. Positive feedback effects from calmodulin

constitute the fourth module (box 4).

The cytosol and other compartments are assumed to be well-mixed. The

state variables are described by a set of ODEs [58] involving the Ca2+ fluxes be-

tween different cellular compartments and other fluxes due to reactions. The 15

state variables (concentrations) used to model the details of ligand-induced gen-

eration of IP3 are [L], [R], [LR], [Gβγ], [GRK], [LRp], [Rp], [LRi], [Rp,i], [Rpool],

[Gα,iT], [Gα,iD], [PIP2], [IP3] and [CaM]. [X] represents concentration of species

X. These differential equations involve fluxes only related to reactions modeled

explicitly. Calcium dynamics introduces four additional state variables: [Ca2+]i,

[Ca2+]ER, h and [Ca2+]mit, where [Ca2+]ER and [Ca2+]mit denote the concentrations

of free Ca2+ in the ER and mitochondria, respectively; and h is the fraction of

IP3R to which calcium is not bound at the inhibitory site (IP3 and calcium may

or may not be bound at the other two sites, respectively) [59]. These differential

equations deal with flux expressions due to complex lumped mechanisms which
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cannot be modeled through reactions explicitly. Thus, the model by [9, 60] has

19 state variables. The quantities of all chemical species are in terms of their con-

centrations, normalized with respect to a unit volume of the cytosol. The model

involves 65 reaction-rate parameters, including both simple and complex reaction

fluxes and other flux exchanges between different compartments.

In this analysis, we focus on the calcium dynamics in the regimes with

exceedingly small concentrations of relevant chemical compounds. To give an ex-

ample, for dose response, corresponding to the lowest dose of the ligand C5a, the

number of the molecules is 180 (0.1% of 30nM concentration). In another case,

in sensitivity analysis of Gβγ, the number of molecules of Gβγ(total pool) consid-

ered is 2500 at 5% level of nominal value. Corresponding to this, the number of

molecules of free Gβγ is 10. In such regimes, the fidelity of continuum (ODE-based)

descriptions might be compromised, and stochastic effects become important.

2.3.2 Comparison of computational efficiency of stochastic

simulation algorithms

For the sake of completeness, in Appendix A, we present a brief overview of

existing stochastic algorithms, namely Gillespie algorithm, tau-leap method and

chemical Langevin equation. To compare their performance, we have applied these

three algorithms to an enzymatic reaction satisfying the Michaelis-Menten rate law
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(example taken from [61]),

S + E
c1−→ C, C

c2−→ S + E, C
c3−→ P + E, (2.1)

where S, E, C, and P denote the substrate, enzyme, enzyme-substrate complex,

and product, respectively, or the number of their molecules. Fig. 2.2 shows the

temporal evolution of S(t) and P (t) from their initial levels S(0) = 312, E(0) =

125 and P (0) = 0, computed with the three approaches for stochastic simulation

described above. The three algorithms yield similar predictions, with the tau-leap

and CLE algorithms giving nearly indistinguishable solutions.

Fig. 2.2A shows time-course of one realization from each method. Although

the single time-courses show good agreement, time-course of mean and standard

deviation of 1024 realizations are computed as well in order to ensure that they have

similar statistical characteristics. Fig. 2.2B-C show excellent agreement among

three algorithms in terms of mean and standard deviation. Next three histograms

show probability distribution of the number of molecules of S sampled at t=10

second (Fig. 2.2D-F). The three histograms have almost same values of the mean

([Gillespie, Tau-leap, CLE] = [140.40, 139.25, 139.89]) and standard deviation

([Gillespie, Tau-leap, CLE] = [5.84, 6.09, 6.06]).

Table 2.1 demonstrates the scalability of the three stochastic algorithms

with the number of molecules involved in the simulation of Eq. (2.1). As the

initial number of molecules, S(0) and P (0), increases 100-fold, the computational

time of the Gillespie algorithm increases almost 100-fold, while the run times of
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the tau-leap and CLE algorithms remain practically unchanged. The run times

reported represent Matlab simulations carried out on a Windows based PC with

2.1GHz Intel dual core processor and 2GB RAM.

2.3.3 A multi-scale hybrid approach

While the use of the CLE is appealing due to its computational efficiency,

its accuracy suffers as the number of molecules involved in the chemical reactions

becomes small. Likewise, the Gillespie algorithm is attractive due to its accuracy

but it becomes inefficient when the number of chemical reactions and/or molecules

becomes large. This dichotomy calls for the use of a hybrid approach (described

in Section 2.3.3 below) in which fast reactions are tackled with the CLE, and the

Gillespie algorithm is employed to simulate slow reactions.

An additional complication in modeling the cytosolic calcium dynamics

arises from the presence of fluxes in which reactions are either absent or modeled

implicitly and, hence, are not readily amenable to the stochastic formulations

described above. These fluxes are modeled deterministically via ODEs as described

in Section 2.3.3, giving rise to a stochastic-deterministic hybrid approach. Besides,

the rate expressions for some reactions are complex. These rate expressions are

a combination (function) of one or more law of mass action kinetics, Michaelis-

Menten kinetics or Hill-dynamics-based terms. A stochastic treatment of such

reactions in terms of propensity functions is described in Section 2.3.3. Our new

multi-scale hybrid approach accounts for all these three scenarios.
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Multi-scale approach

In many complex biochemical systems, including the cytosolic calcium dy-

namics, some reactions occur very frequently over short time-intervals, while others

seldom occur. In deterministic ODE-based models, the Jacobian matrix, which is

a function of both the reaction rate constants and the species concentrations, can

be used to classify species as fast or slow. In particle-based stochastic simulations,

the system proceeds through firing of reactions and hence the speed of both the

reactions and species is important. To call a reaction “slow” or “fast”, the knowl-

edge of reaction rate constants alone is not sufficient. Indeed, a reaction with

a large reaction rate constant cannot be classified as “fast” if they involve small

numbers of reactant species. The approach presented below is, essentially, based

on the previous work of [26] and [62] (see also the contribution of [63]).

Following [26], we classify a j-th reaction as fast if the following two con-

straints on the propensity function (Eq. (A.2)) and the number of molecules of

each species involved in the reaction are simultaneously satisfied,

aj[X(t)]dt� α, 1 ≤ j ≤M (2.2a)

and

Xi(t) > β|νji |, 1 ≤ i ≤ N, (2.2b)

where νji are the components of the vector νj. The coefficients α > 1 and β

serve to specify how many reactions occur and how many molecules exist within
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dt, respectively. Both α and β can vary with a system’s size. For the simulations

reported in Section 2.4, the values of α and β are based on trial and error. We

tried the following combinations: (α, β) = {(3,000, 16,000), (3,000, 15,000), (2,000,

16,000), (4,000, 16,000)}. Values of beta less than 16,000 result in negative number

of molecules of at least one component. Thus, values of β have a significant effect

on classification of reactions as slow or fast. However, values of α have weaker

effect as revealed by little change in computation time. This is because the range

of α is wide so that these values are not critical in deciding fast or slow reactions.

As a result, we found that α = 3,000 and β = 16,000 provide good computational

efficiency and maintain the positivity of the number of molecules.

Suppose that at a time t the system state is denoted as X(t), and the system

consists of Ms slow and Mf fast reactions (Ms+Mf = M): M =Ms∪Mf ,Ms =

Ms andMf = Mf . Let the probability of the system state be denoted by P [X; t].

Then, P [X; t] can be rewritten as the joint probability Ps,f [X; t], which is in turn

expressed in terms of the conditional probability as Ps,f [X; t] = Ps|f [X; t]Pf [X; t].

This allows one to approximate the rate of change of P [X; t] [62],

dP [X; t]

dt
=

dPs|f [X, t]

dt
Pf [X; t] +

dPf [X; t]

dt
Ps|f [X; t], (2.3)

with

dP [X; t]

dt
≈ dPf [X; t]

dt
Ps|f [X; t]. (2.4)

This approximation is justified by the fact that, at the time-scale of interest,

the probability of the occurrence of slow reactions (conditioned on the occurrence of
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the fast reactions) does not change with time, so that its derivative is approximately

zero.

The approximation in Eq. (2.4) provides a theoretical foundation [62] for

the following hybrid strategy:

• Use the CLE to model fast reactions for which ajτ (j ∈ Mf ) are large and

the number of molecules of all the reactants is large to warrant the continuum

approximation (see Appendix A.3).

• Employ the Gillespie algorithm to describe the remaining slow reactions. For

the slow reactions, instead of Gillespie algorithm one can use the Gibson and

Bruck’s next reaction method [64] as the latter is about 5 times faster for the

same level of accuracy.

These criteria for classifying reactions as slow or fast, and the corresponding

numerical methods to be used to model each reaction, are summarized in Table 2.2.

Deterministic modeling of non-reaction fluxes

Previously, [65] have used an adaptive approach to select between determin-

istic and stochastic approaches depending upon the number of molecules involved

[66]. However, in the present work, the need to use deterministic equations arises

when one or more of the fluxes involved in the corresponding ODEs cannot be mod-

eled as reactions. This does not depend on the number of molecules. Examples

of such fluxes include complex inter-organelle transport of molecules such as, in
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our model, movement of Ca2+ from endoplasmic reticulum to the cytosol through

IP3R channels (Jch in Eq. (2.5)). One can argue that this particular flux could

be modeled using the 12 reversible reactions proposed by [67] and later simplified

by [59]. However, in some cases the detailed mechanisms are not known and flux

approximation is the only option.

The calcium dynamics model [9] includes four coupled ODEs for the state

variables [Ca2+]ER, [Ca2+]i, h and [Ca2+]mit, which contain fluxes whose under-

lying mechanisms involve many reactions that are not modeled explicitly. These

processes are treated deterministically in our algorithms. Consider, for example,

the rate of change of [Ca2+]ER (the other three ODEs can be found here [9]),

d[Ca2+]ER

dt
=
βER

ρER

(JSERCA − Jch − JER,leak). (2.5)

In Eq. (2.5), the rapid binding of calcium to buffer proteins is modeled implicitly

through βER, the ratio of free calcium to total (free and bound) calcium in the ER;

and the use of ρER, the volumetric ratio of the ER and the cytosol, obviates the

need to specify the ER volume explicitly. The calcium fluxes through the SERCA

pump back to the ER, JSERCA, through the IP3R channel from the ER to the

cytosol, Jch, and due to the calcium leakage from the ER, JER,leak, are prescribed

as nonlinear functions of the state variables [Ca2+]ER, [Ca2+]i, h and [Ca2+]mit.

The complexity of the fluxes of the state variables [Ca2+]ER, [Ca2+]i, h

and [Ca2+]mit complicate their modeling with the stochastic simulation algorithms

described above. For example, the expression for Jch is given by:
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Jch = vmax,ch×
([

[IP3]

[IP3] +KIP3

]
×
[

[Ca2+]i

[Ca2+]i +Kact

]
× h
)

3× ([Ca2+]ER− [Ca2+]i)

(2.6)

So, in our hybrid approach, the corresponding four ODEs are integrated

via a first-order Euler scheme after all other quantities are updated using the

multi-scale stochastic method described in Section 2.3.3. The coupling of con-

tinuum (ODE-based) and stochastic (particle-based) descriptions requires relating

the concentrations to numbers of molecules. For the cytosolic calcium dynamics

in RAW 264.7 cells considered in this study, we use a cytosolic volume V = 10pL

or a cell diameter of 27µm. Then the concentrations, e.g., the concentration of

ligand, [L] = 30nM, can be related to the numbers of molecules, as follows

30nM = 30× 10−9 × 6.022× 1023

L
× 10−11L = 180, 660 molecules. (2.7)

Reactions with complex rate expressions

Some explicitly modeled reactions have complex rate laws which are ac-

tually functions of Michaelis-Menten (M-M) or Hill dynamics-based complex rate

expressions.

We studied four methods for stochastic simulation presented in the litera-

ture to perform course-graining and handle complex rate laws such as Michaelis-

Menten rate law for a single reaction and coupled reactions with Michaelis-Menten

rate law. The first such contribution is the quasi-steady-state approximation
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(QSSA) approach of [22]. [68] have carried out in-depth analysis of using QSSA

under different conditions through the use of singular perturbation analysis. More

recently, [27] have extended the QSSA by analyzing the conditions under which the

standard QSSA might fail. They have utilized the total QSSA (TQSSA) and have

shown that under certain conditions the method of [22] fails. They have applied

the TQSSA approach to a single Michaelis-Menten mechanism, the Goldbeter-

Koshland (GK) ultrasensitive switch system involving two coupled Michaelis-Menten

mechanisms and a bistable system composed of two GK switches. The approach

requires solving quadratic equations to solve for the propensity for slow reactions

for use with the standard Gillespie algorithm. For these cases, the results are out-

standing in that the mean temporal responses obtained from the TQSSA and the

standard Gillespie algorithm are indistinguishable. The work of [32] deals with

a detailed analysis of the issues in simplification of Michaelis-Menten formulation

into a single-step reaction in stochastic simulation.

All these are successful approaches in handling systems with one or a few

reactions. However, these approaches have not been applied on more complex

systems involving many reactions (say, about 20 or more) with both simple and

complex rate laws. Some of the rate laws in our model are much more complex

than even the most complex examples presented in these contributions because in

our case, the corresponding mechanisms are highly lumped representations of the

underlying detailed mechanisms. If one were to consider the detailed mechanisms,

the parameters would be unknown.
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To handle such rate laws, here we provide two examples of the calculation

of the propensity functions (Eq. (A.2)) for such reactions. In lieu of the first

example, we consider the forward component of the lumped-enzymatic reaction 3

in box 1 of Fig. 2.1B,

[GRK; Cai] LR
kf,3−−→ LRp, (2.8)

which is facilitated by the presence of enzymes GRK and Cai. The corresponding

flux can be written as [60]

v5 = kf,3[LR][GRK]MMf (Km,Cai,3, [Ca2+]i), (2.9)

where where kf,3 is 2nd-order rate constant, Km,Cai,3 is the Michaelis parameter,

and MMf (Km, x) = x/(Km + x) is the Michaelis-Menten (M-M) rate expression.

Recognizing that LR acts as a reactant and recalling Eq. (A.2), we compute the

propensity function a5 for reaction of Eq. (2.8) by first determining the number

of possible combinations of reactant molecules in the reaction of Eq. (2.8) as

h5 = [LR]NAV , and the corresponding specific probability rate constant as c5 =

kf,3[GRK]MMf (Km,Cai,3, [Ca2+]i). Hence, the propensity function a5 = c5h5 is

given by

a5 = v5NAV. (2.10)
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2.3.4 Application to cytosolic calcium dynamics in RAW

cells

This multi-scale hybrid approach was applied to the cystolic calcium dy-

namics with parameter values and initial conditions taken from [9]. The system

consists of 28 irreversible reactions and 26 species, which are represented by the

state vector

X = [L,R,LR,Gβγ,GRK,GRK.Gβγ,Ca2+
i ,LRp,Rp,LRi,ARR,Rp,i,Rpool,

GiD,T,Gα,iT,Gα,iD,A,PIP2, IP3,PLCβ, IP3p,XPIP2,gen,CaM,

Ca2.CaM,Ca2.CaM.GRK]T . (2.11)

The multi-scale hybrid algorithm is needed because the numbers of molecules of

some of these species are close to 0 while others have above 106 molecules, and

because the propensity functions aj(X) (j = 1, . . . , 28) vary from 0 to over 104.

Before the ligand is added, the system is simulated for 1000 sec so that the

system reaches a steady state. At time t = 1000 sec, ligand C5a is applied to cells

and binds to its receptor (C5aR), which leads to the increase in IP3 levels. The

simulation consists of two phases: before adding ligand and after adding ligand. At

t = 0, the species R, Gβγ, GRK, Ca2+
i , Rpool, T, Gα,iD, A, PIP2, PLCβ, XPIP2,gen

and CaM are present. Other species have zero concentration.

At the first time step, τ = 8.0361 × 10−7 sec. Reactions 14, 17, 18 and 21

in Fig. 2.1B are considered to be fast, while the remaining reactions are taken to

be slow (see approximation 2.2b). The second time step is calculated based on the
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reaction rates and number of molecules obtained from first time step, etc.

All simulations reported in Section 2.4 were carried out on the linux-based

Triton Cluster at San Diego Supercomputer Center (SDSC), with parallelization

accomplished by using Microsoft’s Star-P program. The number of processors used

varied between 8 and 256 depending upon the number of realizations generated.

On an average, the simulation time for each realization was 15 hrs. The total

single-processor equivalent of simulation time for all the results is about 50,000

hrs.

2.4 Results

Comparison of response of Ca2+
i from stochastic and deterministic simula-

tion is presented in Section 2.1. Briefly, in the limit of large number of molecules of

reacting species, stochastic and deterministic simulations yield nearly identical re-

sults. Below, we compare other features of the response as predicted by stochastic

versus deterministic simulation.

2.4.1 Dose response

Dose response, which is a measure of efficacy of a ligand [9], is presented in

Fig. 2.3. Rather than relying on commonly used saturating dose levels to generate

dose-response curves, we choose only sub-basal (very low) doses. This enables us to

identify differences between the dose responses of [Ca2+]i predicted by deterministic
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and stochastic simulations, respectively. Fig. 2.3A demonstrates the temporal

evolution of the dose responses of [Ca2+]i to the basal dose of [C5a] = 30 nM and

its 0.1%, 1%, 10%, and 50% fractions. The peak height of cytosolic Ca2+ increases

with the dose of ligand, a finding that is made explicit in Fig. 2.3C.

The stochasticity effects and differences in [Ca2+]i responses obtained from

the deterministic and stochastic simulations are explored in Figs. 2.3B and 2.3C.

Note that in Fig. 2.3A the dose responses computed with the two approaches

are nearly identical, with the deterministic predictions shifted to the right by 100

sec to improve visibility. Fig. 2.3B demonstrates the importance of stochasticity

(randomness) for small numbers of ligand molecules (e.g., 0.1% C5a), when the

peak height varies substantially between realizations. Although the ensemble mean

of the peak-height of [Ca2+]i response from these realizations visually overlaps with

that from deterministic prediction, quantitatively, they are different as expressed

through “normalized response difference (NRD)” in Fig. 2.3C.

As the number of molecules becomes very small, the concept of “concen-

tration” loses its rigor and deterministic simulations can be expected to introduce

modeling errors. This effect is elucidated in Fig. 2.3D, where the relative er-

ror or “normalized response difference (NRD)” (E) between the deterministic and

stochastic solutions of [Ca2+]i response is shown. E is computed as,

E ≡ |deterministic− ensemble avg|
max(deterministic,ensemble avg)

× 100%. (2.12)

Fig. 2.3D shows that E decreases as the dose of C5a increases, indicating the di-
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minishing effects of randomness (stochasticity). The NRD varies from E = 7% at

the 0.1% dose to almost zero at the full dose of 30 nM. These results demonstrate

that at lower doses, stochastic simulations are needed and that the ensemble av-

erage of multiple realizations provides a more accurate prediction of the system

behavior then does the deterministic output. Further analysis of this phenomenon

is presented below.

2.4.2 Convergence of stochastic simulations at low doses

Figs. 2.4A-D show the histograms of the peak-value of calcium response,

[Ca2+]i, due to the 0.1% dose of C5a. The histograms in Figs. 2.4A-D represent

respectively 16, 64, 256, and 512 realizations of the stochastic hybrid algorithm,

using 20 bins in each case. The vertical dotted line in each panel corresponds to

the mean computed from the corresponding number of realizations, and the solid

curves are the Gaussian distributions whose mean and variance are computed

from the same realizations. Although the central limit theorem applies to the

distribution of the mean of a random variable instead of the distribution of the

random variable itself, it is interesting to note that the shape of the computed

distributions approaches the Gaussian distribution as the number of realizations

increases from 16 in Figs. 2.4A to 512 in Figs. 2.4D.

To find out if the central limit theorem is applicable to the peak-value of

[Ca2+]i response, the mean of 4, 8, 16 or 32 realizations was computed. This was

repeated in each case to generate 1024 such mean values. The histogram of the
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mean values is shown in Figs. 2.4E-H. All the four histograms are similar to a

Gaussian distribution and the standard deviation from these distributions indeed

decreased proportional to 1/
√
Nr, Nr being the number of realizations used to

compute the mean.

2.4.3 Random variability of the [Ca2+]i response at low doses

The number of molecules of C5a at 0.1% dose is about 180. The number of

molecules of cytosolic Ca2+ is of the order of 300,000. The number of molecules

of free Gβγis about 10,000 and that of the phosphorylated receptor still bound

to the ligand (LRp) is about 60. Fig. 2.4I shows how standard deviation (σ) of

the [Ca2+]i response varies across 16 realizations. Fig. 2.4J shows the variation

of the normalized standard deviation σ̃, defined as: σ̃ = σ/H, where H = h − b

is the difference between the basal level of calcium response b and the peak level

h. It is clear from Fig. 2.4J that the normalized standard deviation σ̃ increases

as the C5a dose decreases, indicating the increasing importance of randomness

(stochasticity). This is because as the C5a dose (the number of C5a molecules)

decreases, fewer C5a molecules participate in chemical collisions and hence the

enhanced relative importance of stochasticity. One implication of this is that more

stochastic realizations are needed to accurately estimate the mean response or the

variability in response. From experimental view point, a larger population of cells

is needed to get a stable reading for mean calcium response.
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2.4.4 Sensitivity analysis

In this study we have focused on the perturbations in the initial pool of

certain species. Quantification of parametric uncertainty in the reaction rate con-

stants used in the Gillespie and other algorithms described above can be carried

out following the procedure described in [69]. A similar analysis could be per-

formed with respect to perturbations in the rate parameters while keeping the C5a

dose and the initial pool of all species at their nominal levels. Since the number

of molecules is sufficiently large under these conditions, the results of sensitivity

analysis using stochastic simulation are similar to those obtained using determin-

istic simulation. As an example, results of sensitivity analysis of [Ca2+]i response

for changes in k1.

The sensitivity of [Ca2+]i response to variations in [Gβγ] is shown in Fig. 2.5.

In this discussion, IC refers to initial condition, which is generally also the total

pool of protein/species being considered. These concentrations were changed, one

at a time, by factors of 10−3, 10−2, 0.05, 0.1, 0,2, 0.5, and 0.75 of their respective

base values. For each concentration change, a new basal level (steady state) was

computed by allowing the system to evolve for 1000 sec before ligand addition, at

which time 30 nM of C5a ligand was applied. Note that 10% of a base value means

a 90% knockdown of the species/gene in question. Shift of basal level before ligand

addition and the peak-height from basal level are the main focus of this sensitivity

analysis.
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Figs. 2.5A-C provide an analysis of the [Ca2+]i response to changing doses of

IC:[Gβγ], which varies from its base value to the 1/20, 1/5, 1/2, and 3/4 fractions

thereof. The number of molecules involved at 1/20 level of IC:[Gβγ] is: Gα,iD:

46,000, Gα,iT: 5,100, free Gβγ: 16, GRK.Gβγ: 10, LRp, 1,400, Rp, 15, IP3: 260,000

and free cytosolic Ca2+: 290,000. Figs. 2.5B-C reveal that the [Ca2+]i response

is very sensitive to the changes in IC:[Gβγ]. Its peak height decreases by 90%

as IC:[Gβγ] is reduced by 50%, and becomes negligible when [Gβγ] drops below

20% of its base value (Fig. 2.5B). The relative error between the [Ca2+]i responses

predicted by deterministic and stochastic simulations, E (Fig. 2.5C) becomes very

large when the concentration [Gβγ] drops below 20% of its base value, indicating

the importance of randomness, which is caused by small numbers of molecules of

Gβγ.

We have also studied how the mean peak-height and NRD change when

different numbers of realizations are used. Fig. 2.5B show the mean peak-height

obtained from 8, 16, 32 realizations and deterministic simulation. The curves are

almost indistinguishable. Difference for [5%, 20%, 50%, 75%, 100%] of IC:[Gβγ]

is [1.1775 0.15677 0.16032 0.10425 0.10491]%; the large difference being less than

1.2%. Essentially, 16 realizations are sufficient to compute the mean with good

accuracy that is what is used in other simulations as well.
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2.4.5 Calcium response to protein knockdown

Since the stochastic hybrid algorithm enables us to predict cytosolic calcium

dynamics when only a few molecules of reacting species are present, we are in a

position to explore the effects of proteins’ knockdown on calcium response. Figs. 2.6

and 2.7 show the [Ca2+]i response to knockdown of proteins PLCβ and GRK,

respectively. Fig. 2.8 shows the [Ca2+]i response to knockdown of protein GRK

and perturbation of (knockdown of the protein related to) Vmax,PM,IP3dep. To model

a protein’s knockdown, we first reduced its basal level, and then computed a new

basal level (steady state) by evolving the system for 1000 sec, at which time 30

nM of C5a ligand was applied.

Figs. 2.6A and 2.6B show the [Ca2+]i response to the 50%, 80%, 90%,

and 99% knockdown of PLCβ for 0.1% and 10% doses of IC:[R], respectively.

The number of molecules involved at 0.1% dose of IC:[R] and 90% knockdown

of PLCβ is: total PLCβ: 3,400, Gα,iD: 17,000, Gα,iT: 350, free Gβγ: 14,000,

GRK.Gβγ: 3,700, LRp, 225, Rp, 2, IP3: 270,000 and free cytosolic Ca2+: 297,000.

Fig. 2.6C provides a temporal snapshot of the [Ca2+]i peak heights corresponding

to different combinations of the PLCβ and IC:[R] levels. Both the peak height

and basal levels of [Ca2+]i decrease as the knockdown level of PLCβ increases.

The deterministic and stochastic simulations yield similar results with NRD less

than 4% (Fig. 2.6D). This clearly suggests that it may not be necessary to carry

out stochastic simulation to model knockdown of PLCβ. For experiments, the
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implication is that a relatively smaller population of cells may be sufficient to get

a stable readout if other experimental factors can be controlled.

Figs. 2.7A and 2.7B present the [Ca2+]i response to the 50%, 80%, 90%,

and 99% knockdown of GRK for 0.1% and 10% doses of IC:[R], respectively. The

number of molecules involved at 0.1% dose of IC:[R] and 90% knockdown of GRK

is: free GRK: 1,500, Gα,iD: 9,200, Gα,iT: 400, free Gβγ: 10,000, GRK.Gβγ: 400,

LRp, 44, Rp, 1, IP3: 400,000 and free cytosolic Ca2+: 301,000. The largest peak

height occurs at lowest [GRK] and highest [R] (Fig. 2.7C), which is qualitatively

opposite to the response due to the PLCβ. Fig. 2.7D demonstrates that either

deterministic or stochastic simulations can be used to investigate this behavior,

with the maximum NRD E of about 1.5%, which occurs at low [R] and is practically

independent of the level of GRK.

Fig. 2.8 demonstrates the [Ca2+]i response to various degrees of simul-

taneous knockdown of protein GRK and the protein related to Vmax,PM,IP3dep.

Knockdown of GRK has a more pronounced effect on [Ca2+]i response than does

Vmax,PM,IP3dep. The relative importance of the two knockdowns does not change at

different levels of KD. This suggests the robustness of the system response over a

large range of perturbations.
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2.5 Summary and Discussion

In summary, we have integrated the existing techniques for multiscale stochas-

tic simulation with deterministic simulation to deal with complex reactions systems

and have applied it to studying calcium dynamics in macrophage cells. When the

concentration of reactants is sufficiently large, the stochastic method yields time-

course profiles identical to those obtained from a deterministic model (ensemble

average of 16 or more realizations). However, at lower number of molecules of one

or more species, measurable relative difference in [Ca2+]i responses predicted by

the two approaches is obtained, especially for the case of Gβγ, thus suggesting the

necessity of using stochastic simulation as opposed to deterministic simulation for

studying system dynamics at sub-cellular levels. Dose response analysis revealed

that while the normalized response difference (NRD) between [Ca2+]i responses

predicted by deterministic and stochastic simulations is negligible at the full dose

of 30nM (shown) or higher doses including saturating doses (not shown), it in-

creases with decreasing doses. At 0.1% dose, it is as high as 7%. These results

are emphasized again in the sensitivity analysis of the parameters used in the

simulation and in the knockdown analysis of reacting protein components.

2.5.1 Methodological novelty

We have developed a hybrid approach to stochastic simulation, in which

slow reactions and fluxes are handled through exact stochastic simulation and
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their fast counterparts are treated partially deterministically through the chemical

Langevin equation. The classification of reactions as fast or slow is accompanied by

a partial equilibrium assumption, according to which a population of slow species

is not altered by fast reactions. Our new approach also handles reactions with com-

plex rate expressions such as functions of Michaelis-Menten kinetics and power-law

kinetics by developing mathematical expressions for their propensity functions and

microscopic fluxes. Fluxes which cannot be modeled explicitly through reactions

are handled deterministically.

2.5.2 Sensitivity analysis

With decreasing IC:[R], lesser [Gβγ] is available [42] (Figs. 2.5A-C), which

results in reduced activation of PLCβ and as a consequence reduced hydrolysis of

PIP2 into IP3. Hence, the increase in cytosolic [Ca2+] is smaller. The sensitivity

curve for IC:[R] in Fig. 2.5B is nonlinear. This is because the ligand and the

receptor bind in 1:1 stoichiometry, and the nominal value of IC:[R] (∼40nM) is

larger than the nominal (100%) level of C5a (30nM). Thus, for a small decrease

(say, 10%) in IC:[R], about 36nM [R] is present. Since 36nM is still larger than

30nM, the dynamics of [LR] remains almost the same and so does the peak height

of the temporal response of [Ca2+]i. Basal level does not change in our model since

the receptor comes into play only after adding the ligand. In reality, there is a little

decrease of [Ca2+] in cytosol due to the little basal activity, but it is compensated

by the basal hydrolysis rate of PIP2 and hence is unobservable.
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The peak height of the [Ca2+]i response decreases with decreasing value of

IC:[Gβγ], and no baseline shift is observed (Fig. 2.5D). In the absence of perturba-

tion, at early times, the concentrations [Gβγ] = 8.28e−3 µM and [Gα,iD] = 8.12e−3

µM are almost equal. However, if IC:[Gβγ] is decreased, there is little free Gβγ left.

Since this directly affects the rate of PIP2 hydrolysis, no IP3 can be generated. Due

to this effect, with decreasing IC:[Gβγ], the peak-height of [Ca2+]i decreases much

more sharply. Although not shown in Figs. 2.5D-E, if IC:[Gβγ] increases beyond

100% of base case, then the excess Gβγ is present in the free form, hence both the

basal level and peak-height increase till saturation. This is similar to the decrease

in IC:[Gα,iD] shown in Figs. 2.5G-I and briefly discussed below.

Sensitivity analysis of IC:[Gα,iD] shows biphasic response of [Ca2+]i: large

baseline shift and low peak height at substantially low IC:[Gα,iD] (Fig. 2.5G, upper

panel) and a small baseline shift (increase) and the corresponding nominal increase

of peak height at relatively smaller perturbations ([90% 85% 80%] of IC:[Gα,iD],

Fig. 2.5G, lower panel). At substantially low [Gα,iD], large amount of free [Gβγ]

results in a large basal level shift and with the basal level at this plateau, little

additional increase in [Ca2+]i is observed, i.e. this results in a low peak-height of

[Ca2+]i upon ligand addition.

The NRD increases with decreasing IC:[R]. The behavior of NRD for de-

crease in IC:[Gβγ] is similar to that for decrease in IC:[R] except that it is drastically

larger at very low values (more than 80% NRD at 5% IC:[Gβγ]). While the NRD

in the sensitivity analysis of IC:[R] is under 2% for all changes, it is up to 90% in
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the perturbation of IC:[Gβγ]. There are three reasons for this drastic difference:

(1) stochastic effects are prominent at low concentrations, (2) the system is very

sensitive to large decreases in [Gβγ] as compared to in [R] or [Gα,iD], and (3) the

NRD is normalized by the peak-height (Eq. (2.12)). Since peak-height is very low

at low [Gβγ], the NRD gets amplified.

2.5.3 Knockdown (KD) analysis

Our results show reduced G-protein activity and [Ca2+]i response upon

KD of the receptor. KD of Gβγ results in a sharp decrease in calcium levels

and KD of Gα,iD results in considerably large increases in basal level of [Ca2+]i

(inferred from sensitivity analysis). KD of GRK results in increased and prolonged

mobilization of calcium since the receptor remains active for a longer time. Thus,

GRK regulates G-protein activity strongly. Similar to Gβγ, knockdown of PLCβ

shows a sharp decrease in [Ca2+]i. This is because IP3 generation is catalyzed by

the active complex of Ca2+, PLCβ and Gβγ. As the knockdown level of PLCβ

increases, both the peak height and basal levels of [Ca2+]i decrease since less IP3

is generated. Qualitatively, the knockdown response of PLCβ is similar to that of

the knockdown response of Gβγ since both play a similar role in IP3 generation.

In contrast to the KD response of PLCβ, as KD level of GRK increases,

peak height of [Ca2+]i increases strongly (Figs. 2.7A-B). This is because the phos-

phorylation induced through reactions 3 and 4 decreases as KD level of GRK

increases. Moreover, the time to return to steady state also increases considerably
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since the receptor remains active for longer time and relatively more Gβγ is present

in the free active state. The basal level increases slightly relative to peak-height

only at low IC:[R] (0.1%, Fig. 2.7A). At moderate IC:[R] (10%, Fig. 2.7B), the

increase in basal level is negligible as compared to the peak-height.

Vmax,PM,IP3dep affects JPM,IP3dep (IP3-dependent in-flux to cytosol across the

plasma membrane) in a proportional manner. Double perturbation of GRK and

Vmax,PM,IP3dep has revealed that for increase in their KD levels, GRK and Vmax,PM,IP3dep

have opposite effects on [Ca2+]i. Reduction of Vmax,PM,IP3dep results in decrease of

[Ca2+]i because JPM,IP3dep is reduced (the lower three time-courses shown with light

colored lines in Fig. 2.8). On the contrary, KD of GRK increases [Ca2+]i response

because phosphorylation of the active receptor is reduced (Fig. 2.8, time-course

shown with light continuous line (100% Vmax,PM,IP3dep and 100% GRK) and time-

course shown with dark continuous line (100% Vmax,PM,IP3dep and 50% GRK)). The

qualitative nature of the response does not change at different KD levels of the

protein GRK and the protein related to Vmax,PM,IP3dep suggesting that the system

is robust to such perturbations.

The main features of the KD response are summarized in Table 2.3.

2.5.4 Stochastic effects at low molecular numbers

In the base case (30nM C5a), there is good agreement between [Ca2+]i

responses predicted by deterministic and stochastic simulation. However, at low

doses of the ligand or proteins such as the receptor and GRK, stochastic effects
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become prominent resulting in up to 2-4% NRD for low concentrations of the

receptor, GRK and Gα,iD, up to 7% NRD for dose response and up to 90% NRD

for low concentration of Gβγ. Although the absolute value of fluctuations is larger

in the case of higher doses resulting in a higher peak [Ca2+]i value, the normalized

standard deviation of the response increases with decreasing dose.

2.5.5 Deriving statistics from stochastic simulation

We also found that with more realizations, the computed distribution of

the ensemble mean of the peak-height approaches a normal distribution when the

number of realizations used to compute the mean increases, as would be mandated

by the central limit theorem. Our results suggest that when 20 bins are used,

about 250 realizations are sufficient to derive an approximate distribution; results

from 512 realizations are good in terms of reaching a normal distribution. Statis-

tics related to low order moments of the distribution, such as mean and standard

deviation could be computed accurately even with lesser number of realizations

(about 16 realizations to compute the mean and about 128 realizations for the

standard deviation) at least for the cytosolic calcium response. For other systems

some trial may be involved. These results can be potentially used for deciding

the number of realizations needed to compute meaningful statistics in stochastic

simulations, at least for similar systems with a similar number of components.
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Table 2.1: The run-time scalability of the Gillespie, tau-leap, and chemical

Langevin equation algorithms as a function of the number of molecules.

Initial number of molecules
S: 312, E: 125 S: 31200, E: 12500

Method Computation time (s) Computation time (s)
Gillespie algorithm 0.892 100.3
Tau-leap algorithm 0.235 0.354

CLE 0.003 0.003
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Table 2.2: Criteria used to identify slow and fast reactions and corresponding

numerical method. Column 2 and 3 list the scale and simulation method in the

“scale (method)” format.

Reaction propensity
# of molecules of species involved High Low

Large Fast (CLE) Slow (Gillespie)
Small Slow (Gillespie) Slow (Gillespie)
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Table 2.3: Summary of results of KD response. The change in the features of

calcium response listed is for increase in KD-level (decrease in IC:[.]) of the protein.

Qualitative nature of the features is mostly independent of the level of [R].

Protein/variable name Basal level Peak height
PLCβ decreases decreases, convex
GRK very small increase increases, linear

Vmax,PM,IP3dep no change small decrease
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GTPase activating protein (GAP), respectively. Reaction 15 is similar to

reaction 12 but is catalyzed by L.R, and reaction 16 is similar to reaction 13

but is catalyzed by GAP (A, RGS) (57). A more detailed description of the
GTPase cycle, similar to the three-cube model in Fig. 1 A of Bornheimer

et al. (58) but with simplification of reactions GD4G4GT into GD4GT

(Fig. 1 B, reaction 12) and explicit modeling of Gbg and Ga,i, was included

in a detailed model, but its fit to one set of basic experimental data
(stimulation with 250 nMC5a) was similar to the compact model of Fig. 1 B.
Hence, to reduce computational complexity, only the simpler model (Fig.

1 B) is used for further analysis with knockdown data. Additional discussion
on this simplification is presented in Supplementary Material (Approxima-
tions and the lumped/simplified mechanisms in the model). Reactions 15 and

16 are lumped-enzymatic reactions, where T is GTP, D is GDP, and A is the

GAP RGS.

Reaction 15: ½L:R"GiD1T/Ga;iT1Gbg 1D

ðL:R is an enzymeÞ
Reaction 16: ½A"Ga;iT/Ga;iD1 Pi ðA is an enzymeÞ

IP3 module. In the basal state, most of the IP3 is generated due to slow
hydrolysis of PIP2 (reaction 17), since free Gbg is present in very small

amounts. Upon G-protein activation, dissociated Gbg binds to PLCb. Cytosolic
Ca21 (Fig. 1 B, box 3, Cai) can bind to both PLCb and PLCb.Gbg. Bind-
ing affinities for Gbg and calcium-bound forms of PLCb are ;10 times

higher than that of free PLCb (13). Each of PLCb.Gbg, PLCb.Cai and
PLCb.Gbg.Cai catalyze hydrolysis of PIP2, but PLCb.Gbg.Cai is the most

potent. In our model, for simplification, a lumped-enzymatic reaction is
used to model the enhancement due to PLCb.Gbg.Cai (see reaction 18 (Fig.

1 B, box 3)):

Reaction 18: ½Cai; Gbg; PLCb" PIP2/IP3 1DAG

ðenzyme is a ternary complex of Cai; Gbg; and PLCbÞ:

As explained in Supplementary Material (Approximations and the

lumped/simplified mechanisms in the model), the rate expression of the
above reaction is a close approximation to an expression derived based on

the assumption that all the four reversible reactions related to PLCb are in

equilibrium. Further, it is assumed that the enzymatic effect of PLCb.Gbg

and PLCb.Cai is captured through suitable increase in the value of the rate

constant. The amount of Gbg bound to PLCb complexes (estimated to be

;10% of free Gbg) is ignored for Gbg balance (Supplementary Material,

Details of explicitly modeled reactions) in the reduced model; if all other
species are included, then little reduction is achieved, and therefore it would

be appropriate to model all reactions explicitly. Since PLCb is not used in

any other reaction in our model, PLCb denotes the total PLCb (buffered).

Reactions 19 and 20 (Fig. 1 A) are simplified and highly lumped repre-
sentations of IP3 metabolism, i.e., degradation/conversion to/from other ino-

sitol phosphates and back to PIP2, with only one intermediate pseudospecies,

namely, IP3,p or IP3 product (12). Since oscillation is not observed in the
experimental data on C5a stimulation of RAW cells, this simple represen-

tation is considered sufficient. As Mishra and Bhalla (13) have noted, such a

simple description may be insufficient to model oscillatory response, even

though Marhl et al. (59) have shown that interactions with the mitochondria
(included in our model) can result in oscillations, especially above cytosolic

[Ca21] of ;0.5 mM.

It should be noted here that the free Gbg subunit is responsible for the

activation of PLCb, as opposed to activation by the free a subunit of a
G-protein, e.g., GaqT (G-protein Gq) upon activation of P2Y2 receptors, as

presented by Lemon et al. (12). For the G-protein Gi, the a subunit, i.e.,

GaiT, does not bind to PLCb. Gbg also has been implicated in calcium

oscillations during fertilization (60).

FIGURE 1 A simplified model for

calcium signaling including calcium in-

flux, ER, and mitochondrial exchange

and storage, used in the conceptual-
model-based computation. (A) Overall

schematic model. The ligand C5a binds

to its receptor C5aR on the plasma mem-

brane, activating G-protein Gi. The
free subunit Gbg binds to and activates

PLCb, which hydrolyzes PIP2 into IP3
and DAG. IP3 binds to its receptor on the
ER membrane and the IP3R channels

open to release calcium into the cytosol.

Other calcium fluxes (e.g., with mito-

chondria and extracellular space) are
also shown. (B) The mechanisms for the

receptor module (box 1), the GTPase

cycle module (box 2), and IP3-generation
module (box 3), and the feedback effects
(boxes 1 and 4). PIP2, phosphatidylino-
sitol 4,5-bisphosphate; IP3, inositol 1,4,5-

trisphosphate; IP3R, IP3 receptor; IP3,p, a
lumped product of IP3 phosphorylation;

Cai, cytosolic Ca21; ER, endoplasmic

reticulum; CICR, calcium-induced cal-

cium release; SERCA, sarco(endo)
plasmic reticulum calcium ATPase;

PMCA, plasma membrane calcium

ATPase; NCX, Na1/Ca21 exchanger;
mit (subscript), mitochondria; L, ligand C5a; R, receptor C5aR; GRK, G-protein-coupled receptor kinase; CaM, calmodulin; PLCb, phospholipase C-b; GAP,
GTPase activating protein; RGS, regulator of G-protein signaling; DAG, diacylglycerol; PKC, protein kinase C; Pi, phosphate.
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(A) Overall schematic (B) Modules

ADP

ATP
SERCA
pump

mitochondria

IP3
IP3,P

PIP2

Leak IP3 dependent
flux

PM
R

Figure 2.1: A simplified model for calcium signaling including calcium influx, ER,

and mitochondrial exchange and storage. (A) Ligand C5a binds to its receptor on

plasma membrane (PM) and activates G protein Gi. The free Gβγ binds to PLCβ

and increases its activity which accelerates the phosphorylation of PIP2 into IP3

and DAG. IP3 binds to its receptor IP3R on the ER membrane. Thus, calcium from

the ER is released into the cytosol. Other fluxes between cytosol and mitochondria

or ECM are also shown. (B) Receptor module (box 1), GTPase cycle module (box

2), IP3 generation module (box 3) and feedback module (box 4).
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Figure 2.2: Temporal evolution of the concentrations of substrate, S(t), and prod-

uct, P (t), computed using the Gillespie, tau-leap, and chemical Langevin equation

(CLE) approaches. (A) shows time-course of 1 realization from each method. (B)

and (C) show the time-course of mean and standard deviation from 1024 realiza-

tions, which show excellent agreement among the 3 different methods. (D)-(F)

show histograms and probability distribution of the number of molecules of S sam-

pled at t = 10 second. The shapes of the three histograms are very similar.
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Figure 2.3: Dose response. (A) Comparison between ensemble average of 16 re-

alizations and deterministic simulation. For better contrast, the time-course from

deterministic simulation is shifted by 100s. (B) Comparison between ensemble

average and individual realizations in stochastic simulation for 0.1% (of 30nM)

strength of the ligand C5a. (C) Comparison of the dose response (peak heights):

The difference is quite small as compared to the scale of peak-height. (D) At lower

doses, the normalized response difference (NRD) is larger indicating the stochastic

effects. The NRD decreases with increasing dose as the number of the molecules

of C5a becomes several hundreds or more.
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Figure 2.4: Revelation of stochastic effects at low doses. (A)-(D) Distributions of

peak-height for the 0.1% dose of C5a computed from 16, 64, 256, and 512 real-

izations, respectively. The dotted vertical line represents the mean value and the

solid curves denote theoretical Gaussian distributions. As the number of realiza-

tions increases, the shape of the histogram approaches a Gaussian distribution.

(E)-(H) The mean of 4, 8, 16 or 32 realizations was computed. All the four his-

tograms are similar to a Gaussian distribution and the standard deviation from

these distributions indeed decreased proportional to 1/
√
Nr, Nr being the number

of realizations used to compute the mean. (I) The standard deviation computed

from 16 realizations for several doses. Contrary to the expectation, higher doses

result in larger absolute standard deviations. (J) The normalized standard devia-

tion decreases as the dose is increased, signifying the effect of randomness at lower

doses.
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Figure 2.5: Sensitivity analysis. (A)-(C) Response of [Ca2+]i to changes in

IC:[Gβγ]. The decrease in the peak height due to decrease in IC:[Gβγ] is much

more pronounced than that caused by the same decrease of IC:[R]. (C) NRD E is

extremely high at very low IC:[Gβγ], suggesting significant stochastic effects at low

numbers of molecules of [Gβγ]. (B) and (C) also show the effect of using different

number of realizations for computing the mean. Such differences are small (see

text) indicating that 16 realizations are sufficient for computing the mean.
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Figure 2.6: Knockdown response of PLCβ. (A)-(B) The [Ca2+]i response to the

50%, 80%, 90%, and 99% knockdown of PLCβ for 0.1% and 10% levels of IC:[R],

respectively. As the knockdown rate of PLCβ increases, both the basal level and

peak height of [Ca2+]i decrease, because the IP3 production decreases due to de-

crease in PLCβ. (C) Peak-height of [Ca2+]i response corresponding to different

combinations of the PLCβ and IC:[R] levels. Peak height increases with high

amount of IC:[R] and [PLCβ]. (D) NRD E is insignificant and decreases as doses

of R and PLCβ increase.



55

950 1000 1050 1100 11500.0494

0.0495

0.0496

0.0497

0.0498

0.0499

0.05

time (sec)

[C
a2+

] i (u
M

)

 

 

99% KD
90%
80%
50%

950 1000 1050 1100 11500.04

0.05

0.06

0.07

0.08

time (sec)

[C
a2+

] i (u
M

)

 

 

99% KD
90%
80%
50%

10 2

100

0

0.5

1

0

0.05

0.1

log ratio IC: [R]ratio IC: [GRK]

pe
ak

 h
ei

gh
t [

C
a2+

] i (u
M

)

10 2

100

0

0.5

1

0

1

2

log ratio IC: [R]ratio IC: [GRK]

D
iff

er
en

ce
 ra

te
 (%

)

KD of GRKKD of GRK

(B)(A)

(C) (D)

N
R

D
(%

)

10% of IC:[R]0.1% of IC:[R]

Figure 2.7: Knockdown response of GRK. (A)-(B) The [Ca2+]i response to the

50%, 80%, 90%, and 99% knockdown of GRK for 0.1% and 10% levels of IC:[R],

respectively. (C) Peak-height of [Ca2+]i response corresponding to different com-

binations of [GRK] and IC:[R] levels. (D) NRD E is insignificant, reaching its

maximum of about 1.5% at low IC:[R].
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Vmax,PM,IP3dep have opposite effects on the [Ca2+]i response. The response is much

more sensitive to knockdown of GRK than to decrease in Vmax,PM,IP3dep.



Chapter 3

Stochastic Operator Splitting

Approach for Reaction-Diffusion

Processes

3.1 Introduction

Randomness plays an important role in the behavior of many biological phe-

nomena, such as cellular signaling and gene regulatory networks [8, 70, 71]. While

deterministic ordinary differential equations (ODEs) often provide accurate pre-

dictions of the dynamics of biochemical pathways with large numbers of reacting

molecules, they fail when the concentrations of reactants and/or their products

57
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become small and the law of mass action becomes invalid. When this occurs,

the randomness associated with the dynamics of individual molecules becomes

pronounced, necessitating the use of stochastic simulations. Standard stochastic

techniques, e.g., Gillespie’s stochastic simulation algorithm [11] and its computa-

tionally efficient modifications [12, 72], are routinely used to model biochemical

reactions in such systems. Such algorithms assume that reactants and their prod-

ucts are well-mixed, i.e., distributed uniformly in space.

The latter assumption is problematic when the number of molecules is small.

This is especially so in crowded environments with complex internal geometry,

wherein stochasticity and spatial variability are inseparable. Partial differential

equations (PDEs) provide accurate macroscopic predictions of the dynamics of

spatially heterogeneous systems with large numbers of molecules. Yet, similar to

ODE-based models, they fail to account for the randomness inherent in a system

comprised of small numbers of molecules. It is essential that computational meth-

ods for reaction-diffusion systems with small numbers of molecules are capable of

handling both stochasticity and heterogeneity.

A number of micro- and meso-scale methods have been developed for the

simulation of reaction-diffusion systems. The micro-scale approaches, e.g., the

Green’s function reaction dynamics [14] and Smoldyn’s algorithm [15], are based

on Brownian dynamics and require the reacting molecules to diffuse within a cer-

tain distance from each other in order for bimolecular reactions to take place. The

latter requirement necessitates the use of a numerical mesh and the tracking of in-
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dividual particles and/or distances between them, which renders such algorithms

computationally expensive. Mesoscopic approaches, e.g., MesoRD [16] and the

Gillespie multi-particle (GMP) method [17, 18], trade representational accuracy

for computational efficiency. They are based on a reaction-diffusion master equa-

tion [19], which generalizes a chemical master equation developed for well-mixed

chemical reactions by discretizing the space into a collection of cells and treating

each cell as a well mixed system. MesoRD [16] treats diffusion as a unimolecular re-

action whose reaction rate is related to the corresponding diffusion coefficient. The

GMP method [17, 18] employs an operator-splitting scheme in which the Gillespie

algorithm and cellular automata [20] handle reactions and diffusion, respectively.

We present a numerical algorithm to simulate stochastic reaction-diffusion

processes with a small number of non-uniformly distributed molecules. It employs

an operator-splitting, in which the Gillespie algorithm (or its accelerated versions)

and Brownian dynamics (or the Smoluchowski equation) are used to simulate re-

actions and diffusion, respectively. Our algorithm is conceptually similar to the

GMP method in that it relies on operator-splitting. However it offers a number

of computational advantages in terms of both accuracy and efficiency. First, the

cellular automata used in the GMP method restrict a particle’s movement during

one fixed time-step to the adjacent cells only; while Brownian motion places no

restrictions on the distance particles can travel during one time-step, thus gaining

in computational efficiency. Second, Brownian dynamics provides a more accurate

representation of diffusion than cellular automata. Third, our algorithm offers the
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flexibility of an “on-the-fly” adaptive selection of the time-step size for operator-

splitting, depending on whether the system is reaction- or diffusion-controlled. The

outline of this manuscript is as follows.

Our stochastic operator-splitting approach is described in Section 3.2. This

section contains a brief description of the stochastic simulation algorithm for mod-

eling reactions and a comparative analysis of the two approaches—Brownian mo-

tion and cellular automata—to deal with diffusion. It also contrasts our operator-

splitting algorithm with that used in the GMP method (Section 3.2.2). Section 3.3

presents three computational examples, which demonstrate the accuracy and ro-

bustness of the proposed algorithm. The first example (Section 3.3.1) considers

diffusion of two chemical species undergoing an irreversible bimolecular reaction

in order to validate our algorithm and to analyze its performance and accuracy in

terms of the time-step and the cell size. This is done by comparing the stochastic

simulation results with solutions of the corresponding deterministic PDEs. The

detailed comparison elucidates the effects of the finite (small) number of molecules

and space-time discretization on the simulation accuracy and efficiency. The second

example (Section 3.3.2) models an idealized gene expression system [14]. It serves

to investigate the performance of our algorithm in reaction- and diffusion-controlled

regimes and the effects of local inhomogeneity. The third example (Section 3.3.3)

considers reaction and diffusion of CheY molecules through the cytoplasm of Es-

cherichia coli during chemotaxis [73]. In addition to its biochemical significance,

this example poses additional computational challenges by introducing a specific
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local structure. In all the three cases, we demonstrate that our algorithm out-

performs the GMP method in terms of computational time. In Section 3.4, we

summarize the simulation results and provide conclusions.

3.2 Methods: Numerical approach

3.2.1 Operator-splitting method

We consider M species that undergo diffusion and N (bio)chemical reac-

tions. Spatio-temporal evolution of their concentrations {ci(x, t)}Mi=1 can be de-

scribed by a system of reaction-diffusion equations,

∂ci
∂t

= Di∇2ci + fi(c1, . . . , cM), i = 1, . . . ,M (3.1)

where Di is the molecular diffusion coefficient of the i-th species and fi is the corre-

sponding net production rate through reactions. Our focus is on reaction-diffusion

systems with small numbers of molecules, in which continuum representations such

as Eq. 3.1 are inadequate. Such phenomena are typically handled with stochastic

simulations. While stochastic, particle-based methods for modeling both reac-

tions in well-mixed environments (e.g., the Gillespie algorithm [11]) and diffusion

of chemically inert molecules (e.g., Brownian dynamics) are relatively mature, the

same cannot be said about chemical reactions in spatially heterogeneous (reaction-

diffusion) systems.

We propose an operator-splitting method that enables one to take advan-
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tage of the considerable advances in modeling chemical reactions and molecular

diffusion by treating these two phenomena separately. We use the (modified)

Gillespie algorithm and Brownian dynamics to represent the reaction and diffu-

sion steps, respectively, in lieu of their continuum representations in Eq. 3.1. The

relative order of these steps is determined dynamically depending on whether the

system is in diffusion- or reaction-controlled state.

This raison d’être for employing an operator splitting is different from the

use of operator-splitting algorithms to model deterministic reaction-diffusion sys-

tems. In the latter case, the goal is to handle the stiffness of the reaction-diffusion

equations in which diffusion and reaction processes have different time scales.

A typical operator-splitting method for solving deterministic reaction-diffusion

equations employs an implicit method to handle the (stiff) reaction simulations

and an explicit method to handle diffusion. Examples of deterministic operator-

splitting approaches include the Douglas-Gunn alternating direction implicit (ADI)

method [74] and the method of lines (MOL) [75]. The former applies an explicit

Euler scheme to diffusion and an implicit Crank-Nicholson method to reactions.

The latter converts partial-differential equations (PDEs) into ordinary differen-

tial equations (ODEs) by discretizing the spatial derivatives and leaving the time

variable continuous.

We employ an operator-splitting algorithm [76] to approximate Eq. 3.1 with
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∂c′i
∂t

= Di∇2c′i (3.2a)

∂c′′i
∂t

= fi(c
′′
1, . . . , c

′′
M). (3.2b)

during the time interval [t, t + ∆t]. Here c′i(t) = ci(t) and c′′i (t) = c′i(t + ∆t),

so that the concentration of the i-th species at the end of the time-step ∆t is

c′′i (t) = ci(t + ∆t). Fig. 3.1A provides a graphical representation of this operator-

splitting algorithm. The resulting stochastic operator-splitting algorithm will en-

able us to analyze the effects of intrinsic noise in spatially heterogeneous biological

systems (Section 3.3). Our implementation of the reaction process using Gillespie

algorithm, the diffusion process using either Brownian dynamics or cellular au-

tomata, and the GMP algorithm is described in Appendix B. Briefly, in Gillespie

algorithm [11], to advance the system from state X(t), two random numbers r1 and

r2 distributed uniformly on the unit interval [0, 1] are generated. Then, a discrete

random value j and continuous random value τ are selected probabilistically as

τ =
1

asum

ln

(
1

r1

)
,

j−1∑
j′=1

aj′ ≤ r2asum ≤
j∑

j′=1

aj′ . (3.3)

where asum is the sum of all propensity functions. The system state at t+ τ

is updated according to X(t+ τ) = X(t)+νj where the entries of the vector νj are

the change in the number of molecules of various species due to the j-th reaction

[11].
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In Brownian dynamics, a species diffuses from its current location X(t) ∈ R3

at time t to its new location at time (t + 4t) according to [77]: X(t + 4t) =

X(t) +
√

2Di4t ξ where ξ = (ξ1, ξ2, ξ3)T is a normal random displacement vector.

In cellular automata, the ith species can diffuse to one of its neighboring

cells (Figs. 3.1 B-C) during the time interval equal to its diffusion-time constant

τDi
given by τDi

= (∆x)2/(2Did).

3.2.2 Algorithms for the stochastic operator-splitting method

To deal with reaction-diffusion systems composed of a small number of

molecules, we propose the following stochastic operator-splitting algorithm.

1. Lattice: The space is discretized into a lattice of cells. Within each cell (lattice

element), each species is assumed to be distributed homogeneously.

2. System state: Determine whether the system is at diffusion- or reaction-

controlled state to decide the time-step size ∆tj at the j-th time-step.

3. Diffusion process: Diffusion of species between cells is modeled via Brownian

dynamics with a fixed time-step by treating the space as a continuum.

4. Reaction process: Reactions within each cell are simulated via the Gillespie

algorithm or its accelerated versions.

5. Time is increased by the time-step size and the above steps are repeated till

the final desired time.
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Dynamic identification of system’s state

A key feature of our algorithm is its ability to determine at each time-step

the system’s state (reaction- or diffusion-controlled) and to set the time-step size

accordingly. For an i-th cell (i = 1, . . . , C where C is the number of cells in a

numerical grid) at the j-th time-step ∆tj, we define a macroscopic time constant

TRij
=

1

aijsum

, aijsum ≡
N∑
k=1

ak(Xij), (3.4)

where Xij is the state X of the i-th cell at the j-th time-step and ak(Xij) is the

propensity function for the k-th reaction. At each time-step, we find the minimum

value of the macroscopic time constants over all the cells,

Tmin
Rj
≡ min

i
TRij

, (3.5)

and define

τRj
= Tmin

Rj
ln

(
1

r

)
. (3.6)

Figs. 3.2A and 3.2B show a frequency chart of ln(1/r) and the corresponding

cumulative probability distribution. They reveal that the cumulative probability

of ln(1/r) ≤ 1 is 0.63 (also see Table 3.1), i.e., the probability of τRj
≤ Tmin

Rj
is

63%. Then, a time fraction

F ≡
Tmin
Rj

τD
(3.7)

can be used to classify the system as reaction- or diffusion-controlled as explained

below.
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It follows from Eq. 3.6 and Eq. 3.7 that

τRj

τD
= F ln

(
1

r

)
, (3.8)

which allows one to compute the cumulative probability of τRj
/τD ≤ 1 as

P

[
τRj

τD
≤ 1

]
= P

[
F ln

(
1

r

)
≤ 1

]
= P

[
ln

(
1

r

)
≤ 1

F

]
= 1− e−1/F . (3.9)

This is the same as the waiting time probability in the Gillespie algorithm [11].

It becomes clear that the magnitude of F determines the state of the system.

For example, F = 1 corresponds to P[ln(1/r) ≤ 1] = 0.63 (Fig. 3.2B), so that

P[τRj
/τD ≤ 1] = 0.63 as well. In other words, F = 1 implies that τRj

≤ τD

in about 63% cases (Table 3.1), i.e., the system is diffusion-controlled. Similarly,

F = 0.5 (even faster reactions) translates into P[ln(1/r) ≤ (1/F ) = 2] = 0.86

(Fig. 3.2B) and P [τRj
/τD ≤ 1] = 0.86. We classify a system as diffusion-controlled,

if P [τRj
/τD ≤ 1] ≥ 0.5. According to Table 3.1, this corresponds to F ≤ 1/ ln(2) =

1.44. We introduce a parameter 0 < k1 ≤ 1/ ln(2) and say that the system is

diffusion-controlled if F < k1. The smaller the value of k1, the more stringent

the criterion becomes. Essentially, as the probability of τR < τD increases, i.e.,

k1 increases, the system becomes more diffusion-controlled. Similarly, we define a

related parameter k
′
1 so that if F > k

′
1 then the system is reaction-controlled.

In diffusion-controlled systems, many reactions may be fired during ∆tj.

We set the time-step ∆tj = k2τD, where k2 is a tunable parameter representative

of the cut-off (or critical) value of ln(1/r) for a desired cumulative probability
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(Fig. 3.2B and Table 3.1). For example, k2 = 2 corresponds to 0.86 probability of

a reaction taking place during ∆tj.

For the reaction-controlled system, τRj
(or Tmin

Rj
) is much larger than τD.

For example, k
′
1 = 3 corresponds to P[ln(1/r) ≤ (1/F ) = 1/3] = 0.28 (Fig. 3.2B),

i.e., P [τRj
/τD ≤ 1] = 0.28. To ensure the firing of some reactions, larger ∆tj should

be chosen. Based on several simulations, we found that ∆tj = 10τD provides good

results.

We also define an intermediate regime that is characterized by values of F

that prevent one from classifying a system as being diffusion- or reaction-controlled.

In this regime, the time-step ∆tj should be chosen between k2τD and 10τD. Our

numerical experimentation suggests that setting k
′
2 = 3 provides a good balance

between accuracy and computational efficiency.

Algorithm

A detailed algorithm for the numerical implementation of the above steps

of our stochastic operator-splitting method is provided below.

1. For a given space dimension d and cell size ∆x, calculate the diffusion time

τDi
= (∆x)2/(2Did) of diffusing species i = 1, . . . ,M and set τD = min{τDi

}.

2. Initialize t = 0.

3. While t ≤ tfinal

(a) Define whether system is diffusion- or reaction-controlled at every time-
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step.

• Calculate Tmin
Rj

through Eq. 3.5.

• Calculate F through Eq. 3.7.

(b) Compute the time-step according to the classification of the system. The

multiplicative factors k1, k
′
1, k2 and k

′
2 are selected based on Fig. 3.2 and

Table 3.1.

i. If F < k1 (diffusion-controlled),

• Set ∆tj = k2τD.

ii. Elseif k1 < F < k
′
1 (mixed zone),

• Set ∆tj = k
′
2τD.

iii. Else F > k
′
1 (reaction-controlled)

• Set ∆tj = 10τD.

(c) Reset told = t.

(d) Perform the diffusion step first followed by the reaction step.

i. Diffusion step: Use Brownian dynamics to advance the species with

time-step ∆tj.

ii. For each cell: Reaction step:

A. While (t− told) ≤ ∆tj

Calculate τR using Eq. 3.3.

• If ∆tj ≥ τR, find which reaction takes place within τR using Eq.

3.3. Update the number of molecules of different species and
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time as

x← x + νj, t← t+ τR. (3.10)

• Else, do not update the state vector since no reaction was fired.

end while

B. Reset t = told for the next cell.

end for

(e) Set: t = told + ∆tj (synchronize t across all cells).

end while

3.2.3 Comparison of our method with GMP method

The GMP method [17] provides an alternative implementation of the operator-

splitting approach shown in Fig. 3.1A. While our approach relies on Brownian dy-

namics, the GMP method models diffusion with cellular automata. This difference

is significant and has far-reaching implications. First, the time step in a cellular

automaton is fixed and determined by Eq. (B.2) in Appendix B in terms of the

diffusion coefficient and cell size. This is because during one time step molecules

in cellular automata can move from a cell only to its immediate neighbors. By

relying on Brownian dynamics, our approach allows the time step to vary between

the diffusion (τD) and reaction (T̄R or τ̄R) time scales. This significantly speeds

up the simulations, especially when the diffusion coefficient is large and/or the cell
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size is small. Second, the GMP method uses the diffusion times for each species

to determine when their respective molecules move from one cell of the lattice to

the adjacent cells. In our algorithm, diffusing molecules of all species move during

the same time step.

The following synthetic example demonstrates the salient features of both

Brownian dynamics and cellular automata. We place 18 molecules of a substance

P in the bottom-left cell of a lattice and allow them to diffuse towards its center

cell/element (Fig. 3.3A). Fig. 3.3 shows the average number of molecules at the

center cell as a function of time for several degrees of mesh refinement. Mesh

refinement (the increased number of cells in each direction) does not significantly

affect the accuracy of the simulation results (Fig. 3.3B-D) but increases the com-

putational time (Table 3.2). Figs. 3.3E and F reveal that the Brownian dynamics

reproduces a solution of the corresponding diffusion equation more accurately than

the cellular automata does. This is because a particle in Brownian dynamics can

move any distance in any directions while the cellular automata limits its displace-

ment to 9 adjacent cells.

Finally, for a given degree of accuracy the Brownian dynamics simulations

provide a significant computational speed-up relative to their cellular automata

counterparts (Table 3.2). This is because the diffusion time τD in the cellular

automata is fixed by the lattice size, whereas Brownian dynamics allow for larger

time steps ∆t. The run time of the Brownian dynamics simulations reported in

Table 3.2 correspond to the same time step ∆t = 10 s regardless of the lattice
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size, while τD in the cellular automata simulations varied with the mesh size and

diffusion coefficient in accordance with Eq. B.2 in Appendix B. As a result, the

cellular-automata simulation time increases significantly with the number of cells

in each direction (L).

3.3 Results: Case studies

We start with a synthetic example (Section 3.3.1) to validate our stochastic

operator-splitting method by comparing its results with both the GMP approach

and a deterministic solution of the underlying reaction-diffusion equation computed

with comsol. Next, we use our algorithm to model a gene expression system

(Section 3.3.2) and CheY diffusion in E. coli (Section 3.3.3). The last two examples

were carried out on a Linux-based Triton cluster of the San Diego Supercomputer

Center at University of California, San Diego.

3.3.1 Synthetic reaction-diffusion case study

Suppose that at time t = 0, A0 molecules of species A and B0 molecules of

species B are distributed uniformly over the left-half of the computational domain

in Fig. 3.4A. At t > 0, they diffuse into the rest of the domain and undergo a

(bio)chemical reaction whose reaction product is species C,

A+B
k−→ C. (3.11)
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The three species are assumed to have the same molecular diffusion coefficient

D = 10−13 m2/s. In a more biologically realistic case study of CheY diffusion in E.

coli (Section 3.3.3), the diffusion coefficients are different for different species. Here,

we use a forward reaction rate constant of k = 3×109 M−1s−1. The computational

volume is V = 10−15 L (V = 10−18 m3).

Performance analysis

First, we simulate diffusion (no reactions) with the cellular automaton and

Brownian dynamics. Fig. 3.4B demonstrates that the numbers of molecules of A

and B predicted with cellular automata approach their equilibrium values faster

than those computed with the Brownian dynamics. The results from Brownian

dynamics approach are more accurate and are in good agreement with the PDE

solution. This is because Brownian dynamics provides a better approximation of

the diffusion process. Furthermore, Brownian dynamics simulations are computa-

tionally more efficient than their cellular automaton counterparts (Table 3.2).

Second, we analyze the impact of a time-step and lattice size on simulations

of the full reaction-diffusion system. A numerical solution (obtained using comsol

software) of the corresponding PDEs is treated as a yardstick. First we analyze

the effect of lattice size and diffusion constant on computational time (Table 3.3)

and then we study the accuracy. For a fixed diffusion constant D = 10−12 m2/s,

as L increases, τD (or ∆t) decreases and computational time increases for both

algorithms. However, for any L, our method is faster than the GMP method.



73

Similarly, for increasing diffusion constant for a given cell size (L = 8), τD (or ∆t)

decreases and computational time increases for both algorithms (Table 3.3 and

Fig. 3.5). Our algorithm is faster than the GMP method because our algorithm

can apply larger time-steps according to the state of the system. For example, for

D = 10−12 m2/s, τD(= 2.6 × 10−3s) is 10 times larger than that for D = 10−11

m2/s. Hence, the computational time for D = 10−12 m2/s is about 10 times

smaller than that for D = 10−11 m2/s. In Fig. 3.5, as D increases, τD (or ∆t)

decreases (Fig. 3.5A) and computational time increases (Fig. 3.5B) for both

algorithms. For D = 10−14 m2/s, the system transitions from diffusion-controlled

(∆t = k2τD; k2 = 2) to reaction-controlled regime during the time-course. For

D ≥ 10−13 m2/s, the system becomes reaction-controlled (∆t = 10τD). This

explains the increase in the absolute value of the slope of ∆t or computational

time vs. D plots at D = 10−13 m2/s for our method.

As should be expected, the accuracy of our stochastic operator-splitting

algorithm increases as the time-step and/or the cell size become smaller for both

the diffusion-controlled (D = 10−13 m2/s) and reaction-controlled (D = 10−12

m2/s) scenarios in Figs. 3.6A, B. The results are based on average of 8 realizations.

The relative error-rate, defined as the ratio of the integrated absolute difference

between a method and the PDE solution to the integrated absolute value of the

PDE solution over the time-course (ratio of the areas),

Relative error-rate =

∑
t |(method - deterministic PDE)|∑

t |(deterministic PDE)| , (3.12)
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is shown in Table 3.3. For a given D, as L increases, the time-step and the relative

error-rate decrease for both methods. The smaller the time-step, the smaller the

errors introduced by the operator-splitting procedure. However, for any L, our

algorithm is more accurate than the GMP method.

Third, we investigate the impact of ordering the diffusion and reaction

steps on the simulation accuracy (Figs. 3.6C, D). Both diffusion-controlled and

reaction-controlled systems are considered. If the reaction step is selected to be

the first part of the operator-splitting algorithm then a diffusion process does not

contribute to the system evolution during the first time-step. Hence, the reaction-

first approach introduces larger errors if there is excessive inhomogeneity at the

beginning. Thus, the diffusion-first (followed by the reaction step) approach is

suited for both diffusion-controlled as well as reaction-controlled processes.

We further compare the accuracy of the results from our algorithm and the

GMP method. Simulation results in Fig. 3.6B demonstrate an excellent agreement

between our solution and the PDE solution, while the GMP method significantly

underestimates both the peak number of molecules and the time it takes for the

system to equilibrate (Fig. 3.6E). This finding is consistent with the results shown

in Fig. 3.4B, which reveal that the number of molecules estimated with cellular

automata reach their equilibrium levels faster than those computed with Brownian

dynamics.
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Effect of number of molecules

Having established the agreement between our stochastic (discrete) operator-

splitting algorithm and its continuum (PDE-based) counterpart for a large number

of molecules, we proceed to analyze their ability to handle reaction-diffusion sys-

tems composed of small numbers of molecules. The premise here is that the smaller

the number of molecules, the more inadequate the deterministic (continuum) mod-

els become and the more pronounced are the stochastic effects.

We rely on an absolute difference rate (DR),

DR =
|our method - deterministic PDE|

deterministic PDE
, (3.13)

to quantify the difference between the concentrations (relative numbers of molecules)

computed with the two approaches. As expected, the DR decreases as the initial

number of reacting molecules increases (Fig. 3.6F). It drops from DR ≈ 0.1 for

A0 = 60 to DR ≈ 0.01 for A0 = 600 or 6000. Hence, stochastic and deter-

ministic simulations yield similar results, when the number of molecules becomes

large. This expected result is consistent with many other studies of randomness in

reacting perfectly-mixed systems [70].

3.3.2 Gene expression case study

The van Zon and ten Wolde model [14] of gene regulation serves as an ideal

model system for studying the stochasticity effects due to both the low number of

molecules and the spatial inhomogeneity. Similar to Fig. 3.3A, RNAp molecules
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initially occupy the left-bottom cell of a numerical mesh, and at t > 0 diffuse

towards a DNA molecule that is fixed in the center cell (“operator site”). Upon

reaching the operator site, the RNAp molecules bind with DNA with a forward

reaction rate constant ka, forming the DNA-RNAp complex and this complex can

dissociate with a backward rate constant kd. In addition, it can produce a mRNA

at a production rate constant kprod and mRNA degrade with a decay rate constant

kdec. In the following, we use A, B, C and P to denote DNA, RNAp, DNA-RNAp

and the produced mRNA, respectively.

Assuming that RNAp is the only diffusing species (i.e., DNA-RNAp and the

produced mRNA do not leave the operator site), and that the molecular diffusion

coefficient and reaction rates are constant (i.e, neglect anomalous diffusion due to

the crowding effect and hydrodynamic effect), a continuum representation of the

process is provided by a system of three ordinary differential equations and one

partial differential equation,

d[A]

dt
= − ka[A][B] + kd[C] + kprod[C] (3.14)

∂[B]

∂t
= D∇2[B]− ka[A][B] + kd[C] + kprod[C] (3.15)

d[C]

dt
= ka[A][B]− kd[C]− kprod[C] (3.16)

d[P ]

dt
= kprod[C]− kdec[P ], (3.17)

where the square brackets denote concentrations of the respective species.
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Reaction- vs. diffusion-limited processes

We set the molecular diffusion coefficient to D = 10−12 m2/s. Then the

average time for RNAp molecules to arrive at the operator site is 0.04 s, i.e.,

RNAp molecules diffuse quickly throughout the system that becomes “well-mixed”.

Diffusion does not have a significant impact on the system’s dynamics since the

system is reaction-controlled. In other words, D = 10−12 m2/s can result in a

reaction-limited (reaction-controlled) system.

Let us define a dimensionless Damköhler number Da as the ratio of typical

diffusion (τD) and reaction (τ̄R) time scales,

Da =
τD
τ̄R
. (3.18)

A system is diffusion-limited if Da � 1 and reaction-limited otherwise. For D =

10−12 m2/s, the average diffusion time τD ∈ [10−2 s, 10−1 s]. Since τ̄R is of the

same order of magnitude, the system is reaction-limited. On the other hand, the

diffusion coefficient D = 10−15 m2/s corresponds to Da ∼ 103, resulting in the

diffusion-limited behavior.

Fig. 3.7A demonstrates the salient features of these two transport regimes

with L = 5. For D = 10−12 m2/s, the number of protein molecules computed with

the Gillespie algorithm (a perfectly mixed system with no diffusion) and with our

operator-splitting algorithm are in close agreement. For D = 10−15 m2/s, diffusion

becomes important with the protein beginning to burst around 20 s after the RNAp

molecules encounter DNA at the central operator site. Our results differ from their
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counterparts obtained by the Gillespie algorithm mainly in terms of fluctuations.

Time-step selection

The magnitude of the molecular diffusion coefficient D affects the choice of

the time-step ∆t in the stochastic operator-splitting algorithm. Fig. 3.7A and 3.7B

show the number of mRNA molecules computed for a wide range of the diffusion

coefficients, 10−15 ≤ D ≤ 10−12 with L = 5 and L = 20, respectively. In the

case study with L = 5 and D = 10−12 m2/s, the time scales are τ̄R = 0.012 s and

τD = 6×10−3 s; fast diffusion quickly homogenizes the system so that its behavior

is reaction-controlled. Our numerical experiments suggest that setting ∆t = 10τD

decreases the simulation time and guarantees that a reasonable number of reactions

take place during the simulation time-step.

For small diffusion coefficients (D = 10−15 m2/s), τD = 6.67 s and τR =

0.012 s, which means that almost all τR < τD. To ensure that a sufficient number

of reactions take place during the time interval ∆t, we selected ∆t = 2τD. Similar

rules are applied for L = 20 as well.

Comparison with GMP method and stochastic effect

The mRNA production, predicted with the GMP algorithm and our ap-

proach on the meshes with several degrees of refinement (L = 5, 10, 20), are shown

in Fig. 3.8A and B, respectively. In a display of the lack of self-consistency, the

finest mesh (L = 20) results in predictions that are quantitatively wrong in that
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the system fails to reach its equilibrium state of about 1,000 proteins. It is worth-

while recalling that in the GMP algorithm, ∆t is defined as the minimal diffusion

time that cannot be adjusted. In the system under consideration, τ̄R > ∆t so that

all the reactions cannot take place during the time interval ∆t (τ̄R = 0.65 s and

τD = 0.417 s). These results demonstrate one of the advantages of our algorithm:

unlike the GMP algorithm, our approach is capable of handling different mesh

sizes by adapting appropriate time-steps.

The effects of stochasticity (noise) become apparent in predictions averaged

over a smaller number of realizations (Fig. 3.8C). As should be expected from the

central limit theorem, the standard deviation from the mean prediction decreases

as 1/
√
Nr. By ignoring the spatial variability, the Gillespie algorithm dampens

considerably the noise present in the system. The protein production continues to

fluctuate in time even after it reaches its equilibrium (steady-state) value because

it depends on the frequency of the encounter of RANp and DNA in the central

cell. The statistics of the equilibrium protein production, i.e., its mean µ, standard

deviation σ, and noise level (coefficient of variation) ν = σ/µ, are presented in

Table 3.6.
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3.3.3 CheY diffusion case study

System description

As a final example, we consider a chemotaxis pathway in E. coli. A mathe-

matical model of this process has been developed earlier [73]. The species included

in the model [73] and their simplified spatial arrangement within a cell are pre-

sented in Table 3.8 and Fig. 3.9A, respectively. Table 3.7 lists a set of reactions

considered in this model. The diffusing species are CheY, CheYp and CheZ. The

species CheA∗ (active CheA) and CheAp do not diffuse into the cytoplasm, be-

ing confined in the inner receptor cluster. The molecules of CheY and CheA∗

are phosphorylated in the receptor cluster located on the anterior cell wall. Once

diffused into the cytoplasm, the CheYp molecules bind with four flagellar motors

FliM1,. . .,FliM4 and the FliM·CheYp complex is produced. The four motors are lo-

cated on the side walls, ordered FliM1 to FliM4 from the anterior wall (Fig. 3.9A).

The reactions in the FliMs induce E. coli’s forward or backward motion and/or

rotation.

The diffusion step in our stochastic operator-splitting algorithm is imple-

mented in a way that the molecules reaching the cell’s surface are reflected back

into the cell without loss of momentum. The diffusion step is followed by the re-

action step, which employs the Gillespie algorithm to simulate reactions between

the molecules within each cell of a numerical mesh. We investigate the effects of

varying the length of cell, Lsv (sv denotes subvolume) and time-step ∆t on the
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performance of our algorithm, and compare it to that of the GMP algorithm.

Both GMP and our approach are conceptually different from the Smoldyn

method [73]. The latter approach simulates diffusion with Brownian dynamics

and keeps track of individual molecules. Unlike our algorithm, it allows for multi-

molecular reactions between two or three molecules only within a certain radius

from each other. This reduces the computational speed and increases storage

requirements, because positions of all molecules have to be stored and distances

between all molecules must be calculated at each step in order to check if reactions

can take place.

Simulation results

The time-course of FliM·CheYp complexes simulated with both the GMP

algorithm and our stochastic operator-splitting approach is shown in Figs. 3.9B,

C. The GMP algorithm overestimates the equilibrium levels of the FliM·CheYp

complexes and underestimates the transition-to-equilibrium times in both Fig. 3.9B

(M1 and M2) and Fig. 3.9C (M3 and M4). As established in the two previous

computational examples, this discrepancy is due to the errors associated with the

cellular automaton treatment of diffusion in the GMP algorithm. In addition to

being more accurate, our approach is also computationally more efficient than the

GMP algorithm. In both algorithms, the reaction step consumes close to 99% of the

total computational time. Therefore, in order to reduce the simulation time, larger

∆t should be selected because the execution of the Gillespie algorithm accounts
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for most of the computational time. For a given mesh size Lsv, the time-step in

the GMP algorithm is fixed by the molecular diffusion coefficient D, while in our

algorithm it is more flexible according to whether the system is reaction-controlled

or diffusion-controlled. The simulation time for our algorithm is 12hrs, whereas it

is 26 hrs for the GMP method.

3.4 Summary and Discussion

Complex multi-scale biological systems can be analyzed with microscopic

approaches, such as Greens-function reaction dynamics and the Smoldyn algo-

rithm. These methods are accurate albeit computationally expensive and often

prohibitive. On the other hand, macroscopic kinetic modeling approaches that

use PDEs are amenable to numerical computation, but fail to model the physics

of systems with small number of molecules accurately. Mesoscopic approaches,

e.g., reaction-diffusion master equation and MesoRD, discretize space into a col-

lection of lattice elements and extend the chemical master equation normally used

in well-mixed chemical reactions into the stochastic regime for inhomogeneous sys-

tems. To facilitate faster and more accurate solutions within the mesoscopic scale

framework, we have developed a stochastic simulation method which is based on

operator-splitting for modeling the reaction-diffusion system. In our methodology,

the time-step size is chosen automatically at each step depending upon whether

the system is reaction- or diffusion-controlled. We use the Gillespie stochastic sim-



83

ulation algorithm for modeling the reactions and Brownian dynamics approach for

modeling the diffusion process. We thus account for both spatial heterogeneity

and the fluctuation in concentrations arising from the small number of molecules.

Our method yields highly accurate results and has the merit of modeling both the

reaction and diffusion processes in the system.

In order to validate accuracy and efficiency of our algorithm, a simple

reaction-diffusion system, A+B → C, is studied first. We concluded that Brownian

dynamics provides much more accurate results while being faster than a Cellular

automata approach. For example, Table 3.3 reveals that the error-rates for our

approach and the GMP algorithm are about 1% and 5%, respectively. The average

speed-up by using our method is about 5 times as compared to the GMP method

for a wide range of the values of the diffusion constant. Moreover, we compared

the stochastic ensemble average with the deterministic result and found out that

our results converge to the deterministic result when smaller ∆t and larger L are

used in the simulation. We also concluded that the fluctuations become larger in

case of smaller number of molecules and spatial inhomogeneity.

Towards modeling biologically realistic systems, a simplified gene expres-

sion system and CheY diffusion in E. coli bacteria are studied. In gene expression

case study, the system is classified based on the Damköhler number, Da. If it

is larger than 1, it is regarded as a diffusion-limited system and reaction-limited

otherwise. In order to simulate the system accurately, the time-step, ∆t, should

be selected according to the dominant process. In addition, noise levels concerning
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the number of molecules and number of realizations are studied. It is shown that as

the number of molecules or number of realizations become smaller, the noise level

increases. We then simulated a more complicated system, viz., CheY diffusion in

E. Coli, through both the GMP method and our operator-splitting algorithm. We

have shown that the operator-splitting approach provides more accurate results

and is faster as compared to the GMP algorithm. For a more accurate analysis of

movement of E. coli bacteria, the chemotaxis process in which molecules move to-

ward higher or lower concentration according to the concentration gradient should

also be analyzed [78].

In conclusion, we present a hybrid numerical method, also known as, operator-

splitting method, for stochastic reaction-diffusion process with a small number of

heterogeneously distributed molecules. Our approach is conceptually similar to

the GMP algorithm that applies Gillespie algorithm for reaction process and Cel-

lular automata for diffusion process. However, our method provides computational

advantages in terms of accuracy and efficiency. First, molecules in Brownian dy-

namics can move freely without the restriction of lattice or time-step whereas

molecules in Cellular automata move only to the adjacent lattices during the fixed

time-step. Second, Brownian dynamics offers a more accurate simulation result

than the cellular automata approach. Third, our algorithm has the flexibility of

changing time-steps, depending on whether the system is reaction- or diffusion-

controlled.
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Table 3.1: The tunable parameter k1 is used as a criterion to decide if the system

is diffusion- or reaction-controlled. As the probability of τR being less than τD

increases, the system becomes more diffusion-controlled. The other parameter, k2,

is related to the probability of a reaction taking place during ∆t. As k2 increases,

the probability of a reaction occurrence during ∆t increases. In our algorithm,

k1 = 0.5 , k
′
1 = 3, k2 = 2, and k

′
2 = 3 are used. Please refer to Fig. 3.2.

F , k1 or k
′
1 Relation Meaning

0.5 T̄R = 0.5τD 86% of τR is less than τD
1 T̄R = τD 63% of τR is less than τD

1.44 T̄R = 1.44τD 50% of τR is less than τD
3 T̄R = 3τD 28% of τR is less than τD

k2 Probability for the reaction to occur during ∆t
1 63%
2 86%
3 95%
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Table 3.2: Comparison of computational time for cellular automata and Brownian

dynamics. The total of 2048 realizations are considered in order to emphasize the

difference in computational time. L is the number of cells along each axis, d is

the spatial dimension, and τD is the diffusion time constant. Brownian dynamics

uses the same time step ∆t = 10 s for all cell sizes, whereas cellular automata has

different time steps depending on the cell size and the value of diffusion coefficient

D. The simulation time increases with L. Brownian dynamics is more efficient

than cellular automata.

Cellular automata Brownian dynamics
D = 10−15 (m2/s) ∆t = τD (s) ∆t = 10 (s)

L τD = (∆x)2/(2Dd) Computational time (s)
5 6.67 2.98 6.72
10 1.667 13.39 6.73
20 0.417 55.09 6.68
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Table 3.3: A synthetic reaction-diffusion system A+B → C with diffusion constant

D = 10−12 m2/s. The system is reaction-controlled for L = 4 and 8. In these

cases, we set the average value of all ∆t to ∆t = 10τD. Computational time

increases with smaller ∆t or larger L (smaller cell size). For L = 16, the system

undergoes transitions between the mixed and diffusion-controlled regimes. In this

case, ∆t ∈ [2τD, 10τD]. As L increases, τD (or ∆t) decreases and computational

time increases for both algorithms. However, for any L, our method is faster than

the GMP method. The relative error-rate is also shown (see Eq. 3.12 and related

text). As L increases, the relative error-rate decreases for both methods. However,

our algorithm is more accurate than the GMP method. In a similar way, for a given

L, as D increases, τD (or ∆t) decreases and computational time increases for both

algorithms.

D = 10−12 m2/s Comp. time (s) (∆t (s)) Error-rate (%)
L τD (s) GMP Our method GMP Our method
4 1× 10−2 16 1.4 (1× 10−1) 5.2 1.17
8 2.6× 10−3 167 32 (2.6× 10−2) 4.8 0.95
16 6.5× 10−4 4602 4022 (1.4× 10−3) 4.7 0.91

L = 8 Computation time (s) (∆t (s))
D (m2/s) τD (s) GMP Our method

10−11 2.6× 10−4 1660 304 (2.6× 10−3)
10−12 2.6× 10−3 167 33 (2.6× 10−2)
10−13 2.6× 10−2 17 3.6 (2.6× 10−1)
10−14 2.6× 10−1 1.7 0.7 (1.56)
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Table 3.4: Gene expression case study: DNA has 1 molecule and RNAp has 18

molecules. C is the DNA·RNAp complex. System volume is 1×10−15 l and diffusion

coefficient of RNAp is D = 10−12 m2/s (reaction-limited system) or D = 10−15

m2/s (diffusion-limited system). Abbreviation: I.C.: initial condition.

Reaction Rate I.C. [nM]

DNA + RNAp
ka−→ C 3× 109 M−1s−1 1.67

C
kd−→ DNA +RNAp 21.5 s−1 30

C
kprod−−−→ P + DNA + RNAp 89.55 s−1 0

P
kdec−−→ φ 0.04 s−1 0
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Table 3.5: Gene expression case study: Reaction time is averaged over 256 realiza-

tions of a simplified gene expression process. As cell sizes become smaller reaction

times increase, since fewer molecules in each cell imply lower probability for reac-

tions to take place within a cell. The time-step ∆t in the GMP method equals

τD, whereas ∆t in our method can vary according to the system classification as

reaction- or diffusion-controlled. Since the cases of L = 5 and 10 are diffusion-

controlled, we set ∆t = 2τD. For L = 20, the system changes from diffusion- to

reaction-controlled as time progresses.

D = 10−15 m2/s GMP Our method

L ∆x (µm) τ̄R τD = ∆x2

2Dd
(s) ∆t (s)

5 0.2 0.012 6.67 13.33
10 0.1 0.095 1.667 3.33
20 0.05 0.65 0.417 2.34
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Table 3.6: Gene expression case study. According to the central limit theorem,

noise level or standard deviation decreases as 1/
√
Nr. The mean values remain

around 1000. The standard deviation predicted with our algorithm is much higher

than that computed with the Gillespie algorithm, because our algorithm accounts

for randomness due to both a small number of molecules and spatial inhomogeneity.

Number of realizations Mean value Standard deviation Noise level
Nr µ σ ν
4 1006.3 324.3 0.322
16 1015.8 149.6 0.147
64 1010.4 81.9 0.088
256 1004.4 41.2 0.041

256 (Gillespie) 1001.4 1.76 0.0018
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Table 3.7: CheY diffusion case study: kf and kb denote respectively forward and

backward reaction rate constants for the E. coli system. Unimolecular and bimolec-

ular reaction rates have dimensions [s−1] and [M−1s−1], respectively. i denotes the

index of flagellar motors.

Compartment Reaction Reaction constant

Receptor cluster
CheA∗ → CheAp kf = 3.4× 101 s−1

CheAp+CheY → CheA∗+CheYp kf = 108 M−1s−1

Cytoplasm
CheY 
 CheYp

kf = 5.0× 10−5 s−1

kb = 8.5× 10−2 s−1

CheZ+CheYp → CheZ+CheY kf = 1.6× 106 M−1s−1

FliMi (i = 1, . . . , 4) FliMi+CheYp 
 FliMi·CheYp
kf = 5.0× 106 M−1s−1

kb = 2.0× 101 s−1
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Table 3.8: CheY diffusion case study: 13 species and 13 reactions in the E. coli

system. Only CheY, CheYp and CheZ molecules can diffuse; others are fixed within

their original cells. Initial values are expressed in terms of number of molecules,

and i denotes the index of flagellar motors.

Species Initial # of molecules Diffusion constant
CheA∗ 1260 position fixed
CheAp 0 position fixed
CheY 8200 D = 10−11 m2/s

CheYp 0 D = 10−11 m2/s
CheZ 1600 D = 6× 10−12 m2/s

FliMi (i = 1, . . . , 4) 34 position fixed
FliMi·CheYp (i = 1, . . . , 4) 0 position fixed
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Figure 3.1: (A) Schematic representation of the diffusion-reaction operator-

splitting. The final value after diffusion process at time t + ∆t is used as the

initial value for the reaction process. Final value of reaction process is the final

value at the end of diffusion-reaction process. (B)-(C) Cellular automata neigh-

borhoods in d = 2 dimension: in the von Neumann automata the probability of

staying in a cell or diffusing to its neighbors is 1/5 (B), in the Moore automata

this probability is 1/9 (C).
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Figure 3.2: (A) Histogram of ln(1/r), where r is a uniformly distributed random

variable in [0,1]. (B) Cumulative fraction of counts out of total counts (1 Million).

About 63% of the numbers have values less than 1 and 86% of the numbers are

less than 2.
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Figure 3.3: Temporal evolution of the count of molecules at the center cell averaged

over 512 realizations of cellular automata (CA) and Brownian dynamics (BD) for

several degrees of mesh refinement (L denotes the number of cells in each direction).

D = 10−15 m2/s, Lx = Ly = 1 µm. (A) Initially, 18 P molecules are placed into the

bottom-left cell. As time increases, they diffuse and number of P ’s in the center

cell is counted. (B)-(D) For various values of L, the cellular automata simulation

results have faster rising times than those of Brownian dynamics. (E)-(F) The

simulation results are independent of the cell size (L). The Brownian dynamics

results are in better agreement with the deterministic PDE solution than those of

cellular automata.
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Figure 3.4: A + B → C case study: (A) Initially, species A and B exist only in

left-hand side. All A and B molecules and their product P diffuse with the same

diffusion constant. (B) Comparison of results from analytical solution, cellular

automata (CA) and Brownian dynamics (BD). The Brownian dynamics results

agree with the analytical solution, while the cellular automata results do not. The

increasing curves represent the number of molecules in the right half of the domain

and the decreasing ones in the left half.
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Figure 3.5: A+B → C case study: Effect of diffusion constant, D (m2/s), on (A)

τD (or ∆t) and (B) computational time for our method and the GMP method.

As D increases, τD (or ∆t) decreases and computational time increases for both

algorithms. For D = 10−14 m2/s, the system transitions from diffusion-controlled

(∆t = k2τD; k2 = 2) to reaction-controlled regime during the time-course. For

D ≥ 10−13 m2/s, the system becomes reaction-controlled (∆t = 10τD), explaining

the increase in the absolute value of the slope of ∆t or computational time vs. D

plots at D = 10−13 m2/s for our method.
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Figure 3.6: A+B → C case study: (A)-(B) As cell size becomes finer, the results

from our approach converge to the numerical solution. (A) shows the results of

reaction-controlled system, whereas (B) is for a diffusion-controlled system. (C)-

(D) Dashed line is the result of reaction-first and diffusion-later order and dotted

line is the reverse order. Diffusion-reaction ordering has better agreement with

PDE solution than the reaction-diffusion order. (E) Black line denotes the result

of PDE solution. Three gray lines are for the GMP method. (F) As the initial

number of molecules gets lower, the difference rate increases and the fluctuations

also increase.
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Figure 3.7: Gene expression case study: (A) Dash-dotted line shows the result

of Gillespie algorithm which deals with only reaction process. For D = 10−12

m2/s with L = 5, our results are similar to those obtained with the Gillespie

algorithm, because it is a reaction-limited process so that diffusion does not have

serious impact on the system. On the contrary, the case of D = 10−15 m2/s with

L = 5 exhibits long time lag to reach the steady-state value due to diffusion effect

and has much larger fluctuations. (B) In case of L = 20, the mesh is much finer

than the above cases. The results are similar to those in (A) as our algorithm is

able to adjust time-steps according to the system characteristics even though L is

increased from 5 to 20.
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Figure 3.8: Gene expression case study: (A) The result of GMP algorithm for

various L and the corresponding ∆t (= τD) values. Diffusion constant has a

fixed value, D = 10−15 m2/s. For L = 20 (τ̄R = 0.65 s and τD = 0.417 s),

the number of P molecules does not reach its steady-state value of around 1000

because τ̄R > ∆t = τD (Table 3.5). This means reactions cannot fully take place

during ∆t. (B) Our algorithm performs well for both cases of L because it classifies

the system as diffusion- or reaction-controlled and decides the appropriate time-

steps accordingly. (C) Fluctuations become smaller as the number of realizations

become larger. In comparison to the Gillespie algorithm, our method has much

higher fluctuations because it considers spatial randomness as well as randomness

due to the small number of molecules.
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Figure 3.9: CheY diffusion case study: (A) E. coli has length [2.48 0.88 0.88] µm

along x, y and z direction. R denotes receptor cluster located on the anterior wall

and is represented by [x min x max; y min y max; z min z max] = [0 0.08; 0.16

0.64; 0.16 0.64] µm. CheY molecules are phosphorylated in the receptor cluster and

diffuse into the cytoplasm. M1∼M4 show the location of the four flagellar motors

on side walls and are located in M1 = [0.48 0.56; 0.40 0.48; 0 0.08] µm, M2

= [0.96 1.04; 0 0.08; 0.40 0.48] µm, M3 = [1.44 1.52; 0.40 0.48; 0.80 0.88] µm and

M4 = [1.92 2.00; 0.80 0.88; 0.40 0.48] µm. The remaining domain is considered

as cytoplasm. (B)-(C) The simulation results from both the GMP method and

our method are in good agreement although there are some differences in rise-time

because the GMP method and our method use cellular automata and Brownian

dynamics, respectively, to model the diffusion process (as explained in Fig. 3.4).



Chapter 4

Stochastic Models of

Chemotaxis-Diffusion-Reaction

Processes in Wound Healing

4.1 Introduction

Complexity of biochemical systems is manifested through the presence of

multiple species, reactions and processes, and of multiple spatial and temporal

scales. Cells respond to stimulus by activating myriad biochemical networks, al-

tering the cellular state and ending up in an altered phenotype. In the context of

inflammation-mediated immune response, the early cellular signaling events occur

103
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in seconds to minutes, leading to a complex cascade of spatially- and temporally-

correlated events that culminate in the final immune response after a few days.

Traditional approaches model immune responses or other biological processes at

each temporal or spatial scale. For instance, molecular simulations deal with the

movement of atoms in proteins on the milliseconds time scale, kinetic modeling of

reaction networks models processes on the time scales of seconds to hours, while

heuristic models of biological systems capture processes that occur on the time

scale of days. We rely on some of the recent advances in computational methods

and power, and in acquisition and assimilation of data across multiple scales in

biological systems, to develop and apply novel multi-scale simulation algorithms

to model leukocyte movement during inflammation and wound healing.

Leukocytes respond to skin or tissue injury through an inflammation process

that involves their adhesion and rolling along endothelium cells, transmigration and

chemotaxis. The movement and physiology of leukocytes after transmigrations

are governed by three processes: chemotaxis, diffusion and chemical reactions.

Chemotaxis is represented by an advection term in advection-diffusion-reaction

equations. Its strength depends on the concentration gradient of chemoattractants

that are released from an injury site.

Deterministic ordinary differential equations (ODEs) often provide accurate

predictions of the dynamics of biochemical pathways (complex reaction chains with

large numbers of reacting molecules). However, they fail when concentrations of

reactants and/or their products become small and the law of mass action be-
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comes invalid. Under these conditions, randomness in the dynamics of individual

molecules becomes pronounced and requires stochastic simulations. Stochasticity

plays a critical role in the behavior of many micro-scale biological phenomena, such

as cellular signaling and gene regulatory networks [8, 70, 71]. Standard stochastic

techniques, e.g., the Gillespie stochastic simulation algorithm [11] and its compu-

tationally efficient modifications [12, 70, 72], can be used to model biochemical

reactions in such systems. These algorithms are applicable to systems in which

reactants and their products are distributed uniformly in space.

Spatial inhomogeneity has to be considered in crowded environments with

complex internal geometry. If the number of molecules is large, partial differen-

tial equations (PDEs) provide accurate macroscopic predictions of the dynamics of

spatially distributed systems. However, similar to ODE-based models, determin-

istic PDEs fail to predict random events in systems comprised of small numbers

of molecules. Computational methods for reaction-diffusion systems with small

numbers of molecules must be able to handle both stochasticity and heterogeneity.

Our stochastic numerical algorithm [79] described in Chapter 3 employs an oper-

ator splitting, in which the Gillespie algorithm (or its accelerated versions) and

Brownian dynamics (or the Smoluchowski equation) are used to model reactions

and diffusion, respectively. It employs adaptive time steps to handle both reaction-

controlled and diffusion-controlled systems. To model inflammation processes, we

enhance this algorithm by incorporating another spatial effect due to chemotaxis.

Four phases of wound healing are briefly discussed in Section 4.2. Our
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mathematical model of inflammation is described in Section 4.3. It is followed by

introduction of a stochastic operator-splitting approach in Section 4.4. This section

also contains a brief description of our stochastic simulation algorithm for modeling

reactions and chemotaxis-diffusion. Sections 4.5 and 4.6 contain simulation results

and conclusions, respectively.

4.2 Wound healing

Wound healing is a complicated process of tissue repair after injury or

damage. It is divided into four sequential but overlapping phases: hemostasis,

inflammation, proliferation, and remodeling [80].

4.2.1 Hemostasis

Upon injury in the tissue, a cascade of biochemical events takes place to

repair the damage. Within few minutes after injury, in order to control bleeding,

platelets aggregate at the injury site to form a fibrin clot. Next, vasoconstric-

tion is followed by vasodilation that causes blood vessels to become porous by

releasing histamine. Increased porosity of blood vessels facilitates transmigration

of leukocytes from bloodstream to the wound site.
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4.2.2 Inflammation

Within an hour of wounding, polymorphonuclear neutrophils (PMNs) arrive

at the wound site to phagocytize debris and kill bacteria [80]. As fewer inflamma-

tory factors are secreted, numbers of neutrophils and macrophages are reduced at

the wound site and inflammation process ends. However, if the inflammatory phase

lasts for too long, e.g., due to the presence of dirt or other foreign objects, it could

lead to a chronic wound [81]. This inflammation process includes the leukocytes

movement through rolling, adhesion, transmigration and chemotaxis ([82] and Fig.

4.1).

From rolling to chemotaxis

A leukocyte adhesion cascade during the inflammatory phase consists of

rolling, firm adhesion and transmigration. Each of these steps plays an impor-

tant role in effective leukocyte recruitment to the damaged tissues. Rolling, which

is mediated by selectin family (L-, P-, E-selectins), is characterized by leukocyte

movement with a typical velocity of approximately 5 ∼ 10 µm/s and rolling dis-

tance on the order of 100 µm. Adhesion, which is facilitated by integrins and their

binding molecules, is a much slower process characterized by a velocity on the

order of v = 10 µm/min and crawled distance on the order of 10 µm [83]. After

firm adhesion, leukocytes transmigrate (with a certain probability) into the tissue

through the endothelium cells whose thickness is about 1 ∼ 2 µm. Once in the

tissue, leukocytes move toward a wound area driven by diffusion and chemotaxis.
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All these processes have a wide range of time- and length-scales, which makes it

necessary to develop a multi-scale modeling framework.

Capture and rolling

The first contact of a leukocyte with the activated endothelium is referred to

as “capture” or “tethering”. Once leukocytes are captured, they may adhere to the

endothelium and begin to roll. It is common to refer to a leukocyte as rolling when

its rolling velocity is less than half of the blood stream velocity. This process is

mediated by the selectin family (L-, E-, P-selectins), and transitory bonds between

selectins and their ligands are formed and broken during the rolling motion [82].

Firm adhesion

E-selectin participates in the conversion of rolling to firm adhesion. This

process is facilitated by integrins (LFA-1, Mac-1, VLA-4), which are activated

by chemokines and soluble factors released by endothelial cells. In the activated

state, integrins bind tightly to corresponding receptors expressed on endothelial

cells. As a result, despite the shear force of blood flow, the leukocytes are nearly

immobilized [82].

Transmigration

After firm adhesion, leukocytes migrate to a wound area in the tissue by

extending pseudopodia and passing either through gaps between endothelial cells
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(paracellular) or directly through the cells (transcellular) [84]. Paracellular trans-

migration is not well understood. It is thought that they migrate out of blood ves-

sels in a homophilic way, assisted by bindings of VE-cadherin, PECAM-1, CD99

and JAM family molecules [85] found on the leukocyte and endothelial cell surfaces.

Chemotaxis

After transmigrating from blood vessels, leukocyte cells (neutrophils arrive

first) move along the concentration gradient of chemicals (chemokines or cytokines,

e.g., fMLP or N-formyl-methionine-leucine-phenylalanine) that are produced at

and diffused from the wound site. Chemotaxis causes leukocytes to migrate prefer-

entially in the concentration gradient direction with some probability called chemo-

tactic index (CI). (In addition to chemotaxis, leukocytes also diffuse down their

concentration’s gradient.)

4.2.3 Proliferation

The proliferative phase is represented by angiogenesis, collagen deposition,

tissue formation and epithelialization [81]. During proliferation, the wound is re-

built with new granulation tissue that is comprised of collagen and extracellular

matrix. The process known as angiogenesis leads to development of a new network

of blood vessels and healthy granulation tissue. Its efficacy depends on the fibrob-

last receiving sufficient levels of oxygen and nutrients supplied by blood vessels.

Epithelial cells resurface the wound, a process known as epithelialization.
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4.2.4 Remodeling

The remodeling phase can last several months or even years. During this

phase, collagen is remodeled and complete wound contraction takes place. Wound

strength increases from about 20% to 80% within 3 weeks to two years after in-

jury [86].

4.3 A mathematical model of inflammation

Let b(x, t), a(x, t) and c(x, t) denote the concentrations of bacteria, attrac-

tant and leukocyte, respectively. Under certain assumptions, these concentrations

change due to the mechanisms that are described by the following equations [87].

• Bacteria diffuse, reproduce, and are destroyed when they come in contact

with leukocytes:

∂b

∂t
= µb∇2b+ (kg − kdc)b, (4.1)

where µb and kg are respectively the diffusion coefficient and growth rate of

bacteria. This formulation assumes linear kinetics of the bacteria consump-

tion by leukocytes, with the consumption rate kd.

• The chemoattractant is produced by bacterial metabolism and diffuses:

∂a

∂t
= D∇2a+ kpb, (4.2)

where D and kp are the diffusion coefficient and production rate of the

chemoattractant, respectively.
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• The leukocytes are chemotactically attracted to the attractant and die when

they digest the bacteria:

∂c

∂t
= −∇ · Jc − (g0 + g1b)c, Jc = −µ∇c+ χc∇a. (4.3)

Here the reaction term represents linear kinetics of leukocytes destruction due

to both natural death in the tissue (with rate constant g0) and interactions

with bacteria (with rate constant g1, which we set to g1 = kd in the subsequent

analysis). The equilibrium flux of leukocytes, Jc, is parameterized by the

diffusion coefficient of leukocytes µ and the chemotaxis coefficient χ.

4.3.1 Diffusion

Chemoattractant and bacteria diffusion

We treat diffusion of chemoattractant and bacteria as continuous processes

that are governed by diffusion equations. These are solved by finite differences to

yield the concentrations of chemoattractant and bacteria, b(x, t) and a(x, t). The

concentration of chemoattractant affects chemotaxis of leukocytes, such that leuko-

cytes move towards the wound site where the concentration of chemoattractant is

highest.

Leukocyte diffusion

Motility of a cell population, i.e., diffusion of leukocytes, is described by

the motility coefficient (diffusion coefficient) µ. Random motility of a single cell
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is characterized by its speed ṽ and persistence time Tp. The latter is defined as

the time interval during which a cell moves without changing direction [88]. The

population and single-particle motility coefficients are related by [7]

µ =
1

2
Tpv

2, v = |ṽ|. (4.4)

4.3.2 Chemotaxis

At the continuum level, chemotactic velocity Vc is the product of “oriental

bias” φ and macroscopic leukocyte velocity v =
∑

i viei [88],

Vc =
∑
i

φiviei =
∑
i

χi
∂a

∂xi
. (4.5)

Since the oriental bias is defined by [88]

φi =
χ0
dNb

da

∂a

∂xi

1 + χ0
dNb

da

∂a

∂xi

, (4.6)

the chemotaxis coefficient has the form

χi = vi
χ0
dNb

da

1 + χ0
dNb

da

∂a

∂xi

ei, (4.7)

where i(= 1, 2 and 3) is the number of dimensions.

The constant χ0 is called chemotactic sensitivity and 0 ≤ φ ≤ 1, such

that φ = 0 represents purely random process and φ = 1 corresponds to perfectly

directed motion. A Michaelis-Menten relationship

Nb =
NTa

Kd + a
(4.8)
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is used to relate the number of bound receptors on the cell membrane, Nb, to the

concentration of attractant, a [87]. Here Kd is the receptor dissociation constant,

and NT is the total number of cell receptors on the cell membrane.

4.3.3 Reactions

We assume that bacteria and leukocyte have negligible volume. Bacteria

(B) reproduce with the rate kg, leukocytes (C) die with the rate g0, and bacteria

and leukocytes react and die with reaction rate kd or g1.

B
kg−→ 2B, C

g0−→ φ B + C
kd(=g1)−−−−→ φ. (4.9)

The reaction constant kd is defined as [?]

kd = 4π(µB + µ)(rB + rC), (4.10)

where µb and µ are the diffusion constant of bacteria and leukocytes and r is the

radius. We set kd = g1, since it is assumed that both bacteria and leukocytes

die when they enter the same neighborhood of radius rB + rC . In the simulations

reported below we set rB = 1 µm and rC = 10 µm. Values of the other model

parameters (reaction rates, diffusion coefficients, and chemotactic constant) are

listed in Table 4.1.
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4.4 Numerical approach

We extend our stochastic operator splitting approach [79] (Chapter 3), in

which reactions are handled through a stochastic simulation algorithm (e.g., Gille-

spie’s [11]) and diffusion is treated through Brownian dynamics. Leukocytes moves

through chemotaxis and diffusion. Bacteria and leukocytes undergo biochemical

reactions. Spatio-temporal evolution of leukocytes concentrations can be described

by a system of chemotaxis-diffusion-reaction equations,

∂c

∂t
+∇ · (Vcc) = µ∇2c− (g0 + g1b)c (4.11)

where Vc is the chemotactic velocity vector and µ is diffusion coefficient and re-

actions terms are explained in Eq. 4.3.

We employ an operator-splitting algorithm to approximate Eq. 4.11 with

∂c′

∂t
= µ∇2c′ −∇ · (Vcc

′) (4.12a)

∂c′′

∂t
= −(g0 + g1b)c

′′. (4.12b)

during the time interval [t, t+ ∆t]. Here c′(t) = c(t) and c′′(t) = c′(t+ ∆t), so that

the concentration of leukocytes at the end of the time-step ∆t is c′′(t) = c(t+ ∆t).
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4.5 Simulation results

4.5.1 Chemotaxis and diffusion

Brian and his colleagues conducted many experiments and showed how

chemotaxis, chemokinesis and diffusion affect the movement of leukocytes [88] .

Based on the same concept, we start simulations by modeling leukocyte movement

without considering the reactions involved. To focus on the interplay between the

chemoattractant concentration and the leukocyte movement, we solve only (4.2)

and (4.3).

Since the diffusion coefficient of the chemoattractant is much higher than

that of leukocytes (D � µ), the chemoattractant diffuses through the tissue much

faster than leukocytes move. Moreover, the number of chemoattractant molecules

is large enough to ignore stochastic fluctuations in their movement and to warrant

the reliance on the deterministic diffusion equation (4.2). Its deterministic solution

is to be coupled with the stochastic simulations of the leukocytes movement.

One-dimensional migration

To be concrete, we take the simulation domain to be Ω = [xs, xe] = [0, 2×

10−3] m, and impose the following initial and boundary conditions

I.C.s : a(x, 0) = 0, c(
xe
2
, 0) = c0, (4.13a)

B.C.s : a(xe, t) = a0,
∂a

∂x
|xs,xe = 0,

∂c

∂x
|xs,xe = 0, (4.13b)
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where a0 is 1 × 10−9 M and c0 is 10000, the initial number of leukocytes. Here,

reaction term kpb is considered as a source at x = xe and has a value of a0. Stochas-

tic simulations of leukocyte migration replace the deterministic (one-dimensional)

chemotaxis-diffusion equation (4.3) with its stochastic counterpart

X(t+ ∆t) = X(t) + Vc∆t+
√

2µ∆tξ (4.14)

where ∆t is the time step, Vc is computed from the one-dimensional versions of (4.5)

and (4.7) and ξ is a standard Gaussian random variable.

In Fig. 4.2, we study the effect as strength of chemotaxis increases and all

plots are captured at t = 10000 sec. Initially, ten thousands of leukocytes exist

in the middle of the x axis and source of chemoattractant exists at the end of x

axis. In case that there exists only diffusion process, blue-colored line looks to be

normally distributed. When weak chemotaxis process (χ0) is added to the system,

plot moves to the right, which means more leukocytes moves to the right where

concentration of chemoattractant is higher. As chemotactic sensitivity increases,

chemotactic index, φ, increases. Accordingly, larger number of leukocytes moves

toward chemoattractant source point as chemotactic sensitivity increases.

Two-dimensional migration

Consider leukocyte migration in a two-dimensional domain Ω = [xs, xe] ×

[ys, ye]. The two-dimensional versions of (4.2) and (4.3) are subject to initial and
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boundary conditions

I.C.s : a(x, y, 0) = 0, c(0.4xe, 0.1ye, 0) = c0, (4.15a)

B.C.s : a(
xe
2
, ys, t) = a0,

∂a

∂x
|xs,xe =

∂a

∂y
|ys,ye = 0, (4.15b)

∂c

∂x
|xs,xe =

∂c

∂y
|ys,ye = 0, (4.15c)

where [xs, xe] = [ys, ye] = [0, 4×10−3] m and a0 is 1×10−8 M and c0 is 3, the initial

number of leukocytes. We use the alternating direction implicit (ADI) method [74]

to solve the deterministic two-dimensional equation (4.2). The ADI method solves

two one-dimensional problems at each time step:

a
n+1/2
ij − anij
D∆t/2

=
a
n+1/2
i+1j − 2a

n+1/2
ij + a

n+1/2
i−1j

∆x2
+
anij+1 − 2anij + anij−1

∆y2
(4.16a)

an+1
ij − an+1/2

ij

D∆t/2
=
a
n+1/2
i+1j − 2a

n+1/2
ij + a

n+1/2
i−1j

∆x2
+
an+1
ij+1 − 2an+1

ij + an+1
ij−1

∆y2
. (4.16b)

The reaction term, kpb, can be thought as a source term in the wound site.

Leukocyte displacements in the x and y directions are computed stochastically

with (4.14).

Figure 4.3 shows the geometry and the simulation results for leukocyte

movement. Leukocyte movement due to chemotaxis increases as chemotaxis con-

stant increases in the same manner as 1D simulation. At t = 5000 sec, leukocytes

with stronger chemotaxis (10χ0) arrive at the wound site, meanwhile those with

weaker chemotaxis (χ0) are still moving forward to wound site.
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4.5.2 Chemotaxis, diffusion and reactions

In this section, reactions are considered as well as chemotaxis and diffu-

sion. We employ operator splitting algorithm explained in Sec. 3.2.1. Leukocyte

migration can be characterized by (dimensionless) Pèclet number

Pe =
Vch

D
=
τD
τC

(4.17)

where h is the mesh (or lattice) size, and τD and τC are diffusion and convection

time scales, respectively. If Pe > 1, chemotaxis is slower than diffusion. Since

this regime is dominated by diffusion, we designate τD as the drift time constant.

Inversely, if Pe < 1, τC is chosen as the drift time constant. Finally, we define

Damköhler number as

Da =
min(τC , τD)

τR
(4.18)

The value of the Damköhler number determines whether the system is drift con-

trolled or reaction controlled in the operator splitting algorithm [79].

Figure 4.4 shows the three-dimensional geometry of the simulation domain,

Ω = [xs, xe]× [ys, ye]× [zs, ze].

I.C.s : a(x, y, z, 0) = 0, c(x, y, z, 0) = c0, (4.19a)

B.C.s : a(
xe
2
, ys, zs, t) = a0,

∂a

∂x
|xs,xe =

∂a

∂y
|ys,ye =

∂a

∂z
|zs,ze = 0, (4.19b)

∂c

∂x
|xs,xe =

∂c

∂y
|ys,ye =

∂c

∂z
|zs,ze = 0, (4.19c)

where [xs, xe] = [ys, ye] = [zs, ze] = [0, 1×10−3] m and a0 is 1×10−8 M and c0 is 500,

the initial number of leukocytes which are positioned arbitrarily inside the domain,
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Ω. Chemoattractant diffusion is solved by the three-dimensional ADI method in

the same method as 3D ADI. Leukocytes diffuse randomly and chemotax in the

system. Bacteria are fixed in the small rectangle and can react with leukocytes

when they meet in the same mesh.

In Table 4.2, we can see that chemotactic index increases as strength of

chemotaxis increases. As a result, more bacteria are digested through more fre-

quent reactions. However, the change of random motility have no significant effect

upon the number of bacteria. It means that chemotaxis sensitivity has a stronger

effect to inflammation than diffusion (random motility).

4.6 Summary and Discussion

We apply stochastic operator splitting method to inflammation process dur-

ing wound healing. Mathematical modeling is described by partial differential

equations comprised of chemotaxis, diffusion and reaction processes. It is very

difficult and improper to employ deterministic approach due to a wide variety

of temporal and spatial scales. Therefore, we analyze chemoattractant diffusion

equation using deterministic ADI method because molecular diffusion is much

faster than leukocytes and bacteria and number of chemoattractant molecules is

reasonably high. However, leukocytes movement and reactions with bacteria are

analyzed stochastically by operator splitting algorithm. We consider Péclet and

Damköler number in order to decide drift time scale and if system is diffusion or
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drift controlled.

In order to verify if simulation works properly, diffusion and chemotaxis are

studied first without reaction in 1D and 2D. We figure out that more leukocytes

move forward to wound site as chemotactic constant increase. Next, reactions are

analyzed with drift in 3D simulation. Similarly, more leukocytes move to wound

site as chemotactic constant increases. As a result, more reactions take place and

more bacteria are digested by leukocytes.
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Table 4.1: Constants for reaction, diffusion and chemotaxis.

Notation Description Value [Unit]
χ0 chemotactic sensitivity 4e−8 [m/receptor]
µb random motility coeff. of bacteria 0
µ random motility coeff. of leukocytes calculated in Eq. 4.4 [m2/s]
D diffusion constant of chemoattractants 1e−9 [m2/s]
kg generation rate of bacteria 1.4e−4 [s−1]

kd(= g1) decay rate of bacteria/leukocytes calculated in Eq. 4.10 [M−1s−1]
kp production rate of bacteria - [s−1]
g0 generation rate of leukocytes 2e−6 [s−1]
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Table 4.2: Initial number of bacteria and leukocytes are 50 and 500. 32 simula-

tions are conducted for 10000 sec. As chemotactic constant increases, chemotactic

index increases, which means more leukocytes move forward to wound site. As

a result, more reactions take place and more bacteria are killed. However, the

change of random motility have no significant effect upon the number of bacte-

ria. It means that chemotaxis has a stronger effect to inflammation than diffusion

(random motility).

Strength of chemotaxis Chemotactic index Mean of number of bacteria
100χ0 0.4 ∼ 0.5 3.5
10χ0 0.3 ∼ 0.4 26.5
χ0 ∼ 0.05 48.8

Random motility coeff. Chemotactic index Mean of number of bacteria
10µ ∼ 0.05 48.1
1µ ∼ 0.05 48.8

0.1µ ∼ 0.05 50
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Figure 4.1: Leukocytes flow along the blood stream. When injury occurs in the

tissue, they begin to roll and adhere on endothelium cells. Next, they transmigrate

through endothelial cells by the effect of histamine. Transmigrated leukocytes move

toward lesions by chemotaxis and diffusion processes.
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Figure 4.2: 1D diffusion and chemotaxis; Initially, 10000 leukocytes sit on the cen-

ter of x-axis and chemoattractant source exist in the right end of x-axis. Chemo-

tactic index, φ, increases as chemotactic coefficient, χ0, increases. Therefore, larger

number of leukocytes moves toward chemoattractant source point. All plots are

captured at t = 10000 sec.
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Figure 4.3: 2D diffusion and chemotaxis; (A) It shows the concentration distri-

bution of chemoattractant. The center of x axis is the source point. (B)-(C)

Leukocytes moves toward chemoattractant source point as chemotactic coefficient

increases. The positions of leukocytes are traced from t = 0 to 5000 sec. The color

is changed from red (t = 0 → 1667 sec) to green (t = 1667 → 3333 sec) and to

blue (t = 3333→ 5000 sec) as simulation time increases.
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Figure 4.4: 3D diffusion, chemotaxis and reactions; Leukocytes diffuse randomly

in the whole domain. Bacteria are fixed in small cube and considered as a source

of chemoattractant in the center of x axis.



Chapter 5

Conclusions

This dissertation leads to the following major conclusions:

1. We have developed a hybrid approach to stochastic simulation, in which slow

reactions and fluxes are handled through exact stochastic simulation and their

fast counterparts are treated partially deterministically through the chemical

Langevin equation. The classification of reactions as fast or slow is accompa-

nied by a partial equilibrium assumption, according to which a population of

slow species is not altered by fast reactions. Our new approach also handles

reactions with complex rate expressions such as functions of Michaelis-Menten

kinetics and power-law kinetics by developing mathematical expressions for

their propensity functions and microscopic fluxes. Fluxes which cannot be

modeled explicitly through reactions are handled deterministically.

2. We have integrated the existing techniques for multiscale stochastic simula-

127
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tion with deterministic simulation to deal with complex reactions systems and

have applied it to studying calcium dynamics in macrophage cells. When the

concentration of reactants is sufficiently large, the stochastic method yields

time-course profiles identical to those obtained from a deterministic model

(ensemble average of 16 or more realizations). However, at lower number of

molecules of one or more species, measurable relative difference in [Ca2+]i re-

sponses predicted by the two approaches is obtained, especially for the case of

Gβγ, thus suggesting the necessity of using stochastic simulation as opposed to

deterministic simulation for studying system dynamics at sub-cellular levels.

Dose response analysis revealed that while the normalized response difference

(NRD) between [Ca2+]i responses predicted by deterministic and stochastic

simulations is negligible at the full dose of 30nM (shown) or higher doses

including saturating doses (not shown), it increases with decreasing doses.

At 0.1% dose, it is as high as 7%. These results are emphasized again in

the sensitivity analysis of the parameters used in the simulation and in the

knockdown analysis of reacting protein components.

3. Complex multi-scale biological systems can be analyzed with microscopic ap-

proaches, such as Green’s-function reaction dynamics and the Smoldyn algo-

rithm. These methods are accurate albeit computationally expensive and of-

ten prohibitive. On the other hand, macroscopic kinetic modeling approaches

that use PDEs are amenable to numerical computation, but fail to model the

physics of systems with small number of molecules accurately. Mesoscopic
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approaches, e.g., reaction-diffusion master equation and MesoRD, discretize

space into a collection of lattice elements and extend the chemical master

equation normally used in well-mixed chemical reactions into the stochastic

regime for inhomogeneous systems. To facilitate faster and more accurate so-

lutions within the mesoscopic scale framework, we have developed a stochas-

tic simulation method which is based on operator-splitting for modeling the

reaction-diffusion system. In our methodology, the time-step size is chosen

automatically at each step depending upon whether the system is reaction-

or diffusion-controlled. We use the Gillespie stochastic simulation algorithm

for modeling the reactions and Brownian dynamics approach for modeling

the diffusion process. We thus account for both spatial heterogeneity and the

fluctuation in concentrations arising from the small number of molecules. Our

method yields highly accurate results and has the merit of modeling both the

reaction and diffusion processes in the system. We also have a better result

in terms of simulation speed over GMP method. The average speed-up by

using our method is about 5 times as compared to the GMP method for a

wide range of the values of the diffusion constant in case of simple reaction-

diffusion system, A + B → C. In more complicated system, CheY diffusion

in E. coli, the simulation time for our algorithm is 12hrs, whereas it is 26 hrs

for the GMP method.

4. We applied stochastic operator splitting method to inflammation process dur-

ing wound healing. The mathematical modeling is described by partial differ-
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ential equations comprised of chemotaxis, diffusion and reaction processes. It

is difficult and improper to employ deterministic approach due to a wide vari-

ety of temporal and spatial scales. Therefore, we analyze chemoattractant dif-

fusion equation using deterministic ADI method because molecular diffusion

is much faster than leukocytes and bacteria and number of chemoattractant

molecules is reasonably high. However, leukocyte movement and reactions

with bacteria are analyzed stochastically by operator splitting algorithm. We

consider Péclet and Damköler number in order to decide drift time scale and

if system is diffusion- or drift- controlled. In the studies on diffusion and

chemotaxis in 1D and 2D, we figure out that more leukocytes move forward

to wound site as chemotactic constant increase. In 3D simulation with drift

and reactions, more leukocytes move to wound site as chemotactic constant

increases and thus more reactions take place and more bacteria are digested

by leukocytes.



Appendix A

Existing algorithms for stochastic

simulation

Three algorithms, namely Gillespie algorithm, tau-leap method and chemi-

cal Langevin equation are reviewed. These algorithms are applied to a well-stirred

biochemical system (molecules of each species are spread uniformly throughout

a fixed control volume) at thermal equilibrium comprising M different chemical

reactions and N different types of chemical species.

At any time t, the population of molecules within a fixed cellular volume

V is uniquely described by a state vector X(t),

X(t) = {X1(t), X2(t), . . . , XN(t)}T , (A.1)

where Xi(t) is the number of molecules of the i-th species (i = 1, . . . , N). By

definition, Xi are non-negative integers. The state vector X(t) changes whenever

131
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one of the M types of reactions occur.

Let P [X; t] denote the probability of the system being in the state rep-

resented in Eq. (A.1) at time t. Furthermore, let aj(X) denote the propensity

function of the j-th reaction channel, which is defined through aj(X)dt, the prob-

ability that the j-th reaction will occur during a (sufficiently small) time interval

[t, t + dt] given the system state X(t) at time t. The propensity function aj(X)

can be expressed as [61]

aj(X) = cjhj(X), j ∈M, M = {1, 2, . . . ,M}, (A.2a)

where cj > 0 is the specific probability rate constant of the j-th reaction, and

hj(X) is the number of possible combinations of reactants in the j-th reaction.

The former is given by

cj =



kj for monomolecular reactions

2kj
NAV

for bimolecular reactions with identical reactants

kj
NAV

for bimolecular reactions with different reactants

(A.2b)

where NA = 6.022× 1023 mol−1 is Avogadro’s constant, and kj is the macroscopic
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reaction rate constant [89]. The latter has the form

hj(X) =



1 for reactions of type: φ→ product(s) [no reactants]

Xi for monomolecular reactions [A→ B]

Xi(Xi − 1)/2 for reactions with identical reactants [A+ A→ C]

XiXk for reactions with different reactants [A+B → C]

(A.2c)

for some 1 ≤ j ≤M , and 1 ≤ i, k ≤ N with i 6= k.

Let the time-interval dt in the definition of aj(X) (Eq. (A.2)) be small

enough that at most one reaction occurs during [t, t+ dt), then P [X; t] satisfies an

ODE that is commonly called a chemical master equation (CME) [61],

dP [X; t]

dt
=

M∑
j=1

{aj(X− νj)P [X− νj; t]− aj(X)P [X; t]}, (A.3)

where νj = (νj1 , . . . , νjN )T is a vector whose entries are the numbers of molecules

of each species added to or removed from the volume V due to the j-th reaction.

For complex cellular processes, such as calcium dynamics in the signaling network

described in Section 2.3.1, high-dimensionality of the CME (Eq. (A.3)) renders

its solutions computationally prohibitive. The standard simulation algorithms de-

scribed below serve to overcome the computational burden associated with solving

Eq. (A.3).
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A.1 Gillespie algorithm

Let P0[τ |X, t] denote the conditional probability that no reactions occur

during the time interval [t, t + τ) provided that the system is at state X at time

t. Furthermore, let us assume that the reacting system is Markovian, i.e., the

probability that no reactions occur during [t, t + τ + dτ) equals the product of

probability that no reactions occur during [t, t+τ) and probability that no reactions

occur during [t+τ, t+τ+dτ). Then the definition of the propensity function implies

that [61]

P0[τ + dτ |X, t] = P0[τ |X, t] [1− asum(X)dτ ] , asum(X) ≡
M∑
j=1

aj(X). (A.4)

Taking the limit as dτ → 0 and solving the resulting ODE, we obtain

P0(τ |X, t) = e−asum(X)τ . (A.5)

Using the definition of P0 and aj, it can be shown [61] that the joint probability

density function p(τ, j|x, t), which describes the probability that the next reaction

will be the j-th reaction and will occur during [t+ τ, t+ τ + dτ) given the present

state of the system X(t), is given by p(τ, j|X, t) = P0[τ |X, t]aj(X). Accounting for

Eq. (A.5), we obtain

p(τ, j|X, t) =
aj(X)

asum(X)
asum(X)e−asum(X)τ . (A.6)

The ratio aj(X)/asum(X) represents the density of a discrete random variable, and

serves to determine the next reaction. The remainder of the right-hand-side of Eq.
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(A.6), asum(X) exp[−asum(X)τ ] is the exponential density function of a continuous

random variable, which corresponds to the time at which the next reaction will

occur.

To advance the system from state X(t), the Gillespie algorithm generates

two random variables r1 and r2 distributed uniformly on the unit interval [0, 1].

According to Eq. (A.6), a discrete random value j and continuous random value

τ are selected as

τ =
1

asum

ln

(
1

r1

)
,

j−1∑
j′=1

aj′ ≤ r2asum ≤
j∑

j′=1

aj′ . (A.7)

The system is then updated according to X(t+ τ) = X(t) + νj.

A faster algorithm for exact stochastic simulation has been presented by

[64], called ”next reaction method”. This approach is about an order of magni-

tude faster than the Gillespie algorithm discussed above.However, this approach

does not scale as well as the tau-leap algorithm discussed below as the number of

molecules increases.

A.2 Tau-leap algorithm

The tau-leap algorithm [12] can be used to increase the computational effi-

ciency of the Gillespie algorithm when it is used to simulate large reactive systems

consisting of many reactions and molecules. This algorithm allows many reactions

to take place simultaneously during a time interval [t, t+τ). Let Kj(τ |X, t) denote

the number of times j-th reaction (1 ≤ j ≤M) takes place during the time inter-
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val [t, t + τ), given the system state X(t) at time t. The value of τ is selected to

satisfy the so-called “leap condition”, which requires that none of the propensity

functions aj (1 ≤ j ≤M) suffers a noticeable change in its value. Then Kj(τ |X, t)

can be approximated with a Poisson random variable P{aj(X), τ} whose mean

and variance are ajτ . The system state is now updated according to

X(t+ τ) = X(t) +
M∑
j=1

νjP{aj(X), τ}. (A.8)

As the time interval τ becomes smaller, it allows for few reactions to take place

simultaneously, eventually reaching the limit of one reaction per τ . In this limit,

P{aj(x), τ} → 1 and we get the Gillespie algorithm.

Algorithmic consistency requires that, in addition to satisfying the leap

condition, τ be selected in a way that prevents number of any species from becom-

ing negative. The binomial tau-leap algorithm [90, 23] imposes this constraint by

introducing a new control parameter nc (typically a small positive integer), which

defines “critical reactions” as those having at least one species with the number of

molecules less than nc. If there are one or more critical reactions then τ is chosen

so that no critical reaction fires more than once. The binomial tau-leap algorithm

[90, 23] also expresses the leap condition in terms of a bound on the change rate

of aj[X(t)] as |∆aj(X(t))| ≤ εaj(X(t)), where 0 < ε� 1.
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A.3 Chemical Langevin equation

To increase the computational efficiency further, the leap time τ can be

increased so that aj(X)τ becomes large enough to ensure that it contains a large

number of reactions for each reaction channel. Now the Poisson random variable

P{aj(X), τ} can be approximated with a normal random variable [61] with the

same mean and variance: aj[X(t)]τ +
√
aj[X(t)]τZj, where Zj are independent

normal random variables on the interval (0,1). This approximation replaces Eq.

(A.8) with a chemical Langevin equation (CLE)

Y(t+ τ) = Y(t) + τ
M∑
j=1

νjaj[Y(t)] +
√
τ

M∑
j=1

√
νjaj[Y(t)]Zj, (A.9)

where Y(t) is a continuous counterpart of the discrete random variable X(t), re-

placing the number of molecules of the j-th species, Xj, with the respective con-

centrations Yj (j = 1, . . . , N).



Appendix B

Diffusion processes and GMP

algorithm

B.1 Diffusion process: Brownian dynamics

In cells, molecules such as proteins and metabolites, have a non-zero instan-

taneous speed at room temperature or at the temperature of the human body. A

typical protein molecule is immersed in the aqueous medium of a living cell. It col-

lides with other molecules in the solution, exhibiting a random walk or Brownian

motion.

Let X(t) ∈ R3 denote the position of a diffusing molecule at time t. Dif-

fusive spreading of molecules of the i-th species (i = 1, . . . ,M) is characterized

by a molecular diffusion coefficient Di, whose value depends on the molecule size,

absolute temperature and the viscosity of a solution. The molecule’s position at

138
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the end of the time interval 4t is computed as follows [77].

1. Generate three normally distributed random numbers ξ1, ξ2, and ξ3 that serve

as components of the random displacement vector ξ = (ξ1, ξ2, ξ3)T .

2. Compute the molecule’s position at time t+4t as

X(t+4t) = X(t) +
√

2Di4t ξ. (B.1)

3. Set t = t+4t and go to step 1.

B.2 Diffusion process: Cellular automata

In general, cellular automata depend on mesh size and diffusion constant.

Simulation accuracy and computational time vary according to neighborhood types [20].

For the two-dimensional example in Figs. 1B-C (main manuscript), molecules can

diffuse to four adjacent cells (voxel) or stay in the original voxel in the von Neu-

mann neighborhood, whereas in the Moore neighborhood they can diffuse to eight

adjacent cells or stay in the original voxel. If (0, 0) denotes the original voxel, the

von Neumann neighborhood is a set NN = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)}.

The Moore neighborhood is a set NM = NN ∪ {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

The Gillespie multi-particle (GMP) algorithm [17] employs cellular au-

tomata to simulate diffusion. A diffusion-time constant τDi
, the time during which

a molecule of the i-th species remains in one cell of a mesh, is given by [18]

τDi
=

1

2d

(∆x)2

Di

, (B.2)
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where Di is the diffusion coefficient for the i-th species. Moreover, a reaction-time

constant τ̄R is defined as the ensemble average of the equivalent time constants for

all reactions related to diffusing molecules.

B.3 Gillespie multi-particle (GMP) method

We implemented the following GMP algorithm based on [18].

1. Set tS = ∆t = mini{τDi
} for all diffusing species i.

2. Initialize t = 0 and ni = 1 for all diffusing species.

3. While t ≤ tfinal

• Reset tS = mini{τDi
· ni} for all diffusing species.

• Reset told = t.

• For each cell, use the Gillespie algorithm to simulate reactions.

(a) While t ≤ tS

Calculate τR using Eq. 3.3.

– If t ≤ tS, find which reaction takes place within τR using Eq. 3.3.

Update number of species and time:

x← x + νj, t← t+ τR (B.3)

where νj is defined as the change of number of molecules.

– Else; do not update the state vector x since no reaction has occured.
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end while

(b) Reset t = told for the next cell.

end for

• Use the cellular automata to diffuse the species.

• Reset ni ← ni + 1 for the diffused species.

• Set t = tS.

end while
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