Department of Mechanical and Aerospace Engineering

Daniel Tartakovsky › Publications › alexander-2002-algorithm

F. J. Alexander, A. L. Garcia and D. M. Tartakovsky, "Algorithm refinement for stochastic partial differential
equations: 1. Linear diffusion", *J. Comput. Phys.*, vol. 182, pp. 47-66, 2002

A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent randomwalkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. Results from a variety of numerical experiments are presented for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a nonstochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except in particle regions away from the interface. Extensions of the methodology to fluid mechanics applications are discussed.

@article{alexander-2002-algorithm,

author = {F. J. Alexander and A. L. Garcia and D. M. Tartakovsky},

title = {Algorithm refinement for stochastic partial differential
equations: 1. {L}inear diffusion},

year = {2002},

urlpdf = {http://maeresearch.ucsd.edu/Tartakovsky/Papers/alexander-2002-algorithm.pdf},

journal = {J. Comput. Phys.},

volume = {182},

pages = {47-66}

}