Posttransfusion Increase of Hematocrit per se Does Not Improve Circulatory Oxygen Delivery due to Increased Blood Viscosity

Robert Zimmerman, MS,* Amy G. Tsai, PhD,† Beatriz Y. Salazar Vázquez, MD, PhD,‡¶§ Pedro Cabrales, PhD,† Axel Hofmann, ME, PhD,¶ Jens Meier, MD, PhD, № Aryeh Shander, MD,** Donat R. Spahn, MD,¶ Joel M. Friedman, MD, PhD,†† Daniel M. Tartakovsky, PhD,* and Marcos Intaglietta, PhD†

BACKGROUND: Blood transfusion is used to treat acute anemia with the goal of increasing blood oxygen-carrying capacity as determined by hematocrit (Hct) and oxygen delivery (DO₂). However, increasing Hct also increases blood viscosity, which may thus lower DO₂ if the arterial circulation is a rigid hydraulic system as the resistance to blood flow will increase. The net effect of transfusion on DO₂ in this system can be analyzed by using the relationship between Hct and systemic blood viscosity of circulating blood at the posttransfusion Hct to calculate DO₂ and comparing this value with pretransfusion DO₂. We hypothesized that increasing Hct would increase DO₂ and tested our hypothesis by mathematically modeling DO₂ in the circulation.

METHODS: Calculations were made assuming a normal cardiac output (5 L/min) with degrees of anemia ranging from 5% to 80% Hct deficit. We analyzed the effects of transfusing 0.5 or more units of 300 cc of packed red blood cells (PRBCs) at an Hct of 65% and calculated microcirculatory DO₂ after accounting for increased blood viscosity and assuming no change in blood pressure. Our model accounts for O₂ diffusion out of the circulation before blood arriving to the nutritional circulation and for changes in blood flow velocity. The immediate posttransfusion DO₂ was also compared with DO₂ after the transient increase in volume due to transfusion has subsided.

RESULTS: Blood transfusion of up to 3 units of PRBCs increased DO₂ when Hct (or hemoglobin) was 60% lower than normal, but did not increase DO₂ when administered before this threshold.

CONCLUSIONS: After accounting for the effect of increasing blood viscosity on blood flow owing to increasing Hct, we found in a mathematical simulation of DO₂ that transfusion of up to 3 units of PRBCs does not increase DO₂, unless anemia is the result of an Hct deficit greater than 60%. Observations that transfusions occasionally result in clinical improvement suggest that other mechanisms possibly related to increased blood viscosity may compensate for the absence of increase in DO₂. (Anesth Analg 2017;XXX:00–00)

A nemia, defined as a hemoglobin (Hb) concentration below normal, results in a decreased blood oxygen (O₂)-carrying capacity (CaO₂) because of a lower Hb concentration. Blood transfusion is often used to treat acute anemia with the goal of increasing blood CaO₂ and oxygen delivery (DO₂). However, blood transfusion also introduces hydraulic changes that may limit its physiological effects. Blood transfusion is assumed to increase DO₂ by increasing Hb and thus DO₂. However, this increase is mitigated in a circulatory system where the blood pressure (mean arterial pressure [MAP]) and the arterial blood vessel diameter component of peripheral vascular resistance (total peripheral resistance [TPR]) remain constant, ie, a “rigid linear hydraulic system” because the increase of hematocrit (Hct) increases blood viscosity (µ), which then decreases blood flow and reduces DO₂.

Other factors also complicate a simple relationship between Hct and DO₂. Blood transfusion increases blood volume, but this volume expansion seldom leads to hypervolemia, because clinically most transfusions are given to hypovolemic patients. Transfusion thus transiently improves the filling of the heart (increased end-diastolic volume; preload) and thus cardiac output (CO). However, anemia itself increases CO. By correcting anemia, packed red blood cell (PRBC) transfusion reverses this compensatory

From the *Departments of Mechanical Engineering; Bioengineering, University of California, San Diego, La Jolla, California; †Department of Experimental Medicine, School of Medicine, Universidad Nacional Autónoma de México, México, DF, México; ¶Department of Ondology, Universidad Juárez del Estado de Durango, Durango, Ogo, México; ||School of Surgery, Faculty of Medicine Dentistry and Health Sciences, University of Western Australia, and Centre for Population Health Research, Curtin University, Perth, Western Australia, Australia; ¶ Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; #Clinic of Anesthesiology and Intensive Care, Faculty of Medicine, Kepler University Linz, Austria; **Department of Anesthesiology, Critical Care Medicine, Pain Management and Hyperbaric Medicine at Englewood Hospital & Medical Center, Director TeamHealth Research Institute, Englewood, New Jersey; and ††Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York. Accepted for publication January 23, 2017.

Funding: Research supported in part by National Institutes of Health SP01 HL110900, J. M. Friedman, Principal Investigator (PI), USAMRAA award W81XWH1120012, A. G. Tsai, PI.

The authors declare no conflicts of interest.

Reprints will not be available from the authors.

Address correspondence to Amy G. Tsai, PhD, Department of Bioengineering, University of California, San Diego, La Jolla, CA. Address e-mail to agtsai@ucsd.edu; Marcos Intaglietta, PhD, Department of Bioengineering, University of California, 9500 Gilman Dr, MC-0411, San Diego, La Jolla, CA 92033. Address e-mail to mintagli@ucsd.edu; Daniel M. Tartakovsky, PhD, Department of Mechanical Engineering, University of California, 9500 Gilman Dr, MC-0411, San Diego, La Jolla, CA 92093. Address e-mail to dmt@ucsd.edu.

Copyright © 2017 International Anesthesia Research Society

DOI: 10.1213/ANE.0000000000002008
The net result is that PRBC transfusion in many studies increases DO₂ only slightly, and in many instances, O₂ consumption stays the same.²,³

A consequence of the relationship between Hct and blood viscosity is that increasing the Hct in anemia may not correspondingly increase DO₂. This apparently paradoxical finding is because increasing Hct will increase blood viscosity, which in turn will impede blood flow and reduce DO₂. To test this possibility, we developed a mathematical model to determine how changes in Hct caused by a blood transfusion might affect CaO₂ and blood viscosity and consequently DO₂ in an anemic organism.

METHODS

Model Design

We assumed a model circulatory system where under normal conditions 5 L of blood at a Hct = 45% (Hb = 14.5 g/dL) is circulated at the rate of 5 L/minute, where blood exits the heart at a pressure P that remains constant for all conditions and that blood is 100% O₂ saturated also for all conditions. Anemia is modeled as a percent decrease in Hct, whereas all other circulatory parameters remain constant, except for blood viscosity. DO₂ is calculated as the product of CO times Hct. The O₂ saturation of blood arriving to the nutritional microcirculation is corrected for diffusional O₂ loss owing to the transit of blood through the circulation, which is assumed to be blood flow velocity-dependent. Furthermore, we assume that blood is a Newtonian fluid, which is mostly valid for Hct deficits of 40% or greater.⁴

Blood transfusion to correct Hb level is typically administered as PRBCs delivering up to 2 to 3 units of blood using leuko-reduced blood centrifuged to an Hct of 60% to 70%. To model this process, we defined a unit of blood as 300 mL of PRBCs at 65% Hct. We then modeled how transfusion accomplished the objective of increasing DO₂ by using PRBC transfusion.

To make our scenario clinically relevant, we simulated 0.5- to 3-unit transfusions. Hospitals reporting statistics on the number of units used per transfusion intervention⁵ support this assertion. In Western Australia, 14% and 44% of the total blood supply is used in 1- and 2-unit transfusions,⁶ whereas the percentage of units used per event in 18 Austrian hospitals was 13% for 1-unit and 56% for 2-unit transfusions.⁷

In this analysis, we calculate the effect of transfusing 0.5 units (150 cc), 1 unit (300 cc), 2 units (600 cc), and 3 units (900 cc) of PRBCs.

The Effect of Anemia on Blood Viscosity (μ)

Blood viscosity (μ) is a nonlinear function of Hct and shear rate, which varies throughout the circulation. In our model, we assumed a shear rate ~200 1/sec to be representative for the circulation. Arterial and venous Hcts (~3% higher than arterial) are the highest in the circulation and in terminal arterioles and capillaries Hct is approximately half the central value.⁷ Although Hct varies among the arterial, microvascular, and venous compartments, we assumed that the arterial Hct and any changes resulting from the addition of PRBCs was effective Hct in determining blood viscosity. This assumption was supported in part because the arterial circulation accounts for 70% of TPR. The microcirculation where Hct is lower accounts for ~20% of TPR and the venous system contributes the remaining 10%.⁸

Our model assumes that the circulation is a rigid linear hydraulic system that accommodates blood volume changes in the venous circulation. However, because the venous systems accounts for only 10% of the total TPR, we assume that venous diameter changes are negligible and therefore TPR depends only on blood viscosity, which is a function of Hct.

The effect of Hct on μ was modeled by curve-fitting a quadratic equation to the data in the literature. This relationship was in part determined by the viscosity of plasma, which ranges from 1.10 to 1.35 cP (37°C).⁹ As a reference, the viscosity of water is 0.695 cP at 37°C. Few studies focus on the rheology of blood in anemia and no precise way exists to establish the asymptotic value of plasma viscosity at zero Hct because plasma proteins are not restricted to the vascular compartment. The variability of plasma viscosity is small and we assumed that plasma viscosity is the average of the reported range or 1.22 cP.¹⁰

Data on the relationship between μ and Hct for men and women in the normal population are reported by Kameneva et al,¹¹ as shown in Figure 1, which includes data of studies reporting measurements in anemic patients. In most instances, the cause of anemia was not discussed. Data for anemic patients were reported by Stein and Sabah¹² obtained from patients primarily afflicted with chronic renal failure because of malignant neoplasm. We also included data reported by Vázquez et al,¹³ for healthy individuals with Hct lower than 35%. Stone et al,¹⁴ reported data on human μ diluted with plasma. Cokelet¹⁵ reported theoretical values derived from the rigorous application of the Quemada equation for blood viscosity as a function of shear rate and Hct.¹⁶

These data were fitted by equation (1) as follows:

\[μ = 1.22 + 0.00675 \times \text{Hct} \times 10^2 + 0.00208 \times \text{Hct}^2 \times 10^4; \]

\[r^2 = 0.93 \]

(1)

Figure 1. Blood viscosity as a function of hematocrit of normal and anemic individuals. Plasma viscosity 1.22 cP is the average of the available data in the literature.
The Effect of Transfusion on Hct, Blood Viscosity, and DO₂

The increase in volume owing to RBC transfusion on Hct is the result of changes of plasma volume caused by changes of capillary pressure, which induce fluid filtration or absorption according to the Starling-Landis mechanism of fluid balance.17

The trajectory of fluid overload induced by transfusion is not well established. We assumed that blood volume returns to normovolemic after an unknown period after transfusion.

To evaluate how transfusion changes Hct, we assumed a stoichiometric effect and calculated the resulting Hct as the ratio of total RBC volume resulting from the transfusion and the total circulating volume resulting from transfusion. In our model, a unit of PRBCs has a volume of 300 mL and 65% Hct thus transfusing n units of PRBCs changes Hct according to the following equation:

\[Hct_{post\; transfusion} = \frac{Hct \times bv + RBC \; Vol \; added}{bv + \; Blood \; Vol \; added} \]

\[= \frac{Hct \times bv + n \times 0.65 \times 0.3}{bv + n \times 0.3}, \]

where Hct is that of the anemic patient and bv is the patient’s initial blood volume, or 5 L.

The rate of DO₂ is thus determined by the product:

\[DO₂ = CO \times CaO₂ \; (or \; Hct), \]

where CO is determined by the pressure imparted to blood by the heart ΔP over the resistance to flow \(R \) according to Poiseuille’s equation:

\[CO = \frac{\Delta P}{R} = \frac{\pi \times r^4}{8 \times \mu(Hct) \times l} \Delta P. \]

Combining equations (3) and (4) for the “rigid linear hydraulic system” at constant pressure, CO becomes a function of blood viscosity and a constant \(k \) because the vessel radius \(r \) and length \(l \) are constant. \(CaO₂ \) is therefore directly proportional to Hct and DO₂ from equation (3) becomes:

\[DO₂ = \frac{k}{\mu(Hct)} Hct. \]

The change in posttransfusion \(DO₂_{post} \) relative to \(DO₂_{a} \) in anemic conditions defines the ratio \(R_{T,\mu} \) which eliminates the constant \(k \) according to:

\[\frac{DO₂_{post,transf}(T)}{DO₂_{a, \; anemic \; state(a)}} = \frac{Hct_{T}}{Hct_{a}} \times \frac{\mu}{\mu_{T}}. \]

Because the parameters in equation (6) are all known or can be measured, the ratio \(R_{T,\mu} \) gives a direct measure of how anemia affects DO₂ as Hct changes as a result of transfusion.

O₂ Diffusional Exit and the Effect of Blood Flow Velocity on DO₂

Equation (5) describes how DO₂ responds to changing Hct assuming that blood O₂ saturation does not change during transit from the lungs to the microcirculation to satisfy the tissue metabolism. However, because the vasculature is not a barrier to O₂ diffusion, O₂ will diffuse out of the vessels before blood arriving to the microcirculation. The specific vascular locale of DO₂ was assumed to be the capillary system, although Duling and Berne18 reported that terminal arterioles also provide a significant amount of O₂ to the tissue. In previous work we confirmed this observation, finding that most O₂ is delivered by the arteriolar system and that capillary blood pO₂ in most mammals was in the range of 25 to 30 mm Hg owing to the diffusional loss.19

Data on microvascular and central pO₂ are available from the awake window chamber hamster (a fossorial species) model.20 In this model, central pO₂ averaged 61.9 mm Hg, or 88% O₂ saturation. Assuming that the nutritional circulation begins at the level of A3 arterioles, whose pO₂ is ~41 mm Hg, blood O₂ saturation at that stage is approximately 76%. Consequently, we modeled that the saturation change in blood from central to peripheral was 12.0%. We then extrapolated to estimate the O₂ saturation loss between the lungs and the start of the nutritional microcirculation. For an arterial saturation of 100%, A3 O₂ saturation would be:

\[pO₂_{A3 \; arterioles} = 100\% / 88\% = X/76\% \text{ or } X = 86.4\% \]

and the absolute change in saturation between central blood (100%) and the A3 arterioles = 13.6% ~ 14%. We, therefore, assumed that at the beginning of the nutritional circulation, blood O₂ content had decreased by 14% owing to diffusion in normal conditions.

To model O₂ delivery resulting from diffusion, we used the following logic. Oxygen exits from the blood vessels by constant diffusion and is driven by the O₂ concentration gradient between blood and tissue. Therefore, the flux of O₂ arriving to the nutritional microcirculation is the difference between DO₂ and the flux of O₂ that exits the blood vessels by diffusion (\(FO₂_{diff} \)). The increase of viscosity lowers blood flow, increasing the time for diffusion to extract O₂ and further decreasing DO₂ in the microcirculation.

A model for describing DO₂ in anemia relative to normal DO₂ was formulated by writing the O₂ flux balance for the rate of O₂ delivery to the microcirculation \(DO₂_{mic} \) as:

\[DO₂_{mic} = DO₂ - FO₂_{diff} \]

where DO₂ was the product of blood flow (ie, CO, 5 L./min) × Hct of fully O₂ saturated RBCs as per equation (3).

The flux \(FO₂_{diff} \) is a function of the O₂ concentration gradient between the amount of O₂ in blood and the O₂ dissolved in the tissues. The calculation of how the diffusional exit of O₂ varies with changes in CO was not possible. We thus simplified the analysis by focusing on the relative rather than absolute magnitude of change. In this context, geometry for the rigid linear hydraulic system model is constant for all conditions, and the principal variables are DO₂, the longitudinal vascular O₂ concentration gradient resulting from O₂ exit, and the transmural O₂ gradient, ie, the local difference between intravascular and tissue O₂ concentration. Several potential solutions address this problem but none deals with Hct changes simultaneously affecting μ and DO₂. Furthermore, this problem is usually solved for single cylindrical tubes, not networks.
A simplified problem is formulated by assuming that the gradient that causes O₂ exit, determined by intravascular Hct and the tissue O₂, is characterized by a single nominal value. This assumption is largely justified because the changes in O₂ transport resulting from transfusion of 1 to 3 units of blood are relatively small. Neglecting this effect permitted us to model that the diffusional O₂ exit is primarily determined by the residence time of blood in the pre-microcirculation blood vessel, which is inversely related to blood flow velocity and therefore directly related to μ.

The dependence of the diffusional loss on the content of O₂ of blood is less pronounced than the dependence on viscosity, because tissue pO₂ tends to track blood pO₂. Therefore, we assume that O₂ delivery to the microcirculation DO₂mic(a,N) was determined by changes resulting from effects on blood flow minus the diffusional loss determined by blood flow velocity (which is dependent on viscosity) according to the following equation:

$$\text{DO}_2\text{mic}(a,N) = \text{DO}_2 \times \left(1 - \frac{0.14 \times \text{DO}_2}{\text{μ}_t / \text{μ}_s}\right)$$

where R_{α,N} is the ratio of DO₂ between anemic (a) and normal conditions (N), and μ_t and μ_s are the blood viscosities in the anemic and normal condition, respectively.

This expression is consistent with the physiological relationship that higher μ_t resulting from increased Hct, leads to a higher intravascular O₂ concentration, an increased rate of diffusional oxygen loss, and eventually decreased DO₂ at the capillary bed. Setting DO₂ (45%) = 1 and transposing, we obtained the DO₂ in anemia relative to normal:

$$\text{Rel DO}_2\text{mic}(a,N) = R_{α,N} - 0.14 \times \frac{μ_t}{μ_s}$$

In the anemia transfusion scenario, characteristics of the normal state are not known, and therefore this analysis is difficult to make. However, it is also informative to obtain a relative measure of the resulting intervention, namely the change in O₂ delivery DO₂mic relative to the anemic condition resulting from transfusing n units, which can be estimated by using the ratio R_{α,n} defined in equation (6), which describes the change in DO₂ induced by blood transfusion (BT) in an anemic individual given by:

$$\text{Rel DO}_2\text{mic}(BT) = R_{α,n} - 0.14 \times μ_t / μ_s$$

Physiology and Physics of the O₂ Diffusional Loss

Our model includes an “O₂ diffusion loss,” which identifies a fraction of DO₂ that does not contribute to supplying O₂ to the tissue because it is consumed by the vessel walls and is shunted to venules running in parallel. Data on this phenomenon are available from pO₂ measurements in an awake hamster model with sufficient resolution to discern how pO₂ varies as blood transits from large to small arterioles, through the capillaries, and then from small venules to large. These data exist only for “window chamber” hamsters and show that capillaries have the lowest pO₂ in the vascular network. The data are derived from measurements with a spatial resolution of ±2 μm in subcutaneous muscle, adipose, and connective tissue. There are comparable data for the hamster cheek pouch, but this tissue is not in a window chamber and has to be irrigated. As a consequence the lowest pO₂ is that of the irrigation solution, which tends to be contaminated by atmospheric pO₂.

Overall “diffusional loss” thus comprises both O₂ shunting to the venular circulation and the local O₂ consumption in the vascular and microvascular vessel wall, which is a true O₂ “loss” occurring before O₂ enters the tissue in all blood vessels.

A fraction of the diffusional O₂ “loss” thus does not participate in tissue metabolism, but is shunted back into the venules, because of the parallel and juxtaposed configuration of arterioles and venules, which shunt O₂ to the venous return.

The underlying mechanics of this “loss” and/or “shunting” is that oxygenated blood moves in pipes whose walls are as permeable to O₂ exit as the plasma in which O₂ diffuses. As a consequence, vessel walls offer little resistance to O₂ exit and the quantity of O₂ that arrives to the microcirculation is the difference between the rate at which O₂-carrying blood arrives to the microcirculation and the rate at which O₂ exists in the microcirculatory vessels. A model of this process is transporting water in a leaky container. The quantity of water arriving at the destination is a function of the difference between the container velocity and the rate of the water leak.

RESULTS

Our principal results are shown in Figure 2, which describes the effect of transfusing n units of blood in conditions of normovolemic anemia ranging from an Hb deficit of 0% to 80% (or Hct). We found that transfusion of up to 3 units of blood had practically no effect on DO₂ unless Hb is less than approximately a 60% Hb deficit or 5.8 g/dL. Improvements in DO₂ ranged from 14% for transfusion of 0.5 units to 47% after transfusions of 3 units relative to DO₂ in the anemic condition. Equation (10) assumes that the resulting Hct is determined by the changes in RBC concentration and blood volume associated with each given number of units transfused and implies that the blood volume will be permanently increased (Figure 2A). This assumption is unlikely considering that transfusion of 2 units expands blood volume by 12% according to our model. Although the posttransfusion change of blood volume with time is not specifically known, normalization of blood volume will lead to further increases of Hct. The effect of such normalization of blood volume is shown in Figure 2B.

Figure 3 confirms that when blood volume normalizes after transfusion, transfusing 0.5 to 3.0 units of PRBCs will cause DO₂ to decrease for all Hb concentrations greater than 5.8 g/dL, an effect that reverses abruptly for anemic conditions with lower Hb levels.

DISCUSSION

In our mathematical simulation of the effects of transfusion on DO₂, we found that transfusion does not increase DO₂ unless the deficit in Hct (or Hb) is greater than 60% of...
a normal baseline (blood Hb <5.8 g/dL) regardless of the number of units transfused. This surprising lack of increase in DO₂ is the result of transfusion-associated increases in blood viscosity, which not only lowers blood flow to capillary beds, but also increases the diffusional O₂ loss before blood arriving at the nutritional circulation.

The “diffusional O₂ loss” refers specifically to O₂ that is not delivered by the microcirculation. Oxygen exiting blood vessels should be consumed in the tissue, thus contributing to nutritional DO₂. However, the configuration of arterioles and venules, running in parallel, indicates that this O₂ does not contribute to the tissue metabolic demand, because it returns via the venous circulation as a result of premicrocirculatory arteriovenous O₂ shunting, whose magnitude is inversely related to blood flow velocity. As a consequence, lowering blood flow velocity increases the O₂ shunting. In our model, the diffusional loss is 14% of DO₂ in the normal circulation, which decreases to approximately 7% of DO₂ in the 50% anemia as shown in Figure 4.

We reiterate that the effects shown by our model only deal with the physical aspects of the problem and ignore the effects that transfusion per se may have on the circulation as a whole or on cardiac function. However, because changes in µ are likely relatively large, other effects of transfusion that increase O₂ delivery would need to be as large to have an impact.

Our model assumes an arterially rigid linear hydraulic system, where MAP is constant and TPR only changes in response to changes of Hct. A critical question is whether this assumption is applicable to the mammalian circulation. We are not aware of clinical data on how BT, ie, increasing Hct in an anemic patient, affects MAP, CO, and blood viscosity. Messmer et al studied extensively the reverse effect resulting from hemodilution reporting experimental findings in dogs. Comparison between human responses and experimental conditions is difficult and additionally complicated by an experimental model. We modeled an increasing Hct in our study, whereas Messmer et al focused on decreasing Hct.

Another critical point is to assess the evidence supporting the effect of changing blood viscosity on TPR in the absence of other effects. The data of Messmer et al allow testing of our model, because TPR was reported for different levels of hemodilution and blood viscosity and at each
O₂ Delivery in Anemia After Transfusion

Figure 5. Comparison of CO as a function of Hct in the current model (circles) and results of Messmer et al²⁴ (squares) on changes induced by hemodilution in dogs and using measured dog viscosity data in the model. This comparison simulates increasing Hct and CO from an anemic condition resulting from 10% Hct. Model data are fitted by a quadratic relationship, whereas the experimental variability inherent to the measurement of CO and blood viscosity is best fitted by a linear relationship. CO indicates cardiac output; Hct, hematocrit.

level of Hct in a manner similar to our Figure 5. Thus, if we assume that increasing and decreasing Hct are equivalent, we find that increasing Hct in the circulation of dogs behaves as our model, because MAP is approximately constant (122 ± 4 mm Hg over the Hct range of 7.8%–40.0%), and changes in CO are exclusively the result of changes of µ.

The experimental study of Messner et al was based on normovolemic anesthetized dogs, identical to our model. Anesthesia in general lowers CO as well as macro- and microcirculatory regulation²⁶; therefore, comparison of these 2 models is more realistic than comparing either model with the nonanesthetized condition, because Ickx et al²⁷ show that hemodilution and anesthesia decrease CO by comparison to hemodilution in the awake state indicating the presence of additional controls beyond merely physical reactions of the inert vasculature.

The effects on DO₂ resulting from normalization of blood volume after transfusion are also significant. Transfusion increases blood volume even if it were possible to transfuse only RBCs. The additional volume administered with PRBCs can expand blood volume by 10% and greater for transfusions greater than 2.0 units. The time course governing the eventual excretion of this additional volume is not specifically known, but it is unlikely to be permanent. On normalization of the initial volume to that before transfusion, the Hct will increases even more, which in our model further worsens DO₂.

Our model is specific to treating normovolemic anemia in nonbleeding conditions. To understand the effect of transfusion in anemic hypovolemia, we computed the effects of transfusing a 50% anemic patient (Hct 22.5%) and an 80% anemic patient (Hct 9%) in patients with a 20% intravascular volume deficit (4-L blood volume). In the first case, transfusion of 1 unit of PRBCs caused Hct to increase from 22.5% to 25.5% for hypovolemia (instead of 24.9% for normovolemia), changing posttransfusion viscosity from 2.68 cP to 2.74 cP and decreasing DO₂ by approximately 1%. In the second case, transfusing 3 units in extreme anemia (Hct 9%) increased DO₂ by 2.5% over that in the normovolemic patient. Thus, the limited effect of transfusing hypovolemic patients is the result of the same phenomenon that limits the effectiveness of blood transfusion in general, namely the effects of increased Hct and blood viscosity.

Our results show that transfusions of up to 3 units to correct for up to a 55% Hb deficit causes DO₂ to decrease relative to the anemic state (Figure 2A) and that the fall in DO₂ worsens as blood volume normalizes (Figures 2B and 3). Increases in DO₂ relative to anemia only occur in our model when treating Hb deficits greater than 60%. However, the actual improvement obtained is generally surprisingly small. A 3-unit transfusion in a patient with 80% Hct deficit (Hb = 2.9 g/dL) causes DO₂ to change from 0.22% to 0.33% of normal.

One unknown factor is that the organism could eventually adapt to the increased blood viscosity and establish a new operating set point for normalized Hct and CO because of the significant increase of blood viscosity. Incorporating that factor may have changed our findings.

Considering the assumptions made, and the many factors that could influence DO₂, including the variability between individuals and quantity of RBCs administered per transfusion, it is possible that in the real world, transfusion may increase DO₂. However, our simulation suggests that the change in DO₂ will be small relative to the anemia being treated and well within the variability of many factors that control and measure DO₂. We thus raise the question that transfusion may have limited benefit considering the available evidence on adverse effects of transfusion.²⁸

A limitation of our model is that we do not include other factors that adapt the circulation to anemia and mitigate the decrease of O₂ availability to the prenutritional compartment. In particular, a left shift of the O₂-Hb dissociation curve would decrease the percentage of diffusional O₂ exit that we assume to be 14% in our model, thus increasing O₂ availability in anemia and DO₂. An often mentioned factor is the increased O₂ extraction that may occur during anemia resulting from increased capillary density; however, studies in the microcirculation in extreme hemodilution tend to show a decrease in functional capillary density.²⁰ A weakness of our model is the assumption that MAP does not change as a function of transfusion, ie, changes in CaO₂, although the experimental study of Messner et al supports this assumption for anesthetized, isovolemic, and anemic dogs. Furthermore, we assume that blood is a Newtonian fluid, which is mostly valid for Hct deficits of 40% or greater.⁴

Another critique is the simplistic treatment of the complex physics associated with the change of CaO₂ resulting from changes in Hct. We previously reported the effect of flow velocity on DO₂ for a single tube²⁹ and the effect of blood viscosity on O₂ delivery in a branching network.³⁰ In this study, we developed a hybrid approach for the solution of how DO₂ is managed in anemia on transfusion of PRBCs by establishing a mass balance between O₂ convective supply and diffusional delivery referred to specifically in in vivo mammalian microvascular data. Clearly a more sophisticated approach based on exact solutions for
branching circulatory systems characteristics of the different organs would make the analysis more accurate.

In summary, we found in a mathematical model of the human circulation that for the majority of anemic and normovolemic conditions encountered clinically, increases in DO₂ were modest at best or nonexistent. One limitation of this model is the assumption that cardiac function is independent of Hct. This critique is valid, because cardiac function is determined by DO₂. However, the experiments of Messmer et al show the existence of conditions where cardiac function is only a function of blood viscosity.

Our model suggests that transfusion of 1 to 2 units of PRBCs is unlikely to increase DO₂ unless treating extreme normovolemic anemia where Hb < 5.8 g/dL (Hct deficit > 60%). Because this finding is not consistent with clinical practice, we hypothesize the existence of mechanisms not addressed in our model that ultimately negate the effect of increasing viscosity on blood flow and facilitate DO₂. One possibility is the decrease of TPR through vasodilatation, which may be mediated by increased mechanotransduction and production of nitric oxide.32–34 However, in these studies, changes in Hct were induced without changes in volume.

The presence of additional phenomena not related to the physical effects described in our modeling is also suggested by Yuruk et al35 who investigated the sublingual microcirculation in patients receiving up to 3 units of blood on undergoing cardiopulmonary bypass-assisted heart surgery and in anemic patients.36 Both of these studies treated Hb deficits of 55% and found increased functional capillary density, microvascular Hct, and tissue pO₂, although no evidence of increased microvascular perfusion. In contrast, a previous study by Creteur et al37 did not find any change in tissue pO₂.

CONCLUSIONS

Using a physical model of transfusion, we found that increasing Hct in anemic patients increases blood viscosity, which severely limits the effect of increasing Hct on DO₂. In our model, transfusing up to 3 units of PRBCs to treat 5.8 g Hb/dL does not increase DO₂ and may reduce DO₂ when correcting a higher Hb level. We also show that the reduction of blood volume posttransfusion further increases Hct and lowers DO₂.

Our analysis suggests that physical effects that underlay BT may preclude the possibility of transfusion increasing DO₂ unless other effects not related to baseline hydraulic/viscosity considerations are present. Because DO₂ is the product of CO and Hb and because increases in Hb are limited by the number of RBC units than can be transfused, the effectiveness of blood transfusion thus depends primarily on the increases of CO. We advance the possibility that positive effects owing to transfusion may be the result of vasodilation in response to increased blood viscosity. More work is needed to better understand how the circulation and DO₂ respond to transfusion.

DISCLOSURES

Name: Robert Zimmerman, MS.
Contribution: This author helped develop the mathematical model.
Name: Amy G. Tsai, PhD.
Contribution: This author helped interpret the data, and review and revise the manuscript.

Name: Beatrix Y. Salazar Vázquez, MD, PhD.
Contribution: This author helped review and revise the manuscript.
Name: Pedro Cabrerales, PhD.
Contribution: This author helped review and revise the manuscript.
Name: Axel Hofmann, ME, PhD.
Contribution: This author helped review and revise the manuscript.
Name: Jens Meier, MD, PhD.
Contribution: This author helped review and revise the manuscript.
Name: Aryeh Shander, MD.
Contribution: This author helped review and revise the manuscript.
Name: Donat R. Spahn, MD.
Contribution: This author helped review and revise the manuscript.
Name: Daniel M. Tartakovsky, PhD.
Contribution: This author helped conceive and design the study.
Name: Marcos Intaglietta, PhD.
Contribution: This author helped conceive and design the study, develop the mathematical model, interpret the data, and write the manuscript.

This manuscript was handled by: Avery Tung, MD, FACC.

REFERENCES

O₂ Delivery in Anemia After Transfusion

