
1.  Introduction
Reliable characterization of the subsurface is a key component of quantitative predictions of flow and trans-
port in geologic formations. Subsurface characterization generally entails inversion (aka history match-
ing or data assimilation), a computational procedure that converts observations (e.g., of hydraulic head 
or solute concentration) into multi-dimensional images of model parameters (e.g., hydraulic conductivity 
or dispersivity). While inverse strategies vary widely, most of them involve minimization of a discrepancy 
between observations and model predictions.

Gradient-based methods (Sarma et  al.,  2006, and the references therein) and evolutionary algorithms 
(Cameron et al., 2016, and the references therein) are some of the most successful approaches to optimiza-
tion-based inversion. Among these, adjoint gradient-based methods boast high efficiency, because they re-
quire only one forward and one backward simulation to compute model sensitivity (Sarma et al., 2006, and 
the references therein). These and similar optimization-based procedures generate one optimal solution at 
a time; they can be combined with the randomized maximum-likelihood method (Kitanidis, 1995) to obtain 
multiple posterior models for uncertainty quantification. Sampling-based approaches for data assimilation, 
for example, (dual) ensemble Kalman filter (Wang et al., 2021), ensemble smoother (Chen & Oliver, 2012), 
Markov chain Monte Carlo (Zhou & Tartakovsky, 2021), and DREAM algorithm (Laloy et al., 2018) com-
bined with Markov chain Monte Carlo, allow one both to estimate model parameters and to assess pre-
dictive uncertainty. Even though iterative ensemble-based schemes (Chen & Oliver,  2012; White,  2018) 
ameliorate the convergence issue that plagues most inversion algorithms, sampling-based approaches are 
generally more computationally expensive than adjoint gradient method. Yet, they are often more efficient 
than gradient-based approaches without the adjoints.

Regardless of the strategy used to achieve it, subsurface inversion is generally an ill-posed problem that 
has to be regularized. One way to do so is to incorporate prior information in the form of geological con-
straints, which would guarantee a geologically realistic solution. A majority of the current approaches rely 
on explicitly definable priors such as two-point statistics (mean and covariance), which renders them in-
appropriate for complex geology. One alternative is to employ a parameterization procedure aiming to rep-
resent geological maps in terms of a small number of parameters. Methods of this class include principal 
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component analysis (Sarma et al., 2008; Vo & Durlofsky, 2014) and deep learning-based techniques (Chan 
& Elsheikh, 2019; Laloy et al., 2017, 2018; Liu et al., 2019). Though these approaches have shown good 
performance in many subsurface applications, their results vary with the subjectively defined number of 
parameters and parameterization methods, that is, require significant fine-tuning.

We posit that high (parametric) dimensionality of subsurface images and non-differentiability of the im-
age reconstruction problem argue for the deployment of proximal algorithms such as alternating direction 
method of multipliers (ADMM; Afonso et al., 2010; Boyd et al., 2011; Eckstein & Bertsekas, 1992). More 
specifically, we adopt plug-and-play (PnP) priors (Venkatakrishnan et al., 2013), which extend the previous 
proximal algorithms by relying on recent progress in machine learning in general and deep neural net-
works (DNN) in particular. Inspired by the mathematical equivalence between the proximal operator and 
an image denoiser, PnP methodologies provide a flexibility to integrate various heterogeneous priors that 
may not be explicitly defined (S. H. Chan et al., 2016; Kamilov et al., 2017; Ono, 2017; Sreehari et al., 2016; 
Sun et al., 2019). Among them, consensus equilibrium (CE) (Buzzard et al., 2018), a generalization of the 
ADMM-based PnP scheme, integrates multiple advanced prior models (e.g., denoisers, data fidelity agents, 
deblurring maps, etc.) within an optimization-free framework; examples of its application to image recon-
struction problems can be found in Ghani and Karl (2019) and Sridhar et al. (2020).

We introduce CE as a means to achieve geologically realistic results for subsurface inversion problems, 
which are formulated in Section  2. The CE approach, presented in Section  3, utilizes a denoising prior 
and deep learning-based prior to maintain geological realism in the inversion of hydraulic head data. The 
“agents” that seek equilibrium in our setting, that is, operators responsible for data fidelity, for data denois-
ing, and for geological priors, are introduced in Section 4. In Section 5, we demonstrate the performance of 
the proposed CE framework via a series of numerical experiments dealing with two-dimensional transient 
flow in an aquifer having channelized spatial arrangement. Main findings and conclusions drawn from our 
study are summarized in Section 6.

2.  Problem Formulation
The goal of an inverse problem is to recover an unknown subsurface model parameter set  nE m   (e.g., 
values of hydraulic conductivity E K in E n elements of a numerical grid) from a set of measurements  m kE d   
(e.g., of hydraulic head observed in E m wells at E k time intervals); in a typical application, E m n and  E m k n . 
In terms of the maximum-a-posteriori (MAP) estimate, this problem takes the form of an optimization 
problem

m m

m

* ( ).


argmin f
n

� (1)

The MAP cost function  ( ) : nE f    is defined by

   ( ) ln ( | ) ln ( ) const,f p pm d m m� (2)

where ( | )E p d m  and ( )E p m  represent a data-fidelity function and a prior distribution, respectively. It is com-
mon to assume that the distribution of random observation errors is a multivariate normal, in which case 
the data-fidelity function,  ln ( | )E p d m  , is expressed as

  11( | ) ( ( ) ) ( ( ) ),
2 Dp d m g m d C g m d� (3)

where    ( ) ( )m k m k
DE C   is the covariance matrix of the measurement errors, and  ( ) : n m kE g    represents 

the model predictions of an observable at space-time points ( , )E tx  at which the observable's measurements 
E d are available.

The prior distribution ( )E p m  is often selected to be standard, e.g., multivariate Gaussian. However, complex 
priors representative of realistic geological environments are often poorly described by such explicit distri-
butions, and alternatives are needed. We propose the joint use of multiple advanced priors (e.g., machine 
learning-based priors) and conventional optimization-based approaches within the CE framework to gen-
erate geologically realistic models.
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3.  CE Framework
The novelty of our CE framework is to fuse sets of heterogeneous models that may or may not arise from the reg-
ularized optimization. The plug-and-play (PnP) reconstruction (Venkatakrishnan et al., 2013) emerging from 
ADMM is the first method to incorporate the denoising operators that have no underlying optimization prob-
lem. In addition to providing an optimization-free interpretation of PnP, CE extends PnP to handle problems 
involving more than two “agents,” allowing the use of more than one implicit regularizer for same problem.

To formulate the CE equations, we split the MAP cost function ( )E f m  in Equation 2 into E N auxiliary func-
tions ( ) : n

iE f m   (   1, ,E i N ), such that Equation 1 becomes


  

1
min ( ); subject to , 1, , ,

N
i i i

i
f i Nm m m� (4)

with variable  n
iE m   . A proximal mapping operator : n n

iE F    , corresponding to the cost function iE f  , 
is defined by

2

2( ) ( ) .
2i i

n i

F argmin f


    
  v

v m
m v



‖ ‖
� (5)

The regularization parameters  iE  controls the convergence speed of the PnP algorithm. If iE f  is a lower-sem-
icontinuous and convex function on nE   , then a solution of Equation 4 and, hence, of Equation 1 is given by 
a solution, m* , of the CE equations (Buzzard et al., 2018):

F i N
i i

i

N

i
( ) , , , ; .* * * *
m u m u 0    


1

1

and� (6)

The main advantage of the CE framework over optimization-based methods is that other non-expansive op-
erators, called agents, can be employed in lieu of the proximal mapping operator iE F (Bouman, 2013; Buzzard 
et al., 2018). An operator : n nE T    is said to be non-expansive if there exists a real number  0 1E k  
such that

( ) ( ) ,T T k  x y x y‖ ‖ ‖‖� (7)

for all , nE x y   . The non-expansiveness, a weaker condition than being a proximal operator, allows us to 
use much richer class of actions including machine learning models.

Figure 1.  Overall architecture of our VAE for incorporating prior geological information. The abbreviations in figure 
are defined as: Conv, convolution layer; FC, fully connected layer; ConvT, transposed convolution layer.
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The CE equations (Equation 6) can be solved with several proximal point 
algorithms, such as ADMM (Eckstein & Bertsekas,  1992) and Doug-
las-Rachford (Boyd et al., 2011). We introduce stacked operators E F and 

E G such that



   
   

     
   
   

 
1 1

1

( )
1( ) , ( ) , .

( )

N
i

i
N N

F

NF

m m
F m G m m m

m m
� (8)

Then Equation 6 takes the form

F v G v v m u( ) ( ), .* * * * *  � (9)

The averaging function E G has a property  2E G I I , where  N NE I   is 
the identity matrix. This property gives rise to a fixed-point problem

( )( ) .* *
2G I 2F I v v  � (10)

We solve it using the Mann iteration (Ryu & Boyd, 2016), which is equiv-
alent to the Douglas-Rachford algorithm (Giselsson, 2017):

      (1 ) ( )( ) ,k 1 k kv v 2G I 2F I v� (11)

where   (0,1)E  is the fixed parameter. The convergence of the Mann it-
eration is guaranteed when the operator   (2 )(2 )E T G I F I  is non-expansive (Bouman, 2013). If   0.5E  
and  2E N  , then the fixed point approach (Equation  11) is identical to the PnP with ADMM algorithm 
(Sreehari et al., 2016).

4.  Selection of Agents for Subsurface Delineation
Our inverse modeling strategy is to deploy the CE framework (Equation 9) with  3E N  agents iE F : a data fidel-
ity agent datE F  , a denoising prior agent denE F  , and a geology prior agent geoE F  . The first of these, datE F  , is introduced 
to reduce the mismatch between observations, E d , and predictions of the reconstructed model, ( )E g m  . It is 
defined as a proximal mapping (Equation 5) of the data fidelity function (Equation 3):

2
1

dat 2
dat

1( ) ( ( ) ) ( ( ) ) ,
22 D

n
F argmin






      
  v

v m
m g v d C g v d



‖ ‖ � (12)

where  datE  is an internal parameter controlling the strength of the regularization term 2v m‖ ‖  . We solve the 
minimization problem in Equation 12 using the gradient-based method L-BFGS-B, in which adjoints are 

Figure 2.  Examples of geoE F  operations applied to geologically realistic 
input (top row) and unrealistic input (bottom row).

Figure 3.  True log hydraulic conductivity field (left) and its initial guess (right) estimated from conductivity 
measurements via support vector regression.
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used to compute the gradient (Oliver et al., 2008). The adjoint method is employed here because of its compu-
tational efficiency and lack of the Gaussianity assumption, but other advanced inversion techniques (Chen 
& Oliver, 2012; Laloy et al., 2018; White, 2018; Zhou & Tartakovsky, 2021) can be plugged into CE as datE F  .

Agent denE F  represents an image denoising prior, which plays the role of an implicit regularizer; its role is 
to provide reconstructions with sharper, less smeared hydrofacies boundaries. The underlying assumption 
behind the use of the denoising prior is that the subsurface is composed of distinct hydrofacies with rel-
atively low heterogeneity within each facies (Winter & Tartakovsky, 2002; Winter et al., 2003, 2006; Yang 
et al., 2020). Examples of image denoisers include total variation (TV; Osher et al., 2005), BM3D (Dabov 
et al., 2007), and DnCNN (Zhang et al., 2017). BM3D typically provides substantially better denoising per-
formance than TV, and the more recent DnCNN typically outperforms BM3D by a much smaller margin. TV 
is posed as an optimization problem and is easier to implement as a regularizer for more complex problems 
than denoising via standard methods (Barajas-Solano et al., 2015). Neither BM3D nor DnCNN, however, 
has an explicit form as an optimization problem, BM3D being based on a complex algorithm involving block 
matching and coefficient shrinkage in the transform domain, and DnCNN being a convolutional neural 
network (CNN).

Agent geoE F  enables our model to preserve the prior geological information such as shapes, sizes, positions and 
orientations of geological objects. We use variational autoencoders (VAEs), one of the popular generative mod-
els, to build such geological information into our model. In a typical implementation, VAEs use deep neural 
networks to learn latent representations from complex input data (Kingma & Welling, 2013). In so doing, an 

Figure 4.  True hydraulic conductivity map (a) and its reconstructions via the CE-based inversion with the TV (b), 
BM3D (c), and DnCNN (d) denoisers.
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encoder is used to estimate latent variables E z from input data E m , then multiple realizations of E z are generated 
and used by a decoder to generate reconstructed data E m (Figure 1). Each layer of encoder/decoder contains a 
convolution or transposed-convolution unit to effectively extract and integrate the spatial features of input real-
izations. The convolution layer performs linear filtering on the output from the previous layer. When the input 

E X is a 2D image, the output feature map, E h , is obtained by E N N filter E w . One output pixel, ,i jE h  is calculated as

 
 

 
  

 
 , , ,

1 1
( , ) ,

N N
i j i j i m j n

m n
h Xi j f w X� (13)

where the activation function E f  is a generally rectified linear unit ( ) max(0, )E f x x  . The transposed con-
volutional layer reverses the operation of a standard convolutional layer. Details of the convolution and 
transposed convolution layers can be found in (Dumoulin & Visin, 2016; Krizhevsky et al., 2012). Training 
data for VAE can be generated with geostatistical algorithms capable of producing geologically plausible 
realizations, including object-based (Deutsch & Tran, 2002), process-based methods (Paola, 2000), and mul-
tipoint geostatistics (Strebelle, 2002).

The encoder and decoder are trained simultaneously by minimizing VAE loss VAEE L  . Let E  denote a param-
eterization of the encoder that infers latent variables E z from E m ; the inferred distribution is ( | )E q z m  . When 
the decoder is parameterized with another parameter set E θ , yielding a distribution ( )E p zθ  , VAE loss VAEE L  is 
formulated as

Figure 5.  Temporal evolution of hydraulic head ( , )E h tx  at four selected locations  1 2( , )E x xx  predicted with the initial guess of ( )E K x  based only on conductivity 
measurements and with the CE-based inversion with the TV, BM3D, and DnCNN denoisers.
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 
  VAE KL( ; , ) [ ( | ), ( )] [ln( ( | ))].qL D q p pzm z m z m zθ θθ � (14)

Here, ( | )E p m zθ  is the likelihood of E m given E z under the decoder model. The term KL[ ]E D  is the Kullback-Leibler 
(KL) divergence, which provides a measure of discrepancy between the distribution of the latent variables, 

( )E p zθ  , and the inferred distribution,  ( | )E q z m  . The term 
 [ ]qE z  , the expectation of the likelihood that the in-

put image E m can be generated from latent variable E z , represents the reconstruction error between the actual E x 
and the reconstructed image E m from the decoder. To compute VAEE L  efficiently, one represents  ( )E q  as a known 
readily parametrizable distribution. When E z is a continuous latent variable,  ( )E q  is generally assumed to have 
a multivariate Gaussian distribution, whose mean E μ and variance 2E σ  are determined by the encoder model. If 
the VAE model is well trained on a sufficient number of realizations, its loss effectively measures the similarity 
between the input data and the training data set. To ensure the consistency between an updated image and the 
prior geological information, we define agent geoE F  as the proximal map of the VAE loss VAEE L  :

2

geo VAE2
geo

( ) ( ; ) ,
2n

F argmin L


     
  v

v mm v


‖ ‖
� (15)

where geoE  is the regularization coefficient. Figure 2 shows examples of geoE F  -agent operations. When the 
input is geologically realistic, geoE F  preserves the original input. In contrast, geoE F  improves the input signifi-
cantly when the input is inconsistent with the prior geology.

5.  Numerical Experiments
We consider two-dimensional (vertically averaged) transient flow in an aquifer  2ΩE   bounded by a sur-
face ΩE  . Spatiotemporal distribution of hydraulic head ( , )E h tx  is described by the groundwater flow equation


      


( ) ( ), Ω, 0,s

hS K h r t
t

x x� (16)

Figure 6.  Training images used for multi-point geostatistical simulations: (a) A 250 250E  hand-made drawing for Case 
1 and (b) A 768 243E  image for Case 2 generated from the satellite image (Mariethoz & Lefebvre, 2014).
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where ( )E K x  and ( )sE S x  are the aquifer's hydraulic conductivity and specific storage, respectively; and ( , )E r tx  
represents sources and sinks (e.g., wells and recharge). This equation is subject to initial and boundary 
conditions

         ( ,0) , Ω; , Γ ; , Γ .D Nh H h K hx x x n x� (17)

Here, ( )E H x  is the initial distribution of hydraulic head; ( , )E tx  and  ( , )E tx  are the hydraulic head and the nor-
mal component of the Darcy flux   E K hq  prescribed, respectively, on the Dirichlet ( ΓDE  ) and Neumann  
( ΓNE  ) segments of the boundary   Ω Γ ΓD NE  ; and ( )E n x  is the outward unit normal vector to ΓNE  .

The groundwater flow model (Equations 16 and 17) is supplemented with (noisy) measurements, E d , of hy-
draulic head E h collected at a few locations (e.g., wells) throughout the aquifer during a certain time horizon. 
In a typical application, an aquifer's properties ( E K and sE S  ), auxiliary functions ( E H , E  , and E  ) and sources  
( E r ) are all uncertain and have to be inferred from geologic considerations and measurements E d . This inverse 
problem is variously referred to as model calibration or history matching. In the examples reported be-
low, we treat hydraulic conductivity ( )E K x  as the only unknown parameter, and relate its natural logarithm, 

( ) ln ( )E Y Kx x  , to the corresponding values of specific storage ( )sE S x  via a linear regression:

  .sS aY b� (18)

Following Li et al. (2004), we assume the regression coefficient E a to be positive. With this simplification, and 
under a suitable discretization of the flow domain ΩE  into E n elements (or nodes), the flow problem (Equa-
tions 16 and 17) is uniquely characterized by a set of parameters  1{ , , }nE K Km  . A numerical solution of 
this problem is denoted by  ( )E h g m  .

Figure 7.  True geological maps (left column) and representative prior realizations generated by the SNESIM algorithm (the remaining two columns) for Cases 
1 (top row) and 2 (bottom row). The white circles mark locations of observation wells.
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Following the previous studies in geo-inversion (Comunian & Giudici, 2018; Laloy et al., 2017; Ronayne 
et al., 2008; Sarma et al., 2006; Tang et al., 2021), we assume each hydrofacies to be homogeneous, that is, 
characterized by a constant value of hydraulic conductivity E K and, hence, specific storage sE S  . This assump-
tion is introduced to verify our method's ability to reconstruct large-scale geological structures; it is not 
necessary for our methodology to work. In fact, since the discontinuity of iE K  is not desirable for efficient 
algorithms such as gradient-based methods, we relax the inversion problem formulation by allowing E K to be 
continuous and by constraining its range (Liu et al., 2019; Sarma et al., 2008; Vo & Durlofsky, 2014).

We use numerical experimentation to illustrate the performance of our CE framework. The simulation 
parameters and other settings for these experiments are borrowed from Klein et  al.  (2017) and Laloy 
et al. (2018). The numerical simulations are performed in Python using the FEniCS software library (Alnæs 
et al., 2015) (The data and codes are available at https://github.com/DDMS-ERE-Stanford/CE.git). The first 
example (Section 5.1) deals with deterministic inversion, in which CE has only two agents, datE F  and denE F  . The 
second example (Section 5.2) provides probabilistic treatment of a more complex geology and CE has three 
agents (  datE F  , denE F  , and geoE F  ). The meta-parameters introduced in Sections 3 and 4 are optimized to achieve 
the best image reconstruction performance using the exhaustive grid search (Larochelle et al., 2007). Spe-
cifically, the optimal parameter for the BM3D denoiser is chosen experimentally by visual inspection of the 
reconstructed images produced by the CE framework. Tuning of the DnCNN denoiser is more difficult be-
cause it does not have an explicit noise parameter (Xu et al., 2020), the noise regime being implicitly selected 
during the training stage (Zhang et al., 2017). For the experiments reported here, we compare performance 
for all pre-trained models provided by Zhang et al. (2017), selecting the one (i.e.,   50E  model for greyscale 

Figure 8.  Case 1: The true conductivity map (a) and its reconstructions obtained by averaging the realizations of 
conductivity maps of the initial guess (b), CE without prior geology agent (c), and CE with prior geology agent (d).

https://github.com/DDMS-ERE-Stanford/CE.git
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image) that gives the best CE reconstruction according to visual inspection. The Mann iteration parameter 
E  and the number of iterations are set to 0.5 and 30, respectively for the fast convergence of algorithm. The 
regularization parameters are set to  dat 20E  and  geo 0.5E  to achieve the best-quality reconstructed image.

5.1.  Deterministic Inversion Without Geological Prior

We consider a channelized aquifer represented by a 45 45E  grid consisting of 10 m 10 mE  grid cells (Fig-
ure 3). Values of the hydraulic conductivity of the channels and the ambient matrix are set to 210E  m/s and 

410E  m/s, respectively; the true (unknown) conductivity field is shown in Figure 3a. Radial flow is induced 
by a pumping well (the red circle in Figure 3a) operating with a fixed hydraulic head of well 1E h  m; constant 
head  21E h  m is prescribed along the left (  1 0E x  ) and right (  1 450E x  m) sides of the square aquifer; the 
remaining two boundaries (  2 0E x  and 450 m) are impermeable; the initial hydraulic head over the entire 
domain is 21 m. The true hydraulic head field ( , )E h tx  is computed as a numerical simulation of Equations 16 
and 17 with the true hydraulic conductivity field.

Hydraulic head measurements are collected at 25 observation wells (the white circles in Figure 3a) every 
5 hr for the first 30 hr of the simulation. Gaussian noise with zero mean and variance of 0.2 is added to these 
values to account for observation errors. The resulting data set E d , as well as conductivity values at these 16 
locations, are used in inverse modeling to reconstruct the hydraulic conductivity field. Given both the rela-
tive simplicity of the geological structure in Figure 3a and the relatively high sampling density, we use this 
setting to perform deterministic inversion by reconstructing only one geological map. The prior geological 

Figure 9.  Case 2: (a) The true conductivity map and its reconstructions obtained by averaging the realizations of 
conductivity maps of (b) The initial guess, (c) CE without prior geology agent, and (d) CE with prior geology agent.
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constraint is not enforced for this case, thus our CE framework contains only two agents, datE F  and denE F  . An 
initial guess for the inversion can be either provided by an expert (e.g., geologist) or constructed from the 
16 conductivity measurements. Figure 3b presents the initial guess estimated by support vector regression, 
which showed good performance for facies delineation (Wohlberg et al., 2005).

Figure 4 shows the hydraulic conductivity maps obtained via the CE-based inversion with three alternative 
types of agent denE F  : TV, BM3D, and DnCNN. Regardless of the denoiser type, our CE framework captures the 
channel connectivity and generates realistic images. Visual inspection of these images reveals that CE with 
the DnCNN image denoiser delineates the facies most accurately.

Predictions of hydraulic head ( , )E h tx  , corresponding to the reconstructed conductivity ( )E K x  , at four locations 
are presented in Figure 5. Our CE-based inversion considerably reduces the discrepancy between the true 
and predicted hydraulic head values, regardless of the denoiser type.

To quantify the relative performance of the CE framework, we introduce a classification error computed as 
the fraction of misclassified grid points in the total number of grid points. The facies classification is done 
by setting a threshold value for lnE K as −3, which is the average of the log hydraulic conductivities in the 
two distinct facies. The best method, CE with the DnCNN denoiser, has the classification error of 5.65%; a 
remarkably good performance given a small number of observation points (0.79% of the total number of 
grid points). Classification errors of CE with the TV and BM3D denoisers are 6.19% and 6.47%, respectively.

Figure 10.  Hydraulic head E h evolution with time at selected locations  1 2( , )TE x xx  of aquifers for Case 1: (a) Initial and (b) Posterior.
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5.2.  Probabilistic Inversion With Geologic Prior

Prior geological information can be provided by an expert/geologist in the form of a training image (TI) that 
describes the morphology and key characteristics of hydrofacies. CE incorporates this conceptual geological 
knowledge through the geology prior agent, geoE F  , which is used in addition to the other two agents, datE F  and 

denE F  . We use the DnCNN denoiser, since it performed best on the previous problem. Multi-point geostatis-
tics, specifically the SNESIM algorithm (Strebelle, 2002), is used to generate 2000 realizations which form 
the training data set for the VAE model geoE F  . These realizations also provide the initial guess for our inver-
sion. The probabilistic inversion is conducted by running multiple inversions with an arbitrarily sampled 
initial guess; this approach is known as randomized maximum-likelihood or RML (Kitanidis, 1995). We use 
50 RML runs for the stochastic data assimilation.

We consider two channelized aquifers with hydraulic conductivities 210E  m/s and 410E  m/s for channels 
and matrix, respectively. Figure 6 shows the TIs for the two different cases (The images are available at 
https://wp.unil.ch/gaia/downloads/). The TI for Case 1 represents a fluvial channelized aquifer used in 
Strebelle (2002). The TI for Case 2 comes from a satellite image of the Ganges delta in Bangladesh (Mari-
ethoz & Caers, 2014; Mariethoz & Lefebvre, 2014). The aquifers are discretized with 81 81E  and 75 75E  grids 
for Cases 1 and 2, respectively. In both cases, the size of each grid cell is 20 m 20 mE  with thickness of 1 m. 
Figure 7 shows the true hydraulic conductivity fields and realizations generated from the given TIs.

Figure 11.  Hydraulic head E h evolution with time at selected locations  1 2( , )TE x xx  of aquifers for Case 2: (a) Initial and (b) Posterior.

https://wp.unil.ch/gaia/downloads/
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Initially, groundwater flow is driven by constant heads of 9.0 and 10.0 m 
imposed on the left and right boundaries of the domain, respectively; the 
remaining two boundaries are impermeable. The initial hydraulic head 
distribution is computed by running the flow simulator until steady state 
is achieved. At that time, four pumping wells operating with the fixed hy-
draulic head 8.0 m are installed. Observation wells record the hydraulic 
head response to groundwater withdrawal. Locations of pumping wells 
and observation wells are indicated by the red circles and white crosses, 
respectively. Hydraulic head ( , )E h tx  at these observation wells is simulated 
with Equations 16 and 17 for the true conductivity fields, and recorded 
every 20 days for the first 80 days. Data set E d is constructed by corrupting 
these simulated values with zero-mean Gaussian noise of variance 0.01.

Figures 8 and 9 exhibit the true and estimated conductivity fields. The latter 
represent sample averages of the realizations obtained with the initial guess, 

CE without geoE F  , and CE with the DnCNN denoiser. Visual inspection of these figures demonstrates a close 
agreement between the reconstructed geological maps and their true counterparts. On the other hand, the image 
reconstruction without geoE F  fails to preserve the geological realism and has a large discrepancy with the true 
image. The sample-averaged hydraulic conductivity fields for Cases 1 and 2 obtained by CE without geoE F  (with 
the threshold conductivity value of 310E  m/s) have the classification errors of 14.6% and 12.8%, respectively. The 
corresponding classification errors of CE with geoE F  are 7.6% and 8.1% for Cases 1 and 2, respectively.

Figures 10 and 11 present the temporal evolution of hydraulic head E h at two different locations for Cases 
1 and 2, respectively. The RML approach allows us to quantify the prior (before inversion) and posterior 
uncertainty ranges. The blue areas in these figures represent the 90% confidence intervals; and the dashed 
lines,  60E t  days, indicate the end of the assimilation period. Visually, the recorded drawdowns at two 
different locations are dissimilar in Cases 1 and 2 due to the different degrees of connectivity to pumping 
wells. This distinct relationship between hydraulic head response and channel connectivity explains the 
close agreement between the reconstructed image and true image. The CE-enabled assimilation of hydrau-
lic head data leads to significant uncertainty reduction in the posterior realizations. The hydraulic head pro-
files of true model fall within the 90% confidence interval in both Cases 1 and 2. These results demonstrate 
that our methodology has a robust prediction performance.

5.3.  Computational Efficiency of the Proposed Method

In our CE approach, each of the agents is applied sequentially at each iteration. Since the averaging and updat-
ing operations in Equation 11 carry negligible computational costs, we approximate the overall computational 
cost by the sum of the computational times for each agent. Table 1 collates the computational burden for 
the three experiments considered in this study; the computation costs are reported for an Intel Xeon e5-2670 
machine running at 2.3 GHz, and all the runs of the probabilistic inversion are parallelized on 50 computer 
nodes. Agent datE F  , an equivalent of the regularized adjoint-based inversion, consumes most of the overall com-
putational cost. This finding implies that our method adds only a small amount of computational burden to 
the existing optimization-based approaches, while significantly improving the reconstruction performance.

6.  Summary and Conclusions
We developed and applied a new plug-and-play approach to solving subsurface inversion problems with 
complex geology. Conventional optimization-based approaches are widely used for this purpose, but their 
applicability is often limited to geological formations characterized by multi-Gaussian fields. We overcome 
this limitation within the CE approach by fusing multiple heterogeneous priors with conventional phys-
ics-based inversion. Our CE strategy involves three different agents. The data fidelity agent datE F  uses an 
adjoint method to force the consistency between a solution of an inverse problem and observed data. This 
choice of datE F  is due to its computational efficiency and lack of the Gaussianity assumption, but other ad-
vanced inversion techniques can be plugged into CE as datE F  . The denoiser agent denE F  minimizes the noise 
within each hydrofacies and generates realistic geological maps. The geology prior agent geoE F  incorporates 
the prior geological knowledge using the VAE model.

Tests Agents CPU time (min)

Deterministic datE F  14.39 10E
denE F  with DnCNN  05.3 10E

Probabilistic, Case 1 datE F  17.22 10E
denE F  09.81 10E
geoE F  05.78 10E

Probabilistic, Case 2 datE F  23.49 10E
denE F  12.19 10E
geoE F  01.65 10E

Table 1 
Computational Times of the CE Algorithm for the Three Tests Considered
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We performed three numerical experiments to check the robustness of the proposed method. First, we 
solved a deterministic inversion problem on a relatively simple synthetic model. Next, we used our method 
for probabilistic reconstruction of geologically realistic models. Our numerical experiments lead to the fol-
lowing conclusions.

1.	 �The CE framework without agent geoE F  performs well for the relatively simple geology. However, it cannot 
reflect the prior geological knowledge and fails to get a geologically realistic maps for a more complex 
geologic formation.

2.	 �Among several alternative denoisers, DnCNN (a CNN-based denoiser) shows the best performance as a 
CE component.

3.	 �When the prior geological information, such as shapes or orientations of geo-bodies, is available, the 
VAE agent trained on the prior realizations significantly improves the CE performance.

4.	 �When combined with the RML approach, our method allows one to quantify posterior uncertainties in 
estimates of both hydraulic parameters and flow response. Our method effectively estimates the poste-
rior uncertainty range.

Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced 
by solving the equations in the article.
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