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Resource-Constrained Model Selection for Uncertainty Propagation and Data
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Abstract. All observable phenomena can be described by alternative mathematical models, which vary in
their fidelity and computational cost. Selection of an appropriate model involves a tradeoff between
computational cost and representational accuracy. Ubiquitous uncertainty (randomness) in model
parameters and forcings, and assimilation of observations of the system states into predictions,
complicate the model selection problem. We present a framework for analysis of the impact of data
assimilation on cost-constrained model selection. The framework relies on the definitions of cost
and accuracy functions in the context of data assimilation for multifidelity models with uncertain
(random) coefficients. It contains an estimate of error bounds for a system’s state prediction obtained
by assimilating data into a model via an ensemble Kalman filter. This estimate is given in terms
of model error, sampling error, and data error. Two examples illustrating the applicability of our
model selection method are provided. The first example deals with an ordinary differential equation,
for which a sequence of lower-fidelity models is constructed by progressively increasing the time
step used in its discretization. The second example comprises the viscous Burgers equation as the
high-fidelity model and a linear advection-diffusion equation as its low-fidelity counterpart.
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1. Introduction. All observable phenomena can be described by alternative mathematical
models, which vary in their fidelity and computational cost. Invariably, high-fidelity models
have higher computational cost than their low-fidelity counterparts. Selection of an appropri-
ate model involves a tradeoff between computational cost and representational accuracy. In
most applications it is common to choose as “accurate” a model (more physics, more degrees
of freedom) as the available computational resource allows.

Yet, ubiquitous uncertainty (randomness) in model parameters and forcings complicates
the selection problem. That is because solutions of models with random coefficients are given

∗Received by the editors May 22, 2019; accepted for publication (in revised form) June 30, 2020; published
electronically August 20, 2020.

https://doi.org/10.1137/19M1263376
Funding: The work of the first two authors was partially funded by National Key Research and Development

Program of China (grant 2017YFB0701700) and (grant 2018YFB0703902); L. Yang’s stay at Stanford was funded
by the China Scholarship Council Foundation. The work of the third author was supported in part by Air Force Office
of Scientific Research under award FA9550-17-1-0417, by U.S. Department of Energy under award DE-SC0019130,
and by a gift from TOTAL.
†LMIB & School of Mathematical Sciences, Beihang University, Beijing, 100191, China (lun.yang@buaa.edu.cn).
‡LMIB & School of Mathematical Sciences, School of Microelectronics, Beijing Advanced Innovation Center for

Big Data and Brain Computing, Beihang University, Beijing 100191, China (wang.peng@buaa.edu.cn).
§Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305 (tartakovsky@

stanford.edu).

1118

https://doi.org/10.1137/19M1263376
mailto:lun.yang@buaa.edu.cn
mailto:wang.peng@buaa.edu.cn
mailto:tartakovsky@stanford.edu
mailto:tartakovsky@stanford.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

RESOURCE-CONSTRAINED MODEL SELECTION 1119

in terms of their probability density functions (PDFs) or, in many practical settings, in terms
of their statistical moments such as ensemble means and variances. More often than not, these
are computed with sampling methods, e.g., Monte Carlo simulations [20] or stochastic collo-
cation techniques [11]. When that happens, the solution error E = Erep + Esam consists of the
representational error Erep that reflects a model’s fidelity and the sampling error Esam due to
a finite/small number of samples used to estimate a solution’s statistics. Given limited com-
putational resources, Esam goes up as Erep goes down since one can compute more realizations
of a low-fidelity model than of a high-fidelity model during an allocated simulation time.

Availability of observations of the system states adds a further complication to the model
selection process. PDFs of solutions of multifidelity models can now be thought of as prior
distributions that are refined with data. Given a sufficient amount of observations, the re-
sulting posterior distribution of a low-fidelity model solution can become as accurate as that
of a high-fidelity model solution. That would render the reliance on the high-fidelity model
superfluous. Of direct relevance to our study are ensemble-based data assimilation techniques,
such as Bayesian update, particle filters, and ensemble Kalman filters (EnKFs). Similar to the
methods of forward uncertainty propagation discussed above, their performance is expected to
degrade as the number of model runs one can afford decreases due to the model’s complexity.
This interplay of data and limited computational resources was studied via numerical experi-
mentation in the context of multifidelity models of multiphase flow in porous media [17]. The
goal of our investigation is to provide a theoretical foundation for resource-constrained model
selection in the presence of data.

This aim constitutes another facet of multifidelity simulations in the context of compu-
tational resource-constrained model selection. It differs from Bayesian model selection [3, 4]
and Bayesian model averaging [6, 10], both of which deal with multiple models whose relative
veracity is a priori unknown. It is also distinct from data assimilation with multiple models,
which combines models of various fidelity either to maximize the predictive accuracy [14, 21]
or to minimize the computational cost while maintaining a prescribed accuracy [9, 13, 16]
through, e.g., multilevel [8] or multifidelity [15] Monte Carlo sampling. Finally, it does not
use model complexity as an argument for model selection [12]. Instead, our analysis contrib-
utes to the ongoing debate of whether, and under what conditions, practical constraints of
available computing time and uncertain input parameters warrant the use of more sophisti-
cated numerical models.

In section 2 we formulate a data assimilation problem in the context of multifidelity
simulations. Section 3 contains definitions of the cost and accuracy functions and their use
for the resource-constrained selection between high- and low-fidelity models in the absence of
system state observations. The impact of data on such a selection is investigated in section 4
by analyzing the accuracy and convergence properties of EnKF. Our theoretical criteria for the
resource-constrained model selection in the presence of noisy data are verified in section 5 by
using an ordinary differential equation and the viscous Burgers equation as examples. Major
conclusions drawn from our study are summarized in section 6.

2. Problem formulation. Consider a system state v ∈ RNv (Nv ≥ 1) that is represented
by the time sequence {vi}i∈N forming a Markov chain. Given the initial state v0, the operator
Ψ : RNv → RNv describes the true temporal evolution of v, from time ti to time ti+1,

vi+1 = Ψ(vi), i ∈ N.(1)
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Uncertainty in the initial state v0 is treated by representing the latter as a Gaussian random
field with the mean µ0 ∈ RNv and the real covariance matrix C0 ∈ RNv×Nv . The unknown
(and unknowable) operator Ψ is replaced with its high-fidelity counterpart Ψh and with a set
Ψl of m low-fidelity counterparts, l = {l1, . . . , lm}, all of which are continuous in RNv × RNv .
The corresponding model errors ξh and ξl are described by independently and identically
distributed (i.i.d.) (white noise) sequences {ξh

i }i∈N and {ξl
i}i∈N with a given distribution, e.g.,

ξki ∼ N (0,Σk) with k = h or l. (More sophisticated representations of the model error can
be found in, e.g., [7, section 4.2.1] and can be readily incorporated into the present analysis.)
Then, predictions of the high-fidelity (vh ∈ RNv) and low-fidelity (vl ∈ RNv) models satisfy

v̂i+1 = Ψk(v̂i) + ξki , k = h or l,(2)

respectively. These equations are subject to the random initial conditions v̂0 ∼ N (µ0, C0).
The high- and low-fidelity models (2) are supplemented with noisy (possibly indirect) Ny-

dimensional observations yi ∈ RNy . At any time ti, these are related to the state variable vi
by the observation operator h : RNv → RNy such that

yi = h(vi) + ηi,(3)

where the measurement noise {ηi}i∈N is represented by an i.i.d. sequence of Gaussian random
variables, ηi ∼ N (0,Γ). Note that the Gaussianity assumption for the model and data noise
is made for the sake of concreteness only. We use EnKF to assimilate the data (3) into the
low- and high-fidelity model (2).

Our study deals with two issues: the role played by limited computational resources on the
selection between the high- and low-fidelity models (section 3) and the impact of observations
on this tradeoff (section 4).

3. Cost-accuracy tradeoff in model selection. We start by considering, in subsection 3.1,
Monte Carlo simulations for forward uncertainty propagation in multifidelity models. We
present definitions of the cost and accuracy functions in the context of multifidelity data
assimilation in subsection 3.2. These definitions are used in subsection 3.3 to demonstrate
the relative accuracy of high- and low-fidelity models when the computational cost is fixed.
Our strategy for selecting a model for uncertainty propagation under resource constraints is
presented in subsection 3.4.

3.1. Model prediction via Monte Carlo sampling. In the absence of observational data,
a model is the only means of estimation of a system state. The true PDF fv̂i of the random
state v̂i in (2) is approximated by the sample estimate f̂v̂i , computed from N samples of

solutions of (2) and each corresponding to a sample of the initial condition v̂
(n)
0 drawn from

N (µ0, C0),

v̂
(n)
i+1 = Ψk

(
v̂

(n)
i

)
+ ξ

k(n)
i , n = 1, . . . , N.(4)

To simplify the notation, we consider a single state variable (Nv = 1), whose sample mean
and variance,
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µ̂i =
1

N

N∑
n=1

v̂
(n)
i and σ̂2

i =
1

N − 1

N∑
n=1

(
v̂

(n)
i − µ̂i

)2
,(5)

approximate the ensemble mean and variance,

µi ≡ E(v̂i) =

∫
R
v′if̂v̂i(v

′
i)dv

′
i and σ2

i ≡ E
[
(v̂i − µi)2

]
=

∫
R

(v′i − µi)2f̂v̂i(v
′
i)dv

′
i.

Let the true system state v satisfy

vi+1 = Ψ(vi), v0 = u.(6)

Then, the absolute error Ei+1 = |µ̂i+1 − vi+1| is bounded by the triangle inequality

Ei+1 = |µ̂i+1 − E[Ψk(v̂i)] + E[Ψk(v̂i)]−Ψk(vi) + Ψk(vi)−Ψ(vi)|
≤ |µ̂i+1 − E[Ψk(v̂i)]|︸ ︷︷ ︸

Esami

+ |E[Ψk(v̂i)]−Ψk(vi)|︸ ︷︷ ︸
E inii

+ |Ψk(vi)−Ψ(vi)|︸ ︷︷ ︸
Erepi

.(7)

According to the “rule of three sigmas,” P[Esam
i < 3σi+1/

√
N ] ≈ 0.997, even though practi-

cal computations often characterize the sampling error Esam
i in terms of the probable error

0.6745σi+1/
√
N , e.g., [18]. More generally, the sampling error Esam

i decreases with the inverse
of the power of the number of samples, Esam

i ∼ 1/Nα1 ; in the case of Monte Carlo simulations
described in the previous section, α1 = 1/2, the value we employ below. The model error Erep

i

increases with the distance between the the high- or low-fidelity model Ψk and its true coun-
terpart Ψ, the fact that we codify with a relation Erep

i ∼ |Ψ − Ψk|β1 in which we set β1 = 1.
Implicit in the latter assumption is the notion that the prediction uncertainty (variance of the
predicted system state, Ci) of the high- and low-fidelity models is approximately the same.
This assumption is not universally valid, e.g., a high-fidelity model (k = h) might have more
uncertain parameters that give rise to larger prediction variance Ci.

We define the sampling error Esam, the representational or model error Erep, and the
initialization error E ini of a model prediction as the suprema of their corresponding errors at
each time step,

Esam ≡ sup
i∈N
Esam
i =

ck1√
N
, Erep ≡ sup

i∈N
Erep
i = ck2|Ψ−Ψk|, E ini ≡ sup

i∈N
E ini
i = ck3|v0 − µ0|,(8)

where |Ψ−Ψk| = maxi∈N |Ψ(vi)−Ψk(vi)| and ck3 depends on the Lipschitz continuity assump-
tion of Ψk. The total prediction error E , defined as the upper bound on the error at any given
time over the sequence, is the sum of these three errors,

E = Esam + Erep + E ini.(9)

To focus on the effects of a finite number of samples N and model fidelity Ψk, we neglect the
possible discrepancy between the mean of the initial state µ0 and its true value u0, i.e., set
the initialization error to E ini = 0. With these assumptions, an estimate of the solution error
becomes

E(Ψk, N) = ck1/
√
N + ck2|Ψ−Ψk|, k = h or l.(10)
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3.2. Cost and accuracy functions. Let C = C(Ψk, N) denote the cost associated with
computing N realizations of the model of fidelity k (k = h or l). For a given N ,

C(Ψh, N) ≥ C(Ψl, N) > 0,(11)

with the equality achieved when the high- and low-fidelity models coincide, Ψh = Ψl. Likewise,
the cost of the low-fidelity models introduced in section 2 satisfies the inequalities C(Ψl1 , N) ≥
C(Ψl2 , N) ≥ · · · ≥ C(Ψlm , N). The cost C increases with N and decreases with the distance
between the true model Ψ and its approximation Ψk. The latter postulate codifies a typical
feature of multifidelity models: the higher a model’s fidelity, the closer it is to the “true”
model (by definition) and the more computationally expensive it becomes. For k = h or l, we
take this relationship to be of the form C(Ψk, N) ∼ Nα/|Ψ−Ψk|β + γk, where γk represents
the overhead cost of the analysis of the kth model. Setting the exponents to α = 1 and β = 1
and the overhead cost to γk = 0 for the sake of concreteness, this yields

C(Ψk, N) = ck0
N

|Ψ−Ψk|
, k = h or l,(12)

where ck0 ∈ R+ is the constant of proportionality.
To simplify the subsequent analysis, we assume the proportionality constants c0, c1, c2 ∈

R+ to be independent of the model fidelity. The assumption of the fidelity-independent con-
stant c2 suggests the existence of a hierarchy of high- and low-fidelity models, as demonstrated
by the hierarchical time-stepping model of an ODE in subsection 5.1. This assumption is not
universally valid, as illustrated by a viscous Burgers equation and its low-fidelity linearized
counterpart in subsection 5.2. The general case of the model-dependent constants ck0, ck1, and
ck2 is treated in Appendix A.

Given a fixed cost C0, it follows from (12) that |Ψ − Ψk| = c0N
k/C0, where Nk is the

maximum affordable number of samples of the kth model. Then, (10) yields a dependence of
the simulation error E on Nk for a given cost C0,

E(·, Nk) =
c1√
Nk

+
c0c2

C0
Nk, k = h or l.(13)

The identical procedure used to eliminate Nk from (10) gives

E(Ψk, ·) =

√
c0

C0

c1√
|Ψ−Ψk|

+ c2|Ψ−Ψk|, k = h or l.(14)

The dependence (13) is shown in Figure 1 for c0 = 1, c1 = 15, c2 = 1, and C0 = 10. When
one can afford but a small number of Monte Carlo runs, the total error E is dominated by the
sampling error Esam which decreases with Nk. As Nk becomes sufficiently large, the model
error Erep dominates the total error E ; given the fixed computational cost C0, and within the
framework established by (12), the model discrepancy |Ψ − Ψk| ∼ Nk/C0 so that Erep and,
hence, E increases with Nk.
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Figure 1. Dependence of the simulation error E on the maximum number of affordable realizations Nk.
The parameter values are set to c0 = 1, c1 = 15, c2 = 1, C0 = 10 for illustration purposes.

3.3. Resource-constrained model selection. Consider a pair of high- and low-fidelity
models defined by the operators Ψh and Ψli , respectively. For the same computational cost
C(Ψh, Nh) = C(Ψli , N li) = C0 with Nh < N li , we define the relative error between the two
models as ∆E = E(Ψh, Nh)− E(Ψli , N li). It follows from (14) that

∆E =

 c1

√
c0/C0(√

|Ψ−Ψh|+
√
|Ψ−Ψli |

)√
|Ψ−Ψh||Ψ−Ψli |

− c2

(|Ψ−Ψli | − |Ψ−Ψh|
)
.

(15)

For the selected pair of models, the discrepancies |Ψ − Ψh| and |Ψ − Ψli | are fixed and
the relative error ∆E is determined solely by the available computational resource C0, i.e., by
the number of realizations of each model (Nh and N li) one can afford. The relative error ∆E
decreases with the amount of allocated resource C0, changing its sign from positive to negative
(Figure 2). The critical values of C0 and, thus, of Nh and N li corresponding to ∆E = 0, are
given by

C̃0 =
c0c

2
1

c2
2|Ψ−Ψli ||Ψ−Ψh|

(√
|Ψ−Ψli |+

√
|Ψ−Ψh|

)2 ,(16)

Ñh =
c2

1

c2
2|Ψ−Ψli |

(√
|Ψ−Ψli |+

√
|Ψ−Ψh|

)2 ,(17)

Ñ li =
c2

1

c2
2|Ψ−Ψh|

(√
|Ψ−Ψli |+

√
|Ψ−Ψh|

)2 .(18)

At this point, the model preference changes.

3.4. Resource-constrained optimal model. The fact that the simulation error E(Ψk, N)
decreases with N , while the computational cost C(Ψk, N) increases, suggests the following
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Figure 2. Dependence of the relative error ∆E on the allocated computational cost C0. The parameter
values are set to c0 = 1, c1 = 15, c2 = 1, |Ψ − Ψh| = 1, |Ψ − Ψli | = 4 for illustration purposes. The change in
the sign of ∆E indicates the reversal in the relative performance between the high- and low-fidelity models Ψh

and Ψli .

optimization problem. For a given computational cost C0 and a given set of the high- and
low-fidelity models, minimize the simulation error E . This gives rise to a cost function

L
(
N,Ψk, λ

)
= E(Ψk, N) + λ[C(Ψk, N)− C0],(19)

where λ is the Lagrange multiplier. For C and E in (12) and (10), setting to 0 the derivatives
of L with respect to N , |Ψ−Ψk|, and λ yields the minimization point

Ñ =

(
c1C0

2c0c2

)2/3

, |Ψ− Ψ̃| = c0

C0

(
c1C0

2c0c2

)2/3

.(20)

Substitution of (20) into (10) leads to the following proposition for the resource-constrained
choice between high- and low-fidelity models.

Proposition 1. Given a fixed computational resource C0 and the relationship between the
cost C, the sampling error Esam, and the model error Erep in (12) and (10), the optimal model
is such that

Esam =

(
2c0c

2
1c2

C0

)1/3

, Erep =

(
c0c

2
1c2

4C0

)1/3

,(21)

and the corresponding minimum error is

Emin =
(8c0c

2
1c2)1/3 + (c0c

2
1c2)1/3

(4C0)1/3
.(22)

Proposition 2. Given a fixed computational resource C0 and the error model (14), the best
model Ψb among a finite set of multifidelity models Ψ = {Ψh,Ψl1 , . . . ,Ψlm} is defined as the
one that minimizes the prediction error

Ψb , argmin
Ψk∈Ψ

E(Ψk, ·), E(Ψk, ·) =

√
c0

C0

c1√
|Ψ−Ψk|

+ c2|Ψ−Ψk|(23)

and is subject to E(Ψb, ·) ≥ E(Ψ̃, ·).
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4. EnKF. Similar to the accuracy of ensemble-based forward simulations with uncertain
inputs analyzed in section 3, the accuracy of ensemble-based methods for data assimilation
depends on the tradeoff between a model’s fidelity and its computational cost. That is be-
cause system states’ PDFs, or their statistics such as mean and variance, estimated from a
small number of expensive high-fidelity model runs would have a higher sampling error Esam

(but smaller representation/model error Erep) than those estimated with a low-fidelity model.
We investigate this tradeoff in the context of EnKF that is employed to assimilate a set of
observations yi = {y1, . . . , yi} in (3) into the high- and low-fidelity models (2),

v̂i+1 = Ψk(v̂i) + ξki , k = h and l, i ∈ N; v̂0 ∼ N (µ0, C0).(24)

The sequential update of state v consists of two steps: prediction and analysis. At the former,
one uses the Chapman–Kolmogorov equation,

fvi+1|yi
=

∫
RN

fvi|yi
fvi+1|vidvi,(25)

to calculate the conditional PDF of v at time ti+1, fvi+1|yi
, from the conditional PDF of v at

time ti, fvi|yi
. At the latter step, Bayes’ theorem,

fvi+1|yi+1
=
fyi+1|vi+1

fvi+1|yi

fyi+1|yi

,(26)

is used to obtain the (posterior) PDF fvi+1|yi+1
from the (prior) PDF fvi+1|yi

when the mea-
surement yi+1 is available.

Kalman filtering approximates the PDFs in (25) and (26) by their Gaussian counterparts,
i.e., treats the random variables involved as

vi|yi ∼ N (µi, Ci), vi+1|yi ∼ N (µ̂i+1, Ĉi+1), vi+1|yi+1 ∼ N (µi+1, Ci+1).(27)

This replaces the update step fvi|yi
7→ fvi+1|yi

in (25) with (µi, Ci) 7→ (µi+1, Ci+1), and the
analysis step in (26) with

exp

(
−1

2
|v − µi+1|2Ci+1

)
∝ exp

(
−1

2
|yi+1 − h(v)|2Γ −

1

2
|v − µ̂i+1|2Ĉi+1

)
,(28)

where | · |2A ≡ | · |2A−1. To handle the nonlinearity of the high- and low-fidelity models
in (24), we deploy an implementation based on the minimization principle [19]. Considering,
for simplicity, a linear observation operator h(v) = Hv, this approach represents the update
step as a quadratic minimization problem

µi+1 = argmin
v

Φ(v)(29a)

with

Φ(v) =
1

2
|yi+1 −Hv|2Γ +

1

2
|v − µ̂i+1|2Ĉi+1

, µ̂i+1 = Ψ(µi) + ξi.(29b)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1126 LUN YANG, PENG WANG, AND DANIEL M. TARTAKOVSKY

Algorithm 1. Implementation of the EnKF based on the minimization principle [19].

1. Initialization: at time step i = 0

• Draw N samples, v
(n)
0 with n = 1, . . . , N , of the initial state v0 from the prior

PDF, v0 ∼ N (µ0, C0).
2. For i = 1, 2, . . .

(a) prediction (for n = 1, . . . , N)
• Use the high- or low-fidelity models in (24) to estimate the next state

v̂
(n)
i+1 = Ψk

(
ṽ

(n)
i

)
+ ξ

k(n)
i , n = 1, . . . , N(31)

• Calculate the mean and covariance of the forecast

µ̂i+1 =
1

N

N∑
n=1

v̂
(n)
i+1 and Ĉi+1 =

1

N − 1

N∑
n=1

(
v̂

(n)
i+1 − µ̂i+1

)(
v̂

(n)
i+1 − µ̂i+1

)>(32)

(b) analysis (for n = 1, . . . , N)

• Obtain a random data sample y
(n)
i+1 from the data model (3) with ηi+1 ∼ N (0,Γ)

y
(n)
i+1 = yi+1 + η

(n)
i+1(33)

• Calculate the Kalman gain in (30)

Ki+1 = Ĉi+1H
>
(
HĈi+1H

> + Γ
)−1

(34)

• Assimilate the model forecast v̂i+1 and data yi+1 to obtain N realizations of
the “analyzed state” ṽi+1

ṽ
(n)
i+1 = (I −Ki+1H)v̂

(n)
i+1 +Ki+1y

(n)
i+1(35)

This minimization problem is solved by an update formula

µi+1 = (I −Ki+1H)µ̂i+1 +Ki+1yi+1, Ki+1 = Ĉi+1H
T
(
HĈi+1H

T + Γ
)−1

.(30)

Algorithm 1 implements the EnKF [7] by iteratively solving the above approximate Gaussian
process and the update state.

The accuracy and stability of the EnKF have been investigated in [5, 2] for exact model
operators. We analyze the accuracy of the EnKF for an imperfect model operator in section 4.1
and prove the assimilation asymptotic property at large times in section 4.2.

4.1. Accuracy of EnKF.

Proposition 3. If the true system state v(t) satisfies

vi+1 = Ψ(vi), v0 = u,(36)
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and measurements of v(t) at discrete times ti are generated by adding bounded white noise to
the true solution,

yi+1 = Hvi+1 + ηi+1, sup
i∈N
|ηi+1| = η <∞,(37)

then the estimation error of EnKF in Algorithm 1, Ei+1 = ‖ 1
N

∑N
n=1 ṽ

(n)
i+1 − vi+1‖, satisfies

Ei+1 ≤ Esami+1 + Erepi+1 + E inii+1 + Edati+1.(38a)

The sampling (Esami+1 ), model (Erepi+1), initialization (E inii+1), and data (Edati+1) errors at the (i+1)st
time step are given by

Esami+1 =
1

N

∥∥∥∥∥Ai+1

N∑
n=1

(
Ψk
(
ṽ

(n)
i

)
− v̄i+1

)∥∥∥∥∥+
1

N

∥∥∥∥∥
N∑
n=1

[
Ai+1ξ

(n)
i +Ki+1η

(n)
i+1

]∥∥∥∥∥ ,(38b)

Erepi+1 = ‖Ai+1(Ψk(vi)−Ψ(vi))‖,(38c)

E inii+1 = ‖Ai+1(v̄i+1 −Ψk(vi))‖,(38d)

Edati+1 = ‖Ki+1ηi+1‖,(38e)

where Ai+1 ≡ I −Ki+1H and v̄i+1 ≡ E(Ψk(vi|yi)) =
∫
RN Ψk(v′i)f̂v̂i|yi(v

′
i)dv

′
i.

Proof. An estimate of the mean of v(ti+1), computed from N realizations of either the
exact model (36) or its high- or low-fidelity counterparts in (31), is

µi+1 =
1

N

N∑
n=1

ṽ
(n)
i+1,(39)

Substituting (35) into this expression gives

µi+1 = Ai+1
1

N

N∑
n=1

v̂
(n)
i+1 +Ki+1

1

N

N∑
n=1

y
(n)
i+1.(40)

For any model operator Ψk ∈ {Ψ,Ψh,Ψl}, accounting for (31), (33), and (37), this yields

µi+1 = Ai+1
1

N

N∑
n=1

[
Ψk
(
ṽ

(n)
i

)
+ ξ

(n)
i

]
+Ki+1

1

N

N∑
n=1

[
Hvi+1 + ηi+1 + η

(n)
i+1

]
.(41)

Let Ei+1 = ‖µi+1−vi+1‖ define the solution error (in the `2 norm) at time step i+1. Recasting
the true state (36) as

vi+1 = Ai+1Ψ(vi) +Ki+1HΨ(vi)(42)

and subtracting (42) from (41) yields

Ei+1 =

∥∥∥∥∥Ai+1

[
1

N

N∑
n=1

Ψk
(
ṽ

(n)
i

)
−Ψ(vi)

]
+

1

N

N∑
n=1

[
Ai+1ξ

(n)
i +Ki+1η

(n)
i+1

]
+Ki+1ηi

∥∥∥∥∥ .(43)
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Let v̄i+1 denote the ensemble average corresponding to the sample mean (1/N)
∑N

n=1 Ψk(ṽ
(n)
i ).

Then

Ei+1 =

∥∥∥∥∥Ai+1

[
1

N

N∑
n=1

(
Ψk
(
ṽ

(n)
i

)
− v̄i+1

)
+
(
v̄i+1 −Ψk(vi)

)
+
(

Ψk(vi)−Ψ(vi)
)]

(44)

+
1

N

N∑
n=1

(
Ai+1ξ

(n)
i +Ki+1η

(n)
i+1

)
+Ki+1ηi

∥∥∥∥∥ .
By virtue of the triangle inequality, this gives rise to (38).

4.2. Asymptotic convergence of EnKF.

Theorem 4. Suppose that the sampling (Esami ), model (Erepi ), and data (Edati ) errors in
Proposition 3 remain bounded on the whole time horizon,

sup
i∈N
Esami = Esam <∞, sup

i∈N
Erepi = Erep <∞, sup

i∈N
Edati = Edat <∞.(45)

Suppose also that Ai+1Ψk : RNv → RNv (Ai+1 ≡ I − Ki+1H) is globally Lipschitz with
constant c < 1 in the `2 norm and that the impact of linearization E[Ψ(v)] ≈ E[Ψ(µ)] is
bounded, ‖Ai+1(v̄i+1 −Ψk(µi))‖ ≤ Eavg. Then the convergence error of the assimilated result
is bounded by

lim sup
i→∞

Ei ≤
Esam + Erep + Edat + Eavg

1− c
.(46)

Proof. According to the law of large numbers, it follows from (38b) that

Esam =
1√
N

sup
i∈N

[
A2
i+1

(∫
Rn

(Ψ(v′i)− v̄i+1)2fvi(v
′
i)dv

′
i + Σ

)
+K2

i+1Γ

]
,(47)

where Σ is the covariance of ξi. Since the Kalman gain Ki+1 is determined by Ĉi+1, so is
Ai+1Ψk. The assumption of global Lipschitz continuity means

‖Ai+1(Ψk(µi)−Ψk(vi))‖ ≤ c Ei.(48)

It follows from (48) and the linearization assumption that the initialization error satisfies

E ini = ‖Ai+1(v̄i+1 −Ψk(µi) + Ψk(µi)−Ψk(vi))‖ ≤ Eavg + c Ei.(49)

Substituting (49) and (45) into (38) gives

Ei+1 ≤ cEi + Esam + Erep + Edat + Eavg.(50)

Application of the discrete time Gronwall lemma to (50) leads directly to (46).
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Corollary 5. Consistency. If the EnKF in Algorithm 1 is used with the exact model (1)
and if this model is linear, then Theorem 4 yields a bound

lim sup
i→∞,N→∞

Ei ≤
Edat

1− c
,(51)

which is consistent with the Kalman filter result.

Proof. By definition, the representation error of the exact model Ψ is Erep = 0. If, in
addition, the model is linear, then the linearization error is 0, which means Eavg = 0. Finally,
if the number of samples is infinite, then Esam = 0. Under these conditions, the bound in
Theorem 4 reduces to (51).

Consider, next, the error of the standard Kalman filter. If µ′i is the ensemble average of
the state vi, whose dynamics is governed by a linear operator Ψ(µ′i) = ψµ′i, then the mean of
Kalman’s analysis state is given by (30) and the true state by (42). Then,

Ei+1 = ‖µ′i+1 − vi+1‖ = ‖(1−Ki+1H)ψ(µ′i − vi) +Ki+1(yi+1 −Hvi+1)‖ ≤ cEi + ‖Ki+1η‖.

The discrete time Gronwall lemma yields (51), which proves consistency.

4.3. Impact of data on resource-constrained model selection. In the presence of data,
the sampling error Esam and the model error Erep, first introduced in subsection 3.1, are
modified by the coefficient I−Ki+1H. Let α ∼ I−Ki+1H and β ∼ Ki+1 such that α+Hβ = I.
Then the error model (10) is replaced with

E(Ψk, N |y) = (αc1 + βc3)/
√
N + αc2|Ψ−Ψk|,(52)

where c3 ∼ Γ, and the errors E ini and Edat are omitted because they do not contribute to
the model selection process. Since α ≤ I, the availability of data always weakens the impact
of model discrepancy, i.e., the effect of choosing a low-fidelity model. Furthermore, smaller
measurement noise (variance) translates into smaller eigenvalues of α, which suggests both that
better data have higher impact on model selection and that the model fidelity is less important
when data quality is higher. These intuitive findings demonstrate the self-consistency of our
analysis.

At every time step, the computational cost of EnKF in Algorithm 1 comprises the predic-
tion and analysis steps. The cost of the prediction step equals the total runtime of N forward
solves and is given by (12). The analysis step is executed when data are available; we assume
that its runtime and cost are much smaller than those of a forward model solve. Furthermore,
we assume the proportionality constant c0 to be the same for all models; the case of ck0 varying
with the model fidelity (k = h and l) is treated in Appendix A. Neglecting the cost of the
analysis step, the overall cost of EnKF is given by (12).

Theorem 6. For the simulation error E in (52) and the simulation cost C in (12), and
given a fixed computational cost C0 allocated for simulations, the optimal model and number
of its realizations satisfy

Ñy =

(
c1C0

2c0c2
+
β

α

c3C0

2c0c2

)2/3

, |Ψ− Ψ̃y| =
c0

C0

(
c1C0

2c0c2
+
β

α

c3C0

2c0c2

)2/3

.(53)
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Proof. In the presence of data, the cost function in (19) is modified as

L(N,Ψk, λ) = E(Ψk, N) + λ[C(Ψk, N)− C0].(54)

For E and C in (52) and (12), setting to 0 the derivatives of L with respect to N , |Ψ − Ψk|,
and λ yields the minimization point (53).

The result in (54) has the following implication for the resource-constrained model selec-
tion in the presence of data. Since β/α ∼ Ĉi+1H

>/Γ > 0, both the optimized number of
realizations and the allowed model discrepancy become larger. Hence, data availability argues
in favor of selecting a lower-fidelity model that allows collecting a larger number of realizations
during the allocated computing time. Furthermore, the higher the quality of data, the lower-
fidelity model can be used. That is because the higher data quality means smaller variance
Γ and bigger β/α. An example illustrating the impact of data quality on model selection is
provided in Appendix B.

Proposition 7. Given a fixed computational resource C0, the best model among a finite set
of multifidelity models Ψ = {Ψh,Ψl1 , . . . ,Ψlm} for assimilating sequential observational data
by EnKF is such that

Ψb
y , argmin

Ψk∈Ψ

E(Ψk, ·|y), E(Ψk, ·|y) =

√
c0

C0

αc1 + βc3√
|Ψ−Ψk|

+ αc2|Ψ−Ψk|(55)

and is subject to E(Ψb
y, ·|y) ≥ E(Ψ̃y, ·|y).

5. Computational examples. We provide two examples that illustrate the applicability of
our model selection method. The first example deals with an ordinary differential equation, for
which a sequence of lower-fidelity models is constructed by progressively increasing the time
step used in its discretization. The second example comprises the viscous Burgers equation as
the high-fidelity model and a linear advection-diffusion equation as its low-fidelity counterpart.
In both cases, the initial conditions of high- and low-fidelity models are deterministic but
unknown.

5.1. Ordinary differential equation. Consider a system state v(t) : R+ → R+ whose true
dynamics is governed by an ordinary differential equation

dv

dt
= αv, v(t = 0) = u, t ∈ [0, T ],(56)

with the deterministic constant α ∈ R+ and initial state u ∈ R+. Its discretized true solution is

vi+1 = vi e−α∆t, i ≥ 0, v0 = u,(57)

where ∆t denotes the discretization time step. Noisy measurements of the state v(t) are
generated with a model

yi+1 = vi+1 + εi,(58)

where εi ∼ N (0, σ2
ε ) are i.i.d. Gaussian variables.
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A sequence of multifidelity models is generated by solving (56) with the Euler method,

v̂ki+1 = v̂i(1 + α∆t) + ξki , v0 ∼ N (µ0, σ
2
0),(59)

where ξki ∼ N (0, σ2
ξ ) are i.i.d. Gaussian variables. The high-fidelity model is obtained by using

a time step ∆th, and low-fidelity models are built by using larger time steps ∆tli (i = 1, 2, . . .)
such that ∆th < ∆tl1 < ∆tl2 < · · · . The observation equation is described as

yi+1 = Hvi+1 + ηi+1,(60)

where ηi ∼ N (0, σ2
η) are i.i.d. Gaussian variables. In the simulations reported below, we set

α = 1.5, u = 1, µ0 = 0, σ2
v0 = 1, σ2

η = 1, and H = 1. For simplicity, neither model error
nor data generating error is considered here, i.e., σ2

ξ = 0 and σ2
ε = 0. The sequence of time

steps is ∆tk = {0.001, 0.002, 0.005, 0.01, 0.015, 0.03}, with the first number corresponding to
the high-fidelity model and the rest forming a set of the low-fidelity models.

Given the time step ∆tk, EnKF relies on N = {5, 10, 20, 50, 100, 200, 500, 1000, 2000}
realizations. The simulation is conducted up to time T = 3, with the measurements available
at times t = 0.09k, where k = 1, 2, . . . , 33. In the absence of data, (59) is used to propagate
the analyzed states without assimilation. Every data assimilation experiment is repeated 30
times, and the results are averaged in order to reduce the error arising from pseudorandom
number generator sampling.

We compute the cost C as the runtime Trun of our EnKF algorithm for different time steps
∆t and sampling numbers N . The error E is the average of the difference Ē between the true
value and its assimilated counterpart in the `1 norm over the whole time domain, i.e.,

Ē =
1

Nt

Nt∑
i

|vi − µ̃i|, Nt =
T

∆t
, µ̃i =

1

N

N∑
n

ṽ
(n)
i .(61)

For the problem under consideration, the discrepancy between the models (57) and (59) is
|Ψ−Ψi| = | exp(α∆t)− (1 + α∆t)|, and our general definitions of the cost function C(Ψ, N)
in (12) and the error E(Ψ, N) in (10) take the form

C(∆t,N) =
c0N

|eα∆t − (1 + α∆t)|
, E(∆t,N) =

c1

Nα1
+ c2|eα∆t − (1 + α∆t)|.(62)

The simulation results reported in Figure 3 reveal these definitions to be accurate, with the
exponent α1 = 1 (rather than α1 = 1/2 used in (10) for illustration purposes) and the
proportionality constants c0 = 8 · 10−7, c1 = 1, and c2 = 2.5.

Figure 4 exhibits the observed dependence of the simulation error E on the number of
realizations N for the fixed cost C = C0 = 1000c0. To identify the optimal model at such cost,
we construct a set of time steps U∆t = {0.001, 0.002, 0.004, 0.005, 0.010, 0.020, 0.030)}. The
simulation cost C, i.e., the runtime Trun, is approximately the product of the total number of
time steps Nt and the number of realizations N , i.e., C = NT/∆t. For C0 = 9000 and T = 3,
this yields a set of Monte Carlo realizations UN = 3000U∆t = {3, 6, 12, 15, 30, 60, 90}. Note
that the latter is nearly identical to U′N = 1000|e−α∆t − (1− α∆t)| = {3, 6, 12, 15, 30, 60, 91}
predicted by the theory (62). This indicates the correctness of our definition (62).
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Figure 3. Dependence of the simulation cost C = Trun (top row) and simulation error E = Ē on the number
of Monte Carlo realizations N (left column) and the time step ∆t (right column).

Figure 4. Dependence of the simulation error E on the number of realizations N of multifidelity models for
the given computational cost C0 = 1000c0. The error bars represent the 95% confidence interval computed from
30 repeated simulations.
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As predicted by the general considerations reported in Figure 1, there is an optimal low-
fidelity model (corresponding to the time step ∆tlk) that has the lowest simulation error E .
This lkth model is identified by the number N lk that minimizes E(N). For the simulations
reported in Figure 4, this number is N lk = 15, which corresponds to the low-fidelity model
with ∆tlk = 0.005.

5.2. Burgers’ equation. Consider, next, the nonlinear viscous Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, |x| ≤ 1, t > 0,(63)

with the viscosity coefficient ν ∈ R+ and initial and boundary conditions

u(x, 0) = − sin(πx), u(1, t) = u(−1, t) = 0.(64)

This problem admits an exact analytical solution [1],

u(x, t) =

∫ ∞
−∞

sin[π(x− η)]g(x− η) exp[−η2/(4νt)]dη∫ ∞
−∞

g(x− η) exp[−η2/(4νt)]dη

, g(x) = exp
(
− cos

πx

2πν

)
,(65)

obtained by means of the Cole–Hopf transformation. The “true solution” is obtained by using
the Hermite quadrature to evaluate the integrals in (65).

High- and low-fidelity approximations of (65) have an uncertain initial state u(x, 0) = v.
We model this state as a Gaussian random variable, v ∼ N (0, 1). To obtain a high-fidelity
model, we rewrite (63) in the conservative form,

∂u

∂t
+
∂f(u)

∂x
= ν

∂2u

∂x2
, f(u) =

u2

2
,(66)

and approximate it by using an explicit scheme in time and the central-difference scheme in
space,

un+1
j = unj −

∆t

2∆x

[
f
(
unj+1

)
− f

(
unj−1

)]
+
ν∆t

∆x2

(
unj+1 − 2unj + unj−1

)
+ ξn,(67)

where unj ≡ u(xj , tn) and the random noise ξn represents the temporally fluctuating model
error.

A low-fidelity model is a linearized version of the Burgers equation (63),

∂u

∂t
+ u∗

∂u

∂x
= ν

∂2u

∂x2
, |x| ≤ 1, t > 0,(68)

subject to the same initial and boundary conditions (64). The constant advection velocity u∗

is set to uavg. The same numerical discretization yields

un+1
j = unj − u∗

∆t

∆x

(
unj+1 − unj−1

)
+
ν∆t

∆x2

(
unj+1 − 2unj + unj−1

)
+ ξn.(69)
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If the grid functions are organized as vectors, then (69) takes the form

un+1 = Qun + ξn,(70)

where un = (un1 , u
n
2 , . . . , u

n
p )>, ξn = (ξn1 , ξ

n
2 , ..., ξ

n
p )> ∼ N (0,Σ) is an i.i.d. Gaussian vector

with components Σij = Σδij , and

Q =



1− 2ν∆t

∆x2
−u
∗∆t

2∆x
+
ν∆t

∆x2
. . . 0

u∗∆t

2∆x
+
ν∆t

∆x2

u∗∆t

2∆x
+
ν∆t

∆x2
1− 2ν∆t

∆x2
. . . 0 0

...
...

. . .
...

...

−u
∗∆t

2∆x
+
ν∆t

∆x2
0 . . .

u∗∆t

2∆x
+
ν∆t

∆x2
1− 2ν∆t

∆x2


p×p

.

The linear observation operator H and observation noise η are used to generate data y in
accordance with

yn+1 = Hun+1 + ηn.(71)

Here, yn = (yn1 , y
n
2 , . . . , y

n
m)>, ηn = (ηn1 , η

n
2 , . . . , η

n
m)> ∼ N (0,Γ) is an i.i.d. Gaussian vector

with components Γij = Γδij , and

H =


1 0 . . . 0 0 . . . 0 0 . . .
0 0 . . . 1 0 . . . 0 0 . . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 1 0 . . .


m×p

.

In the simulations reported below, the multifidelity models (67) and (70) are solved on the
space-time domain x × t ∈ [−1, 1] × [0, 3/π], discretized with ∆x = 2/121 and ∆t = 0.03/π.
The parameters are set to u∗ = uavg = 0, ν = 0.01/π, Σ = 0.01, and Γ = 0.05. The number of
observation points is m = 20; these are equally spaced on the interval [−1, 1] and are available
at every time step. We define the cost function C as the runtime of the forecast equation
solved N = {20, 35, 50, 75, 100, 200, 350, 500, 750, 1000, 1500, 2000, 5000} times (realizations),
and the simulation error E as the spatial average of the distance (under `1 norm) between the
assimilated result and the truth at the last time step. This numerical experiment is repeated
30 times, and the results are averaged in order to reduce the error arising from pseudorandom
number generator sampling.

Figure 5 reveals that when the number of realizations lnN & 8, the error of the high-fidelity
model (67) is smaller than that of its low-fidelity counterpart (70) at the same computational
cost. This result is to be expected, since the model fidelity dominates the simulation error
when the number of samples is sufficiently large, in accordance with Theorem 4. On the other
hand, when the number of realizations is relatively small (lnN . 3), the error of high-fidelity
model (67) exceeds that of its low-fidelity counterpart (70) at the same computational cost.
Therefore, as the fixed computational cost C0 increases, first the low-fidelity model outperforms
its high-fidelity counterpart, and then the relative performance of these two models switches.
This is consistent with the general analysis in Figure 2.
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Figure 5. Dependence of the simulation error E (left axis and blue curves) and simulation cost C (right
axis and red curves) on the number of realizations of the multifidelity models (67) and (70). The dashed and
solid lines represent the high- and low-fidelity models, respectively.

6. Summary. We developed a general framework for analysis of the impact of data assimi-
lation on cost-constrained model selection. The framework relies on the definitions of cost and
accuracy functions in the context of data assimilation for multifidelity models with uncertain
(random) coefficients, and contains an estimate of error bounds for a system’s state predic-
tion obtained by assimilating data into a model via EnKF. This estimate is given in terms
of model error, sampling error, and data error. We provided two examples that illustrate the
applicability of our model selection method. The first example deals with an ordinary differ-
ential equation, for which a sequence of lower-fidelity models is constructed by progressively
increasing the time step used in its discretization. The second example comprises the viscous
Burgers equation as the high-fidelity model and a linear advection-diffusion equation as its
low-fidelity counterpart.

Our analysis leads to the following major conclusions.
• Our definitions of the computational cost (C) and accuracy (expressed in terms of

corresponding error E) of sampling-based (e.g., Monte Carlo) solutions of multifidelity
models require an assumption on the functional dependence of C and E on the number
of Monte Carlo realizations, N .
• The two examples considered confirm the validity of the assumed functional forms
C = C(N) and E = E(N).
• When N is small, the sampling error dominates the simulation error E , and, hence,

the lower-fidelity model gives more accurate predictions than its higher-fidelity coun-
terpart.
• As N becomes sufficiently large, the model error dominates the simulation error E ,

which argues for the use of the higher-fidelity model.
• In the cost-constrained model selection, the computation cost C∗ is fixed so that the

number of Monte Carlo realizations is determined by inverting the function C = C(N).
• The availability of data, assimilated by means of EnKF, always weakens the impact

of model discrepancy, i.e., the effect of choosing a low-fidelity model.
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• Data availability argues in favor of selecting a lower-fidelity model that allows collecting
a larger number of realizations during the allocated computing time. The higher the
quality of data, the lower-fidelity model can be used.

Several questions remain open and will be investigated in follow-up studies. These include
the impact of data assimilation techniques other than EnKF (e.g., particle filter and smooth-
ing problem) on the cost-accuracy tradeoff for multifidelity models, and integration of data
assimilation methods into multifidelity simulations (e.g., in the context of multilevel Monte
Carlo).

Appendix A. General cost and accuracy functions.
In general, the constants of proportionality ck0, ck1, and ck2 in the error models (8) and (12)

vary between multifidelity models, i.e., with k. This dependence stems from multiple sources,
including the model type denoted by a categorical variable sk (e.g., sk ∈ {interpolation, regres-
sion, simplified-physics, projection}); the number of parameters, Npar, that quantifies model
complexity; and the number of degrees of freedom in a model, Ndeg, as quantified by, e.g., a
mesh size ∆k (small ∆k results in large Ndeg and vice versa). Hence, cki = ci(sk, N

k
par, N

k
deg)

for i = 1, 2, 3 and k = h, l.
As an example, we consider a set of models that differ only in their degrees of complexity

(Nk
par), i.e., come from the same class s and have the same number of degrees of freedom

Ndeg. A higher model complexity has been found to reduce the model’s generality and, hence,
its prediction accuracy [12]. (As a caveat, we note that this finding is based on polynomial
approximations and seems to contradict recent studies that use “deep learning” or neural-
network approximations.) In our context, this observation is codified in the monotonically
increasing dependence ck2 = c2(Nk

par). It is also reasonable to surmise that model complexity

affects the simulation cost, so that ck0 = c0(Nk
par) is an increasing function. The remaining

proportionality constant is kept unchanged between the models, ck1 = c1, because model
complexity is not expected to affect the sampling error Esam. With these assumptions about
model complexity, the cost and accuracy functions (12) and (10) take the form

C(Ψk, N) = c0

(
Nk

par

) N

|Ψ−Ψk|
, E(Ψk, N) =

c1√
N

+ c2

(
Nk

par

)
|Ψ−Ψk|, k = h, l.

(72)

A higher model fidelity typically requires a larger Nk
par and a smaller |Ψ − Ψk|. Hence,

the term c2(Nk
par)|Ψ − Ψk| suggests that an optimal prediction accuracy, smallest E(Ψk, N),

is obtained by setting a reasonable Nk
par, which is consistent with previous findings [12].

Furthermore, the simulation error E depends on model fidelity and the simulation cost C0 as

E(Ψk, C0) =

√
c0

(
Nk

par

)
C0

c1√
|Ψ−Ψk|

+ c2

(
Nk

par

)
|Ψ−Ψk|, k = h, l.(73)

With the parameters c0 and c2 depending on model complexity, we use the results of section 3
to select a model. According to Proposition 2, the best model is such that

Ψb , argmin
Ψk

E(Ψk, C0), k = h, l.(74)
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Figure 6. Dependence of the simulation error E on the simulation cost C0 with different model complexity
Nh

par = 3, N l1
par = 2, N l2

par = 1. The proportionality constants are set to c1 = 15, ck0 = ck2 =
√

Nk
par and

|Ψl2 −Ψ| = 8, |Ψl1 −Ψ| = 4.3, |Ψh −Ψ| = 3 for illustration purposes.

Figure 6 shows this dependence for c0 = c2 = (Nk
par)

1/2 under different allocations of simula-

tion cost. The values C1 and C2 are turning points for the process of model selection: Ψl2 has
the lowest prediction error when C0 ≤ C1; as the allocated cost increases, Ψl1 is the optimal
model when C1 < C0 < C2, and Ψh is the best candidate when C0 ≥ C2.

Appendix B. Impact of data quality on model selection.
Suppose that at a certain time ti, the system is sampled M times giving a data set

{yi,1, . . . , yi,M}. The data are unbiased and, accounting for measurement error, treated as
i.i.d. Gaussian random variables, yi,m ∼ N (ȳi,Γ), where ȳi = h(vi) in accordance with (3).
Then the sample mean and variance obey the strong law of large numbers:

ŷi =
1

M

M∑
m=1

yi,m, σ2
yi =

Γ

M
, P

[
lim
M→∞

ŷi = h(vi)

]
= 1,(75)

i.e., the quality of data ŷi increases with M , so that the measurements provide very precise
information about the true states at time ti. In the analysis step in Algorithm 1, we replace
the observation yi+1 with the average ŷi+1; then the random data sample (33) is expressed as

y
(n)
i+1 = ŷi+1 + η̂

(n)
i+1 where η̂i+1 ∼ N (0,Γ/M).(76)

The Kalman gain in (34) turns into

Ki+1 = Ĉi+1H
>
(
HĈi+1H

> + Γ/M
)−1

,(77)

which yields

I −Ki+1H =
Γ

M

(
HĈi+1H

> + Γ/M
)−1

.(78)
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As the number of measurements M increases, β/α ∼ MĈi+1H
>/Γ increases. According

to (53), larger values of M and, hence, higher data quality weaken the impact of model fidelity
on the model selection.

REFERENCES

[1] C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi,
and A. T. Patera, Spectral and finite difference solutions of the Burgers equation, Comput. & Fluids,
14 (1986), pp. 23–41.

[2] C. E. A. Brett, K. F. Lam, K. J. H. Law, D. S. McCormick, M. R. Scott, and A. M. Stuart,
Accuracy and stability of filters for dissipative PDEs, Phys. D, 245 (2013), pp. 34–45.

[3] S. T. Buckland, K. P. Burnham, and N. H. Augustin, Model selection: An integral part of inference,
Biometrics, 53 (1997), pp. 603–618.

[4] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach, Springer Science & Business Media, New York, 2003.

[5] A. Carrassi, M. Ghil, A. Trevisan, and F. Uboldi, Data assimilation as a nonlinear dynamical
systems problem: Stability and convergence of the prediction-assimilation system, Chaos, 18 (2008),
023112.

[6] G. Claeskens and N. L. Hjort, Model Selection and Model Averaging, Cambridge University Press,
Cambridge, UK, 2008.

[7] G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean
Dyn., 53 (2003), pp. 343–367.

[8] M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259–328.
[9] H. Hoel, K. J. H. Law, and R. Tempone, Multilevel ensemble Kalman filtering, SIAM J. Num. Anal.,

54 (2016), pp. 1813–1839.
[10] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging: A

tutorial, Stat. Sci., (1999), pp. 382–401.
[11] G. Lin, A. M. Tartakovsky, and D. M. Tartakovsky, Uncertainty quantification via random do-

main decomposition and probabilistic collocation on sparse grids, J. Comput. Phys., 229 (2010), pp.
6995–7012.

[12] I. J. Myung, The importance of complexity in model selection, J. Math. Psych., 44 (2000), pp. 190–204.
[13] A. Narayan, C. Gittelson, and D. Xiu, A stochastic collocation algorithm with multifidelity models,

SIAM J. Sci. Comput., 36 (2014), pp. A495–A521.
[14] A. Narayan, Y. Marzouk, and D. Xiu, Sequential data assimilation with multiple models, J. Comput.

Phys., 231 (2012), pp. 6401–6418.
[15] B. Peherstorfer, K. Willcox, and M. Gunzburger, Optimal model management for multifidelity

Monte Carlo estimation, SIAM J. Sci. Comput., 38 (2016), pp. A3163–A3194.
[16] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in uncertainty

propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550–591.
[17] M. Sinsbeck and D. M. Tartakovsky, Impact of data assimilation on cost-accuracy tradeoff in multi-

fidelity models, SIAM/ASA J. Uncertain Quantif., 3 (2015), pp. 954–968.
[18] I. M. Sobol, A Primer for the Monte Carlo Method, CRC Press, Boca Raton, FL, 2018.
[19] A. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction, Tech. report, Oak

Ridge National Laboratory, Oak Ridge, TN, 2015.
[20] S. Taverniers and D. M. Tartakovsky, Estimation of distributions via multilevel Monte Carlo with

stratified sampling, J. Comput. Phys., 419 (2020), 109572.
[21] L. Yang, A. Narayan, and P. Wang, Sequential data assimilation with multiple nonlinear models and

applications to subsurface flow, J. Comput. Phys., 346 (2017), pp. 356–368.


	Introduction
	Problem formulation
	Cost-accuracy tradeoff in model selection
	Model prediction via Monte Carlo sampling
	Cost and accuracy functions
	Resource-constrained model selection
	Resource-constrained optimal model

	EnKF
	Accuracy of EnKF
	Asymptotic convergence of EnKF
	Impact of data on resource-constrained model selection

	Computational examples
	Ordinary differential equation
	Burgers' equation

	Summary
	Appendix A. General cost and accuracy functions
	Appendix B. Impact of data quality on model selection

