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Soil heterogeneity and data sparsity combine to render estimates of infiltration rates uncertain. We
develop reduced complexity models for the probabilistic forecasting of infiltration rates in heterogeneous
soils during surface runoff and/or flooding events. These models yield closed-form semi-analytical
expressions for the single- and multi-point infiltration-rate PDFs (probability density functions), which
quantify predictive uncertainty stemming from uncertainty in soil properties. These solutions enable
us to investigate the relative importance of uncertainty in various hydraulic parameters and the effects
of their cross-correlation. At early times, the infiltration-rate PDFs computed with the reduced complex-
ity models are in close agreement with their counterparts obtained from a full infiltration model based on
the Richards equation. At all times, the reduced complexity models provide conservative estimates of

Sorptivity predictive uncertainty.
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1. Introduction

Reliable estimates of infiltration rates are notoriously elusive
due to soil heterogeneity and the lack of sufficient site character-
ization. This ubiquitous parametric uncertainty requires model
predictions to be accompanied by robust uncertainty quantifica-
tion, which must accommodate realistic statistical descriptions of
hydraulic parameters (saturated, K;, and relative, K;, hydraulic con-
ductivities, and parameters in retention curves) in the flow equa-
tions. Probabilistic treatment of hydraulic parameters renders the
corresponding flow equations stochastic, so that their solutions
are given in terms of probability density functions (PDFs).

A standard practice in soil physics and subsurface hydrology is
to compute the first two statistical moments of system states (e.g.,
pressure head v and water content 0) in lieu of full PDFs. Within
this framework, ensemble means (first ensemble moments  and
0) serve as predictors of system behavior, and variances (second
ensemble moments ¢ and ¢3) provide a measure of predictive
uncertainty. Examples of such stochastic analyses of the Richards
equation,
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include [41,18,15,27,32,29], among many others. Since these and
numerous other studies aim to derive deterministic moment equa-
tions for means and (co)variances of system states, they are ill-
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suited for risk analyses and analyses of rare events, both of which
require the knowledge of full PDFs [34,40,5]. Moreover, moment
equations are applicable to either mildly heterogeneous or well-
characterized soils. Unless the use of the Kirchhoff transformation
is warranted [36,33,17], they also require linearization of the con-
stitutive relations, K, = K(0) and 0 = (), in the Richards equation
(1). This limits the range of their applicability and introduces mod-
eling errors that cannot be quantified a priori.

An alternative is to assume that a system state, e.g., pressure
head y(x,t) in (1), has a Gaussian PDF py(%¥;x,t) [1,2]. This ap-
proach provides a full probabilistic description of  required for
risk assessment—it can be used, for example, to compute
Priy(x,t) < V] = f;:nm p,(?';x,t)d¥’, the probability of uncertain
(random) pressure head i at point x and time ¢t not exceeding a gi-
ven value ¥Y—once its mean y(x,t) and variance o2(x,t) are ob-
tained from the corresponding deterministic moment equations
[1,2]. Unfortunately, PDFs of ys(x,t) are in general non-Gaussian
[35].

Monte Carlo simulations (MCS) provide another popular ap-
proach for solving the stochastic Richards equation (1), e.g.,
[13,7,8] among many others. In principle, MCS can be used to com-
pute PDFs of dependent variables in the Richards equation. How-
ever, MCS of the transient three-dimensional Richards equation
are typically computationally prohibitive, even when the goal is
to compute the first two moments of 0(x,t) or y/(x,t). When used
to compute PDFs of dependent variables, the reliability of MCS suf-
fers from the arbitrariness of the bin-size selection associated with
statistical analysis of simulation results. To the best of our
knowledge, no PDF solutions of the Richards equation are reported
in the literature.
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Given the practical impossibility of obtaining accurate PDF solu-
tions of the stochastic Richards equation (1) in three spatial dimen-
sions, we develop reduced complexity models to compute PDFs of
the rate of infiltration into heterogeneous soils with uncertain
hydraulic parameters. Construction of such models starts with
the selection of a simplified statistical model for soil properties.
In the present analysis, we will make use of the Dagan-Bresler sta-
tistical parameterization [9], which reduces the spatial dimension-
ality of random parameter fields. For example, saturated hydraulic
conductivity Ky(x)—the sole source of uncertainty in [9]—is treated
as a two-dimensional random field, Ky(x1,x>), i.e., a soil is treated as
a collection of vertical tubes each of which is characterized by a
different random variable K.

The Dagan-Bresler parameterization [9] enables one to model
three-dimensional infiltration with a collection of one-dimensional
(in the x3 direction) solutions of either the Richards equation (1) or
its approximations, such as the Green-Ampt model [38] and the
three-parameter infiltration equation of Parlange et al. [24]. Sto-
chastic analyses of the Richards equation with the Dagan-Bresler
parameterization can be found in [26,44]. Their counterparts based
on the Green-Ampt equation were found to yield accurate predic-
tions of infiltration into heterogeneous soils [6] and have been
adopted in a number of subsequent investigations, e.g.,
[16,19,20,42]. These and other similar analyses aimed to derive
effective (ensemble averaged) infiltration equations, and some of
them quantified predictive uncertainty by computing variances
of system states.

Our goal here is to provide a full probabilistic description of
infiltration into heterogeneous soils with uncertain parameters
(i.e., to compute PDFs of relevant dependent variables) by employ-
ing the reduced complexity models based on the Dagan-Bresler
parameterization [9] and either the Green-Ampt [38] or the Par-
lange et al. [24] infiltration equations. From the outset, it is worth-
while emphasizing that the reliance on the Dagan-Bresler
parameterization [9] formally limits our analysis to infiltration into
top soils, and thus can be used to model surface response to rainfall
events [19,20] and transport phenomena in top soil [42]. Yet it was
also used to derive effective properties of the whole vadose zone
[43,45]. Rubin and Or [26] provided an additional justification for
the Dagan-Bresler parameterization by noting that “the determi-
nation of soil hydraulic properties through field methods. . .homog-
enize the properties vertically, thus eliminating the variability in
the vertical direction in a practical sense.”

The two alternative reduced complexity models are formulated
in Section 3, which is preceded (Section 2) by a brief summary of
experimental evidence used to select statistical properties of satu-
rated hydraulic conductivity K and fitting parameters in the con-
stitutive laws K, = K(0) and 0 = 0(y). Section 4 presents analytical
closed-form expressions for the infiltration-rate PDFs that can be
used as input for probabilistic forecasting of surface runoff and
flooding. In Section 5, we investigate the temporal evolution of
the infiltration-rate PDFs (Section 5.1), the relative importance of
uncertainty in various hydraulic parameters (Section 5.2), and
the effects of their cross-correlation (Section 5.3). A comparison
of the PDFs obtained from the reduced complexity models with
those computed by means of Monte Carlo simulations of the Rich-
ards equation (1) is presented in Section 5.4. Key findings of this
analysis are summarized in Section 6.

2. Statistics of soil parameters

The vast majority of stochastic analyses reported in the litera-
ture deal with Gardner’s model of the relative conductivity
K(y) = exp(owy), which facilitates theoretical developments but is
seldom used in practice. The analysis below is applicable to an

arbitrary choice of the relative hydraulic conductivity K, =K,(i)
and the retention curve 0 = 0(y), and does not require their linear-
ization. To be concrete, we employ the van Genuchten model [38,
Table 2.1],

mn ny-my2
Kr(!//) — [l d (1 +r:{/c;) } , 0(‘//) -01 _ 1 S (2)
(1+yh™ d—0i  (1+4y)
where Y4 = ofy|, m=1 — 1/n, ¢ is the porosity, and 6; is the irreduc-
ible water content.

Soil heterogeneity and data sparsity render the saturated
hydraulic conductivity K; and the fitting parameters in (2) uncer-
tain. This uncertainty is quantified by treating such parameters
as random fields, so that a soil parameter .A(X, @) varies not only
in the physical domain, x € D, but also in the probability space
w € Q. A probability density function p ,, which describes the latter
variability, is inferred from measurements of .4 by invoking ergo-
dicity. A compilation of field data used to justify the selection of
PDFs p, for each hydraulic parameter is presented below (see also
[36,37]).

2.1. Saturated hydraulic conductivity, K

Despite some reservations [12,39], both the data reviewed in
[36] and more recent data analyses [19,45] suggest that the tradi-
tional treatment of Ky (x) as a log-normal random field is
warranted.

2.2. Fitting parameters in (2)

The experimental evidence presented in [28,31,45] suggests
that parameter o(X) can be treated as a log-normal field. It also
shows that the coefficient of variation of o is much larger than that
of the shape factor n, which supports the treatment of n as a deter-
ministic constant. Likewise, since both porosity ¢ and irreducible
water content 0; typically exhibit lower spatial variations than
either K; or o, we treat them as deterministic constants. As will be-
come apparent from the derivations in Section 4, our approach can
readily account for uncertainty (randomness) in any of these
parameters.

2.3. Cross-correlations between hydraulic parameters

Experimental evidence on cross-correlation between Ky(x) and
a(x) is inconclusive. Various data sets were used to conclude that
K(x) and o(x) are perfectly correlated [30], uncorrelated [21], or
anti-correlated [43]. The approach we present below is capable
of handling an arbitrary degree of cross-correlation between
K(x) and o(x). Finally, the data reviewed in [36], as well as more
recent data reported in [45], suggest that the coefficient of varia-
tion (CV) of K, is generally much larger than that of ¢, i.e., that
the former is much more variable than the latter.

3. Reduced complexity models

Construction of our reduced complexity models consists of two
steps. First, the Dagan-Bresler statistical parameterization is used
in Section 3.1 to represent three-dimensional random fields Kj(x)
and o(x) as a collection of corresponding random variables K;
and «. Second, the Richards equation (1) is replaced with either
the Green-Ampt [38] or the Parlange et al. [24] infiltration equa-
tions in Sections 3.2.1 and 3.2.2, respectively. To be specific, we
consider infiltration under ponding, which is a prerequisite for
overland flow [11]. Other infiltration regimes can be handled as
well by modifying the Green-Ampt [38] and the Parlange et al.
[24] infiltration equations accordingly. The accuracy of the infiltra-
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tion-rate PDFs predicted with the reduced complexity models is
assessed via comparison with its counterpart obtained from MCS
of the Richards equation (1) in Section 5.4.

3.1. Statistical model for soil parameters

Following [9], we restrict our analysis to infiltration depths that
do not exceed vertical correlation lengths 1, of (random) soil
parameters A(X, w). Then A = A(x;,x,, @), so that a heterogeneous
soil can be represented by a collection of one-dimensional (in the
vertical direction x3) homogeneous columns of length L3, whose
uncertain hydraulic properties are modeled as random variables
(rather than random fields). The restriction 4, > L3 formally renders
the Dagan-Bresler parameterization [9] suitable for heterogeneous
top soils, and thus can be used to model surface response to rainfall
events [20,19] and transport phenomena in top soil [42]. Yet it was
also used to derive effective properties of the whole vadose zone
[43,45].

Consider a three-dimensional flow domain Q=) x [0,Ls],
where Q, represents its horizontal extent. A discretization of Q
into N elements represents Q by an assemblage of N columns of
length L. This facilitates the complete description of a random field
A(X1,%2, w)—in the analysis below, A stands for K; and o but can
also include other hydraulic properties and the ponding pressure
head g at the soil surface x3 = 0—with a joint probability function
pPa(A1,...,Ay). Probability density functions (PDFs) of hydraulic
properties of the ith column are defined as marginal distributions,

P (A) = /pA(Ah...,AN)dAu...7dA.>1dA,-+1,...7dAN. 3)

Since statistical properties of soil parameters A are inferred from
spatially distributed data by invoking ergodicity, the corresponding
random fields (or their fluctuations obtained by data de-trending)
must be stationary so that

py=p, for i=1,....N (4)

If soil parameters (e.g., Ks and o) are correlated, their statistical
description requires the knowledge of a joint distribution. For
multivariate Gaussian Y; = InK; and Y, = Inq, their joint PDF is gi-
ven by

R
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Y; and gy, denote the mean and standard deviation of Y; (i =1,2),
respectively; and —1 < p < 1 is the linear correlation coefficient be-
tween Y; and Y,. The lack of correlation between Y; and Y, corre-
sponds to setting p =0 in (5).

3.2. Simplified flow models

During infiltration into top soils, the Dagan-Bresler parameter-
ization of soil heterogeneity can be supplemented with an assump-
tion of vertical flow. The rationale for, and implications of,
neglecting the horizontal component of flow velocity can be found
in [9,26,16] and other studies reviewed in the introduction. This
assumption obviates the need to solve a three-dimensional flow
problem, replacing the latter with a collection of N one-dimen-
sional flow problems to be solved in homogeneous soil columns
with random but constant hydraulic parameters.

The second step in the construction of our reduced complexity
models for probabilistic estimation of infiltration rates i(t) replaces

the Richards equation (1) with either the Green-Ampt [38] (Sec-
tion 3.2.1) or Parlange et al. [24] (Section 3.2.2) infiltration equa-
tions. The accuracy of these reduced complexity models is
investigated in Section 5.4 via comparison with Monte Carlo solu-
tions of the two-dimensional Richards equation (1).

As mentioned above, we consider the Green-Ampt [38] and
Parlange et al. [24] infiltration equations corresponding to ponding
water of height /¢ at the soil surface x3 = 0. Other infiltration sce-
narios can be handled in a similar manner by modifying these
equations as discussed in the closing of this section.

3.2.1. Green-Ampt infiltration model

The Green-Ampt model of infiltration approximates an S-
shaped wetting front with a sharp interface (infiltration depth)
x¢(t), which separates the uniformly “wet” (0 = Oy.¢) region behind
the wetting front from a partially-saturated region with a uniform
water content 0 = 0., ahead of the front. To be specific, and without
loss of generality, we set Owe: = ¢ and 0., = 0;. If the x3 coordinate is
positive downward, Darcy’s law defines macroscopic (Darcy’s) flux
q as (e.g., [38, Eq. (5-1)])
q=—K, w. (6)

Xf
Pressure head, y, at the infiltration depth x((t) is often set to a “cap-
illary drive”,
-0

K:(y)dy, 7)

vi

Ve =—

where ; is the pressure head corresponding to the water con-
tent 0. Theoretical derivations of this equation can be found in
[22,4].

Mass conservation requires that the infiltration rate i =g, and
that i = A0dx¢/dt where A0 = ¢ — 0;. Combined with (6), this leads
to an implicit expression for the infiltration depth x{t),

Xt K
) it ®

which is applicable to time intervals during which the height of
ponding water, /o, remains approximately constant. Substituting
Y(t) from (8) into (6) yields a Green-Ampt solution for the infiltra-
tion rate i(t).

Xt — (Wo — ¥¢) In <1 +

3.2.2. Parlange infiltration model

The Parlange et al. [24] infiltration model seeks to preserve a
sigmoidal shape of infiltration fronts by postulating a functional
form of the soil water diffusivity D(0) = Kdy//d6. Under ponded
conditions, this equation takes the form [14],

AOK;  S* = 20,K,A0 AK
ikt Ak ! <]+i—1<5>7

I —Kit = (Yo + 1)) 9
where cumulative infiltration rate I(t) is related to infiltration rate
i(t) by i=dI/dt, and AK = K — K; with K; = K(0;). Following [23,14],
we approximate soil sorptivity S by

¢
St = / (¢ + 0 — 20,)D(0)d0. (10)
0;
Finally, the parameter ; (i; <) represents a small pressure
jump at saturation that is typically observed in soil-water charac-
teristic curves. This soil parameter depends on the local pore
structure, has limited range and effect on infiltration predictions,
and remans ‘“constant in time and independent of changing
boundary conditions” [14]. Consequently, we treat i; as a deter-
ministic constant.

For constant ponding water heights o, solving (9) yields an
implicit expression for the infiltration rate i(t) [14],
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 Ko(Yo + A0 S — 2y KA0  S* — 2K, AO(Y + 29)
(i—K)AK — 2AK(i—K)) 2(AK)?
AK
x In (1 +- 1<s> (11)

For brevity, we will call this expression the Haverkamp solution for
infiltration under ponded conditions, after the first author of [14].
Note that (11) reduces to (8) if one sets the soil water diffusivity
D(0) to be a delta function [38, pp. 159-161].

Analytical solutions (8) and (11) correspond to ponded condi-
tions with constant water heights ,. Our reduced complexity
models can handle other infiltration regimes by replacing (8) and
(11) with their appropriate counterparts. For example, (11) can
be replaced with the analytical solutions in [25,3] if infiltration is
driven respectively by atmospheric pressure at the soil surface
(Y0 =0) or by temporally varying ponded water height q(t). Like-
wise, infiltration under non-ponded conditions can be handled by
replacing (8) with appropriately modified Green-Ampt solutions,
many of which can be found in [38]. What is important is that a
properly chosen reduced complexity model provides a mapping
i=1i(Ks o).

4. PDF Solutions for Infiltration Rate

Let Gi(i*;t) = P[i < i*] denote the cumulative distribution func-
tion of i at time ¢, i.e., the probability that the random infiltration
rate i at time t does not exceed some value i*. Egs. (8) and (11)
define mappings i=i(K;,«) for the two alternative reduced
complexity models. These mappings enable one to compute the
cumulative distribution function G;(i*;t) as

0o pa(i* Ks) docdK;
:/0 /O Py, (Ko, o)== (12)

N

The denominator in (12) reflects the transition from the joint
Gaussian PDF for Y; and Y,, to lognormal variables K;=exp(Y;)
and « = exp(Y>). The PDF of the random (uncertain) infiltration rate,
pi(i*;t), can be obtained as

. dGi(i*; 1)

i l*7t = ;7 13
pi(i™;t) e (13)
which yields

* Ks), K i*
/ py1 y2 s), K] (i .*Ks)sz. (14)
K K oi

While the analysis above deals with two uncertain parameters, K
and ¢, it can be readily generalized to account for uncertainty in
other soil parameters, such as the van Genuchten parameter n. If
M soil properties are uncertain then their statistics are character-
ized by a joint PDF, py, _y,; the cumulative distribution function
G; in (12) is defined in terms of an M dimensional integral; and
the subsequent derivation is modified accordingly.

4.1. Green-Ampt infiltration model

Computation of the infiltration-rate PDF, p; is facilitated by the
change of the integration variable in (14),

[Ks(i i*
/ Py, v,! ;) 0] 01(5(1.*70‘) do. (15)
ocKS ,00) oi

Here py, y, and K(i*,0) are given by (5) and (6), respectively; and
the derivative dK;/di* is obtained from (6) as the reciprocal of

o o=t (1

_K_stXf l//f"'_l//0> (16)

=1+

0K Xt A0 x?

4.2. Parlange infiltration model

For the van Genuchten constitutive relation (2), the soil sorptiv-
ity S in (10) takes the form

2= % (1 -mA(m), (17a)
where m is the van Genuchten model shape parameter, A(m) is

given by

4P -mrEm2-1 4
- r(m/2) " 3m-2
rm+1)r@m/2-1) I -myrGm/2-1)
T(5m/2) + T3m/2)
4 r(m+1)rGm/2-1)
" 5m-2 r(7m/2) (17b)

and I'(-) is the complete Gamma function. For the sake of simplicity,
and without loss of generality, we assume that the soil ahead of the
wetting front is “dry”, and set {/; = —co. (Other values of /; can be
handled as well by following the procedure outlined below.) Then
K; =0 and substituting (17) into (11) yields an explicit relation be-
tween the three random variables o = «(i,Kj),

(i, Ks) :A[Ks iln ( — 1<5>] 2;'3(_1.711(;5)7 (18a)
where
B(i, Ks) = (Yo + Ve )iKs — (o + 200)ili — Ks) In < - 1<5>

+K(i— Ky) <¢m - %9) (18b)

Substituting (18) into (14) gives the infiltration-rate PDF,

(it / Kspy1 y2 [“ Ks), K [ K, —i* Kt
2 ,Ks) A0

(o +¥gr) {(21’* —K;)In <>* i ) - ZKS] }sz. (19)

=K

4.3. Multi-point PDFs

As discussed in Section 3.1, a complete description of the random
infiltration rate i(x, t) in the domain discretized into N elements re-
quires the knowledge of an N-point PDF, p;(il', . . . ,i%; t), where iy isa
deterministic value (outcome) of the random infiltration rate i at the
kth column (k =1,...,N). The reduced complexity models presented
in Section 3 allow one to compute such multi-point PDFs.

Consider a two-point PDF, p> (i, 1; t), which describes a joint
distribution of infiltration rates i(xXt) (k=1,2) at points
x' = (x},x))" and x2 = (x2,x2)". Let Y1 «=InKy(x*) and Y5 = Ino(x*),
with the joint two-point PDF p{¥'y (Y1, Y3,:YT,,Y3,). Recalling
that (6)-(8) and (11) define the two alternative mappings
i = i(Ks, o), we compute, in analogy with (12), the two-point cumu-
lative distribution function G(z)('f iy;t) as

2 o (iF K1) (i3 Kep)
i 1 712 / / / / py] Y, (KshalstZ O‘Z)

dOC1 sz] dOCz d1<32
- 2
o1 K1 00K ( 0)
The two-point PDF of the random (uncertain) infiltration rate,
p)(it,i3; 1), is obtained as

* Kk 826
(2) (% & i
p~ 1,1 :t = . 21

N-point PDFs, p£N> with N > 2, can be computed in a similar manner.
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Table 1
Hydraulic properties of the Bet-Dagan soil [28, Table 3].

InKy(cm/min) Ino (cm™) ¢ 0; Vo (cm) Wj (cm) van Genuchten n
Mean —3.58 —3.01 0.42 0.13 1 2 1.81
Variance 0.89 0.63 - - - - -

N-point PDFs can be used both to predict (cross-) correlations of
infiltration rates at multiple locations and to assimilate infiltration
data via a straightforward Bayesian updating. We leave the latter
aspect for future investigation.

5. Results and discussion

The impact of various aspects of parametric uncertainty on the
uncertainty in predictions of infiltration rate i(t) obtained with the
Green-Ampt model was investigated in [37]. Here we carry out a
similar analysis for the infiltration-rate PDF predicted with the
Parlange model (Haverkamp solution). Specifically, we investigate
temporal evolution of the infiltration-rate PDF (Section 5.1), the
relative importance of uncertainty in K; and o (Section 5.2) and
the effects of cross-correlation between them (Section 5.3). Finally,
we compare the infiltration-rate PDFs computed with the two re-
duced complexity models and with MCS of the Richards equation
(Section 5.4).

To be concrete, we use the Bet-Dagan soil properties [28]
reported in Table 1. Unless explicitly noted otherwise, the
simulations reported below correspond to the ponding water

* ¢t =Hmin

=— ¢ =50min

o~ t=100min
=
o
&

'--......i
0.3 0.4 0.5 0.6

i* (cm/min)

Fig. 1. Temporal evolution of the infiltration-rate PDF p;(i*;t) given by (19).

100

s =Hmin
9f
: — t =50min
80
: - t =100min
70

6of

(%)

0.6 0.7 0.8 0.9

i (cm/min)

Fig. 2. Relative error, £ =100% x |p; — pi.|/p;, introduced by approximating the
infiltration-rate PDF p;(i*; t) with its lognormal counterpart py,(i*;t).

height Yo =1 cm, pressure jump ;=2 cm, and the cross-correla-
tion coefficient p = 0.

5.1. Temporal evolution of infiltration rate PDFs

Fig. 1 presents three snapshots of the temporal evolution of the
infiltration-rate PDF, py(i;t), at times t =5, 50 and 100 min. Uncer-
tainty associated with predictions of the infiltration rate under
ponded conditions (i.e., the width of p;) decreases with time. This
is because, as time increases, top soil gradually saturates and the
infiltration rate i(t) approaches an (uncertain) value of the satu-
rated hydraulic conductivity K; in accordance with (11), i.e.,
pi(i*;t) = pr(KY) as ¢ — oo,

It must be noted that at large times, the infiltration depth ex-
ceeds the vertical correlation lengths of K and «, which violates
the conditions of validity of the reduced complexity models. There-
fore, our analysis is formally limited to early infiltration times and
ought to be used to compute the infiltration-rate PDFs that are nec-
essary for probabilistic forecasting of surface runoff and flooding
where uncertainty in infiltration rate predictions is highest
(Fig. 1). Unless otherwise noted the subsequent figures correspond
to t=5 min.

14 T T T

v CVnk, =0.1
12y = CViug, =03
1woh © CVing, =05
8 - .

p;i(i*;t = 5min)

% 01 02 03 04 05 06
4* (cm/min)
10 T T T T
(b) .. v OVige = 0.1
8t — Cvlu a=03
_ o Vi =05
2 gl i
Il
£
= *
2 - 4
0 . . B |
0 0.1 0.2 0.3 04 0.5 0.6

7* (cm/min)

Fig. 3. The infiltration-rate PDF p;(i*;t = 5 min) for different levels of uncertainty in
(a) saturated hydraulic conductivity Ks and (b) the van Genuchten parameter o.
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2 T T T T T
% v p=—0.99
28

15t % o p=099 |

pi(¢*;t = 5min)

0 0.1 0.2 0.3 0.4 0.5 0.6
7* (cm/min)

Fig. 4. The infiltration-rate PDF p;(i*;t=5 min) for three degrees of correlation p
between hydraulic parameters K; and o.

The infiltration-rate PDFs exhibit long tails that superficially
resemble those of lognormal distributions. To test whether a log-
normal distribution p,,(i*;t) can be used to approximate p;(i*;t)
n (19), we compute a relative error £ = 100% x |p; — pi,|/p;- Both
distributions have the same mean and variance. Fig. 2 reveals a sig-
nificant discrepancy between the tails of the two distributions
(probabilities of rare events).

5.2. Effects of parametric uncertainty

While the proposed approach can handle uncertainty in any
number of hydraulic parameters, we focus on K and « for the rea-
sons discussed above. In this section, we investigate the relative
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importance of these two sources of parametric uncertainty. Uncer-
tainty in both InK; and In« is encapsulated in their respective coef-
ficients of variation, CVinx, = ay,/Y; and CVy,, = 0oy, /Y,. Fig. 3
demonstrates their effects on predictive uncertainty (PDF of i at
t =5 min). The curves represent p;(i*; t =5 min) for the CV of one
parameter set to 0.1, 0.3, 0.5 and the other parameter fixed at its
value in Table 1. One can see that uncertainty in K; has a more
pronounced effect on the predictive uncertainty than uncertainty
in o does. This finding is in accordance with previous observations
[8-10,37].

5.3. Effects of cross-correlation

The data reviewed in Section 2 suggest that the presence, ab-
sence, or strength of cross-correlation between saturated hydraulic
conductivity K; and the van Genuchten parameter ¢ is site-specific
rather than universal. Our reduced complexity models allow one to
investigate the role of this cross-correlation on predictive uncer-
tainty in infiltration rates i(t). Fig. 4 presents the infiltration-rate
PDFs pji(i*;t) corresponding to Ky and o that are anti-correlated
(p=-0.99), uncorrelated (p=0.0) and perfectly correlated
(p =0.99). The comparison of the three curves reveals that the per-
fect correlation between K and o significantly reduces the predic-
tive uncertainty.

5.4. Comparison with Richards’ equation

To validate our reduced complexity models, we compare their
PDF solutions with that obtained by Monte Carlo simulations
(MCS) of the two-dimensional stochastic Richards equation (1).
In these MCS, we used the geostatistical software library SGEMS
to generate N = 2000 realizations of mutually-uncorrelated random
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Fig. 5. Temporal snapshots of the infiltration-rate PDFs computed with the two reduced complexity models (Green-Ampt and Haverkamp) and Monte Carlo simulations of
the Richards equation (VS2DT). Ratios of the horizontal and vertical correlation lengths are ,/4, = 18.75 and 30.0 for InK; and Ino, respectively.
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Fig. 6. Temporal snapshots of the infiltration-rate PDFs computed with the two reduced complexity models (Green-Ampt and Haverkamp) and Monte Carlo simulations of
the Richards equation (VS2DT). Ratios of the horizontal and vertical correlation lengths are /,/4, = 4.0 and 2.5 for InK; and Ine, respectively.

fields Ky(x) and o(x) in a two-dimensional (15,000 x 200 cm) do-
main discretized into 2500 nodes. For both parameters, we used
an anisotropic exponential correlation function, with horizontal
and vertical correlation lengths A, and A, respectively. For each
realization of Ky(x) and «(x), the Richards equation was solved with
the USGS code VS2DT, and the infiltration rate i(t) was determined
at a surface midpoint. The results were used to compute the infil-
tration-rate PDF as p;(i*;t) = (NApn) 'SV, I(in € Ay s t), where
Apin is a (uniform) bin size, Ag;n is the bin containing i*, and I is
the indicator function.

The Dagan-Bresler statistical parameterization, which forms
the foundation of our reduced complexity models, requires that
Ay < Jp. This requirement was tested by setting 1,/4, = 18.75 and
30.0 for the random fields InK; and In«, respectively. Fig. 5 com-
pares the infiltration-rate PDF computed via MCS of the Richards
equation with those determined analytically from both the
Green-Ampt (Section 4.1) and Haverkamp (Section 4.2) solutions.
These analytical solutions used the same random values of K;
and o at the surface midpoint as those used in the MCS. The PDFs
computed with the two reduced complexity models are similar,
with the Haverkamp solution having a slight edge. Both agree with
the PDF resulting from the Richards equation at early times, but
this agreement deteriorates with time. This is to be expected, since
the conditions of validity of our reduced complexity models are
violated as time becomes large enough for the wetting front to tra-
vel distances larger than the vertical correlation lengths of K and o..

Fig. 6 provides a similar comparison for smaller ratios of /.
The ratios 4,//, = 4.0 and 2.5 for InK; and In« correspond to those
observed in the Bet-Dagan soil [28]. The reduced complexity mod-
els perform well at early times (t =4 min) but their accuracy dete-
riorates faster (by t = 40 min), reflecting the increased importance
of the lateral flow. At all times and for arbitrary correlation-length
ratios, the reduced complexity models provide conservative esti-
mates of predictive uncertainty.

6. Conclusions

We presented two reduced complexity models for the probabi-
listic forecasting of infiltration rates in heterogeneous soils during
surface runoff and/or flooding events. The models are based alter-
natively on the Green-Ampt or Parlange models of infiltration un-
der ponded conditions, both employing the Dagan-Bresler
statistical parameterization. These models yield closed-form
semi-analytical expressions for the infiltration-rate PDFs (proba-
bility density functions), which quantify predictive uncertainty
stemming from uncertainty in a soil’s hydraulic parameters. Our
analysis leads to the following major conclusions.

(1) The infiltration-rate PDFs developed in this analysis allow
one to evaluate probabilities of rare events, i.e., to estimate
the probability of the infiltration rate exceeding a given
value.

(2) Predictive uncertainty (the infiltration-rate PDF) is signifi-
cantly more sensitive to the coefficient of variation of satu-
rated hydraulic conductivity K; than to that of the fitting
parameters in the van Genuchten hydraulic function.

(3) The degree of cross-correlation between hydraulic parame-
ters Ks and o has great influence on predictive uncertainty.

(4) The PDFs computed with the two reduced complexity mod-
els are similar, with the Parlange model having a slight edge.

(5) At early times the PDFs obtained from both models agree
with their counterpart resulting from the Richards equation,
but this agreement deteriorates with time. The larger the
ratio of horizontal and vertical correlation lengths of soil
properties, the longer the reduced complexity models
remain valid.

(6) At all times and for arbitrary correlation-length ratios, the
reduced complexity models provide conservative estimates
of predictive uncertainty.

(7) Nonlinear dependence of the infiltration rate on soil hydrau-
lic parameters implies that the infiltration-rate PDF is in
general not lognormal even if PDFs of the soil parameters
are. Hence the nonlinear PDF mapping (14) should be used.

Reliance on the reduced complexity models of infiltration into
heterogeneous soils with uncertain hydraulic parameters offers a
number of advantages. Not only it allows one to compute single-
point PDFs of the infiltration rate, it does so exactly, without intro-
ducing linearization errors that plague most stochastic analyses of
the Richards equation. The reduced complexity models are capable
of quantifying uncertainty in any number of hydraulic parameters
and can be used with arbitrary constitutive laws (relative conduc-
tivity functions and retention curves). Finally, they make it possible
to compute multi-point PDFs of infiltration rate. The latter can be
used both to predict (cross-)correlations of infiltration rates at
multiple locations and to assimilate infiltration data via a straight-
forward Bayesian updating.

The infiltration-rate PDFs presented here correspond to ponded
conditions with constant water heights 1/o. Other infiltration re-
gimes can be handled in a similar manner by replacing (8) and
(11) with their appropriate counterparts. For example, (11) can
be replaced with the analytical solutions in [25,3] if infiltration is
driven respectively by atmospheric pressure at the soil surface
(Yo = 0) or by temporally varying ponded water height yq(t). Like-
wise, infiltration under non-ponded conditions can be handled by
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replacing (8) with appropriately modified Green-Ampt solutions,
many of which can be found in [38]. What is important is that a
properly chosen reduced complexity model provides a mapping
i=i(Ks, o).
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