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Mathematical models of advection–reaction phenomena rely on advective flow velocity 
and (bio) chemical reaction rates that are notoriously random. By using functional integral 
methods, we derive exact evolution equations for the probability density function (PDF) of 
the state variables of the advection–reaction system in the presence of random transport 
velocity and random reaction rates with rather arbitrary distributions. These PDF equations 
are solved analytically for transport with deterministic flow velocity and a linear reaction 
rate represented mathematically by a heterog eneous and strongly-correlated random field.
Our analytical solution is then used to investigate the accuracy and robustness of the 
recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that 
the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates,
is accurate even in the presence of strong correlations and it provides an upper bound of 
predictive uncertainty.

� 2013 Elsevier Inc. All rights reserved.
1. Introductio n

The mathematical modeling of realistic advection–reaction phenomena involve many random parameters. For example,
the dynamics of solute transport in an heterogeneous porous medium is significantly influenced by the epistemic uncer- 
tainty in the porosity distribution , advective (Darcy) flow velocity and (bio) chemical reaction rates [2]. These random fields
render the governing equations of the advection–reaction system stochastic. A common approach to quantifyi ng the statis- 
tical propertie s of the state variables of the system, e.g., the solute concentratio n, relies in modeling their probability density 
functions (PDFs) directly via determinist ic equations. This has advantag es over other uncertainty quantification methods,
such as polynomial chaos [3–6], probabilistic collocation [7,8], perturba tion methods [35–38], and generalized spectral 
decompositi ons [9–13]. In particular , PDF methods allow to directly ascertain the tails of probabilistic distribut ions thus 
facilitating the assessment of rare events and associated risks. This is in contrast to many other stochasti c approach es that 
use the variance (or the standard deviation) of a system variable as a measure of predictive uncertainty . Another key advan- 
tage of PDF methods is that they do not suffer from the curse of dimensionality. Moreover, they can be used to tackle several 
open problems in stochasti c dynamics such as discontinui ties in parametric space [6] and long-term integration [14,15].
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As is well known, in general it is not possible to determine an exact one-point (in space and time) PDF equation for the 
solution to an arbitrary partial different ial equation. This is due to the fact that the solution to the PDE can be nonlocal in 
space and time.1 Howeve r, a functional differential equation for the Hopf characte ristic function al can always be determined 
[17–19], although effective analytic al or numerical methods to solve it are still lacking. Moreover, the Hopf functional equation 
is equivalent to an infinite hierarchy of equations involving multi-poi nt PDFs of increasing order [20–23].

First-order stochastic partial different ial equations (SPDEs), such as the advection–reaction equation, are often amenable 
to exact treatment with PDF methods [1,24–26]. The main reason is that these equations can be reduced to a finite set of 
ordinary differential equations along the characterist ic curves. This enables one to obtain an exact evolution equation for 
the joint PDF of the state variables and the external random fields appearing in the SPDE. In general, these random fields
are high-dimens ional, e.g., represented in terms of many random variables in a Karhunen –Loève expansion, and therefore 
the corresponding exact equation for the joint PDF is high-dim ensional as well [27,26]. From a computational viewpoint this 
could be an issue despite the recent advances in numerical methods for high-dimens ional problems such as proper general- 
ized decompositi on [28–30], sparse grid collocation [31,7] or functional ANOVA techniques [32–34].

A closure approximat ion can significantly reduce the number of parameters appearing in the PDF equation and therefore 
it can provide an effective computational tool that allows for an efficient integration. In particular, the large-eddy diffusivity 
(LED) closure for advection–reaction equations [1] has been shown to be effective for uncorrelated and weakly correlated 
random reaction rates. However, the performance of the LED-based PDF equation s for strongly correlated reaction rates re- 
mains unexplored. Its investigation is the main objective of the present study. To this end, we consider the prototype prob- 
lem proposed in [1] and obtain analytical solutions to the PDF equation for two different random reaction models. The 
analytical solutions will be employed as useful benchma rk to test the accuracy and effectivenes s of the LED closure.

This paper is organized as follows. In Section 2 we formulat e the governing equation s of advective- reactive transport in 
porous media and obtain an evolution law for the correspondi ng indicator function ([39, Ch. 3] ). Section 2.2 presents the 
LED-based PDF equation for random advection–reaction transport. The exact evolution equation for the joint response- exci- 
tation PDF of the advection–reaction system is derived and discussed in Section 2.3. In Section 3 and Section 4 we compare 
the LED approximat ion with exact analytica l results for a prototype advection–reaction problem involving linear reactions 
and strongly correlated random reaction rates. Finally, the main findings and their implication s are summarized in Section 5.
We also include two brief appendices, where we obtain analytica l solutions to the equation for the joint response- excitation 
PDF and the advection–reaction equation in physical space.
2. Problem formulation 

Let us consider the dimensio nless form of the advection–reaction equation for a scalar concentr ation field cðx; tÞ
1 Per
case we

where
propert
all spat

2 We
rescalin
stochas

3 It is
differen
@c
@t
¼ �r � ðucÞ þ DafjðcÞ; f jðcÞ ¼ �ajðca � 1Þ; ð1Þ
where uðxÞ is the dimensionless advective velocity; jðxÞ and a are the dimensionless reaction rate and the stoichiometric 
coefficient, respectively ; and Da is the dimensio nless Damköhler number.2 The source function fjðcÞ provides a macro scopic 
(continuum-scale) representa tion of a heterogeneous precipitat ion/dissolution reaction.3 Eq. (1) is subject to suitable boundary 
conditions and the initial condit ion 
cðx;0Þ ¼ C0ðxÞ; ð2Þ
where C0ðxÞ denotes the initial concentratio n.
Spatial heteroge neity and data scarcity render both advective velocity uðxÞ and reaction rate jðxÞ uncertain. To quantify 

the impact of this parametri c uncertainty on predictions of concentration cðx; tÞ, we treat these quantities as random fields,
i.e., we consider uðx;xÞ and jðx;xÞ, with x indicating an element of the sample space in a suitable probability space. Addi- 
tionally, we account for uncertainty in the initial concentratio n, i.e. we consider C0ðx;xÞ. Available data or expert opinion 
(see, e.g., [24,25,1]) can be used to statistically characteri ze the random reaction rate jðx;xÞ; in this paper we will discuss 
two different models defined in terms of chi-squared and uniform random variables (see Section 3.1). Statistics of the 
haps one of the simple st example is the solution to heat equation in a one-dimensional unbounded spatial doma in for a random initial condition. In this 
 have the random field [16]

hðx; t;xÞ ¼
Z 1

�1
Gðx; x0 jt;0Þh0ðx0; xÞdx0

G denotes the Green function of the one-dimensional heat equation and h0ðx;xÞ is the random initial temperature condition. Clearly, the statistical 
ies at location x and time t þ dt are influenced by the joint probability functional of hðx; t; xÞ at time t, i.e. the joint probability density of hðx; t; xÞ at
ial points. Thus, no closed one-point (in space and time) PDF equation exists for the solution to the heat equation.
 recall that Da ¼def DrjCa�1

eq =V , where D denotes the reference length, V the reference velocity, Ceq the deterministic equilibrium concentra tion, rj a scalar 
g factor for the reaction rate j and a the stoichio metric coefficient. The quantity rj can be, e.g., the mean reaction rate if this is a uniform (in space)
tic process.
 worthwhile emphasizing that the method ology described in this paper is also applicable to other types of chemical reactions, defined in terms of 
t fjðcÞ.
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macroscopic flow velocity uðx; xÞ, including its spatially varying mean huðx;xÞi and correlation huiðx;xÞujðy;xÞi
(i; j ¼ 1;2;3), can be determined by solving the flow equations with random hydraulic conductivi ty or random initial and 
boundary condition s (e.g., [40,41]).

2.1. Equations for the indicator function 

Let us consider the function 
Pða; x; t;xÞ � d a� cðx; t;xÞð Þ; ð3Þ
where dð�Þ is the Dirac delta and a is a determini stic value that the random concentration c can take at a space-tim e point 
ðx; tÞ. The ensemble average (over random c) of P is the one-poin t (in space and time) PDF of the concentr ation cðx; t;xÞ,
pðaÞcðx;tÞ ¼
defhPða; x; t;xÞi: ð4Þ
By using elementary properties of the Dirac delta function [42], it is easy to show that Pða; x; t;xÞ satisfies a linear advection 
equation (see [39, Ch. 3] )
@P
@t
þr � ðuPÞ ¼ �Da

@ fjðaÞP½ �
@a

: ð5Þ
Following [1], we introduce a four-dim ensional space with coordinates ~x ¼ ðx1; x2; x3; x4 � aÞ, in which the gradient operator 
and the velocity field are defined as 
~r ¼def @

@x1
;
@

@x2
;
@

@x3
;
@

@x4
� @

@a

� �
; ~u ¼defðu1;u2;u3;u4 � DafjðaÞÞ: ð6Þ
This allows us to rewrite (5) in the compact form 
@P
@t
þ ~r � ð~uPÞ ¼ 0: ð7Þ
Stochastic averaging of this equation yields a one-poin t PDF equation 
@pðaÞcðx;tÞ

@t
¼ � ~r � h~uipðaÞcðx;tÞ

h i
� ~r � h~u0Pi; ð8Þ
where the prime denotes the fluctuating part of the Reynolds decompositi on of ~u. The cross-correlati on term h~u0Pi in (8)
requires a closure approximat ion. Over the years, and in different contexts, many closures (e.g., [43–45]) have been proposed 
in order to express h~u0Pi in terms of the one-poin t PDF pðaÞcðx;tÞ. One of these methods is described below.

2.2. Large-eddy diffusivity (LED) approxim ation 

The Large-ed dy diffusivit y (LED) approximation [1] is a phenomeno logical closure that allows one to replace the PDF Eq.
(8) with a Fokker–Planck type equation 
@pðaÞcðx;tÞ

@t
¼ �

@ Uip
ðaÞ
cðx;tÞ

h i
@~xi

þ @

@~xj
Dij

@pðaÞcðx;tÞ

@~xi

" #
; i; j ¼ 1; . . . ;4: ð9Þ
The ‘‘effective diffusivity’’ Dij and the ‘‘effective velocity’’ U are defined as 
Dijð~x; tÞ¼
def
Z t

0

Z
~X
h~u0ið~xÞ~u0jð~yÞGð~x; ~y; t � sÞid~yds; i; j ¼ 1; . . . ;4; ð10Þ

Uð~x; tÞ¼defh~ui � Da
Z t

0

Z
~X
h~u0ð~xÞ @f 0jð~yÞ

@y4
Gð~x; ~y; t � sÞid~yds; ð11Þ
where ~u0jð~yÞ denotes the velocity fluctuation arising from the Reynolds decomposition of the four-dimension al random veloc- 
ity as ~u ¼ h~ui þ ~u0, and G is the random Green function associated with (7). The latter is defined as a solution of 
@G
@s
þ ~u � ~rG ¼ �dð~x� ~yÞdðt � sÞ; ð12Þ
subject to the appropriate homogeneous initial and boundary condition s. To render the diffusion tensor (10) and effective 
velocity (11) computable, we approximat e the third-mome nts in their integrands as follows 
Dijð~x; tÞ ’
Z t

0

Z
~X
h~u0ið~xÞ~u0jð~yÞiGð~x; ~y; t � sÞd~yds; ð13Þ
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Uð~x; tÞ ’ h~ui � Da
Z t

0

Z
~X
h~u0ð~xÞj0ð~yÞi @faðy4Þ

@y4
Gð~x; ~y; t � sÞd~yds: ð14Þ
Here faðy4Þ ¼
def�aðya

4 � 1Þ and G is a deterministic Green function defined as a solution to the deterministic advection 
equation
@G
@s
þ h~ui � ~rG ¼ �dð~x� ~yÞdðt � sÞ: ð15Þ
This approximation has been shown to be effective if pðaÞcðx;tÞ varies slowly in time and space relatively to ~u.

2.3. Exact joint PDF equation 

Let us assume that the random coefficients jðx;xÞ and uðx;xÞ can be represented, with a given degree of accuracy, with 
finite series 
jðx; xÞ ¼
XN

j¼1

vjðxÞ/jðxÞ; uðx;xÞ ¼
XM

j¼1

gjðxÞujðxÞ; ð16Þ
where vðxÞ ¼ fv1; . . . ;vNg and gðxÞ ¼ fg1; . . . ;gMg are two sets of random variables with known joint probabili ty density 
function. Then, in analogy with (4), the joint PDF of the concentration field cðx; t;xÞ and the random vectors vðxÞ and
gðxÞ can be expressed as (e.g., [20])
pða;b;zÞcðx;tÞvg ¼ hdða� cðx; t;xÞÞ
YN

j¼1

dðbj � vjðxÞÞ
YM
k¼1

dðzk � gkðxÞÞi; ð17Þ
where the elements of sets b ¼ fb1; . . . ; bNg and z ¼ fz1; . . . ; zMg represent determinist ic values that the corresponding ran- 
dom elements of the sets vðxÞ and gðxÞ can take on, and the stochastic average is with respect to the joint probabili ty func- 
tional of the variables vðxÞ and gðxÞ and all the other input processes such as random boundary and initial conditions.
Differentiat ing (17) with respect to time t and making use of (1) yields
@P
@t
¼ � @

@a
hdða� cÞ @c

@t

YN
j¼1

dðbj � vjÞ
YM
k¼1

dðzk � gkÞi

¼ � @

@a
hdða� cÞ �r � ðucÞ þ DafjðcÞ½ � @c

@t

YN
j¼1

dðbj � vjÞ
YM
k¼1

dðzk � gkÞi; ð18Þ
where P is a shorthand notation for the multi-dimensi onal joint PDF (17). Substituti ng (16) into (18), we find that P satisfies a
linear advection equation in the variables (t; x; a) with ðN þMÞ parameters,
@P
@t
¼ @

@a
aP 
XM

j¼1

zjr �uj

 !
�rP �

XM

j¼1

zjuj

 !
� Da

@

@a
aa � 1ð ÞP

XN

j¼1

bj/j

 !
: ð19Þ
The one-point PDF of the concentr ation c is obtained by marginalizin g P with respect to all the parameters b and z,
pðaÞcðx;tÞ ¼
Z 1

�1
� � �
Z 1

�1
pða;b;zÞcðx;tÞvgdb1 . . . dbNdz1 . . . dzM : ð20Þ
The correspondi ng (integro-differential) evolution equation for pðaÞcðx;tÞ can be obtained by integrating (19) with respect to 
the variables b and z.

The following points are worthwh ile emphasizing. First, apart from the decompo sition of the random coefficients u and j
into the finite-term series (16), the evolution equation for the joint PDF (19) is exact, i.e, it requires no closure approxima- 
tions. Second, the parametric space of the joint PDF (19) is significantly higher than that of the LED-base d PDF Eq. (9). Third,
the sequence of steps leading to the PDF Eqs. (9) and (19) can be applied to quantify parametric uncertainty in more general 
nonlinear first-order PDEs of the form @c=@t þ Pðc; t; x;vÞ � rxc ¼ Qðc; t; x;gÞ [26,46].

3. Comparison between LED-based and exact PDF equations 

To elucidate the salient features of the two approaches to derivation of PDF equations, we consider a one-dimensi onal 
advection-r eaction Eq. (1) with a linear reaction term (a ¼ 1). Mass conservation requires the dimensionless advection veloc- 
ity u to be constant and deterministic (e.g., [1], §4). Without loss of generality, we set u ¼ 1 so that the reaction rate jðxÞ is
the only source of uncertainty. Under these conditions, (1) reduces to 
@c
@t
¼ � @c

@x
� Da jðx;xÞ c � 1ð Þ x 2 ½0; L�: ð21Þ
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We supplement (21) with the following boundary and initial condition s
4 The
they inc
formula
cð0; t; xÞ ¼ 0; cðx; 0;xÞ ¼ 0: ð22Þ
To ensure the well-posednes s of the initial-bound ary value problem (21), (22), the characteri stic curves [47] of (21) arising
from the initial-bo undary data should not intersect each others. In other words, the characterist ic curves originating from 
t ¼ 0 should not intersect the ones from x ¼ 0 (see Section 3.4 for more details).

3.1. Modeling of the random reaction rate 

The previous analyzes (e.g., [24,25]) treated the random reaction rate jðx;xÞ as a statistically homogeneous multi-variat e
log-normal field. In this paper we will employ two alternative statistical models of jðx;xÞ, both of which are described 
below.

3.1.1. Reaction rate model based on chi-squared random variables 
Let us represent the random reaction rate jðx;xÞ on the one-dimensi onal interval ½0; L� with a finite-term series 
jðx; xÞ ¼
XN

j¼1

vjðxÞ/jðxÞ; x 2 ½0; L�: ð23Þ
The modes /kðxÞ and the random variables vkðxÞ have to be selected in a way that ensures that jðx;xÞ remains positive with 
probability one. We achieve this requiremen t by taking vkðxÞ to be independent chi-squared random variables. This yields a
random reaction rate whose one-point distribution function can be represented in terms of an infinite series of incomplete 
gamma integrals [48] or other series involving normal variables [49–52]. Among several possible choices, we consider the 
representat ion given by an infinite linear combination of chi-squa red distribution functions with an arbitrary scale param- 
eter b > 0 (e.g., Theorem 2 in [49], or §6 in [50]). Let us denote the distribut ion function of jðx;xÞ by
PðaÞjðxÞ ¼
defPr

XN

j¼1

vjðxÞ/jðxÞ 6 a

" #
: ð24Þ
For all x such that /jðxÞ– 0 (j ¼ 1; . . . ;N),4 the (central) chi-squa red distributi on function with N degrees of freedom is given by 
PðaÞjðxÞ ¼
X1
j¼0

cjðxÞFNþ2j
a
b

� �
; FnðaÞ ¼

1

2n=2Cðn=2Þ

Z a

0
e�y=2yn=2�1dy; ð25Þ
where the coefficients cjðxÞ satisfy the recursion relationship 
cjðxÞ ¼
1
2j

Xj�1

r¼0

gj�rðxÞcrðxÞ; c0 ¼
YN
i¼1

b
/iðxÞ

� �1=2

; gmðxÞ ¼
XN

i¼1

1� b
/iðxÞ

� �m

: ð26Þ
The series (25) converge s uniformly in every finite interval of a [49]. Different iating the distribution function (25) with re- 
spect to a, we obtain the one-poin t PDF of the random reaction rate (23),
pðaÞjðxÞ ¼
1
b

X1
j¼0

cjðxÞqNþ2j
a
b

� �
; where qnðsÞ ¼

e�s=2sn=2�1

2n=2Cðn=2Þ
: ð27Þ
The correlation structure of the random field (23) is obtained as 
hjðx;xÞjðy; xÞi ¼ 3
XN

i¼1

/iðxÞ/iðyÞ þ
XN

i;j¼1
i–j

/iðxÞ/jðyÞ; ð28Þ
while the covariance function is 
Cjðx; yÞ¼defhjðx; xÞjðy; xÞi � hjðx;xÞihjðy;xÞi ¼ 2
XN

i¼1

/iðxÞ/iðyÞ: ð29Þ
Among many possible choices of the bases functions /jðxÞ, in this paper we consider 
/jðxÞ ¼
1
kj

sin
j
L

x
� �2

; k > 1: ð30Þ
 results prese nted in [49] are valid in the more general case of arbitrar y non-negative quadratic forms of standard Gaussian variables. This means that 
lude also the cases where some of the /i in (23) are zero. In this circumstance we can simply remove those terms from the series (23) and then apply 
 (25).
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The correspondi ng random samples of jðx;xÞ and its covariance are shown in Fig. 1 for several k. Note that the random reac- 
tion rate is positive with probability 1 (as it should be), and at x ¼ 0 it is always zero by construction. Fig. 2 exhibits the rel- 
ative L1 norm of each term in the series expansion (23). This quantity is defined as 
Fig. 1.
(30)).
lk¼
def ekX

j

ej

; ek¼
def
Z L

0
j/kðxÞjdx: ð31Þ
It represents the relative contribution of each term in the representation of the random field jðx;xÞ as a function of the 
parameter k. Substituting 30 into (31) yields
ek ¼
2k� sinð2kÞ

4kkk=L
: ð32Þ
Let
N ¼max
k

lk

� �
P s ð33Þ
define the dimensionality of the random field jðx;xÞ, i.e., the number of random variables in the series (23) that is required 
to reach a certain threshold s. The table in Fig. 2 shows how the dimensio nality N increases with the decreasing values of k,
Covariance function (28) (left column) and random samples of the reaction rate (23) (right column) for different values of the parameter k (see Eq.



Fig. 3. (a) One-point probability density function (27) of the random reaction rate jðx;xÞ for k ¼ 1:5. (b) Mean and standard deviation of jðx;xÞ.

Fig. 2. Relative L1 norm (31) of each term in the series representation of the random reaction rate (23). Shown are results for different k (see Eq. (30)). The 
dimensionality of the random reaction rate, i.e., number of random variables in Eq. (23), is shown in the table for a threshold set at s ¼ 0:05%.
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for the threshold s ¼ 0:05%. Fig. 3 provides an example of the one-poin t PDF (27), the mean, and standard deviation of 
jðx;xÞ correspondi ng to k ¼ 1:5.

3.1.2. Reaction rate model based on uniform random variables 
The second finite-series representat ion the random reaction rate jðx;xÞ is based on a truncated Karhunen –Loève

expansion
5 Not
jðx; xÞ ¼ K þ
ffiffiffi
3
p

rjffiffiffiffiffi
2‘
p

XN

j¼1

ffiffiffiffi
hj

p
fjðxÞgjðxÞ; ð34Þ
where K is a positive constant , and fjðxÞ are zero-mean independen t uniform random variables in ½�1;1�. The quantities hj

and gjðxÞ denote, respectively , the eigenvalues and the eigenfunctions of the exponential covariance function 
Cjðx; yÞ ¼
r2

j
2‘

e�jx�yj=‘; ð35Þ
where ‘ is the correlation length.5 The factor 
ffiffiffi
3
p

on the right-hand- side of (34) reflects the choice of hf2
j i ¼ 1=3 and ensures that 

(34) and (35) are consistent. The eigenvalues hj and eigenfunc tions gjðxÞ of the exponential correlat ion function (35) are given by 
(e.g., [53])
hj ¼
2‘

‘2z2
j þ 1

; gjðxÞ ¼
zj‘

Aj
cosðzjxÞ þ

1
Aj

sinðzjxÞ; ð36Þ
where zj are zeros of the transcendental equation 
z2
i �

1
‘2

� �
tanðziLÞ � 2

zi

‘
¼ 0 ð37Þ
and
e that Cjðx; yÞ is an eleme nt of a delta sequence that converges to r2
jdðx � yÞ as ‘! 0.
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Aj ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

1þ z2
j ‘

2

2
þ

z2
j ‘

2 � 1
4zj

sinð2zjLÞ þ ‘
1� cosð2zjLÞ

2

s
: ð38Þ
In analogy with the previous section, we define the relative spectrum Hj and the dimensional ity N of the Karhunen–Loève 
expansion (34) for a given threshold level s as
Hj ¼
hjX

k

hk

; N ¼max
i
½Hi� > s: ð39Þ
Fig. 4 shows Hj and N for s ¼ 0:05% and different correlation lengths ‘. For each correlation length ‘, the constant K in (34)
can be selected to ensure that jðx;xÞ is positive with probability one (Fig. 5). The lower bound of K

ffiffiffiffiffi
2‘
p

=ð
ffiffiffi
3
p

rjÞ in Fig. 5 is
valid for uniform variables in ½�1;1�. It is obtained numerica lly by first sampling (34) and then computing the minimum over 
all the realizations. For other types of random variables the bounds in Fig. 5 are different .
Several realization of the random reaction rate for different correlation lengths and perturbation amplitude rj

ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25
are shown in Fig. 6. The value of K in (34) is selected in order to satisfy the positivity condition. The one-point PDF of the Karh- 
unen–Loève series (34) with uniformly distributed fi has a nontrivial mathemati cal expression [54,55]; it is plotted in Fig. 7 for
different correlation lengths ‘. Note that as ‘! 0 (i.e. for N !1), the PDF becomes Gaussian, in agreement with the central 
limit theorem. In other words, the random reaction rate (34) becomes Gaussian white noise as ‘! 0.

3.2. Exact joint PDF equation 

The joint PDF equation for the random concentration cðx; t;xÞwhose dynamics is governed by (21) with random reaction 
rate (23) is (see Section 2.3)
@P
@t
¼ � @P

@x
� Da

@½ð1� aÞP�
@a

XN

i¼1

/iðxÞbi; ð40Þ
Spectral decay of the Karhunen–Loève expansion (34) as a function of the correlation length ‘. The covariance of the random reaction rate is assumed 
xponential. The table on the right shows the number of expansion terms in (34) for L ¼ 200 and an energy threshold set at s ¼ 0:05%.

(a) Lowest values of the constant K
ffiffiffiffiffi
2‘
p

=ð
ffiffiffi
3
p

rjÞ for which the exponentially correlated random reaction rate (34) is positive with probability one. (b)
s figure (a) but here we show rj

ffiffiffi
3
p

=ðK
ffiffiffiffiffi
2‘
p
Þ versus ‘. These plots are valid when the random variables fkðxÞ appearing in (34) are uniform in ½�1;1�

ependent to each other.



Fig. 6. Samples of the exponentially correlated random reaction rate (34) for K ¼ 0:75 and rj
ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25. We show results corresponding to different 
correlation lengths. Note that with this choice of parameters the the positivity condition of Fig. 5 is satisfied for all ‘ > 1 since K

ffiffiffiffiffi
2‘
p

=ð
ffiffiffi
3
p

rjÞ ¼ 3.

Fig. 7. One-point PDF of the random reaction rate (34) for rj
ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25, K ¼ 0:75, and different correlation lengths ‘.
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where P is a shorthand notation for 
6 Som
parame

and the

Once th
pða;bÞcðx;tÞv ¼ hdða� cðx; t;xÞÞ
YN

k¼1

dðbk � vkðxÞÞi: ð41Þ
Integration of (40) with respect to b ¼ fb1; . . . ; bNg yields an evolution equation for the one-point PDF of the random concen- 
tration field,
@pðaÞcðx;tÞ

@t
¼ �

@pðaÞcðx;tÞ

@x
� Da

@

@a
ð1� aÞ

XN

i¼1

/iðxÞ
Z 1

�1
bip

ða;biÞ
cðx;tÞvi

dbi

" #
: ð42Þ
This equation remains unclosed since the dynamics of the one-point PDF pðaÞcðx;tÞ depends on N joint PDFs pða;biÞ
cðx;tÞvi

. Auxiliary con- 
ditions for the joint PDF Eq. (40) are derived from the initial and boundary condition s (22). Taking the determinist ic concen- 
tration outside the averaging operator in the definition (41), we obtain the boundary and initial conditions 6
pða;bÞcð0;tÞv ¼ dða� 0ÞpðbÞv ; pða;bÞcðx;0Þv ¼ dða� 0ÞpðbÞv : ð45Þ
Assignme nt of boundary conditions with respect to a is nontrivia l. If the joint PDF pða;bÞcðx;tÞv were defined on the interval 
�1 < a <1, then a natural boundary condition to use would be pð�1;bÞcðx;tÞv ¼ 0. However , it follows from the problem formu- 
lation (21), (22) that cðx; t;xÞ 2 ½0;1� with probability 1. This, in turn, implies that both the joint PDF Eq. (40) and its single- 
point counterpart (42) are defined on the compact support a 2 ½0;1� for which PDF boundary conditions are not clearly de- 
fined. In the following section, we remove this ambiguit y by reformulating the problem in terms of cumulative density 
etimes it may not be convenient to have a Dirac delta function at the boundary or at the initial condition of a PDE. In these circumstances one can first
trize such conditions by using, e.g., an element of a delta sequence ([42, p. 58] ) D�ðaÞ, e.g.,

D�ðaÞ ¼
1

Cðq=2Þ2q=2�
a
�

� �q=2
e�a=ð2�Þ ðq 2 NÞ; lim

�!0
D�ðaÞ ¼ dðaÞ; ð43Þ

n compute the solution to the PDF equation corresponding to the regularized boundary and initial conditions 

p̂ða;b1 ;���;bN Þ
cð0;tÞv1 ���vN

¼ D�ðaÞpðb1 ;���;bN Þ
v1 ���vN

; p̂ða;b1 ;���;bN Þ
cðx;0Þv1 ���vN

¼ D�ðaÞpðb1 ;���;bN Þ
v1 ���vN

: ð44Þ

e solution to the regularized problem is available, then we set �! 0 to obtain the desired solution.
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functions instead of PDFs. In appendix A, we use the method of characterist ics (e.g., [47]) to analytically solve the joint PDF 
Eq. (40) subject to the auxiliary conditions (45).

3.3. LED-based PDF equation 

For the problem under consideration, the general PDF Eq. (9) reduces to 
@pðaÞcðx;tÞ

@t
¼ �

@pðaÞcðx;tÞ

@x
�
@ U4pðaÞcðx;tÞ

h i
@a

þ @

@a
D44

@pðaÞcðx;tÞ

@a

" #
; ð46Þ
where the diffusion coefficient and the effective velocity are given by [1]
D44ðx; a; tÞ ¼ Da2ða� 1Þ2
R t

0 Cjðx; x� bÞe2bDadb t 6 TðaÞR T
0 Cjðx; x� bÞe2bDadb t > TðaÞ

(
ð47Þ
and
U4ðx; a; tÞ ¼ hjðx;xÞiDað1� aÞ � Da2ða� 1Þ
R t

0 Cjðx; x� bÞebDadb t 6 TðaÞR T
0 Cjðx; x� bÞebDadb t > TðaÞ

(
; ð48Þ
with
TðaÞ ¼def 1
Da 

ln 
1

1� a

� �
: ð49Þ
Eq. (46), together with the boundary and initial conditions 
pðaÞcðx;0Þ ¼ dðaÞ; pðaÞcð0;tÞ ¼ dðaÞ; ð50Þ
can be rewritten in terms of the cumulati ve distribution function 
PðaÞcðx;tÞ ¼
Z a

0
pða

0 Þ
cðx;tÞda0: ð51Þ
The result is 
@PðaÞcðx;tÞ

@t
¼ �

@PðaÞcðx;tÞ

@x
� U4ðx; a; tÞ

@PðaÞcðx;tÞ

@a
þ D44ðx; a; tÞ

@2PðaÞcðx;tÞ

@a2 þ Jðx; a; tÞja¼0; ð52Þ
where
Jðx; a; tÞ ¼def U4ðx; a; tÞ
@PðaÞcðx;tÞ

@a
� D44ðx; a; tÞ

@2PðaÞcðx;tÞ

@a2 ð53Þ
denotes the probability current . Eq. (52) is second-order in a and first-order in x and t. Therefore, it requires two additional 
conditions in a, namely,
Pð0Þcðx;tÞ ¼ 0; Pð1Þcðx;tÞ ¼ 1; ð54Þ
one condition in x
PðaÞcð0;tÞ ¼ 1 ð55Þ
and the initial condition 
PðaÞcðx;0Þ ¼ 1: ð56Þ
Both the effective velocity and the diffusion tensor decrease as the Damköhler number Da becomes smaller. In the limit 
Da! 0;U4 ! 0 and D44 ! 0. In this limit, the LED-based PDF Eq. (46) self-consistentl y reduces to pure linear advection.

3.3.1. Coefficients for the chi-squared reaction rate model 
For the covariance function in (29),
Z t

0
Cjðx; x� bÞembDadb ¼ 2

XN

i¼1

/iðxÞ
Z t

0
/iðx� bÞembDadb; ð57Þ
where m ¼ 2 or m ¼ 1 in (47) or (48), respectively. For the bases functions /iðxÞ in (30), the integral on the right-han d-side 
becomes



Fig. 8.
correlat
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Z t

0
/kðzÞembDadb ¼ Uðb ¼ t; zÞ �Uðb ¼ 0; zÞ; ð58Þ
where
Uðb; zÞ ¼def DaL2membDa

2kkð4k2 þ Da2L2m2Þ
1� cos

2kz 
L

� �
þ 4k2

Da2L2m2
þ 2k

DaLm
sin

2kz 
L

� �" #
: ð59Þ
Substituti ng (57)–(59) into (47) and (48) yields closed-for m analytical expressions for D44 and U4, respectively . Accounting 
for (23), the mean reaction rate in (48) is
hjðx;xÞi ¼
XN

j¼1

/jðxÞ: ð60Þ
In contrast to their counterparts in [1], our expressions for the mean reaction rate, the diffusion coefficient D44 and the effec- 
tive velocity U4 vary in x. This is due to the fact that the covariance function Cjðx; yÞ we have considered is not homogeneous .

3.3.2. Coefficients for the uniform reaction rate model 
Substituti ng (35) into (47) and (48) yields
D44ða; tÞ ¼
r2

jDa2ða� 1Þ2

2ð2Da‘� 1Þ
eð2Da‘�1Þt=‘ � 1 t 6 TðaÞ
eð2Da‘�1ÞT=‘ � 1 t > TðaÞ

(
ð61Þ
and
U4ða; tÞ ¼ Dað1� aÞK � r2
jDa2ða� 1Þ
2ðDa‘� 1Þ

eðDa‘�1Þt=‘ � 1 t 6 TðaÞ
eðDa‘�1ÞT=‘ � 1 t > TðaÞ

(
ð62Þ
where TðaÞ is defined in (49). The following limiting values are of interest,
D44ð0; tÞ ¼ 0; D44ð1; tÞ ¼ 0; U4ð0; tÞ ¼ KDa; U4ð1; tÞ ¼ 0: ð63Þ
Fig. 8 exhibits the dispersion coefficient D44 and effective velocity U4 for different ‘.
As the correlation length increases (‘!1), D44 ! 0 and u4 ! Dað1� aÞK. In this regime, the LED-base d PDF equation 

(46) reduces to a first-order advection equation 
@pðaÞcðx;tÞ

@t
¼ �

@pðaÞcðx;tÞ

@x
� DaK

@ ð1� aÞpðaÞcðx;tÞ

h i
@a

: ð64Þ
This equation can also be derived directly from (21) by noting that in the limit of ‘!1 the random reaction rate (34) be-
comes determini stic and equal to K. Then applying the PDF methods described in Section 2.1 directly to (21) leads to (64)
without any closure approximat ion. This provides a demonstration of self-consiste ncy and exactness of the LED-based clo- 
sure, at least in the limit of ‘!1.

3.3.3. Coefficients for the uncorrelated reaction rate model 
The exponential covariance (35) is an element of a delta sequence, i.e. it converge s to r2

jdðx� yÞ as ‘! 0. This suggests 
that the coefficients for a delta-correl ated random reaction rate jðx;xÞ can be obtained by taking the limit of (61), (62) as
‘! 0. Since 
Effective diffusivity (61) and effective velocity (62) for the exponentially correlated random reaction model. Shown are results at t ¼ 1 for different 
ion lengths and Da ¼ 0:5;rj ¼ 1;K ¼ 2.



Fig. 9.
Da ¼ 0:
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lim
‘!0

eðJ‘�1ÞR=‘ � 1
ðJ‘� 1Þ ¼ 1 8R – 0 and 8J – 1=‘; ð65Þ
this limit yields (for a – 0)
Cjðx; yÞ ¼ r2
jdðx� yÞ; D44ðaÞ ¼

Da2r2
j

2
1� að Þ2; U4ðaÞ ¼ Da K þ Dar2

j
2

� �
1� að Þ: ð66Þ
It has been shown in [1] that with these coefficients the LED approximat ion coincides exactly with Fokker–Planck equation 
of the system (see also [24]). Note that if R! 0 in (65), i.e. if a! 0 (see Eqs. (61)), then the limit has to modified. A straight- 
forward analysis indeed shows that D44ð0Þ ¼ 0 and U4ð0Þ ¼ DaK. The plots of D44 and U4ð0Þ ¼ DaK for very small ‘ are shown 
in Fig. 9.

3.4. Analytical solutions for the PDF of the concentratio n field

In addition to solving the PDF equations introduced above, we derive a single-point PDF of the state variable cðx; t;xÞ by
solving the initial-bound ary value problem (21), (22) and then using this solution to relate its PDF to the joint PDF of the 
input parameters.

3.4.1. Chi-squared reaction rate model 
We show in appendix B that a solution of (21), (22) with the reaction rate jðx;xÞ parametri zed by (23) has the form 
cðx; t;xÞ ¼ 1� e�DaQðx;t;xÞ x P t

e�DaQðx;x;xÞ x 6 t

(
; Qðx; t; xÞ ¼def XN

k¼1

vkðxÞhkðx; tÞ ð67Þ
where
hkðx; tÞ ¼
def t

2kk
� sinð2kx=LÞ � sin½2kðx� tÞ=L�

4kkk=L
: ð68Þ
One can show that Qðx; t;xÞP 0 for all ðx; tÞ, so that the random concentr ation cðx; t; xÞ 2 ½0;1� with probability one. The 
exponents of the product vkðxÞt in the analytica l solution (67) suggests that a direct numerical simulation of the initial- 
boundary value problem (21), (22) using polynomi al chaos or probabili stic collocatio n is likely to loose accuracy in time. This 
is known to yield a long-term integration problem for polynomi al chaos methods [14,15]. Since Qðx; t; xÞ is a linear combi- 
nation of chi-squared random variables, its PDF is 
pðaÞQðx;tÞ ¼
1
b

X1
j¼0

djðxÞqNþ2j
a
b

� �
; ð69Þ
where b is an arbitrary positive parameter, qNþ2jða=bÞ is given by (27), and djðxÞ satisfy the recurren ce relation (27) with /iðxÞ
replaced by hiðx; tÞ. Thus, the exact one-point PDF of cðx; t;xÞ is given by ([56, p. 93] )
pðaÞcðx;tÞ ¼
1

Da ð1� aÞ

pð� lnð1�aÞ=DaÞ
Qðx;tÞ x P t

pð� lnð1�aÞ=DaÞ
Qðx;xÞ x 6 t

8><
>: a 2 ½0;1�: ð70Þ
This solution is analogous to the PDF solution given by Eqs. (12)–(23) in [24], which treated the random reactive rate exactly,
without resorting to the expansion (23). Fig. 10 exhibits several time snapshots of the single-point PDF in (70) for Da ¼ 1 and 
k ¼ 1:5.
Effective diffusivity (61) and effective velocity (62) for the exponentially correlated random reaction model. Shown are results at t ¼ 1 for 
5;rj ¼ 1;K ¼ 2 and very small correlation lengths.



Fig. 10. Time-snapshots of the exact one-point PDF of the random concentration field (70) arising in linear reactions (a ¼ 1) for Damköhler number Da ¼ 1
and the chi-squared distributed random reaction rate jðx; xÞ with k ¼ 1:5 (see §3.1).
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3.4.2. Uniform reaction rate model 
We show in appendix B that a solution of (21), (22) with the reaction rate jðx;xÞ parametrized by (34) has the form 
cðx; t;xÞ ¼ 1� e�DaQðx;t;xÞ x P t

e�DaQðx;x;xÞ x 6 t

(
; Qðx; t; xÞ¼defKt þ

ffiffiffi
3
p

rjffiffiffiffiffi
2‘
p

XN

k¼1

fkðxÞdkðx; tÞ ð71Þ
where
dkðx; tÞ ¼
def ‘

ffiffiffiffiffi
hk
p

Ak
sinðzkxÞ � sin½zkðx� tÞ� � cosðzkxÞ � cos½zkðx� tÞ�

‘zk

� �
: ð72Þ
The procedure followed in the previous section to obtain the exact one-poin t PDF of the concentr ation field can be repeated 
for uniform random reaction rates. However, as we have anticipat ed in Section 3.1.2, the exact formula for the PDF of a
superimposi tion of uniform independen t random variables is rather involved (e.g., [55,54]). Instead, we consider a non-para- 
metric estimate of the concentratio n PDF based on the analytica l solution (71). Fig. 11 exhibits four time snapshots of the 
resulting PDF at x ¼ 25 for rj

ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25;K ¼ 0:75 and different correlation lengths. The cases ‘ ¼ 300; ‘ ¼ 50 and 
‘ ¼ 1 are rather similar to each others. However, the random paths of the solution field cðx; t;xÞ are complete ly different 
for different ‘, as shown in Fig. 12 .

According to the central limit theorem, for ‘! 0 the exponent in (71) is Gaussian for each fixed x and t (summation of 
many independen t random variables). In addition, the variance Var ðx; tÞ ¼defð1=3Þ

PN
i¼1diðx; tÞ2 of the series 
XN

i¼1

fiðxÞdiðx; tÞ ð73Þ
has a limit for ‘! 0 which does not depend on x (see Fig. 13 ). Such limit value is identified as 
Varðx; tÞ !‘!0
2‘t=3: ð74Þ



Fig. 11. Time snapshots of the one-point PDF of the random concentration field at x ¼ 25 for rj
ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25 and K ¼ 0:75. Shown are results obtained 
with different correlation lengths and Da ¼ 1.

Fig. 12. Realizations of the random concentration field (71) (first row) corresponding to the realizations of random reaction rate shown in the second row.
The reaction rate samples are obtained for rj

ffiffiffi
3
p

=
ffiffiffiffiffi
2‘
p

¼ 0:25;K ¼ 0:75 and correlation lengths ‘ ¼ 50 (left) and ‘ ¼ 1 (right). The Damköhler number is set 
to Da ¼ 1.
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This implies that for small correlation lengths, i.e., for Gaussian white-noise random reaction rates, the PDF of the concen- 
tration field is Gaussian and explicitly given by 
pðaÞcðx;tÞ ¼
1ffiffiffiffiffiffiffi

2p
p

Dað1� aÞrj

SðtÞ x P t

SðxÞ x 6 t

	
; SðzÞ ¼def 1ffiffiffi

z
p exp �ðlnð1� aÞ=Daþ KzÞ2

2r2
jz

" #
: ð75Þ



Fig. 13. (a) Contour plot of Var ðx; tÞ for ‘ ¼ 0:1. (b) Time evolution of Var ðx; tÞ at x ¼ 100 for different correlation lengths ‘. Figure (b) shows that 
Var ðx; tÞ ¼ 2‘t=3 for ‘! 0 and x P t, regardless on the value of x (left).

Fig. 14. Time-snapshots of the PDF of the random concentration field at x ¼ 50 for uncorrelated (Gaussian white-noise type) random reaction rates. Shown 
is the comparison between the numerical solution to (52) and the analytical result (75) for K ¼ 2;Da ¼ 0:5 and rj ¼ 0:12.

Fig. 15. Time-snapshots of the PDF of the random concentration field at x ¼ 100 for weakly correlated (‘ ¼ 0:1) random reaction rates. Shown is the 
comparison between the numerical solution to Eq. (52) and the PDF obtained from the analytical solution (71). We have set K ¼ 2;Da ¼ 0:5; ‘ ¼ 0:1 and 
rj ¼ K

ffiffiffiffiffi
2‘
p

=ð3
ffiffiffi
3
p
Þ in order for the random reaction rate to be positive with probability one. With these parameters, the standard deviation of the random 

reaction rate is about 33% of the mean value K (see (34)).
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Fig. 16. Same as Fig. 15 but with ‘ ¼ 10.

Fig. 17. Same as Fig. 15 but with ‘ ¼ 100.
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4. Numerical results 

In order to solve the initial/boundary value problem (52)–(56) we employed a conditionally stable time integration 
scheme for advection–diffusion equation s. Specifically, we discretized (52) by using a second-o rder central finite difference 
scheme with an explicit third-order Runge–Kutta time stepping. A numerical solution to (52) was then used to compute the 
one-point PDF by numerically differentiating PðaÞcðx;tÞ with respect to a, since 



Fig. 18. Same as Fig. 15 but with ‘ ¼ 1000.

Fig. 19. Comparison between the one-point one-time PDF as obtained from the exact analytical formula (70) (continuous line) and the LED approximation 
(52) (dashed line). Shown are different time snapshots at location x = 100. The Damköhler number is set at Da ¼ 1, while the parameters used for the 
random reaction rate (23) are N = 20 and k ¼ 1:5 (see Eq. (30)).
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pðaÞcðx;tÞ ¼
@PðaÞcðx;tÞ

@a
: ð76Þ
The latter step may reduce the overall accuracy of the PDF representat ion.
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4.1. Uncorrelated reaction rate model 

For uncorrelated random reaction rates the LED closure is exact. Therefore, the numerica l solution to (52) whose coeffi-
cients are given by (66) should match exactly the analytical PDF in (75). Fig. 14 demonstrates this to be the case. A funda- 
mental question is whether the LED approximat ion produces reliable results also for weakly or strongly correlate d random 
reaction rates.

4.2. Uniform reaction rate model 

Figs. 15–18 exhibit time snapshots of the one-point PDF of the random concentr ation field correspondi ng to random reac- 
tion rates with increasing correlation lengths. As the correlation length of the random reaction rate increases the LED 
approximat ion becomes less accurate, while continuing to maintain a good qualitativ e statistical description. Note that in 
all cases, the LED approximation leads to PDFs whose tails are fatter than those of their exact counterparts . In other words,
the LED-based PDF equations provide a conservative estimate of the predictive uncertainty.

As demonst rated in Section 3.3.2, the LED approximation is exact for very large ‘. However , our positivity constraint on 
jðx;xÞ imposes rj ¼ K

ffiffiffiffiffi
2‘
p

=ðwð‘Þ
ffiffiffi
3
p
Þ, with wð‘Þ depending on ‘ and bounded from below (see Fig. 5). This means that, if we 

set wð‘Þ ¼ 3 as we have done here we have, for ‘!1,
kðx;xÞ ! K½1þ #f1ðxÞ�; # 2 Rþ; f1ðxÞ uniform in ½�1;1�: ð77Þ
Therefore, we never reach the conditions for which the LED approximation is exact. This justifies the deviation between the 
analytical solution and the numerical solution to the LED-base d PDF equation observed in Fig. 18 .

4.3. Chi-squared reaction rate model 

For the reaction rate with the inhomogeneo us correlation function introduced in Section 3.1, the diffusion coefficient D44

and effective velocity u4 in (52) are given by (47)–(59). Fig. 19 shows the time snapshots of the one-point PDF computed with 
both the LED closure (52) and the exact analytical solution (70), at x ¼ 100 for k ¼ 1:5. The LED closure introduces some er- 
rors into the PDF dynamics. This is to be expected from the results reported in the previous section. The LED closure is exact 
for white-noi se Gaussian random processes , and its accuracy decrease s as the correlation length increases. Despite the minor 
accuracy problem, the overall advantages of the LED closure approximat ion are evident. In particular, the dimensional ity of 
the LED approximat ion is much lower than that of the exact joint PDF equation . This eventually allows for an effective sim- 
ulation of high-dimens ional advection–reaction systems.

5. Summar y

We investigated two general frameworks for computing the probability density function (PDFs) of radom scalar fields
whose dynamics is governed by advection–reaction equations (AREs) with uncertain advection velocity and reaction rates.
These approaches are the single-point PDF equation based on a large-eddy diffusivit y (LED) closure approximat ion [1], and 
the joint PDF equation based on decompositi on of random system parameters into finite series of random variables. We com- 
pared the solutions of these two equation s with analytica l solutions to an ARE, whose linear reaction law was parametri zed 
by random reaction rates defined in terms of either chi-squared or uniform random variables. This allowed us to test the 
accuracy of the LED-base d PDF equation on a reliable basis. We found that the LED closure is exact both for white-noise 
Gaussian random reaction rates and for reaction rates having an infinite correlation length. For intermedi ate correlation 
lengths, the accuracy of the LED closure decreases, while continuing to maintain a good qualitative statistical description.
In all cases, the LED approximat ion leads to PDFs, whose tails are fatter than those of their exact counterparts . In other words,
the LED-based PDF equations provide a conservative estimate of the predictive uncertainty.

The computational advantag es of the closure approximation are evident for input uncertainties characteri zed in terms of 
a large number of random variables. Indeed, the exact PDF (or CDF) equation of the system in these cases is high-dim ensional 
and therefore its solution requires appropriate numerical techniqu es such as sparse grid [57,31,7] or functional ANOVA 
[58,32,33]. More generally, for stochastic PDEs of order greater than one closures are unavoidable since an exact exact equa- 
tion for the one-poin t one-time PDF does not exist due to the non-locality (in space and time) of the solution. In these cases,
the closure may be based, e.g., on a truncation of the exact Hopf functional equation leading to a hierarchy of equations for 
the cumulants of the solution [59,18,17] or to a truncated Lundgren-Mon in-Novikov hierarchy [21]. Alternatively other clo- 
sures such as direct interaction approximation s [43,60], condition al closures [61,62] and mapping closures [63,64] (see also 
[65]) can be considered.

Acknowledgmen ts 

We acknowled ge financial support from DOE (Grant No. DE-FG02-07 ER25818), OSD-MUR I (Grant No. FA9550-09- 1-0613)
and NSF (Grant No. DMS-09150 77).



D. Venturi et al. / Journal of Computational Physics 243 (2013) 323–343 341
Appendi x A. Analytical solution to the exact joint PDF equation 

We solve the initial-bo undary value problem (40)–(45) by using the method of characteristics [47]. The (random) char- 
acteristics curves of the system, t̂ðs; t; x; aÞ; x̂ðs; t; x; aÞ; âðs; t; x; aÞ and ẑðs; t; x; bÞ, satisfy the equations 
@t̂
@s
¼ 1;

@x̂
@s
¼ 1;

@â
@s
¼ DaHðx̂Þð1� âÞ; @ẑ

@s
¼ DaHðx̂Þẑ; HðxÞ¼defXN

i¼1

/iðxÞbi; ðA:1Þ
subject to one of the three sets of auxiliary conditions 
t̂ð0; t; x; aÞ ¼ 0; x̂ð0; t; x; aÞ ¼ x; âð0; t; x; aÞ ¼ a; ẑð0; t; x; aÞ ¼ dðaÞpðbÞv ; ðA:2Þ

t̂ð0; t; x; aÞ ¼ t; x̂ð0; t; x; aÞ ¼ 0; âð0; t; x; aÞ ¼ a; ẑð0; t; x; aÞ ¼ dðaÞpðbÞv ; ðA:3Þ
or
t̂ð0; t; x; aÞ ¼ t; x̂ð0; t; x; aÞ ¼ x; âð0; t; x; aÞ ¼ 0; ẑð0; t; x; aÞ ¼ 0; ðA:4Þ
depending on whether the characterist ics originate at the ða; x; 0Þ; ða;0; tÞ, or ð0; x; tÞ plane, respectively.
Let us consider the set of characterist ic curves departing from the ða; x;0Þ plane (the analogous procedure is to be per- 

formed for the other two cases). Integration of the system (A.1) with the initial conditions (A.2) yields
t̂ ¼ s; x̂ ¼ sþ x;
Z â

âð0Þ

db
1� b

¼ DaIðs; x;bÞ;
Z ẑ

ẑð0Þ

db
b
¼ DaIðs; x;bÞ: ðA:5Þ
where
Iðs; x;bÞ¼def
Z s

0
Hðxþ sÞds ¼

XN

k¼1

bkðxÞ
kk

s
2
� sinð2kðxþ sÞ=LÞ � sinð2kx=LÞ

4k=L

� �
: ðA:6Þ
Integrating the last equation in (A.5) we obtain 
ẑ ¼ dðaÞpðbÞv eDa Iðs;x;bÞ: ðA:7Þ
Solving the third equation in (A.5) for a ¼ âð0Þ, and substituting the result into (A.7), gives 
pða;bÞcðx;tÞv ¼ d aþ e�DaIðt;x�t;bÞ� �
pðbÞv eDaIðt;x�t;bÞ: ðA:8Þ
Note that this representat ion involves a nonlinear transformation inside the delta function, which needs to be properly han- 
dled [42].

Repeatin g these mathematical steps for the characteristic curves arising from the other two planes, ða;0; tÞ and ð0; x; tÞ, we 
obtain the analytica l expression for the joint PDF pða;bÞcðx;tÞv that is valid over its domain of definition. The regions of the space 
ða; x; tÞ where each of the three families of characterist ics holds is determined by studying the characteristic curves arising 
from the intersection s of the planes ða; x;0Þ; ða;0; tÞ and ð0; x; tÞ, namely, the lines ða;0;0Þ; ð0; x;0Þ and ð0;0; tÞ. Finally, an inte- 
gration of the analytica l expression for pða;bÞcðx;tÞv with respect to b1; . . . ; bN yields the one-point PDF of the concentratio n field
(70).

Appendi x B. Analytical solution to the advection–reaction problem in physical space 

We solve the initial-boundar y value problem (21), (22) by using the method of characteri stics [47]. The (random) char- 
acteristic curves of the system, t̂ðs; t; xÞ; x̂ðs; t; xÞ, ẑðs; t; x;xÞ, satisfy the equations 
@t̂
@s
¼ 1;

@x̂
@s
¼ 1;

@ẑ
@s
¼ ð1� ẑÞjðx̂;xÞDa; ðB:1Þ
subject to the initial conditions 
t̂ð0; t; xÞ ¼ 0; x̂ð0; t; xÞ ¼ x; ẑð0; t; x;xÞ ¼ 0; ðB:2Þ
or
t̂ð0; t; xÞ ¼ t; x̂ð0; t; xÞ ¼ 0; ẑð0; t; x;xÞ ¼ 0; ðB:3Þ
depending on where the characteristic comes from, i.e., from the ðx; 0Þ axis or the ð0; tÞ axis, respectivel y. Let us first consider 
the characterist ics arising from the ðx;0Þ axis. By integrati ng (B.1) with initial conditions (B.2) we obtain 
t̂ ¼ s; x̂ ¼ xþ s;
Z ẑðsÞ

0

db
1� b

¼ Da
Z s

0
jðxþ sÞds: ðB:4Þ
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Depending on the specific choice of the random reaction rate jðx;xÞ (see section 3.1.1 and Section 3.1.2) the integral appear- 
ing in the last equation in (B.4) produces different expressions. For example, by using the representat ion (23) with /k given
in (30), we obtain 
ẑðs; x;xÞ ¼ 1� exp �Da
XN

k¼1

vkðxÞ
kk

s
2
� sinð2kðxþ sÞ=LÞ � sinð2kx=LÞ

4k=L

� �" #
: ðB:5Þ
Similarly, along the characteristics curves arising from the ð0; tÞ axis (i.e., t̂ ¼ t þ s and x̂ ¼ s) we obtain 
ẑðs; x;xÞ ¼ 1� exp �Da
XN

k¼1

vkðxÞ
kk

s
2
� sinð2ks=LÞ

4k=L

� �" #
: ðB:6Þ
Expressing x and s in terms of the correspondi ng values t̂ and x̂ along the two groups of characterist ics gives the analytical 
solution (67). Repeating these mathemati cal steps for the reaction rate model (34) gives the analytical solution (71).
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