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Light propagating through optical fiber arrays tends to localize in only a few center cores. The recent
experiments in two-dimensional single-mode optical fiber arrays suggest that an interplay of deterministic and
random linear and nonlinear effects might be responsible for this localization. We study this phenomenon, both
analytically and numerically, in a hexagonal optical fiber array similar to that used in the experiments. Our
analysis reveals that Anderson localization is evident in the linear and intermediate regimes, where a larger
fraction of initial energy is returned to the center fiber due to the stochastic effects. For very high levels of
input energy, the system is strongly nonlinear, with the randomness amplifying the Kerr localization.
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I. INTRODUCTION

A balance of self-focusing nonlinearity and discrete dif-
fraction due to nearest-neighbor coupling causes localization
of light in semiconductor waveguide arrays. This localization
takes the form of discrete solitons, a phenomenon that was
first confirmed experimentally in �1�. Early attempts to
model light propagation in optical arrays dealt with low in-
tensities of input light, for which the effects of nonlinearity
can be ignored. This leads to a linear solution for light dif-
fraction given in terms of a Bessel function, which was con-
firmed experimentally �1,2�. Both this solution and the ex-
periments �1,2� revealed the absence of solitons in such
linear systems.

Subsequent experiments �see, e.g., �3�� elucidated the
nonlinear effects in uniform and nonuniform waveguides.
Solitons were observed only at high intensities of the input
light �4�. The formation of solitons is attributed to the Kerr
effect, whereby the refractive index of the fiber focuses light
so that it balances diffraction. The robustness of the forma-
tion of solitons or localization has been verified in relation to
the input position in the array �5�, angle of incidence �6�, and
power �4�.

These and many other theoretical and experimental stud-
ies of nonlinear waveguide arrays dealt with deterministic
systems, typically with the waveguides being equally spaced
and having identical physical characteristics. In such sys-
tems, the coupled discrete nonlinear Schrödinger equation
�DNLSE� can be used to model the propagation of the field’s
complex amplitudes in any given fiber in an array �7,8�. This

equation accounts for both discrete diffraction due to weak
coupling between neighboring fibers and site nonlinearity
due to the intensity-dependent index of refraction. While the
DNLSE does not yield a fully integrable system, its con-
tinuum approximation does. Since �8�, localization in one-
dimensional coupled waveguides has been investigated ex-
tensively using various analytical and numerical techniques.
The significance of localization in signal processing has led
to the analysis of collapse-type methods for compressing op-
tical pulses, which localize diffracted energy into just a few
fibers in an array �9�. Such methods have been numerically
proven to be robust. Beam steering effects have been cap-
tured qualitatively using different analytical descriptions of
self-trapping solitons �10�.

In contrast, localization of energy in the linear regime due
to disorder is a fascinating physical phenomenon. Anderson
�11� observed localization of energy of electrons moving in
disordered atomic crystals. Recent research in photonic sys-
tems has explored this phenomenon by combining it with
nonlinear effects. For example, nonlinear Anderson localiza-
tion was observed in one-dimensional �12,13� and two-
dimensional �14� disordered photonic lattices, and in general,
two-dimensional disordered optical media �15�, disordered
photonic crystal waveguides �16�, and in one-dimensional
disordered metamaterials �17�. Specific to nonlinear modes is
the analysis of soliton percolation in disordered optical lat-
tices in �18�.

The experimental study �19� dealt with light localization
due to the effects of nonlinearity and disorder in a fiber array.
The disorder �randomness� was caused by the variable sepa-
ration between cores of different diameters, and quantified in
terms of variances in the diameter and coupling distances.
Here we present an analytical and numerical analysis of this
experiment in order to explain localization resulting from
linear, nonlinear, deterministic and random effects in fiber
arrays. Attention is paid to two scenarios, deterministic and
stochastic. The latter parallels the experimental work by us-
ing the same statistics given in �19�. In Sec. II, we present
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the governing equations, summarize what is relevant about
the deterministic model, and describe the approach we used
to study the effects of stochasticity. Section III contains the
description of the numerical algorithms used to solve these
equations. In order to verify our numerical solutions, we de-
rive an analytical asymptotic solution for the localization
problem in Sec. IV. A discussion of the simulation results is
given in Sec. V.

II. GOVERNING EQUATIONS

The experimental study �19� was conducted using a hex-
agonal optical array consisting of 400 fibers. The cross sec-
tion of the actual array can be seen in Fig. 1 of �19�; its
schematic representation is given in Fig. 1. Each internal
fiber in the hexagonal array is surrounded by, and weakly
coupled to, six neighboring fibers. In order to mimic the
experiment as closely as possible, our analysis considers 12
hexagonal layers, with a total of 397 fibers. The center fiber
is referred to as the first layer, the second layer being the six
fibers that surround the center fiber, and so on.

Equations for the propagation of light through an optical
fiber array are derived from Maxwell’s equations by assum-
ing the field to be a superposition of a single transverse mode
of the individual core U�x−xm,n ,y−ym,n�, where �xm,n ,ym,n�
are transverse coordinates of the location of the �m ,n� fiber.
A governing equation for am,n, the amplitude in the �m ,n�
fiber, is derived by using the weakly nonlinear theory. It is a
generalization of Jensen’s model for the directional coupler
�20�, wherein the balance of Kerr nonlinearity and the cou-
pling due to the presence of the tail of the mode �m ,n� at the
neighboring sites results in a system of complex ordinary
differential equations �ODEs� �19�,

�i
d

dz
+ �m,n + ��am,n�2�am,n + cm,n�am+1,n + am−1,n + am,n+1

+ am+1,n−1 + am+1,n+1 + am−1,n−1� = 0. �1�

Here i=�−1; z is the scaled coordinate describing propaga-

tion distance; cm,n is the strength of the nearest-neighbor cou-
pling, which is proportional to the separation between cores;
�m,n is the propagation constant, which depends, among
other things, on the fiber core diameter; and � is the nonlin-
ear coefficient assumed to be constant.

After reindexing each core �m ,n� with a single index k,
Eq. �1� can be written as

i
dak

dz
= − �ak − c	

j

aj − ��ak�2ak, �2�

where the summation is over neighboring fibers. Here the
terms involving the propagation and coupling constants are
linear while that involving � is nonlinear �cubic� in nature.
Writing similar equations for each fiber in the array gives
rise to a system of equations that can be represented as a
vector equation for ã= �a1a2 , . . . ,aN��, where N is the total
number of fibers.

i
dã

dz
= �L + N�ã , �3�

where the terms in any row k of the linear matrix �L� are � in
column k corresponding to the same fiber, c in the columns
corresponding to immediate neighbors, and zero otherwise.
The nonlinear matrix �N� is a diagonal matrix with term
Nk,k=� �ak�2.

Representing the complex amplitude ak as ak=xk+ iyk, one
obtains two real ODEs that jointly describe the propagation
of the amplitude of light along the fiber’s length.

A. Deterministic case

The most extensively studied model assumes that all fi-
bers in the array are identical and perfectly stacked. This
implies that propagation constant � has the same value for
each fiber, and the coupling constant c between every fiber
and its immediate neighbors is the same. Then Eq. �2� re-
duces to

dxk

dz
= − yk�� + ��xk

2 + yk
2�� − c	 j

yj ,

dyk

dz
= xk�� + ��xk

2 + yk
2�� + c	 j

xj . �4�

Following recent experiments �19�, we consider a sce-
nario in which light is initially incident through the center
fiber only and analyze the intensity distribution at the output
as a function of the incident power at the single site. Then
the hexagonal symmetry of the fiber array implies that all
fibers in a given layer with the same number of immediate
neighbors behave identically. Additionally, already built into
the model is an assumption of an ideal system with no losses,
so that the total energy in all the fibers must remain constant
over the propagation length.

Since light enters the array through the center fiber only,
its intensity in each fiber has a quasiperiodic z dependence,
with periods depending upon both the initial input energy
and the number of hexagonal layers considered in the model.
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FIG. 1. Schematic representation of the cross section of a dis-
ordered hexagonal fiber array: A microscope image of the experi-
mental configuration can be found in Fig. 1 of �19�.
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This is because the model represents a high-dimensional
Hamiltonian system with regions of quasiperiodic behavior.
In the linear regime, the input light is expected to diffract to
the outer layers without revisiting the input fiber. However,
for high enough powers, experimental results show that the
spread of energy is confined to only a few layers and that
energy flows back into the input fiber, leading to the possi-
bility of localization �19�.

There also exists a stationary state �z-independent� solu-
tion for this system of optical fibers that can be approximated
by an asymptotic expansion. The asymptotic stationary solu-
tion is said to be localized if most of the initial input energy
remains in the center fiber. The robustness of the asymptotic
localized stationary solution, in the sense that the dynamics
stays close to such a state, varies with the total energy. We
discuss this point further, and analyze the effects of random-
ness on localization in later sections.

The localization of light entering the array through the
center fiber is measured in terms of the fraction of the total
energy that propagates in the center fiber. The energy in the
center fiber is sampled as a fraction of the total energy at
numerous randomly chosen lengths along the propagation
direction close to the exit. Such a sampling gives a frequency
distribution of energy states that are visited in the input fiber.
While the system is fully deterministic, presenting the results
in this fashion facilitates a comparison with the case in
which randomness is included.

B. Stochastic model

Due to manufacturing imperfections that cannot be quan-
tified in all of their relevant details, fiber array systems have
inherent stochasticity. In other words, the propagation term
that depends upon the diameter of the optical fiber varies
randomly about a given mean due to the uncertainties in-
volved in the fabrication process. The coupling depends
upon the core spacing, which also varies randomly due to
errors during stacking of the fiber optic array. Both quantities
can be represented as the sums of their respective mean val-
ues �0 and c0 and random fluctuations �� and �c that are
assumed to be Gaussian,

� = �0 + ��, c = c0 + �c . �5�

We consider the conceptual representation of randomness
as studied experimentally in �19�, where both the coupling
between fibers and the propagation constant of each fiber
have been chosen randomly from Gaussian distributions
whose means and variances reflect experimental data. For
each realization of random constants � and c, the governing
ODEs remain deterministic, but since their values differ from
one fiber to another, the hexagonal symmetry is no longer
preserved.

The key difference between the deterministic and stochas-
tic representations is that the latter results in the dynamics
that is no longer strictly periodic. However, a periodic-like
behavior with a random period and random amplitude can
still be seen. Possible localization is determined by analyzing
a sampling of the energy fraction in the center fiber, which is
now performed on the average energy of multiple Monte

Carlo realizations. The sampling is carried out in the same
way as in the deterministic case at randomly chosen lengths
along the propagation direction.

III. COMPUTATIONAL APPROACH

The fiber optic array studied �19� had a coupling constant
with mean 46 m−1 and standard deviation 26.7 m−1, and a
propagation constant with mean 11.4�106 m−1 and standard
deviation 140 m−1. Randomness in the nonlinearity was dis-
regarded. A change of variables and the subsequent nondi-
mensional analysis yielded the following values: �0=0, c0
=1 and �=1.1.

The mean values of these properties are used to obtain
deterministic solutions. Simulations of the experimental sto-
chastic scenario use random values that are drawn from a
Gaussian distribution with the corresponding means and
variances. For the fiber length considered in the experiments,
no significant longitudinal variations of the parameters were
observed. In both of these cases, the equations solved are
nonlinear ODEs.

A formal solution of the ODE �3� at z+�z can be written
as

ã�z + �z� = e−i�z�L+N�ã�z� , �6�

whose numerical approximation is

ã�z + �z� 
 e−i�zL/2d��z� , �7�

where

d��z� = e−i�zNb��z� and b��z� = e−i�zL/2ã�z� . �8�

Equation �7� is an approximation, since the operators L and
N do not commute. Splitting the solution of the linear portion
into two steps of �z /2 results in a total error of the order of
��z�3.

The two linear steps in Eq. �7� are solved using the im-
plicit midpoint rule, which conserves quadratic invariants, in
this case the total energy. For the first linear step, the implicit
midpoint rule yields

b��z� = a��z� +
�z

2
L�a��z� + b��z�

2
� . �9�

An analogous expression holds for the second linear step.
Solution of the nonlinear part of Eq. �7� is facilitated by
noting that N=� � ãk�2, where �=�I is the constant determin-
istic nonlinearity matrix whose entries represent the nonlin-
earity coefficients � for each fiber, and I is an identity ma-
trix. An analysis of the equations for ãk and its complex
conjugate reveals that �ãk�2 is constant and hence the nonlin-
ear part of the equation admits an exact solution.

Note that L is the random linear matrix whose entries
represent the random propagation � and coupling coeffi-
cients c for each fiber drawn randomly from Gaussian distri-
butions. We will show in Sec. VI that the implicit midpoint
rule is identical to the Stratanovich scheme of numerical in-
tegration for stochastic differential equations �SDEs�, with
random values of the coupling �c� and propagation ��� con-
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stants generated at each step �z. This ensures both that the
total error in numerical integration is the same as that of the
linear part and that the total energy is conserved.

The main goal of this work is to extract information on
whether localization occurs. The energy in the fibers varies
with the propagation length. We illustrate this by plotting the
energy in the center fiber for various initial conditions, i.e.,
levels of input in the center fiber. The initial energy is input
in the center fiber entirely. The values of energy chosen can
be classified into linear, nonlinear, and intermediate regimes.
The different regimes, as the names indicate, denotes the
dominant terms in the governing equation for energy propa-
gation through the fiber. The intermediate regime is one
where both linear and nonlinear terms contribute similarly to
the propagation of energy through the fiber. In this case, the
values of initial input energy lie between the two aforemen-
tioned regimes. The results for both deterministic and sto-
chastic scenarios are plotted together for ease of comparison.

An immediate effect of introducing disorder is that it
breaks the symmetry. It is expected that fibers in a given
layer with the same number of neighbors behave identically
in the deterministic case, whereas their behavior in the case
of varying properties is quite different. Localization is said to
occur based on the fraction of total energy that is retained in
the center fiber.

In the deterministic case, the energy in the center fiber is
sampled as a fraction of the total energy at 1000 randomly
chosen lengths along the propagation direction. This sam-
pling allows one to ascertain which energy states are visited
and how often. The sampling lengths are restricted to one
period’s length before the exit. In the stochastic cases, the
average energy of multiple Monte Carlo realizations is
sampled. This sampling strategy enables one to both preserve
ergodicity and provide a means of comparison between the
two models. Comparison of the energy distributions in the
center fiber in the deterministic and stochastic cases provides
insight into the effects of randomness on localization. Distri-
butions of energy fractions, ranging from 0 to 1, are pre-
sented via histograms with a bin size of 0.05. The shape and
structure of these histograms shed light on the dynamics of
the system and the possibility of localization, as will be seen
in the discussion of results in Sec. V.

IV. ASYMPTOTIC LOCALIZED STATIONARY
SOLUTIONS

Asymptotic localized solutions are stationary-state solu-
tions of the deterministic system in which a high fraction of
the energy input in the center fiber stays in the center fiber,
while the remaining energy is distributed across the remain-
ing fibers according to some approximation. We derive the
first- and second-order approximations of such asymptotic
solutions and check their stability as a function of energy.

Let a0 denote the amplitude in the center fiber, a1 denote
the amplitude in the fibers in the second layer, and so on.
Performing a change of variables and setting �m,n=0 allows
us to rewrite the governing equation �1� for the center fiber in
terms of a0 and a1 as

�i
d

dz
+ ��a0�2�a0 + 6ca1 = 0. �10�

A localized solution implies that �a0 � � �a1 � � �a2�, etc. and
that �ak � �1 for k=0 and �ak � �1 for k�0. In particular,
stationary �in intensity� localized states correspond to solu-
tions of the form

ak�z� = ake
i	z, �11�

where all intensities �ak� are constant. Rather than finding
such solutions numerically, we present an asymptotic analy-
sis that illustrates the features of these solutions. If we as-
sume that most of the energy is concentrated in the central
fiber, its first-order approximation a0

�1� satisfies an algebraic
equation

− 	a0
�1� + ��a0

�1��2a0
�1� = 0, �12�

which is obtained by neglecting terms containing a1 in Eq.
�10�. The corresponding solution is

a0
�1� =�	

�
. �13�

The first-order approximation of the amplitude in the
layer of fibers immediately surrounding the center fiber, a1

�1�,
satisfies an algebraic equation

− 	a1
�1� + ca0

�1� = 0, �14�

which is obtained from Eq. �10� by assuming 	�c and ne-
glecting the lower-order nonlinear terms and the terms that
contain a2 and a3. This gives

a1
�1� =

a0
�1�

	
. �15�

An equation for the second-order approximation of the
amplitude in the center fiber, a0

�2�, can be computed from Eq.
�10� by including the terms proportional to a1

�1�,

− 	�a0
�1� + a0

�2�� +
6c

	
a0

�1� + ��a0
�1� + a0

�2��3 = 0. �16�

Neglecting the higher-order terms, we obtain an expression
for the second-order approximation of the amplitude in the
center fiber,

a0
�2� =

6c

	

a0
�1�

	 − 3��a0
�1��2 . �17�

A second-order asymptotic approximation is the sum of the
first- and second-order approximations, a0

asym=a0
�1�+a0

�2�.

V. RESULTS

The numerical results presented in this section are for a
12-layer hexagonal optical fiber array. This is a system of
397 fibers, where each fiber is surrounded by six immediate
neighbors except in the outermost layer. We consider the
deterministic scenario, where all fibers are assumed to have
identical properties and are equally spaced, and the stochas-
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tic scenario, which is identical to the experimental setup in
�19�. The randomness is in the transverse direction only. The
coupling constants between fibers and the propagation con-
stant along each fiber are randomly generated using the mean
and standard deviation values documented by the manufac-
turer. These values are assumed to be constant over the
length of propagation, in this case 40 cm. Numerical simu-
lations were performed for both of these cases.

The propagation dynamics in the center fiber is quantified
by the amount of energy as a function of fiber length. The
results for the deterministic case are plotted alongside the
averaged results in the stochastic case for the purpose of
comparison �Figs. 2–5�. As one can clearly see, randomness
inhibits the quasiperiodic behavior observed in the determin-
istic case. The presence of linearlike modes is due to
symmetry-breaking random defects. For each of the different
levels of input, the mean value of energy in the center fiber
in the deterministic case is consistently lower than the steady
value achieved in the stochastic cases. It can then be said that
not only does stochasticity enhance reaching a localized
state, it is also with a higher degree of localization. Histo-

grams are used to quantify localization in terms of the dis-
tribution of energy in the center fiber as fractions of the total
energy. Since the system exhibits distinctly different behav-
iors depending upon the input intensity, we analyze the re-
sults for each of the energy regimes.

A. Linear regime

For input energy levels below 1, the cubic nonlinear term
in the governing equation is negligible compared to the cou-
pling terms, which are more dominant. This favors discrete
diffraction of the energy from the center fiber to outer layers.
There is no significant localization due to the very weak
nonlinearity. In both deterministic and stochastic cases, the
dynamics shows that only a small fraction of initial input
energy is retained in the center fiber �Fig. 2�. The averaged
stochastic model exhibits a higher level of energy as com-
pared to the deterministic model. It is notable that even at
very low input powers such as 0.25 illustrated here in Fig. 2,
the randomness plays a significant role in favoring localiza-
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FIG. 2. Propagation dynamics in center fiber: linear input.
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FIG. 3. Propagation dynamics in center fiber: intermediate
input.
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FIG. 4. Propagation dynamics in center fiber: nonlinear
input.
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FIG. 5. Propagation dynamics in center fiber: asymptotic local-
ized stationary state.
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tion. The histograms provide a quantitative method to com-
pare the fraction of energy retained in the center fiber. In the
deterministic case, the histogram shows a single peak very
close to 0. Figure 6 shows an example of such behavior for
the initial energy input of 0.25. Delocalization is clearly ob-
served, with the lower fractions of energy representing the
states visited most often. Most of the initial input energy in
the center fiber disperses to the outer layers, with less than
10% of the total energy remaining in the center fiber. The
stochastic model �Fig. 7� shows the presence of a pro-
nounced peak in the histogram away from 0 showing a ten-
dency to localize. The fraction of energy retained in the cen-
ter never falls below 5% but it is less than 15%. Since the
phenomenon witnessed here is likely due to Anderson local-
ization, this can be verified by plotting the energies at the
exit for each layer of fibers. This is achieved by starting at
the center fiber and moving outwards in any one direction to
the outermost layer �Fig. 8�. The phenomenon of Anderson
localization is characterized by an exponential drop off in

energy along the transverse direction, which is clearly seen
from the center fiber outwards to layer 8. The behavior in the
outermost layers is inconclusive due to the effects of reflec-
tion from the outer layers, which sends energy back to the
inner layers due to the finiteness of the model. The first eight
layers do not experience any significant reflection and ex-
hibit an exponential decay in energy in the transverse direc-
tion. We conclude that in the linear regime, though the non-
linearities credited with self-focusing properties are
negligible in this case, the localization induced by random-
ness is observed.

B. Nonlinear regime

At high levels of input energy, above 2, the cubic nonlin-
ear terms are more dominant over the linear coupling terms.
This is the highly nonlinear regime, where Kerr effects lead
to significant localization. Since it is also seen that stochas-
ticity favors localization in the linear regime, one of the
goals was to study the competing effects of both nonlinearity
and randomness on localization. While each enhances local-
ization independently, it is interesting to see whether their
combined behavior cancels or enhances localization.

The deterministic model of the energy dynamics reveals
significant localization �Fig. 4� for an input energy of 16. Just
as in the linear regime, the averaged stochastic model exhib-
its a slightly higher level of energy as compared to the de-
terministic model. Hence randomness is shown again to in-
crease the localization over and above the nonlinearity.

The histogram of energy fraction in the center fiber is
shown in Figs. 9 and 10 for the deterministic and stochastic
cases, respectively. These figures demonstrates that the local-
ization always takes place. The histogram is narrow in shape
and exhibits a single peak close to the ratio of 1. The fraction
of energy in the center input fiber never drops below 95%.
This is in sharp contrast with the linear regime in Figs. 6 and
7. The nonlinearity has a much stronger role in localization
at these high levels of input energy. However, the role of the
random effects is to enhance the already present Kerr local-
ization.

C. Intermediate regime

The region in between the linear and highly nonlinear
regions is one of transition. Both the coupling and nonlinear
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FIG. 6. �Color online� Histogram for linear input in center fiber:
Deterministic case.
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Stochastic case.
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FIG. 8. Energy drop off in transverse direction: Linear input.
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terms play a significant role in the propagation dynamics.
The inclusion of randomness once again increases localiza-
tion, as the energy retained in the center fiber is higher than
in the deterministic case �Fig. 3�. For an initial energy input
of 2.25, the histogram �Fig. 11� looks similar to that in the
linear regime �Fig. 6� for the deterministic case. In this case
too, most of the initial input energy in the center fiber dis-
perses to the outer layers, but up to 15% of the total energy
remains in the center fiber. The stochastic model, however,
shows a significantly higher level of localization than in the
linear regime. In Fig. 12, the fraction of energy retained in
the center stays between 15% and 25% of the total energy.
As the input energy in the center fiber is increased, the his-
tograms of the fraction of energy in the center fiber are
skewed closer toward 1, which shows that localized states
begin to be favored. Above a certain energy level �say, 4�,
there is some localization. The peaks in the histogram start
shifting toward 1.

Since the stochastic effects on localization are significant
in the regime, just like in the linear regime, the question of

whether Anderson localization holds here is verified by plot-
ting the energies in all the layers at exit. Once again, the
transverse drop off in energy is noted �Fig. 13� from the
center fiber outwards to layer 7. Since the energies are higher
in this case in comparison with the linear regime, so are the
reflection effects on the outermost layers. It can be conclu-
sively said that stochasticity plays a significant role in the
intermediate regime favoring localization. The behavior ex-
hibited is characteristic of Anderson localization.

D. Asymptotic localized state

One of the effects of including randomness in the model
is the existence of a preferred state, giving rise to histograms
that are nearly Gaussian. This behavior characterizes both
the intermediate energy levels where localization is observed
and the highly nonlinear regions. The randomness accentu-
ates the localization effect by picking an asymptotically sta-
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FIG. 9. �Color online� Histogram for nonlinear input in center
fiber: Deterministic case.
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FIG. 10. �Color online� Histogram for nonlinear input in center
fiber: Stochastic case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Energy Ratio in Center Fiber

C
ou

nt

FIG. 11. �Color online� Histogram for intermediate input in cen-
ter fiber: Deterministic case.
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FIG. 12. �Color online� Histogram for intermediate input in cen-
ter fiber: Stochastic case.
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tionary localized solution. These are nontrivial stationary-
state solutions of a high-dimensional stochastic Hamiltonian
system. They can be approximated by stationary-state solu-
tions of the corresponding deterministic system with input
power distributed uniformly throughout all fibers. This be-
havior is not observed in the deterministic case.

The asymptotic approximation can be viewed as a pertur-
bation of the exact stationary solution. The localized states
and eigenvalues of the approximation are functions of the
total energy. With increased energy levels, the perturbations
become more stable. Following the calculations in Sec. IV,
the asymptotic solution corresponding to a total energy of 16
is computed. This value of initial input energy is chosen so
as to be able to compare it with the behavior in the nonlinear
regime with pulse input. The initial conditions for this case
have a total energy of 15.38 in the center fiber. The energy in
each of the fibers in the first layer surrounding the center
fiber is 0.053 and the energy in each fiber in the second layer
is 0.026. No energy is input through the outer layers.

The propagation dynamics are plotted in Fig. 5. It is re-
markable that the asymptotic localized stationary state is ob-
served in the stochastic case, whereas in the deterministic
case, the solution is only localized and not stationary. The
energy in the stochastic case shows very little variation about
the stationary state. The histogram of energy fraction in the
center fiber is shown in Figs. 14 and 15 for the deterministic
and stochastic cases, respectively. It is clear that while local-
ization always takes place �since over 85% of the energy is
always retained in the center fiber�, the stationary state solu-
tion is only characteristic of the stochastic model. Plotting
the energies into finer bins, it can be seen that the fraction of
energy in the center input fiber never drops below 97%. In
other words, the asymptotic approximation of a stationary
solution is valid in the nonlinear regime for the stochastic
model.

VI. FUTURE WORK: NONSTATIONARY MODEL

The stochastic model considered in this study so far took
into account randomness in the transverse direction only, i.e.,

properties varied between fibers, but remained constant
along the length of each fiber. While this approximation
holds for sufficiently small lengths �under 40 cm� of fiber, it
is also interesting to consider properties varying along the
length of each fiber, in addition to the variation between
fibers. This analysis gives rise to a system of SDEs. The
governing equations look similar to Eq. �4�, with the only
difference being that the xk and yk are now random variables.

To gain physical insight into the process of localization,
while keeping the analysis tractable, we derive an analytical
solution for the simplified model �Fig. 1� consisting of seven
fibers, i.e., only one layer surrounding the center fiber. Such
a model has 14 dimensions. This is in contrast with the full
model considered in previous sections, which has 794 di-
mensions.

The system of 14 SDEs constitute a multivariable nonlin-
ear Langevin system. Consider a Wiener process W�t� with
Gaussian increments 
�t�. We use Stratanovich calculus
�21,22� to evaluate integrals of the form 
0

t �(
��� ,�)dW���,
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FIG. 13. Energy drop off in transverse direction: Intermediate
input.
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FIG. 14. �Color online� Histogram for asymptotic stationary in-
put in center fiber: Deterministic case.
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FIG. 15. �Color online� Histogram for asymptotic stationary in-
put in center fiber: Stochastic case.
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where ��·� is an arbitrary integrable function of 
�t�. The
Stratanovich scheme of integration represents this integral by

�
0

t

��
���,��dW��� = 	
i=0

N−1

��
� �i + �i+1

2
�,

�i + �i+1

2
�

��
��i+1� − 
��i�� . �18�

Note that this representation is analogous to the implicit mid-
point numerical scheme presented in Sec. III.

The Fokker-Planck equation for the joint probability dis-
tribution function �PDF� P�x� ,z� of light amplitudes in the
seven-fiber system has the form �22�

�P

�z
+ 	

i=0

13
�

� x̃i
�DiP − 	

j=0

13
�

� x̃j

Di,jP� = 0. �19�

Here Di �i=0, . . . ,13� and Di,j �i=0, . . . ,13; j=0, . . . ,13� are
the so-called drift and diffusion coefficients. The diffusion
coefficients form a symmetric positive definite 14�14 ma-
trix. All coefficients have been computed analytically. A few
of them are shown below,

D1 = − �ỹ1�x̃1
2 + ỹ1

2� − c�ỹ0 + ỹ2 + ỹ3� − 6x̃1,

D1,1 = 2�ỹ0
2 + ỹ2

2 + ỹ3
2� . �20�

One can verify that the evolution of average energy Ei
= �xi

2+yi
2� of any fiber i depends only on the second moments

of the amplitudes in all fibers. For example, the average en-
ergy in the center fiber �i=0�

d�x0
2 + y0

2�
dz

= 2	
i=1

6

�xi
2 + yi

2� − 12�x0
2 + y0

2� . �21�

Since the neighbors of fiber 1 are fibers 0, 2, and 3, the
average energy in the outer layer evolves according to the
equation

d�x1
2 + y1

2�
dz

= 2�x0
2 + y0

2� + 2�x2
2 + y2

2� + 2�x3
2 + y3

2� − 6�x1
2 + y1

2� .

�22�

It is easy to see that the average total energy Etot=	i�xi
2

+yi
2� is constant.
However, equations that describe evolution of mixed sec-

ond moments, e.g., �xiyj� contain higher-order moments and
hence require a closure approximation. For example, an
equation for �x1y2� is

d�x1y2�
dz

= c��x1x4� + �x1
2� + �x1x5� − �y4y2� − �y2

2� − �y2y3�

− �y2y5� − �y2y6� − �y2y7�� − 22�x1y2�

����x2x1y2
2� + �x2

3x1� + �x1
2y2y1� + �y2y1

3�� . �23�

Consider localized solutions, where energy in the second
layer is negligible compared to that in the center fiber. The
total energy in the system Etot remains constant, while the
average energy in each of the fibers in the second layer is
identical due to the hexagonal symmetry. This leads to equa-
tions describing evolution of average energy in each fiber,

d�Ei�
dz

= 2Etot − 14�Ei�, 0 
 i 
 6. �24�

Assuming that at z=0 all energy is contained in the central
fiber, we obtain

�E0� =
Etot

7
�1 + 6e−14z� ,

�Ei� =
Etot

7
�1 − e−14z�, i � 1. �25�

One can see that an asymptotic state is that of equal en-
ergy in all fibers in the array, �Ei�=Etot /7. This analysis, and
the asymptotic result, can be extended to the full model for
an array consisting of 397 fibers packed in 12 layers. One
can conclude that equipartition is a statistically preferred
state even when the nonlinear contributions can be signifi-
cant.

VII. CONCLUSIONS

The purpose of this research was to study the competing
effects of nonlinearity and randomness in light localization in
nonlinear optical fiber arrays. Our analysis leads us to con-
clude that both nonlinearity and randomness increase the ef-
fects of localization in disordered two-dimensional optical
fiber arrays. We found that Anderson localization is evident
in the linear and intermediate regimes, where a higher frac-
tion of initial energy is returned to the center fiber due to the
stochastic effects. The characteristic exponential drop off in
energy in the transverse direction is observed. For very high
levels of input energy, the system is highly nonlinear and
localized and the effects of introducing randomness enhance
the localization due to Kerr effects. Finally, the existence of
asymptotic localized states and their increased robustness
with respect to increased energy levels is also seen in the
stochastic model.

Future studies include an analysis of the behavior of op-
tical fiber arrays under different initial states. Of particular
interest is a scenario in which input is characterized by broad
energy distributions. In such a case, a continuum approxima-
tion to the discrete fiber array can be used, which leads to a
two-dimensional stochastic nonlinear Schrödinger equation.
We intend to study the balance of a blow-up singularity and
randomness to determine whether such an initial state can
cause localization. Further studies for the long propagation
problem described in Sec. VI will also follow, including at-
tempts to deal with the closure problem.
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