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A new approach to the estimate of the parameters u (advective velocity) and l (dispersivity)

characterizing solute transport in soils is presented. The pair (u, l) is estimated by

matching in the frequency domain (FD) the theoretical expression of moments pertaining to

the breakthrough curve (BTC) against to the one evaluated by means of the experimental

data. In particular, we demonstrate that to reduce the impact of the randommeasurement-

errors upon such an estimate, it is worth retaining in the Fourier's expansion of the mo-

ments only the harmonics associated to the smaller frequencies. This is due to the fact that

the Fourier transform moves most of the measurement-errors affecting moments in the

high-frequency range. As a consequence, by adopting a relatively small number of har-

monics to compute the Fourier transform of the experimental moments, one may filter out

most of the noise. It is also shown that the number of harmonics to retain (cut-off) depends

upon the soil's water content as well as the magnitude of the characteristic length [E of the

error relative to the dispersivity l.

The proposed methodology has been applied to a recently conducted plot-scale trans-

port experiment. For comparison purposes, we have also estimated the pair (u, l) by the

classical method of moments (MM). Both the methods lead to the same value of the advective

velocity u. This is explained by recalling that u depends upon the first-order moment, a

quantity that is scarcely influenced by the measurement-errors. Instead, the estimate of

the dispersivity l (which is related to the second-order moment) is largely different (with

the value achieved by the MM larger than the one obtained by the FD approach). Such a

difference is addressed to the fact that in the MM the distortion-effect due to the

measurement-errors amplifies with the increasing order of the moments, a phenomenon

which is completely avoided in the FD approach by adopting the above mentioned cut-off.
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List of symbols and nomenclature

a dimensionless parameter

C ½M L�2 T�1� flux concentration

D ½L2 T�1� dispersion coefficient

d Dirac distribution

EP efficiency parameter

E n ½M L�2 Tn� noise affecting the n-order moment
~f Fourier transform of f

f Laplace transform of f

H Heaviside step function

Km modified m-order Bessel function of the second

kind

[E ½L� transverse length scale of the error-

measurements

l [L] dispersivity

M0 [M L�2] solute mass per unit area

Mn [M L�2 Tn] moment of n-order

MðexpÞ
n ½M L�2 Tn� experimental moment of n-order

M n dimensionless moment of n-order

U transport domain

u [L�1] spatial frequency

u dimensionless spatial frequency

q [L T�1] flux

w ½L3 L�3� volumetric water content

9 ½M L�3� soil's bulk density

t [T] time

tc [T] time scale of transport

u [L T�1] advective velocity

ueff [L T�1] effective velocity

ueff ½L T�1� mean effective velocity

z [L] depth

z dimensionless depth
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1. Introduction

The use of transport experiment(s) as a tool to identify the

convective-dispersive properties of soils has been discussed

in numerous studies (a wide review can be found in Rubin,

2003, and references therein). Classically, the identification

of the transport parameters is carried out by the MM, first

introduced by Aris (1958) and subsequently refined by many

others (see, e.g. G�omez, Severino, Randazzo, Toraldo, & Otero,

2009; K€ohne, K€ohne, & Simunek, 2009; Severino, Santini, &

Sommella, 2003, and references therein). A drawback related

to such an approach is that moments are highly sensitive to

their order, and therefore measurement-errors produce an

enhancing distortion on the higher-order moments. Never-

theless, the MM is by far the most used method thanks to its

ease of implementation. An alternative approach, based upon

the Fourier analysis, has been proposed by Duffy and Al-

Hassan (1988). In this case, the parameters' estimate is ach-

ieved by comparing the theoretical vs experimental BTCs in

the FD. Unlike the MM, in the FD approach the dispersion

mechanism de facto acts as a low pass-filter (Owen, 2007). As a

consequence, if one can limit to a relatively small number of

harmonics (low frequency range) the numerical computation
of the Fourier transform of the experimental BTCs, then the

parameters' estimate would be affected to a much lesser

extent by the measurement-errors. One (technical) disad-

vantage is that the experimental BTCs must be Fourier

transformed (by means of the fast Fourier transform). Never-

theless, such a drawback is compensated by the fact that in

the FD simple (closed form) solutions are almost always

available, whereas in the time domain they may not even

exist, or result tremendously cumbersome (see, e.g. Sardin,

Schweich, Leij, & Genuchten, 1991; Severino & Indelman,

2004; Severino, Monetti, Santini, & Toraldo, 2006).

So far the FD approach has been used (see e.g. Duffy & Al-

Hassan, 1988) to determine the transport parameters at lab-

oratory scale (samples of small sizes), where it is relatively

simple tomonitor the BTCs. However, at field (and even larger)

scales this is not anymore the case due to the numerous

limitations mainly related to the heterogeneity, which is a

typical feature of the soils at that scale (see, e.g. Coppola et al.,

2011; Fiori et al., 2010; Severino & Santini, 2005; Severino,

Santini, & Monetti, 2009; Severino & Coppola, 2012; Severino,

Tartakovsky, Srinivasan, & Viswanathan, 2012). In this case,

the accessible information is the first and second order

moment (see, e.g. Severino, Dagan, & van Duijn, 2000, 2007),

and consequently the FD approach, as implemented at labo-

ratory scale, does not apply.

Thus, a new approach dealing with moments rather than

BTCs is required. To this aim, we refer to the following con-

ditions (typical at field scale): a steady, one-dimensional flow

takes place into a semi-bounded domain U≡fz2ℝ : z � 0g
which is initially solute free, i.e. Cðz;0Þ≡0, being C the flux

concentration. A specific (per unit surface) mass M0 is then

applied at the surface z ¼ 0 in the form of a pulse, and it is

subsequently moved downward by advection. We also as-

sume that at the very deep depths transport is immaterial.

These translate into the following boundary conditions

Cð0; tÞ ¼ M0

u
dðtÞ; lim

z/∞
Cðz; tÞ ¼ 0; (1)

being u the advective velocity. The nth-order moment writes

as:

MnðzÞ ¼
Z∞
0

dt tn Cðz; tÞ; z2U: (2)

Thus, if the concentration C≡Cðz; tÞ is determined in

analytical form, one can compute (either analytically or

numerically) moments (2). For the problem at stake, the con-

centration is obtained by solving (for details, see e.g. Jury &

Roth, 1990, ch. 2.5.2) the advection-dispersion equation:

v

vt
Cþ u

v

vz
C ¼ D

v2

vz2
C (3)

under the above initial/boundary conditions, the final result

being:

Cðz; tÞ ¼ M0z

2t
ffiffiffiffiffiffiffiffiffi
pDt

p exp

"
�
�
z� ut

2
ffiffiffiffiffiffi
Dt

p
�2

#
: (4)

The dispersion coefficient D encompasses both diffusion

and dispersive mechanisms, although the latter are always

prevailing upon the former (a wide discussion upon such an
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interplay of mechanisms can be found in Bellin, Severino, &

Fiori, 2011). This is particularly so when one is interested

into computing moments, and therefore we adopt such an

assumption hereafter. Thus, with the neglect of the diffusion

one can relate D to the so called dispersivity l as D ~ lu (Bear,

2013). Insertion of (4) into (2) leads, after computing the inte-

gral, to

MnðzÞ ¼ M0

ffiffiffiffiffiffi
z
pl

r �z
u

�n

exp
� z
2l

�
Kn�1=2

� z
2l

�
ðn ¼ 1;2;…Þ; (5)

where Km(x) is the modified m-order Bessel function of the

second kind (Abramowitz & Stegun, 1964). The non dimen-

sional moments:

M nðzÞ≡Mn

M0

�u
l

�n

¼ znþ1=2

p1=2
expðz=2ÞKn�1=2ðz=2Þ ðn ¼ 1;2;…Þ (6)

have been depicted in Fig. 1 as function of the scaled depth

z≡z=l, and a few values of the order n. The important feature is

that moments are highly sensitive to n, and therefore higher

order moments (n � 2) are strongly influenced by the fluctu-

ations induced by the measurement-errors.
2. Mathematical formulation of the problem

To minimise as much as possible the impact of the

measurement-errors in the identification of the parameters,

we employ an alternative methodology based upon the FD

approach. Toward this aim in the sequel we present the

theoretical background related to the implementation of such

an approach. Central for our methodology is the Laplace

transform of the n-order moment, i.e.

MnðsÞ ¼
Z∞
0

dz MnðzÞexpð�szÞ: (7)
Fig. 1 e Normalised moments M nðzÞ versus the sca
To compute Mn it was found easier from the mathematical

point of view to deal with the moments' equation, which is

obtained by multiplying both sides of (3) by tn and integrating

over t (and employing integration by parts), i.e.

D
d2

dz2
MnðzÞ � u

d
dz

MnðzÞ þ nMn�1ðzÞ ¼ 0; ðn ¼ 1;2;…Þ (8)

with M0ðzÞ≡M0. The boundary conditions for the ODE (8) are

easily obtained from (1) as follows:

Mnð0Þ ¼
Z∞
0

dt tnCð0; tÞ ¼ M0

u

Z∞
0

dt tndðtÞ ¼ 0; Mnð∞Þ

¼ lim
z/∞

Z∞
0

dt tnCðz; tÞ ¼ 0 (9)

(any n � 1). Application of the Laplace transform (7) to eq. (8)

yields:

MnðsÞ ¼ luM0
nð0Þ � n Mn�1ðsÞ
usðls� 1Þ ; n ¼ 1;2;… (10)

(where we have accounted for D ~ lu). In particular, from (5)

one has M0
1ð0Þ ¼ M0=u and M0

2ð0Þ ¼ 2M0l=u2, and therefore the

Laplace transform of the first and second order moment

writes as:

M1ðsÞ ¼ M0

us2
; M2ðsÞ ¼ 2M0

u2s3
ðlsþ 1Þ: (11)

Hence, in the FD approach the pair (u, l) is identified by

minimizing the distance between the theoretical moments

(11) and those (sayM
ðexpÞ
n ) estimated via the miscible transport

experiment(s), i.e.

min
u;l

����MnðsÞ �M
ðexpÞ
n ðsÞ

����; ðn ¼ 1;2Þ: (12)

The crux of the matter is now to relate M
ðexpÞ
n to the Fourier

transform in order to compute the discrete Laplace transform
led depth z for different values of the order n.

http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002
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by means of the fast Fourier transform (Poularikas, 2010;

Press, Teukolsky, Vetterling, & Flannery, 1996). Toward this

aim, we first note that the Laplace transform MnðsÞ of the

moments can be expressed via the Fourier transform

(spectrum)

~fðuÞ ¼
Z
ℝ

dx fðxÞexpð յu xÞ for any fðxÞ2L ðℝÞ (13)

by the straightforward relationship ~MnðuÞ≡Mnð�յuÞ. This latter
is easily proved after noting that

Mnð�յuÞ ¼
Z∞
0

dz MnðzÞexpðյuzÞ

¼ � յ

u

Z
ℝ

dz HðzÞMnðzÞ d
dz

expðյuzÞ; (14)

and carrying out integration by parts (H is the Heaviside step-

function).

We now decompose the experimental moment MðexpÞ
n as a

sum of the true one, Mn, and a noise, E n, i.e.

MðexpÞ
n ðzÞ ¼ MnðzÞ þ E nðzÞ; (15)

and we aim at estimatingMn fromMðexpÞ
n in the presence of E n.

This is a difficult task, and some additional apriori information

(or assumption) concerning the shape of E n as well as its

correlation withMn is required. In particular, we shall assume

in line with the standard approach of the signal processing

theory (see, e.g. Owen, 2007) that Mn and En are uncorrelated.

This leads to

��� ~MðexpÞ
n ðuÞ

���2 ¼ ��� ~MnðuÞ
���2 þ ��� ~E nðuÞ

���2: (16)

As a consequence, for a transport experiment one can

calculate the whole spectrum ~M
ðexpÞ
n , and subsequently sepa-

rate the true spectrum, ~Mn, from the noise one, ~E n, by

comparing with the right hand side of (16). In the present

study, we consider the case of a “white-noise” process for E n,

i.e.

E nðzÞxS ndðzÞ; 0<S n≡constant; (17)

and, we limit our analysis to n ¼ 1,2 (since the first and second

ordermoments are of relevance for the study at stake). Hence,

from (11) one has:

����� ~MðexpÞ
1 ðuÞ

���2 ¼ �
M0

u

�2

u�4 þ S 2
1;

����� ~MðexpÞ
2 ðuÞ

���2

¼ 4

�
M0

u2

�21þ ðluÞ2
u6

þ S 2
2: (18)

Inspection of (18) clearly shows that the noise-spectrum

(S 1 and S 2 in the present study) is nearly flat. To the con-

trary, the spectral signature of the true process is practically

concentrated in the low frequency range where it exhibits a

very well distinguished increase. As a consequence, within

the low frequency range one has
��� ~Mn

���2[��� ~E n

���2, and concur-

rently the true signal MðexpÞ
n practically coincides with the

theoretical one Mn.
To illustrate the utility of the present study to design a

sampling strategy to minimise the measurement-errors, we

have depicted in Fig. 2 the scaled spectrum
��� ~MðexpÞ

2

���2=S 2
2 versus

the dimensionless (spatial) frequency u ¼ l u, and some

values of the parameter a ¼ M0l
3=ðS 2u2Þ. First, it is seen that

the measurements coincide with the true signal within the

”low frequency-range”, and this explains why only a relatively

small number (usually between 5 and 8) of harmonics in the

fast Fourier transform is required in order to filter out most of

the measurement-errors (see, e.g. discussion in Duffy & Al-

Hassan, 1988, and references therein). In particular, the

smaller is a the larger is the impact of the measurement-error

(and concurrently the poor is the agreement between theo-

retical and true moments), and viceversa. To illustrate how to

obtain a relatively large frequency range (and therefore to

design a proper sampling spatial grid) where MðexpÞ
2 xM2, it is

worth noting that M0=S 2 � ðt2c [E Þ�1, being tc and [E the

transport time scale and a characteristic (transverse) length

scale of the measurement-errors, respectively. By noting that

a typical time scale of transport is l/q, one has axw2ðl=[E Þ. As
a consequence, increasing the range of frequency where

MðexpÞ
2 xM2 (Fig. 2) is determined by: either i) large water con-

tent values (i.e. when w is closer the water content at the

saturation), or ii) by a transport process whose dispersivity l

overtakes the transverse length scale [E of the measurement-

errors, somewhat similar to the ergodicity attainment in the

stochastic approach to solute transport in heterogeneous

porous media (Dagan, 1991; Severino, Santini, & Sommella,

2011). In the sequel, we apply our theoretical results to a

recently conducted field-scale transport experiment.
2.1. The transport experiment

To illustrate the potential of our procedure toward the esti-

mate of the transport parameters (u, l), we refer to a miscible

transport experiment that has been recently conducted. The

experiment is described in detail by Severino, Comegna,

Coppola, Sommella, and Santini (2010). For the purposes of

the present study, it is summarised briefly herein.

The site is located at Ponticelli (Naples, Italy). The analysis

of the texture from z¼ 0 to z¼ 100 cm suggests that the soil is a

moderately structureless sand (relative coarse-texture) till to

z� 80 cm, and loam (fine-texture) for 80� z� 100 cmwith bulk

density 9 ¼ ð1:0±0:1Þ g cm�3. A plot, 8 m (width) � 50 m (long),

was set-up in a greenhouse equipped with an irrigation

(sprinkler-type) system. Prior to the solute application, the

plot was irrigated (q ¼ 4.2$10�2 cm h�1) with fresh water to

achieve a steady water content w ¼ 0.33 ± 0.04 (for details, see

Severino, Comegna, & Sommella, 2005a; Comegna, Severino,

& Sommella, 2006b). Then, a pulse of chloride (KCl) was

applied at the surface (M0 ¼ 105 g m�2), and subsequently

leached till to z ¼ 200 cm by irrigating with the same flux q

applied before the application of the chloride (see, e.g.

Coppola et al., 2004; Comegna, Severino, & Sommella, 2006a).

Monitoring the Cl-concentration was intensively carried

out (for details, see Severino et al., 2010) at several depths (i.e.

http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002
http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002


Fig. 2 e The scaled (continuous lines) spectrum ð
��� ~MðexpÞ

2

���=S 2Þ2 as function of the dimensionless frequency u ¼ l u, and

different values of a≡M0l
3=ðS 2u2Þ. The dashed lines pertain to the spectrum ð�� ~M2

��=S 2Þ2 of the scaled true signal.
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z ¼ 5, 15, 25, 35, 45, 55, 65, 75, 85 cm), and most of the corre-

sponding BTCs are shown in Fig. 3. It fact, due to some logistic

problems occurred during the experiment, the recovery mass

at z ¼ 65 cm and z ¼ 85 cm was very poor, and therefore

meaningless for the purposes of the present study. As a

consequence, we did not consider the BTCs at these two

depths. It is seen that the peak of the concentration decreases

with increasing depth, therefore suggesting a significative

impact of the dispersion mechanism (which strictly depends

upon the second order moment). As we have already pointed

out, the accessible information in such situations is just the

pair (M1, M2). Instead, in the case of the Ponticelli-experiment

we also have the BTCs which we shall use as benchmark. This

further underpins (among the others) the uniqueness of the

Ponticelli transport experiment.

In the sequel we shall apply both the MM and the FD-

approach in order to discuss the performance of each

method into properly reproducing the experimental BTCs of

Fig. 3. Before proceeding further it is worth recalling here that

in the MM, and for a pulse-like (ideal) boundary condition, one

relates the first and second ordermoments (2) to the transport

parameters u and l via the relations:

u≡
z
T

; l≡
x

2
z (19)

(see, e.g. Jury & Roth, 1990), being T ¼ M1=M0 and

x ¼ M2=ðM0M2
1Þ � 1. Hence, once themoments are estimated by

means of the miscible transport experiment(s), one can easily

determine the advective velocity and the dispersivity via eq

(19). If the boundary conditions differ from the ideal ones, one
can modify this formulation to come up with a similar couple

of relationships (see, e.g. Ojha, Prakash, Corradini, Morbidelli,

& Govindaraju, 2015).
3. Discussion

As a first step, we have calibrated the transport equation (3) at

z ¼ 55 cm by means of both the MM and the FD approach. In

particular, the latter task was achieved by taking the first 8

harmonics to compute the fast Fourier transform.Thechoice of

such a depth for calibration purposes is dictated by the need to

minimise the impact of theupper boundary condition,which is

well knowntoprevent (due to thenonuniformities in thewater/

solute application) adoption of the advection-dispersion

equation (see e.g. discussion in Comegna, Coppola, &

Sommella, 1999; Coppola, Comegna, Basile, Lamaddalena, &

Severino, 2009, 2011; Severino et al., 2009). The resulting

calibration-values are summarised in the Table 1.

It is seen that the two methods lead to the same advective

velocity u. This was somehow expected since u is related to the

first-order moment (19), and therefore its estimate is scarcely

sensitive to the enhancing effect of the error/uncertainties in

the measurements. It also should be noted that the

mean effective velocity ueffðcm h�1Þ≡q=w ¼ 0:042=0:33

¼ 13,10�2 cm h�1, obtained via the applied flux q and themean

water content w, is slightly smaller than u. This is presumably

addressed to the larger variations of w due to the vertical het-

erogeneities of the soil at the plot scale (Severino et al., 2010).

Nevertheless, since the standard deviationof thewater content

http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002
http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002


Fig. 3 e Experimental BTCs of the chloride at the sampling depths along the plot at the Ponticelli-site.
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is sw ¼ 0:04 (see the above description of the transport experi-

ment), one has:

ueff ¼ ueff þ sueff≡
q
w
¼ 4:2,10�2

0:33±0:04
cm h�1xð13±2Þ,10�2 cm h�1

;

(20)

and concurrently the discrepancy between ueff and u can be

explained by the range of variability of the water content. This

also confirms that the resulting variability in the estimated

advection velocity is actually a measure of the hydraulic

properties relevant for the experiment at stake, and not an

artifact of the method(s) of estimate.

The solute spreading, that is related to the second-order

moment, is accounted by the characteristic dispersivity

length l. Unlike the advection, the estimate of l based upon

the MM is higher than the one obtained by the FD approach

(Table 1). A first explanation is that the MM is highly sensitive

to the large spreading of the BTCs close to the upper boundary

(for details, see Press et al., 1996) due to the large variability of

u (it is remeinded that D � lu) in the close vicinity of z ¼ 0

(Severino et al., 2010). Another way to address to such a dif-

ference is to invoke an “additional” dispersion mechanism

such as retardation and/or diffusion into immobile regions.

However, this would require a completely different model

accounting simultaneously for migration from/toward zones

of stagnation within the porous medium, a task which is left

to future studies.
Table 1eTransport parameters u and l≡D=u pertaining to
the model (3) as calibrated at the depth z ¼ 55 cm by the
MM, and the FD approach.

MM FD

u (cm h�1) l (cm) u (cm h�1) l (cm)

15$10�2 4.3 15$10�2 3.0
In Fig. 4 we have depicted the theoretical BTCs-(4) as cali-

brated bymeans of theMM (dashed line), and the FD approach

(continuous lines) along with the experimental BTCs (sym-

bols). The better agreement between the BTCs calibrated by

the FD approach is quantitatively confirmed (see Table 2) by

the efficiency parameter (EP)

EP ¼ 1�
Pn

i¼1

h
CðmodÞ
i � CðexpÞ

i

i2
Pn

i¼1

�
C� CðexpÞ

i

	2 ; C ¼ 1
n

Xn

i¼1

CðexpÞ
i ; (21)

where CðmodÞ
i and CðexpÞ

i represent modelled and measured

concentrations, respectively.

Before concluding, we wish to comment the significance of

the result l ~ constant for 35 cm � z � 75 cm. Indeed, a

propagation process which is characterised by a constant

dispersivity is typical of an advection-dispersion mechanism

(Fickian transport). To the contrary, in the shallowest depths

(z � 25 cm) the process is not anymore Fickian, and therefore

another modelling approach (along the lines suggested by

Severino, Cvetkovic, & Coppola, 2005b; Severino & Coppola,

2012) would be more appropriate.
4. Concluding remarks

In the present study the FD approach to estimate the transport

parameters (u, l) pertaining to the advection-dispersion

equation (3) is considered. For comparison purposes the FD

approach and the MM were applied to a recently conducted

field scale miscible transport experiment. The two methods

were found to provide the same value of the advective term u;

instead, they lead to considerably different l-values. Such a

difference is attributed to the “building up effect” of

measurement-errors generated by the MM. In particular, we

http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002
http://dx.doi.org/10.1016/j.biosystemseng.2016.10.002


Fig. 4 e Scaled BTCs C=M0 ðh�1Þ versus the elapsed time t (h) at z ¼ 35, 45, 55, and 75 cm. The dashed lines refer to the BTCs

as determined by the MM, whereas continuous lines pertain to the BTCs determined by the FD approach. Dots indicate the

experimental BTCs.
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show that the estimate of (u, l) achieved by the FD approach

provides a much better agreement between theoretical and

measured BTCs. This is explained by recalling that the FD

approach seeks for (u, l) to honour (12), and therefore it re-

quires that moments are Fourier transformed. Such a trans-

form moves most of the measurement-errors to the high-

frequency range and therefore, by adopting a relatively

small number of harmonics (8 in the present study) to

compute the fast Fourier transform of the experimental mo-

ments, one comes up with an estimate of the transport
Table 2 e The efficiency parameter EP (%) pertaining to
the: i) MM, and ii) FD approach at the sampling depths
shown in Fig. 3.

z (cm) EP (%)

MM FD

35 94.8 96.4

45 93.3 98.6

55 93.1 99.7

75 93.2 99.2
parameters which is much lesser affected by measurement-

errors. Based on this, we have also discussed how to prop-

erly design the experimental campaigns in order to minimise

the impact of the measurement-errors.

The results of the present study rely upon the assumption

that the measurement-errors are concentrated in the close

vicinity of the soil surface (z ¼ 0), and this justifies modelling

E n as a white-noise (Dirac distribution). Of course, this is not

anymore the case when the noise is coloured, and concur-

rently another functional model for E n has to be adopted. For

example, if the noise is “uniformly” distributed from the soil

surface z ¼ 0 till to the sampling depth z ¼ zs, one has

����� ~E nðuÞ
���2 � �

sinu
u

�2

; (22)

being u≡uzs=2. In this case, it is seen (Fig. 5) that the fre-

quencies uk corresponding to zero
�� ~E n

�� are uk ¼ 2kp=zs (with

k2ℕ). Thus, the stringent result is that, unlike our study, in

this case the set of frequencies to consider when computing

the fast Fourier transform of the experimental moments is
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Fig. 5 e Dependence of the function ðsin2
uÞ= u2 upon the dimensionless frequency u≡uzs=2.
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”discrete”. In particular, it is reasonable to limit to k ¼ 1,2,3 to

filter out most of the noise.

This example shows that, depending upon the structure of

the noise distribution, both the number and the type of the

frequencies to consider in the identification of the transport

parameters may significantly change, as consequence of the

soils's structure. Before concluding, we wish to underline that

when the sampling depth z≡zs is very deep, it turns out that

uk/0, and concurrently in this case assuming E n � d allows

one to account simultaneously for uncertainties due to: i) the

spatial variability of the transport parameters (coloured noise),

and ii) themeasurement-errors at the soil surface (whitenoise).
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